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Abstract
The localisation of leakages during the vacuum bagging process of a composite is currently time intensive and reliant on 
human labour. The purpose of this article is to explore four computational methods for leakage localisation using volumetric 
flow rate (VFR) data to increase the automation of the process. The data used in this article is based on experiments on a 
square vacuum bag with four vacuum ports. The first method is based on potential flow theory to simulate the flow. In the 
second method, numerical regression was applied to find a relation between the VFRs and port-leakage distances. The third 
method consisted of calculating the fractional VFRs for every point on a grid and finding the grid point whose values most 
closely correspond to the observed fractional VFRs. The last method involved training a machine learning algorithm with 
experimental data. After the development of the methods, their performance was tested over the entire single-leakage dataset 
and compared. The results were in the same order of magnitude for all methods, with an area of 105 mm2 for the 95% confi-
dence interval and a distance of 102 mm for the average error. Further research is required for application to different vacuum 
bag shapes and multiple leakages cases. The method with the highest adaptability and performance is the method based on 
potential-flow theory. Machine learning and the potential-flow method is further applicable to multiple leakage localisation.

Keywords  Vacuum bag · Leakage · Volumetric flow rate · Composite manufacturing · Computational methods

1  Introduction

During the curing process of a composite, maintaining a 
vacuum environment is essential to imbue the final product 
with the necessary material properties [1–3]. However, the 
successful completion of such processes is hindered by the 
possibility of leakages in the vacuum bag [4]. The presence 

of a leakage during the curing process can severely deterio-
rate the mechanical properties of the composite material if 
left unresolved [5, 6]. Determining the location of leakages 
is, therefore, of utter importance. However, the localisation 
process with the current state-of-the-art methods is time 
consuming and reliant on human labour [7]. Consequently, 
there is a demand for a new, faster and more automated 
localisation method, which can be achieved through analysis 
of the VFRs through the vacuum ports [8].

Menke developed the current state-of-the-art method [8] 
which allows for an estimate of the location of a single leak-
age. His study concerned a triangular vacuum bag with a 
vacuum port in each corner. The method was composed of 
two steps: The first step divided the vacuum bag into twelve 
sub-areas. The sub-area where the leakage is thought to be 
found, is determined based on the relative positions of the 
sub-areas, the positions of the vacuum ports, and the corre-
sponding VFRs. The second step further reduces the search 
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area. A relation between the distance of the leakage to a 
vacuum port and the fraction of VFR through that vacuum 
port, allows to determine a circle around the vacuum port, 
near which the leakage is expected to be located.

The two steps are combined to find a segment of the circle 
which is inside the determined sub-area. The leakage should 
then approximately be located in the vicinity of this circle 
segment. This method showed that it is possible to deter-
mine the position of the leakage through the volumetric flow 
rate but needs more improvement as it is at the moment not 
based on a reliable mathematical model and its limits regard-
ing accuracy and detection of multiple leakages are unclear 
and unstudied. Furthermore, this method leaves room for 
improvement as it becomes more inaccurate as the distance 
between the vacuum port and the leakage increases [9].

This article aims to explore four computational methods 
for leakage detection using volumetric flow rate (VFR) data. 
In contrast to a triangular vacuum bag, the experimental data 
for this article is based on a square vacuum bag with four 
vacuum connections.

Firstly, the article introduces the reader to a description 
of the received experimental data. After that, the methods 
section discusses the four different approaches, being poten-
tial flow, numerical regression, VFR matching and machine 
learning. The next sections are the results and comparison 
sections, where some representative samples are discussed 
and weighed between the methods. In the last section, a con-
clusion is presented.

2 � Description of data

The study is based on data produced during a series of 
experiments on a square vacuum bag. The experimental data 
is the main source of insight on the flow behaviour within 
the vacuum bag while also acting as a means of validating 
the models.

The square vacuum bag has sides of 1500 mm and 
is shown in Fig.  1. Each of the four vacuum ports are 

positioned towards the corners of the vacuum bag, at 75 mm 
distance from either side. The vacuum bag was empty (no 
manufacturing component was used). The layers constituting 
the vacuum bag are release film, breather and vacuum film, 
which are the usual materials employed in vacuum bagging 
processes [10].

During the experiment, the leakages were artificially 
introduced with hypodermic needles of three different sizes: 
0.3, 0.45 and 0.6 mm. The number of leakages applied var-
ied from none to three—none as a control case to determine 
any experimental errors. The VFR were recorded from the 
beginning of the vacuuming process until their convergence 
to a stable value.

The dataset of a single experiment sample consists of the 
number of leakages, their position and size, together with the 
four VFRs (one for each vacuum port) measured through-
out time. The collection of one thousand experiments is the 
overall sample set used in the study. Out of all of the experi-
ments, approximately 10% is carried out with no leakages 
and the other approximately 90% of experiments is more or 
less equally subdivided over one, two or three leakage cases.

3 � Methods

This article aims to explore computational methods for leak-
age detection using volumetric flow rate (VFR) measure-
ment data. The purpose of these methods is to localise an 
area with a high probability of containing the leakage, after 
which methods to find the exact location of the leakage can 
be applied [8].

The data is analysed with four independent and in-house 
methods, relying on different approaches: Potential flow 
based theory, numerical regression, VFR matching and 
machine learning using experiments with one leakage. After 
the different steady-state models are able to generate valid 
results to localise a single leakage, their accuracy is evalu-
ated and compared. The feasibility of their application to the 
localisation of multiple leakages situations is then assessed 

Fig. 1   Experimental setup of 
the vacuum bag with volumetric 
flow rate measurement
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and commented on. Finally, the methods are tested on their 
ability to be applied on different vacuum bag geometries.

3.1 � Potential flow

This method utilises potential flow [11] as a basis to 
model the ports and the leakage as sink and source flows, 
inside a bounded region in 2D space. It is important 
to note that this theory only holds if the flow satisfies 
Laplace equation, in addition to being strictly steady-state 
analysis.

The velocity potential of a sink or source, in Cartesian 
coordinates, is defined by Eq. (1).

where � is the VFR or the strength of the sink/source. The 
x0 and y0 represent the location of the sink/source in mm.

In case of a leakage, it is assumed that the majority of 
air directly flows from the leakage towards the four ports, 
taking the shortest path. This results in a VFR at each 
of the four ports, regardless of the elapsed time. As the 
distance from each port to the leak differs and to adhere 
to the conservation of mass, the velocity vector along the 
port-leak path should be proportional to the VFR of the 
corresponding port. Consequently, the goal is to obtain 
the corresponding average velocity along the port-leak 
paths and compare the velocity ratio to the VFR ratios.

Numerically, the ports are modelled as sinks, while 
reference leakages are modelled as sources to simulate the 
flow. As the flow cannot leave the bag, a boundary must 
be defined and needs to be discretised into control points 
with source or sink characteristics.

The complete velocity vector field is determined for 
each arbitrary leakage position, from which a sorting 
algorithm attempts to find an equilibrium point by mov-
ing the leakage across the whole bag. The most probable 
area of the leakage would then be based on the smallest 
difference between the VFR and average velocity ratios 
of the corresponding area. The velocity vector field can 
be modelled using the partial derivatives of Eq. (1) in 
Cartesian coordinates; with Eqs. (2) and (3) representing 
the x and y components of the velocity field, represented 
with the u and v, respectively.

(1)�(x, y) =
�

2 ⋅ �
⋅ ln

(

√

(x − x0)
2 + (y − y0)

2

)

(2)u =
��

�x
=

� ⋅ (x − x0)

2 ⋅ � ⋅

[

(x − x0)
2 + (y − y0)

2
]

(3)v =
��

�y
=

� ⋅ (y − y0)

2 ⋅ � ⋅

[

(x − x0)
2 + (y − y0)

2
]

Figure 2 shows the vacuum bag with a leakage using the 
potential flow method.

3.2 � Numerical regression and quadrilateration

This method involves finding a relation through numerical 
regression for the distance from the leakage to the vacuum 
port and the VFRfraction through that vacuum port. This rela-
tion is then used to make a prediction on the location of the 
leakage.

First of all, only the samples with one leakage are consid-
ered. A plot of the relevant data is shown in Fig. 3.

The pattern created by the data points along a curve sug-
gests a relation between the two variables (pump-leakage 
distance and VFR fraction) similar to an inverse proportion-
ality. The regression uses the distance from vacuum port as 
an independent variable and the fractional VFR as dependent 
variable. The basis functions of the regression are obtained 
starting from a high number of functions, such as powers 
of x, 1/x, trigonometric functions, the exponential function, 
and the natural logarithm. Equation (4) represents the rela-
tion between VFRfraction and the distance from the leakage 
to the pump, r, as a combination of the basis functions and 
their coefficients.

Fig. 2   Graphical representation of the velocity vectors of the airflow 
moving inside the leaking vacuum bag in a steady-state situation with 
a leakage represented by the red dot (colour figure online)
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where an represents a to be determine value.
The regression is performed several times in order to reject 

basis functions that do not provide a meaningful contribution. 
That is when they have a negligibly small coefficient assigned 
to them. Finally, the regression function is inverted and applied 
simultaneously to the fractional VFRs of the four vacuum 
ports. This results in the estimated distance between each port 
and the leakage, visualized as circles around the vacuum ports. 
Since the radii of all four circles are estimations, the circles 
will not intersect in one and the same point, which would be 
the case if an exact relation was known. Hence, the prediction 
for the leakage location is the point which is closest to all four 
circles. To find this point, Newton’s method for optimisation 
[12] was applied to minimise the sum of the squares of the 
distances from the prediction to the circles. An example of the 
circles and the prediction is shown in Fig. 4.

3.3 � VFR matching

The VFR matching method is based on the assumption that the 
amount of flow varies with the radial distance from its source/
sink. This is further supported by potential flow theory [11]. 
Equation (5) shows that the VFR 𝜈̇ over length l, is directly 

(4)
VFRfraction =a1 + a2 ⋅ r +

a3

r
+

a4

r2
+

a5

r3

+ a6 ⋅ tan (r) + a7 ⋅ e
r + a8 ⋅ ln (r)

proportional to the radial distance from the source/sink times 
radial velocity [13].

where ṁ is the mass flow in kg/s, � the density in kg∕m3 and 
Vr is the radial velocity of the flow in m/s.

This method assumes inviscid, incompressible, laminar 
and steady flow in the vacuum bag and through the vacuum 
ports. Furthermore, the method does not require any experi-
mental data. Firstly a grid with N grid points is obtained, 
where the coordinates of each grid point are stored in a 
Coordinate Matrix (CM). As already stated by Haschen-
burger et al. [8], each vacuum port takes up a fraction of the 
total entering flow, resulting in the vacuum port VFR over 
the total VFR, C, given in Eq. (6).

where � is the VFR over the length in mm2 /s and r is the dis-
tance from the leakage in mm. The subscripts vp and tot rep-
resent the vacuum port VFR and the total VFR, respectively. 
Since there is only one leakage, the sum of VFR fractions 
through the vacuum ports must equal one as seen in Eq. (7). 
Substituting Eq. (6) into Eq. (7) leads to Eq. (8).

(5)
ṁ

𝜌 ⋅ l
=

𝜈̇

l
= 𝜆 = 2𝜋r ⋅ Vr

(6)C =
�vp

�tot
=

rvp

rtot
⟺ �vp = C ⋅ �tot

Fig. 3   In this plot of the single leakage experiments, each point is 
defined by a distance (horizontal axis) and a fraction (vertical axis). 
There is a point for each of the pumps of every experiment. For each 
experiment, the horizontal component is obtained calculating the dis-
tance between a specific pump and the leakage of the experiment, the 
vertical consists in the VFR fraction measured in the vacuum port 
corresponding to the same pump. The points seems to suggest a rela-
tion similar to an inverse proportionality

Fig. 4   Graphical representation of the quadrilateration step in the 
prediction of the leakage position using the numerical regression and 
quadrilateration method. The arches represent the expected leakage 
location based solely on one VFR fraction, with the use of the 4 VFR 
fractions, quadrilateration can be utilized; Newtons method allows to 
localize the point with the shortest distance from each of the arches, 
thus producing a single point as the prediction of the leakage
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Once the grid is ready, the radial distance from each grid 
point to the four vacuum ports is found and is used to calcu-
late the VFRs for each of these vacuum ports (on each grid 
point) using Eqs. (8) and (6). These VFRs are stored in an 
array of four elements and assembled into an N × 4 matrix 
containing the VFRs for all N grid points for all vacuum 
ports, called the Volumetric Flow Matrix, VFM. In reality 
the nonzero volumetric flow fractions for all vacuum ports 
will be known. These fractions are compared to the VFM 
and the closest entry from the VFM will be used to get the 
corresponding coordinates from the Coordinate Matrix. An 
example of how the grid looks with one prediction is shown 
in Fig. 5.

In Fig. 5 each point is treated as if it corresponded to 
the leakage location, the VFR corresponding to each situ-
ation is calculated using an inversely proportional relation 
between distance and VFR fraction and stored inside the 
matrix. Finally, the real measured VFR fraction combination 
is compared to the calculated ones and the discretised point 
with the combination that matches the closest the experi-
mental one is chosen as the predicted leakage location. The 

(7)
4
∑

i=1

Ci = 1

(8)

1

�tot
=

1

�vp1
+

1

�vp2
+

1

�vp3
+

1

�vp4
⟶

1

rtot
=

1

r1
+

1

r2
+

1

r3
+

1

r4

example shows a grid with 2304 nodes representing the indi-
vidual leakage positions for which the data is stored inside 
the VFM. The resolution of the matrix can be chosen in 
accordance to the individual application.

3.4 � Machine learning

Machine learning is known to be able to find complex rela-
tions in data, given sufficient learning data is available [14]. 
In this case, supervised artificial neural networks were used 
instead of modelling the physical phenomena or making pre-
dictions about the exact statistical relations between VFR 
measurements and the location of the leakages. Four input 
nodes are used with the values of VFR at a converged state 
and two output nodes with the predicted x and y position of 
the leakage.

There are three steps needed in order to apply machine 
learning to the given data. First, during the initial setup, the 
available data is processed in which the list of all the given 
VFR data and the respective leakage position data is col-
lected and combined with the mirrored and rotated data1 in 
order to increase the amount of learning data. Furthermore, 
the appropriate number of hidden layers and corresponding 
nodes for each layer is determined. This is done following 
basic neural network development guidelines [14] and by 
experimenting how these values affected the performance 
of the neural network.

The second step is training the neural network, in which 
the parameters of the activation functions are adjusted to 
increase the accuracy of the predictions. These parameters 
are changed using the gradient vector of average error across 
all data points. The neural network is developed using only 
the original data as the rotated and mirrored data is used 
to test if the neural network is able to predict general data 
points and is not over-adjusted.

Once further learning iterations do not improve the accu-
racy of the neural network, it can be used for the third step—
prediction of the location of the leakages. At this point, the 
neural network is no longer changed and can be verified 
using data that was not used for learning.

A simple neural network is shown in Fig. 6, in which 
2 input nodes, 2 hidden layers and an output layer with 2 
nodes is used.

The points on the left (light blue colour) constitute the 
input data which was provided to the program and are 
expected to sufficiently describe the state conditions of the 
outcome of the behaviour to be modelled. The two central 
columns (grey colour) represent the neural points where 
the program develops its model. Lastly, the column on the 

Fig. 5   Graphical representation of the grid that discretises the vac-
uum bag in a limited amount of evenly spread points. The example 
shows a grid with 2304 nodes

1  The mirroring and rotation of the data is possible due to the sym-
metry of the bag.
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right (green colour) represents the outcome obtained by the 
analysis of the dataset. Using a neural network allows to 
approximate relations between variables of a large sample 
of recorded experiments.

4 � Results

After the methods have been developed, their performance 
in predicting the leakage location is measured for all the 
single-leakage experiments in the dataset. The perfor-
mance of all the methods is described by common error 
parameters in order to lay the basis for the comparison. In 
particular, three areas of confidence (68%, 95%, 99.7%) 
were computed. These regions are the search areas that 
would be used for the exact localisation of the leakage by 
a technician during the composite manufacturing process.

4.1 � Potential flow

After simulating each single-leakage case with the poten-
tial flow method, the results were plotted with the use of a 

heat-map and were split into two categories: one in which 
the leaks are noticeably close to a boundary, and the rest. 
In Fig. 7a–c, general cases can be seen. The different col-
oured regions correspond to different likelihood estimates 
for the leakage to be located in that specific region. The 
most probable leakage position corresponds to the darkest 
colour, while the ground-truth is marked with a red dot.

In the first case, in which the leak is in the close proxim-
ity of the boundary, the method can not precisely localise 
the leakage position as the effects of the boundary sinks 
and sources have a higher impact than the simulated leak-
age, resulting in an unfavorable shift of the leakage posi-
tion prediction. However, the colder colour gives a reason-
able estimate for the leakage position, as can be seen in 
Fig. 7a. In Fig. 7b, the leakage is not in close proximity 
of the boundary but the effect of the boundary sinks and 
sources is still present which generates some uncertainty. 
The uncertainty results in a larger predicted area for the 
leakage, but the dark blue colour is still consistent with the 
real leakage position.

In the last case, in which the leakage is located closer 
to the middle of the bag, as can be seen in Fig. 7c, the 
determined position is approximately identical to the real 
leakage position as the effect of the boundary is negligible 
compared to the effect of the leakage. In Fig. 8, the error 
distribution can be found for every single-leakage case 
with the use of potential flow.

The distribution does not resemble a Gaussian distribu-
tion but rather a strictly decreasing one: the vast majority 
of the leakages are predicted with a very small error (lower 
than 0.5 mm2

⋅ 105 ). Furthermore, the corresponding error 
quantification table can be seen in Table 1.

In Fig. 9 an example is shown, for which the required 
search area is highlighted in white. The search area is deter-
mined by colouring the most probable leakage position with 
the white colour, until the real position is within the white 

Fig. 6   Example of a simple neural network

Fig. 7   Application of the potential flow theory based method to three different examples of leakage positions (on the boundary, close to bound-
ary and away from boundary)
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region. By applying the above mentioned technique on the 
whole dataset, one can obtain the area of confidence.

Further research and development is still in progress 
regarding the extension to multiple leakage cases as pre-
liminary simulations with low resolutions showed that the 
leakage positions might also be estimated in those cases. 
Unfortunately, it requires a more in-depth analysis which is 
outside the scope of this paper.

4.2 � Numerical regression and quadrilateration

The numerical regression resulted in the relation shown in 
Eq. (9).

Where r is the distance between leakage and a particular 
vacuum port in mm and VFRfraction is the fraction of the total 

(9)VFRfraction = 0.497672 − 0.000254 ⋅ r +
13.93866

r
VFR flowing through that vacuum port. The regression func-
tion is visualised in Fig. 10.

Predictions for three general cases are presented in 
Fig. 11. In the first case, shown in Fig. 11a, the method is 

Fig. 8   Distribution of error in leakage position prediction determined 
by the potential flow theory based method, using the VFR from the 
experiments (blue histogram). The distribution does not resemble a 
Gaussian distribution but rather a strictly decreasing one: the vast 
majority of the leakages are predicted with a very small error (lower 
than 0.5 mm2

⋅ 105 ) (colour figure online)

Table 1   Error parameters and confidence interval relative to the 
results produced by the approach using potential flow theory

Error quantification type Results

Average error (mm) 105.43
Median error (mm) 80.7
68% confidence interval (mm2) 5.09 ⋅104

95% confidence interval (mm2) 1.574 ⋅105

99.7% confidence interval (mm2) 2.967 ⋅105

Fig. 9   The heat-map shows an area with white colour which is an 
example of area of confidence. After the confidence probability 
of interest is chosen, the dimension of the confidence area is deter-
mined using the results obtained applying the method to the entire set 
of experiments. Once the dimension of the confidence area is estab-
lished, each experiment can be analysed individually. The areas with 
the higher probability in containing the leakage are part of this confi-
dence area

Fig. 10   The image shows the same distribution of data points related 
to one-leakage experiments as in Fig.  3 together with the regressor 
function found (Eq. (9), orange line. The found regressor function 
approximates the distribution of the points better for middle range 
distances rather than for extremes (both large and small distances) 
(colour figure online)
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able to predict the leakage position around the centre with 
reasonable accuracy. In Fig. 11b, a case is depicted where 
the leakage is on the boundary and the prediction is less 
accurate. In the third case, the leakage is located towards the 
boundary but not in the immediate vicinity, as can be seen 
in Fig. 11c. The accuracy of the prediction is in between 
the accuracies for the two previously mentioned cases. In 
general, the closer the leakage is located to the boundary, 
the more difficult it is for the method to accurately predict 
the leakage location. The numerical regression method was 
based on single-leakage cases only. Therefore, this method 
is not able to capture the complexity that occurs when mul-
tiple leakages with varying diameters are present. Newton’s 
method converges fairly well towards the actual leakage 
position when the leakage is not near one of the vacuum 
ports. Whenever the leakage is located close to a vacuum 
port, Newton’s method has the tendency to diverge. Hence, 
the leakage is assumed and predicted to be in vicinity of 
the vacuum port with the highest fractional VFR, whenever 
the method diverges. On assessment, this assumption yields 
desirable results. Figure 12 shows the distribution of the 
error between the prediction and the actual location.

A summary of the results is presented in Table 2.

4.3 � VFR matching

Similarly as for the other methods, this method was tested 
for three different cases of a leakage occurring with the 
results depicted in Fig. 13. It can be seen that this method 
yields accurate results, independent of the leakage location.

The VFR matching method was implemented for differ-
ent grids ranging from 4 to 2601 grid points. For each of the 
grids an error matrix was computed using the experimental 
data. This error matrix contained the distance error between 
the predicted leakage and the actual leakage location. These 

Fig. 11   Application of the numerical regression and quadrilateration method to three different examples of leakage position. As can be seen, the 
results become worse when the leakage location approaches the corners and/or boundary of the vacuum bag

Fig. 12   Distribution of error in leakage position prediction deter-
mined by the numerical regression and quadrilateration method, 
using the VFR from the experiments (blue histogram). In the great 
majority of cases, the value of the error is lower than 200 mm (colour 
figure online)

Table 2   Error parameters and confidence interval relative to the 
results produced by the numerical regression and quadrilateration 
approach

Error quantification type Results

Average error (mm) 124
Median error (mm) 106
Error variance (mm) 75
68% confidence interval (mm2) 8.35 ⋅104

95% confidence interval (mm2) 1.96 ⋅105

99.7% confidence interval (mm2) 3.50 ⋅105
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error matrices for the different grids were used for statistical 
evaluation of the method. Figure 14 shows that the average 
error converges up to 115 mm after approximately 500 grid 
points are used. It can thus be concluded that if one desires 
to minimise run-time, a relatively coarse grid can be used 
while still obtaining an accurate prediction of the leakage. 

In Fig. 15 the normal distribution (orange line) and his-
togram (blue bars) of the errors for all of the received data 
points is shown for a grid with 2304 nodes. The distribu-
tion is thought to approach a Gaussian distribution given a 
sufficiently high number of experiments which is why the 

normal distribution line is provided. It can be observed that 
the majority of the errors between the predicted location and 
the location of the received data points are below 200 mm, 
but there are some outliers present due to either measure-
ment errors of the data received or model errors. Finally, 
Table 3 shows some general statistical results of the VFR 
matching method, all for a grid with 2304 nodes.

This method does not work for multiple leakages as it is 
not able to model the interactions between multiple leakages. 

Fig. 13   Application of the VFR matching method to three differ-
ent examples of leakage positions. The grid density tested was suf-
ficiently high therefore the error showed convergence (see Fig.  14). 

Differently from the previously shown methods, the quality of the 
prediction is not noticeably sensitive to the location of the leakage

Fig. 14   Average error change with different grid densities. The aver-
age error approaches rapidly to the converged value of 115 mm when 
refining the grid (red horizontal line). The converged value is reached 
by a grid density of 500 points (colour figure online)

Fig. 15   Distribution of error in leakage position prediction deter-
mined by the VFR matching method (2304 grid points), using the 
VFR from the experiments (blue histogram). The majority of the 
errors have a magnitude lower than 150 mm. The distribution is 
thought to approach a Gaussian distribution given a sufficiently high 
number of experiments (of which the prediction is shown with the 
continuous line) (colour figure online)
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The method is however applicable to different geometries, 
even 3D, as long as none of the lines connecting a leak-
age to each of the vacuum pumps intersect. Otherwise the 
interaction between stream lines would have to be taken into 
account.

4.4 � Machine learning

The final neural network used for the leakage location pre-
diction consisted of one hidden layer with eight nodes and 
the Softplus function, Eq. (10), as activation function for 
both the hidden layer and the output layer.

This function was chosen due to its similarity to how VFR 
values are expected to correlate with the distance of the leak-
age to a port.

The visualisation of the final neural network can be seen 
in Fig. 17.

The numerical results of this method are summarized in 
Table 4. The results are split in two parts: one using the 

(10)f (x) = ln(1 + ex)

given training data and the second using given training data 
together with rotated and mirrored data, taking advantage of 
the symmetry of problem to measure the generality of the 
neural network. The results are quantified using the average 
error, error variance and multiple areas of confidence.

The distribution of the error is visualised in Figs. 18 and 
19. These figures show distribution of error in leakage posi-
tion prediction determined by the developed neural network, 
using the VFR from the experiments (blue histogram). The 
distribution is thought to approach a Gaussian distribution 
given a sufficiently high number of experiments (of which 
the prediction is shown with the continuous line). The pre-
dictions of three example cases, made by this neural net-
work, are shown in Fig. 16. The results, in contrast to the 
previous methods, do not show significantly higher error for 
the cases in which the leakage is located in close proximity 
of one of the corners.

Theoretically, machine learning is expected to work with 
any number of leakages if a physical relationship between the 
VFR data and the leakage position exists in combination with 

Table 3   Error parameters and confidence interval relative of the 
results produced by the approach based on VFR matching

Error quantification type Results

Average error (mm) 112
Median error (mm) 91
Error variance (mm) 84
68% confidence interval (mm2) 7.94 ⋅104

95% confidence interval (mm2) 2.04 ⋅105

99.7% confidence interval (mm2) 3.80 ⋅105

Fig. 16   Application of the developed neural network to three different 
examples of leakage positions (away from boundary, on the boundary, 
close to boundary). Similarly to the VFR Matching method, the qual-

ity of the prediction does not reduce significantly when the leakage 
position is located close to the boundary

Fig. 17   Visualisation of the final neural network
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the appropriate amount of training data. The expected prelimi-
nary quality requirement was not met by the obtained results 
of the single-leakage cases. Therefore, more complex meth-
ods such as position localisation of multiple leakages or time 
involvement in the localisation process were not attempted.

Machine learning consists of vast arrays of complicated 
solutions that could be applied to solve the leakage localisation 
problem. In this case a simplified model was produced to prove 
that machine learning is applicable. Although this approach 
produced the least accurate results of all the methods discussed 

in this paper, there is still substantial opportunity for further 
optimisation of this method.

5 � Comparison

All of the four independent methods are able to determine a 
predicted area in which the leakage is expected to be located.
In order to evaluate their performance, the four methods are 
compared based on the following criteria, which can also be 
found in Table 5:

•	 Size of the predicted confidence area
	   Considering the aim of this paper, the area of predic-

tion for a certain confidence level needs to be minimised. 
Potential flow theory performed the best producing the 
smallest area prediction for a potential leakage with an 
average error of 105 mm. However, the results for all 
methods belong to the same order of magnitude, there-
fore the difference is not substantial.

•	 Average error, median error and error standard deviation 
magnitude

	   The average error is an informative benchmark for 
assessing the accuracy of the methods. Furthermore, it 
shows the effect of the outliers in the predicted position. 
Hence, the smaller the average error the preciser the loca-
tion. Moreover, median error and standard deviation are 

Table 4   Error parameters and confidence intervals of the results pro-
duced by the neural network

Error quantification type Training values Testing values

Average error (mm) 138 165
Median error (mm) 127 152
Error variance (mm) 101 112
68% confidence interval (mm2) 1.17 ⋅ 105 1.60 ⋅ 105

95% confidence interval (mm2) 2.98 ⋅ 105 3.94 ⋅ 105

99.7% confidence interval (mm2) 5.52 ⋅ 105 7.15 ⋅ 105

Fig. 18   Distribution of error in leakage position prediction deter-
mined by the developed neural network, using the VFR from the 
experiments (blue histogram). The majority of the errors have a mag-
nitude lower than 250 mm. The distribution is thought to approach a 
Gaussian distribution given a sufficiently high number of experiments 
(of which the prediction is shown with the continuous line) (colour 
figure online)

Fig. 19   Distribution of error in leakage position prediction deter-
mined by the developed neural network, using the VFR from the 
experiments (blue histogram). This time however, the training data 
used for the neural network in the machine learning iteration was 
increased through rotation and mirroring of the original data. The 
majority of the errors now have a reduced magnitude of lower than 
200 mm. The predicted Gaussian distribution is again shown with the 
continuous line) (colour figure online)
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useful statistical parameters describing the error distribu-
tion. The two methods with the most room of improve-
ment, machine learning and VFR matching, are the ones 
which produce the highest error standard deviation-with 
machine learning having around 40% higher that the 
result produced by the best method.

•	 Ability to be extended to multiple leakages
	   For future development, the focus should lie on the 

extension to multiple leakage detection and localisation. 
This study focused solely on single-leakage scenarios 
so that the evaluation on multiple leakages detection is 
speculation based on the nature of the methods produced. 
Potential flow and VFR matching-based methods rely 
on the same theory and are likely applicable to multiple 
leakages overlapping single stage scenarios. Machine 
learning can also applied as long as the number of experi-
ments provided is sufficiently high. The regression-based 
approach would not work in its current state and it is 
believed that the higher level of complexity that is related 
to multiple leakages detection would make this approach 
obsolete compared to machine learning.

•	 Applicability to variable geometries
	   It is relevant for industrial application to be able to 

handle vacuum bags with non-square shapes. All the 
methods require further development before testing. The 
potential flow and VFR matching methods are base on 
a theory that is independent of the shape of the vacuum 
bag as long as the vacuum bag shape is convex, however 
for the other methods further research is required. Simi-
larly for the case of multiple leakages, the limitations of 

machine learning derive from the amount of experiments 
the learning algorithm is fed with.

•	 Prediction sensitivity to leakage position
	   The potential flow and regression-based methods show 

a noticeable decrease in either confidence or accuracy in 
leakage prediction when the leakage is located close to 
the boundaries of the vacuum bag. This does not hap-
pen with the two other methods. This factor is especially 
relevant in case the entire process of leakage detection 
would be automatised.

From Table 5, it follows that the potential flow method is the 
most effective, since it has the smallest predicted confidence 
area of 1.574 ⋅ 105 mm2 for the 95% confidence interval, 
smallest average error, 105.43 mm, and it can be applied for 
both multiple leakages and different geometries. However, 
the confidence of the prediction degrades when the leakage 
being predicted is close to the boundaries of the vacuum bag.

6 � Conclusion

Leakage-free vacuum bagging is imperative for the cur-
ing process of composites. With the aim of exploring four 
computational methods for leakage detection using VFR, 
four approaches were developed and tested. Two of the four 
methods were based on the experimental data, in which data 
analysis was used, be it numerical regression or machine 
learning. The other two methods, potential flow and VFR 
matching, did not need the experimental data to make their 

Table 5   Comparison of errors 
for all four methods

Error quantification Potential flow Regression VFR matching Machine learning

95% confidence interval (mm2) 1.57 ⋅ 105 1.96 ⋅ 105 2.04 ⋅ 105 3.94 ⋅ 105

Average error (mm) 105 124 112 158
Median error (mm) 81 106 91 148
Error standard deviation (mm) 82 75 84 106
Multiple leakages Yes No Yes Yes
Different geometries Yes Yes Yes Yes
Sensitivity to leak position Noticeable Noticeable Unremarkable Unremarkable

Table 6   Summary of results

Error quantification Potential flow Regression VFR matching Machine learning

Average error (mm) 105 124 112 158
Median error (mm) 81 106 91 148
Error standard deviation (mm) 82 75 84 106
68%confidence interval (mm2) 5.09 ⋅104 8.35 ⋅104 7.94 ⋅104 1.60 ⋅ 105

95% confidence interval (mm2) 1.574 ⋅105 1.96 ⋅105 2.04 ⋅105 3.94 ⋅ 105

99.7% confidence interval (mm2) 2.967 ⋅105 3.50 ⋅105 3.80 ⋅105 7.15 ⋅ 105
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predictions as they make use of potential flow theory in 
aerodynamics.

Five criteria have been determined in order to decide 
upon the most effective method, more specifically, those 
are: predicted area, average error, applicability to multiple 
leakage cases, applicability to different geometries and sen-
sitivity to leakage position. For the area, the 95% confidence 
interval is used for comparison. Consequently, potential 
flow is the best method regarding the first four criteria, thus 
appears to be the most suitable solution for leakage localisa-
tion. It is speculated to be applicable to different geometries 
and for multiple leakages prediction, it has the smallest 
predicted confidence area of 1.574 ⋅ 105 mm2 for the 95% 
confidence interval and the smallest average error, 105.43 
mm. The only drawback of the method is the decrease in 
performance when the leakages are close to the edges of 
the vacuum bag. Further details on the relative performance 
of the methods are found in Table 6. Particularly relevant 
metrics are the confidence intervals and how their dimen-
sion increases for higher confidence. It is important to notice 
that even if potential flow is the best performing method, all 
methods produce confidence intervals in the same order of 
magnitude.

All the methods would require further development 
for industrial application since all the experiments were 
performed on a square vacuum bag without any object 
inside it. Multiple leakage detection is the subsequent 
step of complexity that would bring computational 
methods closer to real life applications. Moreover, to 
test the capability of the methods, experiments should 
be carried out with components of different shapes 
inside the vacuum bag.
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