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Abstract. The deep learning-based side-channel analysis represents one
of the most powerful side-channel attack approaches. Thanks to its capa-
bility in dealing with raw features and countermeasures, it becomes the
de facto standard approach for the SCA community. The recent works
significantly improved the deep learning-based attacks from various per-
spectives, like hyperparameter tuning, design guidelines, or custom neu-
ral network architecture elements. Still, insufficient attention has been
given to the core of the learning process - the loss function.

This paper analyzes the limitations of the existing loss functions and
then proposes a novel side-channel analysis-optimized loss function: Focal
Loss Ratio (FLR), to cope with the identified drawbacks observed in other
loss functions. To validate our design, we 1) conduct a thorough experi-
mental study considering various scenarios (datasets, leakage models, neu-
ral network architectures) and 2) compare with other loss functions used
in the deep learning-based side-channel analysis (both “traditional” ones
and those designed for side-channel analysis). Our results show that FLR
loss outperforms other loss functions in various conditions while not hav-
ing computational overhead like some recent loss function proposals.

Keywords: Deep learning · Focal loss · Loss function · Side-channel
analysis

1 Introduction

Side-channel analysis (SCA) is one of the most popular tools to exploit the
implementation weaknesses of an algorithm [11]. Commonly, SCA attacks can
be divided into two categories: direct attacks and profiling attacks. The first
attack method analyzes the leakages from the target device directly, while the
second one requires a copy of the target device. There, an attacker would first
learn the characteristic of the copied device (profiling phase) and then launch
an attack on the target device (attack phase).

With stronger attack assumptions, profiling attacks are considered more pow-
erful than their counterpart. In recent years, the rise of deep learning further
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
J. Balasch and C. O’Flynn (Eds.): COSADE 2022, LNCS 13211, pp. 29–48, 2022.
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increased the profiling attacks’ capability. Specifically, such attacks can break
targets protected with countermeasures by relaxing the assumptions of knowl-
edge from target implementations [7,25,29]. Moreover, compared with the con-
ventional profiling attack (i.e., template attack [22]) that relies upon points of
interest selection, deep learning-based SCA has softer restrictions on data pre-
processing/feature engineering.

Deep learning-based SCA still requires a significant effort to reach its full
potential. There are many open questions when applying such attacks, such as
network architecture design [18,24,29], evaluation metric design [30], as well as
the interpretability and explainability of models [26]. Unfortunately, those issues
represent only a part of the problem. A perspective that cannot be neglected
is that classical machine learning metrics/loss functions do not necessarily give
an accurate representation of the performance of an SCA model [16,30]. On the
other hand, launching practical attacks and averaging the key rank to estimate
the guessing entropy is computationally costly (especially if also done during
the training phase, see, e.g., [14,19]). Consequently, the SCA community put a
significant attention on developing SCA-specific metrics and loss functions, such
as Cross-Entropy Ratio loss (CER) [30] and ranking loss (RKL) [28].

The CER loss is one of the recently developed methods to improve the per-
formance of deep learning models in the SCA domain. When comparing the
CER loss and the conventional categorical cross-entropy (CCE) loss, the CER
loss introduces a denominator to the CCE loss that calculates the correlation
between multiple traces and incorrect labels so that the difference between the
target cluster and other clusters can be maximized. Similar implementations
are proved to be efficient in the machine learning domain as well [31]. How-
ever, CER loss has two limitations. The CER’s denominator calculation can be
a challenging task since even for the traces that belong to the same cluster, the
classification difficulties of each trace can be different. The easily classified traces
can significantly increase the denominator’s value for CER loss, thus reducing
the overall loss. From a higher level, when performing the classification tasks,
learning from easy samples is not helpful but could easily trigger model overfit-
ting. The hard samples, on the contrary, help the classifiers learn the underlying
data’s properties, thus could lead to better classification performance.

Returning to the CER loss, although one can include more traces to increase
the possibility of picking up hard samples 1) since the samples are randomly
selected, the samples’ difficulties are uncertain; 2) including too many samples
would significantly slow down the training process. Using, e.g., ten traces for the
denominator calculation significantly slows down the training time compared to
the CCE loss.

To overcome the limitations mentioned before and inspired by the focal
loss [9], we propose a novel loss function for SCA: Focal Loss Ratio (FLR).
The main contributions of this paper are:

– We design a novel loss function that enables deep learning models to learn
from noisy or imbalanced data efficiently.

– As FLR requires tuning of additional hyperparameters, we discuss the appro-
priate hyperparameter tuning strategies.
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– We perform systematic evaluation and benchmark on commonly used and
recently proposed SCA-based loss functions.

We provide the source code in a Github repository: https://github.com/
AISyLab/focal loss.

2 Background

This section provides an introduction to deep learning-based profiling side-
channel attacks. Afterward, we discuss various loss functions and the datasets
used in our experiments.

2.1 Deep Learning-Based Side-Channel Analysis

Supervised machine learning aims to learn a function f mapping an input to the
output based on examples of input-output pairs. The function f is parameterized
by θ ∈ R

n, where n denotes the number of trainable parameters. Supervised
learning consists of two phases: training and test. Moving to the profiling side-
channel attacks, those two phases are commonly denoted as the profiling and
attack phase. In the deep learning-based SCA, the function f is a deep neural
network with the Softmax output layer. We encode classes in one-hot encoding,
where each class is represented as a vector of c values (that depends on the
leakage model and the considered cipher), with zero on all the places, except one,
denoting the membership of that class. Our work considers two commonly used
deep learning models: multilayer perceptron and convolutional neural networks.

The multilayer perceptron (MLP) is a feed-forward neural network that
maps sets of inputs onto sets of appropriate outputs. MLP consists of multiple
layers (at least three: an input layer, an output layer, and hidden layer(s)) of
nodes in a directed graph, where each layer is fully connected to the next one,
and training of the network is done with the backpropagation algorithm [4].

Convolutional neural networks (CNNs) commonly consist of three types
of layers: convolutional layers, pooling layers, and fully connected layers. The
convolution layer computes the output of neurons connected to local regions
in the input, each computing a dot product between their weights and a small
region they are connected to in the input volume. Pooling decrease the number
of extracted samples by performing a down-sampling operation along the spatial
dimensions. The fully connected layer computes either the hidden activations or
the class scores.

A dataset is a collection of side-channel traces (measurements), where each
trace ti is associated with an input value (plaintext or ciphertext) di and a key
value ki. Similar to the conventional machine learning process, the dataset is
divided into disjoint subsets where the training set has M traces, the validation
set has V traces, and the attack set has Q traces.

1. The goal of the profiling phase is to learn θ (vector of parameters) that
minimizes the empirical risk represented by a loss function L on a training
dataset of size M .

https://github.com/AISyLab/focal_loss
https://github.com/AISyLab/focal_loss
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2. In the attack phase (also known as test or inference), predictions are made
for the classes

y(x1, k
∗), . . . , y(xQ, k∗),

where x denotes leakage traces and k∗ represents the secret (unknown) key
on the device under the attack. The outcome of predictions with a model f
on the attack set is a two-dimensional matrix P with dimensions equal to
Q × c. The cumulative sum S(k) for any key candidate k is then used as a
maximum log-likelihood distinguisher:

S(k) =
Q∑

i=1

log(pi,y). (1)

The value pi,y is the probability that for a key k being used to generate
leakage di, we obtain the class y. A specific class y is obtained from the key
and input through a cryptographic function and a leakage model.

In SCA, an adversary aims at revealing the secret key k∗. More specifically,
given Q traces in the attack phase, an attack outputs a key guessing vector
g = [g1, g2, . . . , g|K|] in decreasing order of probability. Thus, g1 is the most likely
and g|K| the least likely key candidate. The attack performance is evaluated by
standard performance metrics such as success rate (SR) and guessing entropy
(GE) [21]. Guessing entropy is the average position of k∗ in g. The success rate
is the average empirical probability that g1 is equal to the secret key k∗. In this
work, both metrics are considered.

2.2 Loss Functions

In machine learning, the loss indicates the difference between the predicted out-
puts of the model and the ground truth labels belonging to the input. The result
of a loss function L is used to update the weights in the network with gradient
descent, finally reducing the deviation between the predicted and true labels.

For classification, the common loss function is the categorical cross-entropy
(CCE), and it has been used in various classification tasks [5,8,27]. Since side-
channel attack can be considered as a classification task as well, CCE is also
usually adopted in SCA [1,7,10]. Cross-entropy is a measure of the difference
between two distributions. Minimizing the cross-entropy between the distribu-
tion modeled by the deep learning model and the true distribution of the classes
would improve the predictions of the neural network:

CCE(y, ŷ) = − 1
n

n∑

i=1

c∑

j=1

yi,j · log(ŷi,j), (2)

where c is the number of classes, y is the true value, and ŷ is the predicted value.
Categorical cross-entropy loss has several variants depending on usage cases.

Focal loss is one of the popular ones in dealing with class imbalance problems
as well as improving learning speed [9]:
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FOCAL(y, ŷ) = −α(1 − ŷ)γCCE(y, ŷ), (3)

where CCE is the categorical cross-entropy function, α is a vector of weights for
each class, and γ is the parameter that increases the loss for correctly classified
examples with low confidence.

More recently, two SCA-specific loss functions have been proposed. One of
them is the ranking loss (RKL) proposed by Zaid et al. [28]. The ranking loss uses
both the output score of the model and the probabilities produced by applying
the Softmax activation function to these scores. The idea behind the ranking
loss is to compare the rank of the correct key byte and the other key bytes in
the score vector before the Softmax function is applied:

RKL(s) =
∑

k∈K
k �=k∗

(
log2

(
1 + e−α(s(k∗)−s(k))

))
, (4)

where s is the predicted vector with scores for each key hypothesis, K is the
set of all possible key values, k∗ is the correct key, and s(k) is the score for key
guess k, calculated by looking at the rank of k in the list of all possible keys.
Finally, α is a parameter that needs to be set dependent on the size of the used
profiling set. The implementation of the ranking loss function is provided by the
authors [28] on Github1.

Zhang et al. proposed the cross-entropy ratio (CER) [30]. CER can be used
as a metric to estimate the performance of a deep learning model in the context
of SCA, which can be further extended as a loss function:

cer(y, ŷ) =
CE(y, ŷ)

1
n

∑n
i=1 CE(yri

, ŷ)
, (5)

where CE is the categorical cross-entropy, and yri
denotes the one-hot encoded

vector with the incorrect labels. Here, the variable n denotes the number of
incorrect sets to use. The authors do not provide a value for n, but state that
increasing n should increase the accuracy of the metric. We use n = 10 to balance
computational complexity and attack performance in our experiments.

2.3 Datasets

Our experiments consider three publicly available datasets representing a typical
sample of commonly encountered scenarios. These datasets are a common choice
for evaluating the performance of deep learning-based SCA. For all datasets, we
consider the Hamming weight (HW) and Identity (ID) leakage models.

ASCAD Datasets. The ASCAD datasets are generated by taking measure-
ments from an ATMega8515 running masked AES-128 and are proposed as the
benchmark datasets for SCA [1]. There are two versions of the dataset. The first

1 https://github.com/gabzai/Ranking-Loss-SCA.

https://github.com/gabzai/Ranking-Loss-SCA
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version consists of 50 000 profiling traces, and 10 000 attack traces, each trace
consisting of 700 features. The profiling and attacking sets use both the same
fixed key. We denote this dataset as ASCAD fixed.

The second version of the ASCAD dataset uses random keys to build the pro-
filing traces. The dataset consists of 200 000 profiling, and 100 000 attack traces,
each consisting of 1 400 features. We denote this dataset as ASCAD variable. For
our experiments on the ASCAD datasets (both versions), 50 000 profiling traces
are used. 2 000 traces for the ASCAD fixed dataset and up to 3 000 traces for the
ASCAD variable are used in the attack phase. For both versions, we attack the
first masked key byte, which is key byte 3. The ASCAD datasets are available
on the ASCAD GitHub repository2.

CHES CTF Dataset. The CHES CTF dataset was released in 2018 for the
Conference on Cryptographic Hardware and Embedded Systems (CHES). The
traces consist of masked AES-128 encryption running on a 32-bit STM micro-
controller. In our experiments, we use 45 000 traces for the training set, which
contains a fixed key. The validation and test sets consist of 5 000 traces each,
where we used 3 000 traces for the attack phase. Unlike the ASCAD dataset,
the key used in the training and validation set is different from the key for the
test set. We attack the first key byte. This dataset is available at https://chesctf.
riscure.com/2018/news. In our case, we considered a pre-processed version of the
dataset where each trace consists of 2 200 features. The pre-processed dataset is
available at http://aisylabdatasets.ewi.tudelft.nl/.

3 Related Works

To improve the side-channel attack performance, in recent years, deep learning
has received more attention within the SCA community, see, e.g., [2,7,10,12,17,
18,23,29]. MLP and CNNs have become the most popular candidates to launch
such attacks. The results show that by carefully tuning the model’s hyperpa-
rameters, the required number of attacks traces can be dramatically reduced to
obtain the secret key. For instance, [29] proposed a methodology to find well-
performing architectures for SCA, while [7] also researched different architectural
choices and the influence of noise. More recently, [15] showed how ensembles of
deep learning models can be used for SCA.

Although the model design methodologies have been widely studied, less
attention has been put on the loss function. [10] first explored the usage of
convolutional neural networks for SCA and mentioned the categorical cross-
entropy and the mean squared error loss functions, which is followed by later
works on deep learning-based SCA [1,13,15,23,29].

More recently, two novel loss functions optimized for SCA have been pro-
posed [28,30]. More details are presented in Sect. 2.2. Finally, Kerkhof et al.

2 https://github.com/ANSSI-FR/ASCAD/tree/master/ATMEGA AES v1.

https://chesctf.riscure.com/2018/news
https://chesctf.riscure.com/2018/news
http://aisylabdatasets.ewi.tudelft.nl/
https://github.com/ANSSI-FR/ASCAD/tree/master/ATMEGA_AES_v1
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recently conducted a systematic evaluation of several loss functions (“tradi-
tional” machine learning ones like categorical cross-entropy and mean squared
error) but also the SCA-related ones (CER and ranking loss) [6]. Their analysis
showed that CER performs the best for SCA, followed by categorical cross-
entropy. Interestingly, the reported results for ranking loss indicate significant
issues with that loss function.

4 A Novel Loss Function for SCA

In this section, we introduce our novel loss function. First, we provide a formal
problem statement, followed by a discussion about the FLR loss function and
how to tune its hyperparameters.

4.1 Problem Statement

Before introducing the Focal Loss Ratio, we first formally define the easy and
hard samples [20]. Let a, p, and n denote anchor (i.e., ground truth), positive
(with a label same as the anchor), and negative samples (with a label different
from the anchor). In general, the anchor can be the data of any label, and the
positive and negative samples are based on the anchor’s label. We can categorize
the positive samples p into two categories based on their similarity S to the
anchor sample: 1) easy samples, where S(a, p) < S(a, n); 2) hard samples, where
S(a, n) < S(a, p). The way of calculating the similarity depends on the selection
of the loss function. Nevertheless, the samples closer to the anchor have higher
confidence to be classified to the corresponding clusters. Following this, based
on the classification outcomes, we define:

– Easy positives/negatives: samples classified as positive/negative examples.
– Hard positives/negatives: samples misclassified as negative/positive exam-

ples.

Recall that the CER loss takes advantage of samples with incorrect labels to
increase the attack performance. However, the training would become inefficient
if most samples are easy negatives that have limited contribution to the learning
process. The bias introduced by easy negatives makes it difficult for a network
to learn rich semantic relationships from samples: cumulative easy negatives loss
overwhelms the total loss, which degenerates the model. Moreover, one should
notice that the class imbalance can be introduced based on the leakage model.
For instance, when using the Hamming weight leakage model, information related
to middle classes (i.e., HW = 4) in a dataset or mini-batches used in training is
over-represented compared to the other classes. Indeed, training a network on
an imbalanced dataset will force the network to learn more representations of
the data-dominated class than other classes. Unfortunately, besides re-balancing
from the dataset level, there are no special measures to address this problem
during the training process. Finally, the accurate estimate of CER requires a
sufficient number of negative samples (infinite in the ideal case), but it would
reduce the training efficiency as a trade-off.
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4.2 Focal Loss Ratio

Two actions are essential to address the problems identified in the previous
section. First, the hard samples should be prioritized in the training process
compared to the easier ones. Second, the weight of each class should be param-
eterized. Following this, we propose the Focal Loss Ratio (FLR):

FLR(y, ŷ) =
−α(1 − ŷ)γCE(y, ŷ)

1
n

∑n
i=1 −α(1 − ŷ)γCE(ysi

, ŷ)
, (6)

where y are the true labels, ys are the shuffled labels, CE is the categorical cross-
entropy, and n is the number of negative samples to use. In Eq. 6, α and γ are
introduced to weight the classes and emphasize hard samples for both numerator
and denominator, respectively. When looking at the numerator, aligned with the
focal loss, the samples with lower prediction probability (hard samples) have a
greater impact on the loss function, which is further controlled by the α value.
The same statement holds for the denominator as well. Besides, the introduction
of the denominator further separates the prediction distribution between the
correct cluster and other clusters. Indeed, compared with other loss functions,
FLR introduces additional benefits to efficient learning: 1) concentrating on the
samples that are difficult to classify (hard samples) and 2) balancing the dataset.
Finally, FLR can be seen as an improved version of CER loss, focusing on learning
efficiency. Since the theoretical evidence from the CER loss also applies to our
FLR loss, we do not repeat it in this work.

Figure 1 demonstrates the above mentioned effects. Given that input in the
prediction probability ŷ ranges from zero to one and the ground truth y equals
zero, as shown in the left graph, FLR (α = 0.5) introduces the greatest penalty to
the hard samples compared to others. When ypred is getting closer to ytrue, the
FLR value is neglectable, thus reducing the contribution of the easy negatives.
The effect of α is shown on the right graph: the influence of the hard samples is
reduced when α decreases. Consequently, the FLR loss could be a good candidate
when the classes are imbalanced (i.e., the HW leakage model). Moreover, since
α can effectively control the hard sample’s influence, then the improvement of
the model’s performance can be realized by different tuning strategies. More
discussions are presented in Sect. 6.

4.3 Hyperparameter Tuning

Compared with other loss functions, FLR loss introduces additional hyperpa-
rameters. Thus, it requires careful tuning. We consider three strategies for α
and γ selection to investigate their influence and reach the top performance in
the considered testing scenarios. For the first strategy, we use the values given
by [9], namely α = 0.25 and γ = 2.0. Models with these settings are denoted as
FLR. The second strategy optimizes both α and γ via random search, denoted
as FLR optimized. The search ranges are defined in Table 1.
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(a) Comparison between loss functions. (b) The influence of α towards the FLR.

Fig. 1. Demonstration of different loss functions.

Table 1. Hyperparameter space for FLR optimized.

α 0.1, 0.25, 0.5, 0.75, 0.9

γ 0, 0.5, 1.0, 2.0, 5.0

Finally, we introduce class re-balancing into our loss function [3]. With class
balancing, the weights for each class (α) are set based on the classes’ size. For
each class, the corresponding weight is calculated as shown in Eq. 7.

αi =
1 − β

1 − βny
, (7)

where αi is the weight for class i, ny is the number of samples in the considered
class in the profiling set, and β is a new parameter to be tuned. In this paper,
aligned with [3], we set β = 0.999. Models trained with these settings are referred
to as focal balanced.

We conducted a preliminary search to determine the optimal value of n
(ranges from 1 to 20). Our experiments showed the best attack performance when
n equals three. This observation also holds when tested on the other datasets.
Also, the impact on training time of using n = 3 is negligible compared to n = 1.
Therefore, we set n to three for our experiments with FLR.

5 Experimental Results

In this section, we provide the experimental results for our new loss function.
First, we provide details about the experimental setup. Afterward, we provide
results for all considered datasets and loss functions.
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5.1 Setup

Regarding model architecture tuning, using one or a few optimized models from
the literature may introduce bias as they are optimized for a specific dataset-
loss function combination. Besides, the model’s performance may fluctuate with
each training due to the random weight initialization. Therefore, we follow Algo-
rithm 1 to tune the model’s hyperparameters for each loss function.

Algorithm 1. Model tuning and the evaluation strategy.
1: Generate, train, and test Z models sampled from range S with loss function L.
2: Select the best performing model Tb.
3: Train and test the model Tb N times.
4: Select the median performing model Tbm.
5: Evaluate Tbm with evaluation metrics.

This paper compares our function against the CER loss, categorical cross-
entropy, ranking loss, and focal loss. The selection of “traditional” loss functions
is based on the results from [6]. Note that for the RKL’s α value, the original
paper selected 0.5 for the ASCAD dataset and did not provide values for the
other datasets. Since the number of profiling traces we used was almost the same
for all datasets, α = 0.5 was used for every dataset and model. Although this
value can be further optimized, we argue that tuning α for all of the scenarios
and architectures is not viable and practical for real-world usages, considering
the number of different scenarios/architectures that are relevant.

For each loss function, we set Z to 100 with hyperparameters sampled from
Tables 2 and 3. n is set to be 10. We use guessing entropy to evaluate the model’s
performance during the tuning process (steps 2 and 4). For the evaluation (step
5), we look at the guessing entropy and success rate. In some of the plots in the
following sections, the x-axis is reduced to increase visibility.

Table 2. Hyperparameter space for multilayer perceptrons.

Hyperparameter Options

Dense layers 2 to 8 in a step of 1

Neurons per layer 100 to 1 000 in a step of 100

Learning rate 1e−6 to 1e−3 in a step of 1e−5

Batch size 100 to 1 000 in a step of 100

Activation function (all layers) ReLU, Tanh, ELU, or SeLU

Loss function RMSprop, Adam
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Table 3. Hyperparameter space for convolutional neural networks.

Hyperparameter Options

Convolution layers 1 to 2 in a step of 1

Convolution filters 8 to 32 in a step of 4

Kernel size 10 to 20 in a step of 2

Pooling type Max pooling, Average pooling

Pooling size 2 to 5 in a step of 1

Pooling stride 2 to 10 in a step of 1

Dense layers 2 to 3 in a step of 1

Neurons per layer 100 to 1 000 in a step of 100

Learning rate 1e−6 to 1e−3 in a step of 1e−5

Batch size 100 to 1 000 in a step of 100

Activation function (all layers) ReLU, Tanh, ELU, or SeLU

Loss function RMSprop, Adam

5.2 ASCAD fixed

Figures 2 and 3 show the guessing entropy and success rate metrics with different
attack models and leakage models. From the results, models trained with FLR
loss outperform the CCE and focal loss in all test scenarios. Specifically, when
the HW leakage model is considered, the FLR model halves the required attack
traces compared with categorical cross-entropy or focal loss to reach a GE of
1. Surprisingly, ranking loss performs mediocre in most cases, indicating its low
generality towards different deep learning models and test scenarios. Note that
we tested on the same datasets as the RKL paper does, and the poor performance
mainly comes from the variation of the attack model (recall, we use models
created via random search). Unfortunately, although RKL may work well with
some specific settings (like the one in [28]), the general applicability of that loss
function is relatively poor based on our results.

On the other side, FLR loss and CER loss perform comparably. Still, as shown
in Table 4, when the median NTGE

is evaluated, the models trained with FLR
outperform the CER loss in three out of four of the test scenarios. Interestingly,
all three FLR tuning strategies (for α and γ) work well and lead to successful
attacks with a limited number of traces. Although optimal strategy differs per
scenario, their variation is limited.
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(a) MLP models, ID leakage model. (b) MLP models, HW leakage model.

(c) CNN models, ID leakage model. (d) CNN models, HW leakage model.

Fig. 2. Guessing entropy of the optimized models for the ASCAD fixed dataset.

Table 4. Median NTGE for the ASCAD fixed dataset. The lowest NTGE for each
scenario is marked blue.

Lfocal CCE CER loss RKL FLR FLR balanced FLR optimized

MLP ID 580 860 570 900 810 540 680

MLP HW 1480 1560 560 1620 460 570 510

CNN ID 1250 1360 600 1760 610 850 550

CNN HW 1840 >2000 540 >2000 570 790 560

5.3 ASCAD variable

Next, loss functions are tested on the ASCAD variable dataset. The guessing
entropy for each loss function is presented in Fig. 4. For the ID leakage model,
neither the MLPs nor CNNs reach a GE of 1 with less than 3 000 traces. Still,
the CER loss and FLR perform the best: the CER loss reaches a GE of 1.7
with MLP and 3.13 with CNN, while the models with FLR reach 2.11 and 1.18.
When the HW leakage model is considered, as shown in Table 5, the secret key
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(a) MLP models, ID leakage model. (b) MLP models, HW leakage model.

(c) CNN models, ID leakage model. (d) CNN models, HW leakage model.

Fig. 3. Success rate of the optimized models for the ASCAD fixed dataset.

can be retrieved successfully with all considered loss functions. For MLP, FLR
loss performs slightly worse than CER (NTGE

= 1800 versus NTGE
= 1340).

For CNN, FLR outperforms CER (NTGE
= 800 versus NTGE

= 950). Ranking
loss, unfortunately, performs the worst in most of the test scenarios.

Table 5. Median NTGE for the ASCAD variable dataset. The lowest NTGE for each
scenario is marked blue.

Lfocal CCE CER loss RKL FLR FLR balanced FLR optimized

MLP ID >3 000 >3 000 >3 000 >3 000 >3 000 >3 000 >3 000

MLP HW 1940 2 600 1 340 2 910 2 180 2 460 1 800

CNN ID >3 000 >3 000 >3 000 >3 000 >3 000 >3 000 >3 000

CNN HW >3 000 2 840 950 >3 000 880 1 670 1 020
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(a) MLP models, ID leakage model. (b) MLP models, HW leakage model.

(c) CNN models, ID leakage model. (d) CNN models, HW leakage model.

Fig. 4. Guessing entropy of the optimized models for the ASCAD variable dataset.

Next, the success rates (SR) of each loss function are shown in Fig. 5. Inter-
estingly, the FLR (default version) equipped model reaches a higher SR slightly
faster than the other loss functions with the ID leakage model. The FLR and
CER loss perform equally well for the HW leakage scenarios. Note that the per-
formance of FLR can fluctuate with different hyperparameter tuning strategies.
For the ASCAD variable dataset, however, FLR with default values (α = 0.25,
γ = 2.0) would be a good choice.

5.4 CHES CTF

In this section, we discuss the results for the CHES CTF dataset. Figure 6 shows
the guessing entropy in the different scenarios.

For all considered loss functions, 3 000 attack traces are not sufficient to
obtain the correct key for the ID leakage model. Still, from the results, we see a
significant performance improvement with the MLP models and the ID leakage
when using FLR balanced. Such an improvement is also visible in some of the
CNN models with FLR. However, these models turned out to be less consistent
in terms of performance when changing the attack settings. For instance, the
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(a) MLP models, ID leakage model. (b) MLP models, HW leakage model.

(c) CNN models, ID leakage model. (d) CNN models, HW leakage model.

Fig. 5. Success rate of the optimized models for the ASCAD variable dataset.

FLR balanced performs the best with MLP, but it performs mediocre with CNN.
Similar behavior is also visible for the FLR optimized.

When the HW leakage model is considered, we again see a significant increase
in the performance when a CNN is used. As shown in Table 6, the models with
FLR and FLR optimized were the only ones that successfully retrieved the cor-
rect key. The median of 10 models with FLR and FLR optimized were successful
with a NTGE

of 2 740 and 2 000, respectively. When MLPs are used, there is no
significant increase in NTGE

, and the performance is approximately equal to the
CER loss.

6 Discussion

FLR loss performs well in various test scenarios, while the only downside to
using FLR as a loss function is the introduction of the α and γ parameters. We
used three different strategies: 1) fixed value: α = 0.25 and γ = 2.0; 2) optimized
via random search; 3) determined by the frequency of each class.
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(a) MLP models, ID leakage model. (b) MLP models, HW leakage model.

(c) CNN models, ID leakage model. (d) CNN models, HW leakage model.

Fig. 6. Guessing entropy of the optimized models for the CHES CTF dataset.

Table 6. Median NTGE for the CHES CTF dataset. The lowest NTGE for each scenario
is marked blue.

Lfocal CCE CER loss RKL FLR FLR balanced FLR optimized

MLP ID >3 000 >3 000 >3 000 >3 000 >3 000 >3 000 >3 000

MLP HW 1220 630 480 1 860 1 080 2 030 2 450

CNN ID >3 000 >3 000 >3 000 >3 000 >3 000 >3 000 >3 000

CNN HW >3 000 >3 000 >3 000 >3 000 2 740 >3 000 2 000

Throughout the experiments, there was not a single strategy that worked
best for every scenario. Still, the best performing FLR variants have the fixed α
values for every class in almost all cases. In some of the scenarios with the ID
leakage model, the class re-balance strategy improves the performance. However,
using class balancing with the ID leakage model results in almost constant and
low values of α. This leads us to conclude that the best strategy is the variant
where α is the same for every class and the α and γ parameters are optimized.
Optimization via random search can be performed to set the α and γ values.
In combination with an increased range of the possible values, e.g., the addition
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of lower α values, FLR optimized should outperform the other variants. From
Sect. 4.2, one should note that with lower α, the samples that trigger high loss
value are the ones misclassified with high confidence (probability).

Compared with other loss functions that require models to be confident about
predicting, this FLR configuration softens the restriction for the predictions:
only (very) hard negative will be penalized, while the others that are correctly
classified, or even misclassified but with low confidence would have limited loss
contributions. From the learning perspective, loss functions forcing the model
to reach high accuracy/low loss would normally lead to the learning from the
major classes/overfitting. FLR with low α allows the models to make mistakes,
increasing the model’s generality and helping to learn from the imbalanced data.

We performed an additional set of experiments on ASCAD fixed and
ASCAD variable datasets to test our hypothesis. The search space for α is now
extended to 0.005, 0.01, 0.05, 0.1, 0.25, 0.5, 0.75, and 0.9. We use FLR as the loss
function for each test scenario and again optimize hyperparameters via random
search. The results of these experiments are listed in Tables 7 and 8.

Table 7. Median NTGE for the ASCAD fixed dataset. The lowest NTGE for each
scenario is marked blue.

Lfocal CCE CER loss RKL FLR

MLP ID 580 860 570 900 640

MLP HW 1 480 1 560 560 1 630 490

CNN ID 1 250 1 360 600 1 760 520

CNN HW 1 840 >2 000 540 >2 000 500

Table 8. Median NTGE for the ASCAD variable dataset. The lowest NTGE for each
scenario is marked blue.

Lfocal CCE CER loss RKL FLR

MLP ID >3 000 >3 000 >3 000 >3 000 >3 000

MLP HW 1 940 2 600 1 340 2 910 1 340

CNN ID >3 000 >3 000 >3 000 >3 000 >3 000

CNN HW >3 000 2 840 950 >3 000 800

From the results, in the scenarios in which the class balanced FLR was previ-
ously best, such as the ASCAD fixed scenarios, the FLR with our new strategy
still performs very well. For instance, when attacking ASCAD fixed with MLP
and the ID leakage model, the best performing model uses a fixed α that equals
0.005. Although it did not perform as well as the CER loss or FLR balanced
in this case, it did perform better than the other strategies. We also see results
similar to the previous experiments when using the HW leakage model on the
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ASCAD variable dataset. FLR outperforms the CER loss in most cases. The
benefit, however, is that a single strategy can be used for each scenario, namely
the same optimized value for α for each class.

7 Conclusions and Future Work

In this paper, we proposed a novel loss function optimized for deep learning-based
side-channel analysis. More precisely, we started by discussing the advantages
and drawbacks of several loss functions in the context of SCA. Using those
characteristics, we constructed a new loss function for deep learning-based SCA
denoted as the Focal Loss Ratio (FLR).

We confirmed FLR’s outstanding performance by testing it on combinations
of datasets, leakage models, and neural network architectures. Finally, we showed
that neural network models using FLR work with different parameter optimiza-
tion strategies and that FLR outperforms the CER loss and other loss functions
like the categorical cross-entropy in most of the considered scenarios. We plan
to explore the hyperparameter selection for FLR loss when considering datasets
with more complex countermeasures for future work.
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zation for Scientific Research NWO project DISTANT (CS.019) and project PROACT
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