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Modeling airflow-driven water droplet removal

from a flat surface

Tobias Danczul1, Wouter Hetebrij2, Faeze Kha-

lighi3, Lukas Kogler1, Domenico Lahaye4, Ellen

Luckins5, Wim Munters3, Michael Neunteufel1, Gud-

mund Pammer6, Kees Vuik4, Oliver Whitehead5, Yang

Zhou7

Abstract

Motivated by the goal of removing small water droplets from semi-
conductor wafers, the ambition of this investigation is to analyze the
behaviour of droplets adhered to a flat surface when exposed to dif-
ferent types of air flows. A sequence of models, increasing in both
complexity and fidelity, is proposed to capture the setup. Capabilities
and limitations of each modeling approach are demonstrated for repre-
sentative example cases. Under mild assumptions, we propose a model
order reduction that restricts omits the computation of the air flow, and
restricts the computational domain to the interior of the droplet itself,
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drastically accelerating computations. We finally highlight remaining
difficulties and suggest concrete actions for future investigation.

Keywords: computational fluid dynamics, droplets, lu-

brication theory, multiphase flow, Navier-Stokes equations

6.1 Introduction

The company that suggested the herein considered problem is VDL
Enabling Technologies Group (VDL ETG), which is part of the inter-
nationally operating VDL Groep. This is a subcontracting company
specializing in metalworking, mechatronic systems and system supply,
plastics processing and surface treatment. Their equipment is used in
various processes such as vacuum process chambers, wafer stages and
wafer handlers. The current treatment of the latter is cause for the
collaboration with SWI2020.

air in air out

300 mm

10 mm
2 mm

Figure 6.1: A pure water droplet is attached to the downward side
of a semiconductor wafer. Typical dimensions and air-driven removal
strategy are shown.

During wafer handling, the wafer is attached at its center, leaving
a space between the bottom wafer surface and an underlying plate of
up to 10 mm. In practice, small water droplets with volumes up to
10 mm3 are often found attached on this bottom surface, as shown in
Figure 6.1. This contamination impairs the processing of the current
wafer, and could further contaminate subsequently processed ones. Due
to technical constraints, wafer cleaning should be completed within a
period of 10 seconds. However, the whole procedure takes place in a
highly controlled environment which disallows many removal strategies
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such as thermal treatment, application of electric fields, or addition of
volatile solvents. This renders most standard cleaning methods infea-
sible.

The state-of-the-art method of tackling this issue is spinning the
wafer. Due to the centrifugal force the water droplets are pushed out-
wards to the edge where they are aspirated and removed. VDL ETG
currently considers a different approach: pushing the droplet along the
surface to the edge by an imposed air flow. The investigation and op-
timization of this airflow-driven droplet removal is the subject of the
current study.

The physics of flow-driven movement of droplets on flat surfaces
has been the subject of various prior research efforts (see, e.g., Fan,
Wilson, and Kapur (2011), Seevaratnam et al. (2010), and Grinats et
al. (2019)), illustrating different modes of movements including sliding,
oscillations, and droplet breakup for different combinations of droplet
size and imposed airflow. An example of the former simple sliding
regime is shown in Figure 6.2, which illustrates the position of a set of
airblown droplets with different size as a function of time. It can be seen
that droplet movement is highly dependent on size, as smaller droplets
tend to move much slower and are hence harder to remove within a
given time window. Given that strong airflows could cause the break-up
of droplets, this observation illustrates the difficulty of the task at hand:
the reduced volume and surface of broken droplets leads to a reduced
force exerted by the flow, rendering these resulting droplets even harder
to remove. Furthermore, the bottom plate could be contaminated by
water resulting, eventually into a propagation onto subsequent wafers
and worsening the situation. It is hence expected that there exists
an optimal driving air velocity to remove droplets in minimal time
without breakup. Moreover, given the frequent observation of droplet
shape oscillations, not only the amplitude but also possible oscillations
in the air flow might have effect on the droplet removal time. Indeed,
oscillations could incite resonance modes in droplet shapes, thereby
magnifying the drag force which is exerted by the air flow.

In this work, we investigate the droplet removal problem using
mathematical models to increase the overall understanding of the prob-
lem and provide pathways to optimize the removal process. The manuscript
is structured as follows. Firstly, Section 6.2 discusses the need for a
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Figure 6.2: Experimental setup and results for droplets of varying size
on flat surface blown by airflow of u∞ = 20 m/s. Left: Topview setup
photograph. Right: Droplet coordinates as a function of time. Figure
adapted from Grinats et al. (2019).

modeling chain as opposed to a single model, and details the method-
ology and results of the mathematical models used in the current work.
Next, Section 6.3 summarizes and compares the main findings from the
different models. In closing, Section 6.4 formulates overall conclusions
and provides concrete recommendations for further steps.

6.2 Modeling

We consider the simplified situation in which a single water droplet is
placed on the bottom of a flat surface (see Figure 6.3). The droplet
is exposed to an airflow with freestream inlet speed u∞ and the bot-
tom wafer handler surface is neglected. Despite these simplifications,
the physics of the resulting problem remain complex, i.e. it involves
a wall-bounded multiphase free-surface flow which is inherently three-
dimensional and unsteady. As a result, analytical solutions to detailed
mathematical models can not be found. Furthermore, numerical so-
lutions to such models, e.g. based on the three-dimensional unsteady
Navier–Stokes equations, are intractable given the available time and
computational resources in the current project. Instead, we consider
different models with varying tractability, complexity and computa-
tional cost which also complement each other. Rather than making
precise numerical comparisons between models or predictions for a spe-
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u∞

Figure 6.3: Basic setup of a single droplet attached to a flat surface,
blown by an imposed free-stream airflow u∞.

cific set of conditions, we choose to qualitatively assess and compare
capabilities and limitations of each model. This allows us to identify
most promising methods and provides ways to move forward in mod-
eling and optimizing the droplet removal. Material properties used
in each of the models detailed below are consistent with the problem
description and summarized in Table 6.1.

The models considered in this manuscript are described below. In
Section 6.2.1, a force-balance model is introduced. Next, Section 6.2.2,
discussed a model based on a lubrication approximation of the Navier–
Stokes equations. Finally, Section 6.2.3 elaborates on two models based
on a computational fluid dynamics approach to the Navier–Stokes equa-
tions. The models can be ranked in terms of tractability and complexity
as shown below:
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Navier-Stokes & lubrication approximation
Navier-Stokes computational fluid dynamics (CFD)

6.2.1 Force balance model

In this section we describe an ordinary differential equation (ODE)
model for the droplet velocity. This model was originally proposed in
Grinats et al. (2019), where the droplet is assumed to be on the upper
part of a smooth plate. In our report, we investigate the motion of a
droplet with a volume V = 7 mm3 (corresponding to a spherical radius
a = 1.44 mm) attached to the bottom of the wafer (see Figure 6.4).
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Table 6.1: Physical parameters and material properties used through-
out this work.

Reference temperature Tr = 20◦C
Water density ρw = 1000 kg/m3

Water kinematic viscosity νw = 1.004× 10−6 m2/s
Water dynamic viscosity µ = 1.002× 10−3kg/(m · s)

Gas density ρg = 1.204 kg/m3

Gas kinematic viscosity νg = 1.82× 10−5 m2/s
Water-Gas surface tension coefficient σ = 72.86× 10−3 N/m

Water-wafer equilibrium contact angle θ = 45◦

Gravitational acceleration g = 9.81 N/kg

Figure 6.4: Geometrical representation of the droplet as part of a
sphere above the plate. Left: Spherical droplet (θ = π), Middle:
Truncated droplet (θ ≤ π), Right: Deformed truncated droplet
(θR ≤ θA ≤ π), blown by air flow with velocity u∞. Figure adapted
from Grinats et al. (2019).

Model description

The droplet is assumed to behave like a single particle with mass m
and velocity at time t denoted by u(t). At rest, the droplet assumes the
shape of a truncated sphere with contact angle θ = 45◦. In response
to the imposed airflow, the droplet will attain a deformed shape with
different contact angles on the windward (θR) and leeward (θA) sides of
the droplet. We consider the one-dimensional case where the velocity
changes along the horizontal direction. Writing out a force balance for
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the droplet, Newton’s second law of motion dictates that

m
du(t)

dt
= Fa + Fσ + Fµ, (6.1)

where Fa, Fσ and Fµ denote the aerodynamic drag force, the surface
tension force and the dissipative force, respectively. The aerodynamic
force represents the push by the jet of air on the droplet and is given
by

Fa =
1

2
CD ρg S⊥ ‖u∞ − u(t)‖ (u∞ − u(t)), (6.2)

where CD = 0.5 is the drag coefficient Grinats et al. (2019), ρg is the
density of the gas, S⊥ is the frontal area of the droplet, and u∞ is the
speed of the gas at the droplet boundary. The surface tension force Fσ

resists the droplet motion and is given by

Fσ = −2 b σ
(

cos θR − cos θA
)

(6.3)

where 2b is the length of the contact line between the droplet and the
wafer, and σ is the surface tension coefficient. Windward and leeward
contact angles θR = 5◦ and θA = 45◦ are derived from ad-hoc tabulated
experimental data for θ = 45◦ Grinats et al. (2019). The friction force
models loss of kinetic energy due to internal viscous dissipation and is
assumed to be proportional to the droplet velocity u(t), given by

Fµ = −µ
π b2

h/2
u(t). (6.4)

where µ is the viscosity of water. The gravitational force has no com-
ponent in the direction of motion and can therefore be neglected. In
the above equations, parameters R, h, b, and S⊥ are geometric features
of the droplet shape (see Figure 6.4), which are computed as

R =
a

[

1− (1+cos θ)2(2−cos θ)
4

]1/3
, (6.5)

h = R(1− cos θ), (6.6)

b = R sin θ, (6.7)

S⊥ = R2
(

θ −
sin 2θ

2

)

. (6.8)
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Figure 6.5: (Top) Computed velocity u(t) vs Time (seconds). (Bottom)
Computed displacement or Position (m) vs Time (seconds).

Figure 6.6: Computed force components Fa(blue), Fσ(orange) and
Fµ(yellow).

Numerical results

The force balance model in Equation (6.1) is supplied with the droplet
initial condition u(0) = 0 m/s, the air flow velocity with u∞ = 10 m/s
(boundary-layer effects are neglected) and integrated numerically using
forward Euler.

In Figure 6.5, we see that under the influence of air flow, the droplet
accelerates fast within the first 0.5 seconds, reaching a steady speed of
6.3 m/s. The model indicates that after 4 seconds, the droplet has
travelled a distance over 20 meters. In Figure 6.6, the forces acting on
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Figure 6.7: The function cos(θR) − cos(θA) on the domain π/4 ≤
θR, θA ≤ 3 ∗ π/4.

the droplet as it moves with the air flow are shown. From the graph,
we can see that the aerodynamic force is big when the droplet is steady
due to the large velocity difference u∞−u(t). The surface tension force
Fσ remains constant and, for the current setup, the friction force Fµ is
significantly smaller than Fσ and Fa.

Comparing the current results to the indicative experimental data
from Figure 6.2, we find that the force model overestimates droplet
velocities by an order of magnitude. The main culprit behind this
overestimation is the uncertainty on the tabulated data for the contact
angle hysteresis cos(θR)−cos(θA). Figure 6.7 shows the values that this
hysteresis attains for angles between π/4 and 3π/4, indicating that this
parameter directly scales the main resistive force, i.e. the surface ten-
sion Fσ, by several orders of magnitude. By neglecting the dissipative
friction force, which is justified for small u(t), we can approximate the
steady-state velocity U by expressing du/dt = 0, resulting in

U = u∞ −

√

4 b σ (cos θR − cos θA)

CD ρg S⊥
, (6.9)
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which shows the direct dependence of U on uncertain parameters θR
and θA. Note also that CD is highly dependent on the droplet shape.

In summary, the current model, despite being computationally inex-
pensive, is not suitable for quantitative predictions of droplet velocities.
However, there is much room for improvement. For instance, an essen-
tial parameter that is not adequately modeled in the current approach
is the shape of the moving droplet, as evidenced by the argumentation
above. This motivates the development and application of more ad-
vanced models as shown in the following paragraph. The inclusion of
shape parametrizations from more detailed models into the force bal-
ance model could lead to a very computationally efficient model with
increased accuracy over the current one. This is however out of scope
of the current investigation and left for future work.

6.2.2 Navier–Stokes model with lubrication approx-

imation

In this section we present a second model for the motion of the water
droplet due to an air flow. This model is based on the Navier-Stokes
equations for the fluid flow within the water droplet, which we reduce
using the lubrication approximation.

Model description

In this section we work in 2D for simplicity, but the same methods
extend easily to 3D. The droplet of water occupies the region between
z = h(x, t) (the air-water interface) and z = 0 (the wafer) in Figure 6.9.
The region z < h(x, t) is occupied by the air. The droplet shape h is
a free boundary to be solved for as part of the solution of our model.
The dimensionless incompressible Navier-Stokes equations for the water
velocity, u, and pressure, p, in h(x, t) < z < 0 are

∇ · u = 0, (6.10)

Re
∂u

∂t
= −∇p+∇2u, (6.11)

where Re= Uwd/νw is the Reynolds number of the flow, with d the
droplet diameter and Uw a typical water velocity. The overall pressure
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is P = p− Ca−1Boez, so that the hydrostatic term is absorbed into p
in (6.11). On the z = 0 boundary we have no slip so that u = 0. On
z = h(x, t) we have the boundary conditions

∂

∂t
(z − h) = 0, (6.12)

[n · σn]+− = Ca−1 (κ+ Boh) , (6.13)

[t · σn]+− = 0, (6.14)

which are the kinematic condition, and the normal and tangential stress
balances across the interface. Here, κ is the dimensionless surface cur-
vature, n and t are unit normal and tangent vectors to the interface,

σij = −Pδij +

(

∂ui

∂xj
+

∂uj

∂xi

)

, (6.15)

and

Ca =
µwUw

γ
, Bo =

ρwgd
2

γ
, (6.16)

are the capillary and Bond numbers respectively. In particular, assum-
ing d ∼ 10−3m and Uw ∼ 10ms−1 we expect

Ca ≈ 0.1, Bo ≈ 0.1. (6.17)

We assume the air in z < h(x, t) also satisfies the Navier-Stokes
equations, although with much higher Reynolds number, and negligi-
ble gravitational force. The water and air flows are coupled through the
force balance boundary conditions (6.13)-(6.14) at z = h. The thesis
Fry (2011) is a thorough asymptotic examination of the shearing inter-
action between an air flow over a (stationary) droplet on a substrate.
In Fry (2011), the shear effect of the air on the water droplet (sitting
n top of the substrate rather than below) causes its shape to deform,
while the droplet in turn causes a perturbation to the Blasius bound-
ary layer air flow. The two flows are therefore fully coupled, and the
asymptotic approach therefore requires full Triple-Deck theory, with ex-
tensions. Fry (2011) do not consider the movement of droplets across
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the substrate due to the air flow, only the deformation of stationary
drops.

While the full coupled problem should be considered for more ac-
curate results, for simplicity in this study group, we assume that the
droplet shape has negligible effect on the air flow, and so only consider
the shearing effect of a prescribed air flow on the droplet. The air flow
in the boundary layer is assumed to be linear shear flow Ua = −az, for
z < 0, so that the shear stress f = −a is constant, which we assume is
known. Greater values of a > 0 indicate greater velocity air flows.

Lubrication approximation We assume we have a small aspect
ratio δ = [h]/[x], and so make the lubrication approximation:

δ ≪ 1 Reδ2 ≪ 1 (6.18)

to simplify the system (6.10)-(6.14). With this assumption we can
reduce the problem to a single equation for the droplet boundary h in
terms of the prescribed shear stress f , namely:

ht =

(

h3

3Ca
(hxxx + Bohx)

)

x

−

(

∫ h

0

∫ z

0

fdẑdz

)

x

, (6.19)

or, with constant shear f = −a,

ht =

(

h3

3Ca
(hxxx + Bohx)

)

x

+

(

ah2

2

)

x

. (6.20)

Travelling wave assumption As we have seen in the experimen-
tal indicative results ( Figure 6.2), and the force balance model (Fig-
ure 6.5), the droplet reaches a constant velocity almost instantaneously.
Hence, we make the assumption that the droplet has a steady shape and
constant velocity U to be determined. That is, we make the travelling
wave Ansatz, changing variables to

ξ = x− Ut, H(ξ) = h(x, t).

Thus Equation 6.20 reduces to the fourth order ODE

−UHξ =

(

H3

3Ca
(Hξξξ + BoHξ)

)

ξ

+

(

aH2

2

)

ξ

. (6.21)
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Integrating with respect to ξ, and assuming that the droplet has a finite
length, so that there is a ξ such that H(ξ) = 0, we have the third order
ODE

−UH =
H3

3Ca
(Hξξξ + BoHξ) +

aH2

2
. (6.22)

Boundary conditions To close the problem (6.22) for H, we require
the four boundary conditions

H(0) = 0 = H(L), Hξ(0) = − tan(θ1) Hξ(L) = tan(θ2), (6.23)

where ξ = 0 and L (TBD) are the endpoints of the droplet, and θ1 and
θ2 are the contact angles at these endpoints respectively. The length L
of the droplet is fixed by prescribing the total droplet volume

V = −

∫ L

0

H(ξ) dξ. (6.24)

We choose to use the Cox-Voinov model Cox (1986) for the move-
ment of the contact lines in terms of the contact angles, setting

U = K
(

θ3R − θ31
)

, U = K
(

θ32 − θ3A
)

, (6.25)

where θR and θA are the receding and advancing contact angles, re-
spectively, which are experimentally determined constants for the sub-
strate/fluid/gas combination. HereK is an order 1 constant. Equations
(6.22)-(6.25) form a closed system for H(ξ), U, L, θ1 and θ2.

Numerical results

We numerically solve the boundary value problem (6.22)-(6.25), in
MATLAB, using inbuilt solver ‘bvp4c’. We change variables ξ = LX
in order to solve on the fixed domain X ∈ [0, 1], and write the integral
constraint (6.24) in differential form by introducing the new variable
Y (X), the solution of

Y ′(X) = −LH(X), Y (0) = 0, Y (1) = V, (6.26)
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x

z = h(x, t)

z

Figure 6.8: A schematic diagram of the set up in Fry (2011).

x

z = h(x, t)

z

Figure 6.9: A schematic diagram of the set up in our problem.

which we solve simultaneously with (6.22). We investigate the influence
of increasing the inlet air velocity, which is equivalent in our model to
increasing the shear a on the droplet.

As can be observed in Figure 6.10, the droplet speed U ∼ 0.1,
indicating (by our choice of nondimensionalisation) that the fluid cir-
culation within the droplet is around an order of magnitude below the
droplet speed. Initially the droplet speed varies linearly with the in-
let air velocity, whereas the length of the droplet is largely unaffected.
However, at an air shear stress of more than acrit ≈ 4, the droplet length
increases rapidly, while the increase of the droplet speed decreases. At
this critical value we see a dramatic change in the droplet profile: for
a, acrit the droplet shape is slightly deformed by the air shear, but for
a > acrit the shape is altered drastically, with a single drop trailing a
long tail. We might expect that such long, thin tails might in reality
break up into smaller droplets, a phenomenon not possible within this
model.

We also investigate the effect of droplet volume on velocity. In
Figure 6.11, we show the droplet lengths and velocities as the droplet
volume - or in fact, area, in this 2D model - for fixed air shear a. We
observe a fractional power law relating both U and V , and L with V ,
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Figure 6.10: The dimensionless droplet speed U (top left), length L
(top right), and profile H(ξ) (bottom) of the droplet as shear due to
air flow a varies. Here we have used V = 1, Bo = 0.1, Ca = 0.1,
θA = θR = π/4, and K = 0.44.
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Figure 6.11: The dimensionless droplet speed U (left), length L (right),
as the droplet volume V varies. Here we have used a = 2, Bo = 0.1,
Ca = 0.1, θA = θR = π/4, and K = 0.44.
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so that droplets with smaller volume travel at much smaller velocities.
This is as expected from the experimental observations in Figure 6.2.

Summary

The model used in this section includes variations in the droplet shape
at a computational cost which is only marginally higher than the force
balance model from Section 6.2.1. The model may easily be extended to
3D, where a similar equation to (6.19) for hmay be derived. This model
also has the benefit of a systematic derivation from first principles, and
so is expected to be accurate within the correct parameter regime.
However, whether the situation of interest fits within the scope of this
model is another question: in order that (6.18) hold we may only be
able to model relatively slow air flows; and in particular, it is likely that
the droplet shape impacts the air flow, so that the two flows should be
fully coupled as in Fry (2011).

The observations from this model suggest that there exists an op-
timal inlet air flow with shear a = acrit to remove the droplets, maxi-
mizing droplet velocities without causing droplet breakup. It reiterates
the requirement of avoiding droplet break-up at all costs. However, the
current model does not allow us to accurately determine when or how
droplet breakup occurs.

The limitations of the current model hence motivate the application
of models that attempt to directly solve the Navier–Stokes governing
equations with minimal a priori approximations. Such models are the
subject of the following section.

6.2.3 Full Navier–Stokes models

In the current section, we use computational fluid dynamics (CFD)
models to directly solve the droplet movement problem with minimal
a priori approximations. The resulting governing equations are the
full Navier–Stokes partial differential equations (PDEs), which are dis-
cretized in space and time. Although this PDE approach increases the
overall model fidelity, it does render the current simulations orders of
magnitude more costly than the previous ones based on low-dimensional
ODEs. To reduce the computational cost, the dimensionality of the
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models will still be reduced as detailed below. Furthermore, due to the
complexity of building Navier–Stokes solvers from scratch, we resort to
using open-source software packages.

Model description

There is a large body of literature that suggests different approaches to
simulate problems similar to the one considered here, see e.g., Seevarat-
nam et al. (2010), Reusken, Xu, and Zhang (2015), and Ding and Spelt
(2007). First and foremost, the resolution of the interface between the
liquid water phase and the gaseous air phase turns out to be one of the
most challenging aspects.

There are two different approaches how to address this problem,
interface-capturing and interface-tracking simulations. Interface-capturing
models incorporate an additional equation that describes the behaviour
of the interface in time. A widely used interface-capturing model is the
volume of fluid method (VOF) Hirt and Nichols (1981). The method
is based on an indicator function which tracks the fraction of each re-
spective phase throughout the domain. The interface is understood as
diffusive transition between fluid and gas. This manipulation allows
approximation of the discontinuity across the interface with continuous
functions. The resolution of the layer between the two media, however,
becomes computationally expensive as its width decreases. In contrast,
interface-tracking simulations refrain from posing an additional equa-
tion to describe the transition between gas and fluid. Instead, they
treat the behaviour of the interface implicitly, see e.g., Reusken, Xu,
and Zhang (2015). In the current work, we consider both an interface-
capturing approach, for which we use the OpenFOAM software8 in
two-dimensional cases, and an interface-tracking approach, for which
we use the NGSolve software9 in two- and three-dimensional cases.

Interface-capturing approach using OpenFOAM

In the interface-capturing approach we use a VOF method for free-
surface flows Hirt and Nichols (1981). The governing equations are as

8https://www.openfoam.com/
9www.ngsolve.org
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follows:

∂ρu

∂t
+∇ · (ρuu) = −∇p+∇ · (µ sym(∇u)) + σκ∇α+ ρg, (6.27)

∂α

∂t
+∇ · (uα) = 0, (6.28)

∇ · u = 0. (6.29)

In these equations u(x, t) and p(x, t) are the velocity and pressure fields
respectively, and g = −ge3 is the gravitational acceleration. In the
VOF approach, two inmiscible fluids (i.e. air in the gas phase and water
in the liquid phase) are considered as one effective fluid throughout the
simulation domain, the properties of which are calculated as a weighted
average of both phases through the use of an indicator function α(x, t).
This function represents the volume fraction of the liquid water phase
throughout the domain, and hence attains values 0 ≤ α ≤ 1. The
density of the multiphase fluid can hence be expressed as ρ = αρw +
(1− α)ρa, with ρw and ρa the density of the liquid water and gaseous
air phase respectively. The viscosity throughout the domain is defined
in an analogous way. The surface tension is modeled as σκ∇α, where
σ is the surface tension constant, and κ = −∇ · ∇γ

|∇γ| is the curvature of

the water-air interface. Material parameters are summarized above in
Table 6.1.

The system of equations is numerically simulated using the interFoam
solver of the open source OpenFOAM package. The equations are dis-
cretized using a second-order finite volume method. Time integration
is performed using a standard explicit Euler integrator, and pressure-
velocity coupling is attained using the PIMPLE algorithm. Further
details on the numerics of interFoam can be found, for instance, in
Deshpande, Anumolu, and Trujillo (2012).

Interface-tracking approach: NGSolve

In the interface-tracking approach, we consider a sharp interface model
that has been introduced in Reusken, Xu, and Zhang (2015). We re-
cap the most important results in the three-dimensional setting. The
equations shall be understood in two dimensions respectively.
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Throughout what follows, we consider a two-phase flow in a pris-
matic domain Ω ⊂ R

d, d = 2, 3, with liquid and gas medium Ω1(t),Ω2(t) ⊂
Ω, respectively (see Figure 6.12). The evolving sharp interface between
these two components is denoted by Γ(t) := Ω1(t) ∩Ω2(t). We assume
that both Ω1(t) and Ω2(t) are in contact with a part of the border,
which we refer to as “sliding wall” ∂Ωs ⊂ ∂Ω. The contact line L(t)
refers to that line where gas, fluid, and ∂Ωs intersect. The normals on
Γ and ∂Ωs are referred to as nΓ and ns, respectively. The propagation
of this system in terms of the unknown velocity u(x, t) and the pres-
sure p(x, t) are specified by the following system of partial differential
equations.











ρi
(

∂u
∂t + u · ∇u

)

= ∇ · σi + ρig,

∇ · u = 0,

σi = µ sym(∇u) + pi I,

in Ωi(t), i = 1, 2, (6.30a)

[σnΓ] = ∇ · σΓ, VΓ = u · nΓ, [u] = 0 on Γ(t), (6.30b)
{

(I − Ps)u = 0,

fs = Psσns,
on ∂Ωs, (6.30c)

fL = PsσΓτL, in L(t), i = 1, 2, (6.30d)

u = 0, on ∂ΩD. (6.30e)

Equations (6.30a) refer to the Navier-Stokes equations and models the
flow of Ω1 (liquid phase) and Ω2 (gaseous phase) in the channel. In-
terface conditions are posed in Equation 6.30b, ensuring balancing of
the forces on the interface, immiscibility of the mediums and its no-
slip constraint. Here, σΓ = τ(I−nΓn

T
Γ ) =: τ PΓ refers to the interface

stress tensor, with τ and VΓ denoting the surface tension coefficient and
the normal velocity of the interface, respectively. (6.30c) describes the
usual Navier slip boundary condition on ∂Ωs by means of the orthogo-
nal projection Ps := I −nsn

T
s and a prescribed so-called effective wall

force fs = −βSPsu. The force balance on the contact line is enforced
by Equation 6.30d with τL := PΓnS

‖PΓnS‖
, denoting the normal to L that

is tangential to Γ. Here, fL = −βL(u · nL)nL + τ cos θenL is the ef-
fective contact line force. Homogeneous Dirichlet boundary conditions
are prescribed on ΩD.
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Figure 6.12: Initial configuration of the droplet in the two-dimensional
setting.

The Navier-Stokes equations are given in Eulerian form, where the
fluid particles are not associated with a finite element grid. The in-
terface particles, however, must be resolved by the grid and thus, a
Lagrangian description form is better suited. This would lead to mesh
distortions as the interface might move in time. One could use XFEM
or CutFem techniques or the Arbitrary Lagrangian Eulerian (ALE)
description form Donea et al. (2004). Therefore, the current configura-
tion Ω(t) is transformed to a fixed reference configuration, the initial
configuration Ω̂ := Ω(0). With the function

Φ : Ω̂× [0, T ]→ Ω(t)× [0, T ], (x̂, t) 7→ Φ(x̂, t) = (d(x̂), t) = (x, t),
(6.31)

where d is called the deformation function and its time derivative
ḋ := ∂td the mesh velocity. A function f : Ω(t) × [0, T ] → R

d on

the current configuration is coupled with a function f̂ : Ω̂× [0, T ]→ R
d

by the relation f ◦Φ = f̂ and there hold the following identities for the
derivatives

∇xf ◦ Φ∇x̂d = ∇x̂f̂ , (6.32a)

∂f

∂t
◦ Φ = ∂tf̂ −∇x̂f̂F

−1ḋ, (6.32b)

where F := ∇x̂d denotes the deformation gradient of d. The deforma-
tion d is related to Equation 6.30 by ḋ = VΓ on the interface Γ, i.e.,
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we have to extend the deformation to the domains with an auxiliary
Poisson-like problem.

In order to make the above system of equations amenable to finite
element discretization, we multiply each equation with test functions,
integrate over the domain, followed by integration by parts and incorpo-
rate interface- and boundary conditions to arrive at the following weak
formulation, see Reusken, Xu, and Zhang (2015) for further details:
Find u ∈ V , p ∈ Q, d,ḋ ∈D such that (for almost all) t ∈ [0, T ]











m(d; ∂tu,v) + c(u− ḋ;u,v) + a(d;u,v) + b(d;v, p) =

fext(d;v) + fΓ(d;u,v) + fL(d;v), ∀v ∈ V ,

b(d;u, q) = 0, ∀q ∈ Q,

(6.33)

K(ḋ,w) = 0, ∀w ∈D, (6.34)

under the constraints that ḋ = VΓ on Γ̂ and d(t) = id+
∫ t

0
ḋ(s) ds. The

corresponding function spaces are defined by

V := {v ∈ [H1(Ω̂)]d : v = 0 on ∂Ω̂D, (I − P̂s)v = 0 on ∂Ω̂s},

Q := L2(Ω̂),

D := {d ∈ [H1(Ω̂)]d : d = 0 on ∂Ω̂}.

The bilinear forms read as

m(d;u,v) :=

∫

Ω̂

Jρu · v dx,

a(d;u,v) :=

∫

Ω̂

Jµ sym(∇uF−1) : sym(∇vF−1) +

∫

∂Ω̂s

JβsP̂su · P̂sv ds

+

∫

L̂

JβLu · nL ◦ dv · nL ◦ d dγ,

b(v, q) := −

∫

Ω̂

J(tr(∇vF−1)q dx, c(w,u,v) :=

∫

Ω̂

Jρ(w · ∇)uF−1 · v dx,

fext(v) :=

∫

Ω̂

Jρg · v dx, fΓ(u,v) := −

∫

Γ̂

JτPΓ ◦ d : ∇Γ̂vF
† ds,

fL(v) := cos θc

∫

L̂

Jτ v · nL ◦ d dγ,
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K(d,w) :=

∫

Ω̂

sym(∇d) : sym(∇w) dx.

Here, J denotes, depending on the type of integral, the transformation
determinant, J = detF , J = ‖cof(F )‖, J = ‖F τ̂‖, and F † the Moore-
Penrose pseudo inverse. There holds

PΓ ◦ d = I − nΓ ◦ dnΓ ◦ d
T , nΓ ◦ d =

cof(F )n̂Γ
‖cof(F )n̂Γ‖

, ns = n̂S , PS = P̂S ,

nL ◦ d =
PS ◦ d(nΓ ◦ d)

‖PS ◦ d(nΓ ◦ d)‖
.

The solving algorithm for one time step reads: For given dn, ḋn,
un

1. Solve (6.30) with the old deformation and obtain un+1

2. Set ḋn+1 = un+1 on Γ and extend ḋn+1 to the whole domain by
solving a Poisson problem.

3. Compute dn+1 = dn + (tn+1 − tn)ḋn+1

It should be mentioned that this approach cannot handle topo-
logical changes to the computational domain such as would be in-
duced by droplet breakup. When approaching a state where droplet
breakup should occur, the simulation becomes more and more unstable
and eventually explodes. As we are explicitly interested in preventing
droplet breakup in the first place, this is not a major concern.

Having this model at hand, we emphasize that discretization of the
channel, even in the two-dimensional case, is computationally expen-
sive, regarding the fact that only the behaviour of the droplet itself
is of interest. To address this difficulty, we omit discretizing the air
flow and instead prescribe the force of the air stream directly to the
droplet in terms of suitable boundary conditions. This elimination of
the exterior domain yields a drastic reduction in degrees of freedoms.
An additional benefit of neglecting the air domain is a significantly
higher mesh-quality, since the moving droplet mesh droplet no longer
interacts with the static air domain mesh. This approach is described
more precisely in the following.
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Assuming air as a perfect gas, only pressure forces are induced on
the interface Γ by the momentum p = ρ(u∞ ·nΓ)nΓ and thus, σair = pI
and the right-hand side reads

fext(v) =

∫

Ω̂

Jρg · v dx+

∫

Γ̂in

Jρairu∞ · nΓ ◦ dv · nΓ ◦ d ds, (6.35)

where Γ̂in denotes the part of the interface where u∞ · nΓ < 0, i.e.,
where the outer air hits the droplet. The assumption of neglecting all
shear forces between the droplet and the air might be too unrealistic.
Thus, via boundary layer theory it is possible to additionally add a
shear force as boundary condition with a term like

fshear(v) =

∫

Γ̂

J
1

δ
PΓ ◦ du∞ · v ds, (6.36)

where δ refers to the boundary layer thickness, which might be defined
by δ = (Reloc)

− 1

2 , the local Reynolds number between the fluid and the
air.
Evidence that this approach is indeed justified, will be given below

based on numerical simulations of the full air and droplet simulations
using the interface capturing approach. In a sense, this is also in line
with the literature, where it has been numerically affirmed that vortices
in the airflow appear to have little impact as they primarily form long
time after the air stream impacts the droplet, see e.g., Seevaratnam
et al. (2010).
The governing equations are discretized using the open source fi-

nite element packages NETGEN and NGSolve, see Schöberl (1997) and
Schöberl (2014). In all following examples, a Taylor-Hood type pair of
ansatz spaces Vh ⊂ V , Qh ⊂ Q is used, where the pressure is discretized
with one polynomial order less than the velocity. For the deformation
space Dh ⊂ D the same polynomial order as for the velocity is con-
sidered. A first order time-stepping method is used, which treats all
arising terms - except the convection and surface tension term - implic-
itly. The additional ALE terms, however, are all treated explicitly in
order to avoid the computational expenses of a non-linear system. We
point out, however, that consecutive experiments shall be understood
as guidelines how to simulate problems of this kind. Adaptions con-
cerning parameters, physical quantities etc. might be reasonable and
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Figure 6.13: Case setup for 2D droplet simulations.

shall be adapted for each problem individually. As before, material
parameters are described in Table 6.1 are used and the friction values
in the effective wall and contact line forces are set as βL = βs = 0.1.

Numerical Results

We start with some two-dimensional examples in the interface-capturing
approach, modeling the flow in both the air and the droplet. Results
are compared with the observed droplet behaviour previous sections
and the idea of unsteady oscillating airflow is explored. Afterwards, we
omit the airflow and focus solely on the droplet behavior in two and
three dimensions using the interface-tracking approach.

Interface-capturing simulations

The two-dimensional case setup for interface-capturing simulations is
visualized in Figure 6.13. The top wall (i.e. the wafer) is treated with
a no-slip condition, whereas the bottom boundary applies an imper-
meable free-slip condition. At the inlet, a uniform (but potentially
time-varying) inlet velocity u∞(t) is prescribed, and a zero-gradient
Neumann condition is used as an outflow condition. The shape of the
steady resting water droplet is obtained by initializing a half-circle of
radius r = 2 mm at the top wall, and allowing it to relax by solving
Equations (6.27)–(6.29) without any background airflow (i.e. u∞ = 0
m/s).
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Figure 6.14: Snapshots at t = 0.06 s of water fraction α (left) and
streamwise velocity ux (right) for various inlet velocities u∞.

Steady inlet airflow u∞(t) Firstly, we discuss the movement of the
droplet as it is exposed to a uniform and steady inlet velocity. We
define a total of six cases, i.e. with u∞ = 1, 5, 10, 15, 20, and 25 m/s.

Figure 6.14 illustrates snapshots of the water fraction and stream-
wise velocity for each value of u∞, 60 milliseconds after blowing is
initiated. From the figure, it shows that the shape of and distance
traveled by the droplets is highly dependent on u∞. Furthermore, the
developing boundary layer has not yet transitioned to turbulence, even
in the presence of the droplet obstacle.

A quantitative look at droplet movement is provided in Figure 6.15,
where the position and speed of the droplets leftmost point of attach-
ment to the wafer is plotted. The figure shows a number of observations.
Firstly, it is observed that, for u∞ = 1 m/s, there is no net movement of
the droplet. Hence, there is a minimum threshold value for the driving
airflow to initiate droplet movement. Second, droplets quickly attain a
more-or-less steady terminal velocity, which increases as u∞ increases.
However, this increase is not linear, as can for instance be seen from
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Figure 6.15: Position (top) and speed (bottom) of droplets for various
inlet velocities u∞.

the similar behavior in the red and purple line at u∞ = 15 and 20 m/s
respectively. Finally, we see that for u∞ = 20 and 25 m/s, the leftmost
point of the droplet moves backwards first (negative velocity) before
moving forward, which is not observed for any of the other moving
droplet cases. This warrants further investigations into the dynamics
of these cases.

The dynamics of the droplet shape can be further investigated from
Figure 6.16. In this figure, the droplet shapes are visualized in a moving
reference frame at t = 0.03, 0.06, and 0.09 seconds after the initiation
of blowing. Apart from the trivial, non-moving case at u∞ = 1 m/s,
three different regimes can be identified. Firstly, for u∞ = 5 and 10
m/s, we see that the droplet shape does not vary much over time,
and resembles the non-moving droplet shape, albeit with a significant
asymmetry in the advancing and receding contact angles for the 10 m/s
case. Secondly, at u∞ = 15 m/s, damped oscillatory behavior of the
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droplet shape occurs at a frequency of f = 10 . . . 20 Hz: initially part of
the droplet is lifted from the wafer, then surface tension forces collapse
it back to a flattened and segmented shape, after which part of the
droplet is lifted anew to a lesser extent. This behavior is interesting, as
the increase frontal area of the droplet could be an explanation for its
somewhat higher than expected speed observed in previous paragraph.
Third, for u∞ = 20 and 25 m/s, the snapshots indicate a pancake-
like squashed structure, similar to the shapes observed for high u∞ in
Section 6.2.2, which is subsequently driven by the shear stress with the
airflow at its free surface. It is worth noting that this third regime is
characterized by a fast transient related to the aforementioned negative
initial velocity, not observed in Figure 6.16. Therefore, Figure 6.17
illustrates snapshots during the initial shape change of the droplet for
u∞ = 25 m/s shortly after the onset of blowing. It can be seen that the
shape dynamics are akin to an aggravated version of the second regime
described above, resulting in the ejection of small water droplets which
are barely resolved by the grid. Shedding of such small droplets is highly
undesirable. Similar ejection was observed in the case of u∞ = 20
m/s, but not for any of the other cases. The current observations are
consistent with the hypotheses of droplet breakup at higher velocities
in Section 6.2.2.

Unsteady inlet airflow u∞(t) Inspired by the high droplet speeds
of the oscillating droplet shape at u∞ = 15 m/s (i.e. the second regime
discussed above), we attempt to improve droplet movement by apply-
ing an oscillating airflow u∞(t) at the inlet. The inlet velocity is varied
sinusoidally as u∞(t) = U +A sin(2πft). As we aim to tap into similar
dynamics as observed in the oscillating shape above, we use frequencies
of 10 and 20 Hz. We use amplitudes A of 1 and 5 m/s, as well as an
‘amplitude’ of -5 to assess whether the phase of the sine wave is impor-
tant. Finally, we limit ourselves to U = 10 and 15 m/s, as higher mean
inlet velocities already break up the droplet as described above. This
results in 12 additional simulations, in addition to the 4 simulations
performed in the previous example.

The results of all simulations are summarized in Figure 6.18 and
Table 6.2, which shows the droplet position after 100 ms, as well as
its average velocity V between 50 and 100 ms. A first observation is
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u = 20 m/s

u = 25 m/s

Figure 6.16: Droplet shapes in a moving reference frame at t =
0.03, 0.06, and 0.09 seconds for each of the steady amplitude cases.
Every box has the same width of 2 cm and height of 1 cm.

Figure 6.17: Droplet shapes for u∞ = 25 m/s at t = 0.011 (left), 0.012
(middle), and 0.013 (right) seconds. The arrow in the latter panel
indicates the shedding of an small under-resolved part from the main
droplet.
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that unsteadiness in the inlet can significantly increase both the droplet
velocity, and hence its position after 10 ms, in comparison to the steady
case with the same mean inlet. This can be observed, for instance,
for case (U, f,A) = (10 m/s, 10 Hz, 5 m/s) vs steady U = 10 m/s.
However, in these cases, the droplet still moves slower than in the
steady case at the peak inlet value (i.e. U = 15 m/s): unsteady blowing
does not outperform simply increasing the baseline inlet airspeed. A
second observation is that, for the unsteady cases with U = 15 m/s
and A > 0 m/s, instabilities cause the droplet to break up, which is
highly undesirable. This can be omitted by phase-shifting the sine to
initially reduce the airflow, but unfortunately this nullifies the observed
increase in droplet movement, as seen for cases with A < 0 m/s. In
summary, for the current set of simulations, droplet movement cannot
be enhanced by unsteady inlet airflow more than by just increasing
the steady inlet airflow. From these results, we can conclude that the
superior case, i.e. with highest droplet velocities without breakup, is
at a steady u∞ = 15 m/s.

In summary, the 2D interface-capturing simulations seem to show
sensible physical behavior: increasing the background airflow increases
the droplet velocity but leads to breakup above 15 m/s. Unsteady
droplet dynamics were observed in response to the initial onset of blow-
ing. Unsteady blowing to tap into these dynamics however was unsuc-
cessful based on the current cases. From the current results, blowing
with a steady airflow of 15 m/s yields the maximal droplet velocity
without breaking it into smaller pieces.

Given that current simulations still hold some simplifications, i.e.
they are two-dimensional and spatial resolution is relatively coarse,
we further consider the interface-tracking simulations at higher spatial
resolutions in both two and three dimensions below.

Interface-tracking simulations

In the current simulations, we use the interface-tracking methodology
detailed above to simulate the droplet behavior. As discussed earlier,
in contrast to the interface-capturing simulations, we omit the explicit
simulation of the airflow and impose the influence of the air on the
droplet as a stress boundary condition. This omission is justified by
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Figure 6.18: Droplet position after 100 ms (left) and time-averaged
droplet velocity between 50 ms and 100 ms V (right) for steady and
unsteady inlet airflow cases. Colors depict the amplitudes of the sine
waves, and * indicates cases where droplet breakup is observed.

Case Observations

U [m/s] f [Hz] A [m/s] Position [mm] V [mm/s] Droplet breakup
10 – – 39.8 456 No
10 10 1 42.8 488 No
10 10 5 56.2 616 No
10 10 -5 31.8 448 No
10 20 1 40.6 468 No
10 20 5 46.6 488 No
10 20 -5 41.0 548 No
15 – – 68.6 804 No

15 10 1 66.2 764 Yes, big droplets
15 10 5 74.6 840 Yes, big droplets
15 10 -5 53.8 684 No
15 20 1 65.8 760 Yes, big droplets
15 20 5 69.4 776 Yes, big droplets
15 20 -5 61.6 752 No
20 – – 73.2 892 Yes, small droplets
25 – – 90.6 1096 Yes, small droplets

Table 6.2: Numerical summary of steady and unsteady example cases,
with inlet airflow u∞(t) = U + A sin(2πft). Case with highest intact
droplet velocities shown in bold.
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Figure 6.19: Position and velocity with respect to time for NGSolve
example without air in 2D.

earlier observations, see e.g. Figure 6.14, where flow conditions up-
stream of the droplet where found to be laminar and homogeneous.

Two-dimensional droplet without air. Similar to the first sim-
ulations for the interface-capturing method, here we first consider two
dimensional computations for different inflow velocities. Results can
be found in Figure 6.19. The initial area of the droplet at t = 0 s is 16
mm2. We observe that the droplet’s velocity is lower than the one ob-
tained by the interface-tracking OpenFOAM simulations. The reason
for this might be related to βL as the solution behaves very sensitive
to variations in this friction parameter. Further downstream, the wall
would induce a thin boundary layer for the air, which is not considered
here. The shape of the droplet is very stable, also for high velocities,
see Figure 6.20. An explanation might be the neglected shear forces
between the droplet and the air.

Three-dimensional droplet without air While computations of
the full two-dimensional model (without elimination of the air) are chal-
lenging, but still reasonable, on standard machines, three-dimensional
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Figure 6.20: Shape of 2D droplet at t = 0.1 s for u∞ = 25 m/s.

experiments exceed the capacity of most computers in terms of mem-
ory and processing power. Considerations from above however indicate
how the computational expense of the model might be reduced sig-
nificantly, while at the same time the accuracy of a three-dimensional
model is preserved. To this end, we consider the three-dimensional
droplet model without the air domain in the same manner as we have
done this in the two-dimensional case.

We consider the three-dimensional case, where the initial volume of
the droplet at t = 0 s is given by 3.8 mm3. As shown in Figure 6.21,
its shape deforms less than in the 2D case, see Figure 6.19, due to the
discrepancy of the volumes. Its position and velocity with respect to
time for different air speeds are illustrated in Figure 6.21. We observe
lower peak velocities than in the 2D simulation, which we believe to be
mostly caused by the different volumes.

Based on the discrepancy between the interface-capturing and the
interface-tracking simulations, it is evident that the proposed model
itself might not be accurate enough to draw reliable conclusions for
real word phenomena. There are several aspects that need to be taken
into account to increase the credibility of the model to a reasonable
level. As indicated by our results, shear forces might have essential
impact on the droplet’s behaviour and should therefore be incorporated.
Moreover, the absence of boundary layers in our simulations might not
be realistic enough to match reality. Together with more sophisticated
time-stepping methods, these remarks should be embraced at the very
first to improve the fidelity of consecutive simulations.
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Figure 6.21: Position and velocity with respect to time for NGSolve
example without air in 3D.

Figure 6.22: Shape of 3D droplet at t = 0.05 s for u∞ = 25 m/s.



210 SWI 2020 Proceedings

6.3 Discussion

A total of four modeling approaches were introduced in Section 6.2: a
force-balance model (further denoted as FB), a Navier–Stokes model
with the lubrication approximation (LUB), and two full Navier–Stokes
models based on interface-capturing (NS-IC) and interface-tracking
(NS-IT) respectively. In the current section we reiterate and compare
the main findings, capabilities and limitations of these models.

In terms of computational cost there is a clear distinction between
the ODE-based models FB and LUB on the one hand, and the PDE-
based CFD models NS-IC and NS-IT on the other. Indeed, the former
models can easily be run within a timeframe of seconds, whereas the
latter require a timeframe in the order of an hour to run on a stan-
dard workstation. Although full three-dimensional CFD simulations
would be feasible given additional time and parallel resources, within
the current work the CFD models were rendered tractable by limiting
the scope to two dimensions (NS-IC) or omitting the airflow (NS-IT).

A first observation from the flow field obtained from the NS-IC
CFD model is that the air flow field is laminar and homogeneous at
the point of interaction between the air and the droplet. This gives
an initial justification for omitting the explicit detailed modeling of the
airflow in LUB and NS-IT. It remains to be mentioned that further
work is necessary to affirm the reliability of this model reduction in a
credible way. Comparisons with high-fidelity three-dimensional CFD
computations that incorporate the air domain as such are required to
judge whether the impact of the elimination process is indeed as negli-
gible with respect to turbulence as expected by the heuristics.

A qualitative comparison of the numerical results to indicative out-
comes of experimental measurements in Figure 6.2 clearly showed that
the FB model is inaccurate in the current formulation. This was at-
tributed to the high sensitivity of droplet velocity to the effective shape
of the droplet, which is not accurately accounted for in the FB model.
This led to the investigation of models that are closer to the physical
principles based on the Navier–Stokes equations. The LUB, NS-IC,
and NS-IT models each yield droplet velocities within the same order
of magnitude for similar input parameters, and are qualitatively con-
sistent with experimental observations.
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An interesting observation found in FB, NS-IC, and NS-IT is that
the initial transient of the steady droplet when first impacted by a
steady airflow are very fast: the terminal droplet velocity is reached
soon, and in most cases, the shape of the droplet remains more or less
constant once the droplet is moving. This justifies the traveling-wave
assumption made in the LUB model. Another observation is that,
above a threshold velocity u∞ = 20 m/s, LUB and NS-IC predict a
change in the droplet dynamics: part of the droplet is squashed into a
very thin layer, which seems related to the highly undesirable breakup
in to smaller droplets. This gives numerical evidence that simply blow-
ing harder will not yield minimal droplet removal times.

The observation of an oscillating droplet shape in the NS-IC results
at u∞ = 15 m/s motivated the investigation of droplet blowing using
sinusoidally varying airflows with a frequency of 10 and 20 Hz. Al-
though this increased the droplet velocity in comparison to the steady
case, there was no statistically significant improvement over the steady
case with u∞ = 15 m/s.

Even though qualitative comparison shows similarities between mod-
els, Quantitative comparison of the droplet velocities for the LUB, NS-
IC and NS-IT models results in a significant difference. The LUB and
NS-IT model which, in contrast to the NS-IC model, do not explic-
itly model the air flow, lead to significantly lower droplet velocities for
similar setups. This indicates that current results and observations are
indicative, and further work is necessary to assess the validity of the
models, using both additional high-fidelity simulations and a dedicated
experimental measurement setup.

6.4 Conclusion & Recommendation

In response to a problem statement of wafer contamination by VDL
ETG, the current work investigates the modeling of airflow-driven water
droplet removal from a flat wafer surface. Based on the complex flow
physics of the problem at hand, a set of four models was developed,
ranging in computational cost, fidelity and complexity.

A qualitative comparison between models yields similar observa-
tions. The flow physics are characterized by fast transients and, above
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a threshold velocity, droplet shapes are highly altered and breakup oc-
curs. Based on the current simulations of one of the CFD models based
on an interface-capturing approach, unsteady blowing significantly im-
pacts the droplet dynamics, yet for the current parametric study, the
highest droplet velocities are observed for a steady airflow. This is
however a first indication that unsteady blowing could prove favorable.

An important conclusion is that, although the models show quali-
tative similarities, attaining quantitative agreement between models is
not attempted in this work. This is partly due to the lack of dedicated
experimental data, and various assumptions and parameters included
in the models. In the future, high-fidelity three-dimensional simula-
tions and detailed controlled experiments should be used to tune the
current models to provide the most reliable predictions possible. This
work should be seen as conceptual guideline how prospective simula-
tions can be performed at reasonable costs. In summary, we formulate
the main findings of the current work into a set of three recommenda-
tions for future work:

Firstly, based on observations of the interface-capturing simula-
tions, unsteady dynamics at specific frequencies excite specific response
modes in the droplet shape that affect the droplet movement. It would
be interesting to investigate droplet behavior experimentally under sim-
ilar conditions.

Second, there is a lack of high-fidelity data for the specific task at
hand. In that regard, we recommend a detailed and controlled exper-
imental measurement setup, complemented with a high-fidelity three-
dimensional CFD simulation including the background airflow for a
specific condition, i.e. a specific droplet size with specific airflow. This
will facilitate the validation and tuning of the models presented in this
work.

Finally, we show that accurately modeling the physical behavior of
the system is challenging and high-fidelity simulations of the unsimpli-
fied problem is computationally expensive. In response, we show here a
chain of relatively inexpensive models that, after proper validation, can
be used to explore removal strategies at a modest computational cost,
e.g. for a variety of droplet sizes, airflow frequencies and amplitudes.
The outcome of this could further guide the design of experimental
measurements or high-fidelity simulations.
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