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On the Retrieval of Forward-Scattered
Waveforms From Acoustic Reflection

and Transmission Data With the
Marchenko Equation

Joost van der Neut , Joeri Brackenhoff , Giovanni Meles, Lele Zhang,
Evert Slob , and Kees Wapenaar

Abstract— A Green’s function in an acoustic medium can
be retrieved from reflection data by solving a multidimen-
sional Marchenko equation. This procedure requires a priori
knowledge of the initial focusing function, which can be
interpreted as the inverse of a transmitted wavefield as it
would propagate through the medium, excluding (multiply)
reflected waveforms. In practice, the initial focusing func-
tion is often replaced by a time-reversed direct wave, which
is computed with help of a macro velocity model. Green’s
functions that are retrieved under this (direct-wave) approxi-
mation typically lack forward-scattered waveforms and their
associated multiple reflections. We examine whether this
problem can be mitigated by incorporating transmission
data. Based on these transmission data, we derive an
auxiliary equation for the forward-scattered components
of the initial focusing function. We demonstrate that this
equation can be solved in an acoustic medium with mass
density contrast and constant propagation velocity. By solv-
ing the auxiliary and Marchenko equation successively,
we can include forward-scattered waveforms in our Green’s
function estimates, as we demonstrate with a numerical
example.

Index Terms— Acoustic propagation, acoustic signal
processing, acoustic waves.

I. INTRODUCTION

IT HAS been shown that Green’s function between a
horizontal acquisition surface and an arbitrary location x

inside an unknown lossless acoustic medium can be retrieved
from a single-sided reflection response by solving a multi-
dimensional Marchenko equation [1]. This insight has led
to numerous applications in the field of applied geophysics,
see [2] for an overview. Besides knowledge of the single-sided
reflection response at an acquisition surface, the Marchenko
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methodology requires access to the source signature, which
can sometimes be retrieved from the recorded data [3] and
an initial estimate of the transmitted wavefield as it would
propagate from the acquisition surface to x in the absence
of (multiple) reflections. Typically, this initial estimate is
obtained from a macro model of the propagation velocity [4].
The phase [5], [6] and amplitude [7] of the initial estimate can
be updated within the Marchenko framework.

In theory, the wavefield that is used to initialize the
Marchenko scheme should include all forward-scattered wave-
forms [8], [9], which are those waveforms that do not (ever)
change vertical direction while propagating from the (hori-
zontal) acquisition boundary to x. In practice, we typically
compute the initial focusing function in a smooth macro
model, which does not contain sharp contrasts. Consequently,
forward-scattered waveforms and their associated multiples
will not be accurately reconstructed [10], which can harm
the (Marchenko) imaging process [11]. Another problem is
posed by thin-layered structures, generating multiple reflec-
tions with short periods that cannot be resolved due to the
finite frequency content of the data [12]. This problem can
be mitigated (at least to some extent) by enforcing energy
conservation and minimum-phase conditions [13]–[15].

The Marchenko scheme can also be applied to ultrasonic
data [16]–[18], opening new ways for biomedical applications,
especially below objects with strong contrast such as the
human skull [19]. Hence, the Marchenko equation might be
tailored to supplement common biomedical modalities, such
as transcranial wavefield focusing [20], brain imaging [21],
or transcranial photoacoustics [22]. Remarkably, some of the
acquisition designs that are common for these applications
allow the collection of auxiliary transmission data. As the
transmission response bears an imprint of the desired forward-
scattered waveforms, these data could be key to improve
the initial wavefield estimate, which is needed to solve the
Marchenko equation. In this article, we elaborate on this idea.
Unlike the Marchenko scheme mentioned in [23], which has
been proposed recently for closed-boundary data, we make
a sharp distinction between reflection and transmission data.
We start with a brief derivation of the Marchenko equation for
reflection data. By modifying the derivation slightly, we find
an auxiliary equation for the recorded transmissions. Our aim
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is to resolve forward-scattered waveforms from this equa-
tion, in order to improve the initial wavefield that is used
in the Marchenko equation. In this article, we consider a
medium with density contrast and constant propagation veloc-
ity. By solving the auxiliary (transmission-based) equation
and the (reflection-based) Marchenko equations successively,
forward-scattered waveforms and their associated multiples
can be included in our Green’s function estimates, as we
demonstrate numerically. As an example of a potential appli-
cation for our methodology, we consider Marchenko-based
solutions of inverse source problems, which are key in photoa-
coustic imaging [24]. Applications in media with significant
velocity contrast are more challenging and require additional
research to be conducted.

II. MARCHENKO EQUATION FOR REFLECTION DATA

In this section, we briefly review a recent derivation of the
Marchenko-type representation by [25] for Green’s function
retrieval from reflection data. Consider the configuration in
Fig. 1. Let x = (x1, x2, x3) be a location in 3-D space, where
the x3-axis is pointing downward. Volume D is bounded by
the horizontal boundaries ∂DU and ∂DL , which are located at
depth levels x3,U and x3,L , respectively. A lossless acoustic
medium is characterized by the propagation velocity c(x)
and the mass density ρ(x). We emphasize that all of our
methodologies could be extended to include a free surface at
the upper boundary [26] or, more generally, to allow arbitrary
medium properties above this level [27].

An acoustic pressure field p(x, t) can be expressed as a
function of space x and time t . This field can be transformed
to the frequency domain by the Fourier transform

p(x, ω) =
∫ +∞

−∞
p(x, t)eiωt dt (1)

where ω is the angular frequency. Wave propagation is
assumed to obey the acoustic wave equation

Lp = iωq (2)

with q(x, ω) being a volume-injection rate density source.
Furthermoe, operator L is defined as

L = ∂i
1

ρ
∂i + ω2

ρc2
(3)

where ∂i is the spatial derivative in the i -direction and
Einstein’s summation convention applies. Let volume D be
source-free such that ∀x ∈ D : q(x, ω) = 0. We assume that
the wavefield is recorded at ∂DU , where it can be decomposed
into downgoing constituents p+ and upgoing constituents p−,
such that p = p+ + p−. It has been shown that the wavefield
at any location x ∈ D may then be expressed as [25]

p(x, ω) =
∫

∂DU

FU (x, xU , ω)p−(xU , ω)dxU

+
∫

∂DU

F�
U (x, xU , ω)p+(xU , ω)dxU . (4)

In this representation, superscript � denotes complex conju-
gation and it is assumed that evanescent waves at and above

Fig. 1. Configuration: volume D is enclosed by horizontal boundaries
∂DU and ∂DL (both extending infinitely in the lateral directions). The
coordinate system is also indicated. The medium is nonreflective above
∂DU. Vertical dipole sources are located at an upper boundary ∂D′

U, at an
infinitesimal distance ε→ 0 above ∂DU, and at the lower boundary ∂D′

L,
at an infinitesimal distance ε → 0 below ∂DL. Receivers are located
at ∂DU.

∂DU can be neglected. Furthermore, FU is a so-called focusing
function, which focuses at the upper boundary and obeys
wave (2) with q = 0. This function is subject to the focusing
condition [25]

FU (x, xU , ω)|x3=x3,U
= δ

(
xH − xH,U

)
(5)

where FU is upgoing at and above ∂DU . In (5), δ is a
(2-D) Dirac delta distribution and xH = (x1, x2) denotes the
horizontal coordinates. For the wavefield p, we assume that a
vertical dipole source is located at x′

U ∈ ∂D
′
U , just above ∂DU

(see Fig. 1). This results in the (dipole) Green’s function

�
(
x, x′

U , ω
) = −2

iωρ ′
U

∂ ′
3,U G

(
x, x′

U , ω
)

(6)

where ∂ ′
3,U is a vertical partial derivative applied at x′

U and ρ ′
U

is the density at ∂D
′
U . In (6), G(x, x′

U , ω) is Green’s function
of a monopole source at x′

U , evaluated at x, obeying (2)
with q = δ(x − x′

U ). When x′
U approaches ∂DU in the limit

ε = x3,U − x ′
3,U → 0 (see Fig. 1), it can be deduced that the

downgoing part of the dipole response obeys [28]

lim
x′

3,U →x3,U

�+(
x, x′

U , ω
)∣∣∣∣∣

x3=x3,U

= δ
(
xH − x′

H,U

)
. (7)

When we substitute p(x, ω) = �(x, x′
U , ω) into (4) and

apply (7), it follows that:
�

(
x, x′

U , ω
) =

∫
∂DU

FU (x, xU , ω)�−(
xU , x′

U , ω
)
dxU

+ F�
U

(
x, x′

U , ω
)
. (8)

In this representation, �−(xU , x′
U , ω) can be interpreted as

the (upgoing) reflection response of the medium recorded
at xU , stemming from a dipole source at x′

U . We wish to
express this result in the time domain with help of the inverse
Fourier transform, which is defined for an arbitrary wavefield
as the inverse of (1), that is [29]

p(x, t) = 1

π
�

[∫ ∞

0
p(x, ω)e−iωt dω

]
(9)

where it is assumed that p(x, t) is real-valued and � denotes
the real part. With help of these definitions, (8) can be rewritten
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in the time domain as

�U = (RU + Z)FU . (10)

In this expression, we have �U = �(x, x′
U , t), while RU is an

operator for multidimensional convolution with the reflection
response �−(xU , x′

U , t) at the upper boundary, obeying

RU FU =
∫

∂DU

FU (x, xU , t) ∗ �−(
xU , x′

U , t
)
dxU (11)

where ∗ denotes temporal convolution. Furthermore, Z is an
operator for time reversal.

Our goal is to retrieve the focusing function from (10).
To achieve this goal, we require some prior knowledge about
Green’s function �(x, x′

U , t). More specifically, we assume
that, for each (x, x′

U )-pair, the traveltime tUd (x, x′
U ) of the

first (or direct) arrival of this Green’s function can be estimated
from a macro velocity model [4] (in case of a triplicated wave,
tUd is the traveltime of the first onset [30]). Based on these
traveltimes, we design a window operator 
U (also referred
to as a projector [31]) that removes all arrivals at t ≥ tUd − tε
(note that our window is not symmetric in time, in contrast
to various previous publications). Here, subscript U refers to
the upper boundary, where the window operator is applied.
In our formulation, a small additional time shift tε has been
included to account for the finite frequency content of the data.
In practice, we typically choose tε as half the temporal support
of the source wavelet [32]. Based on causality, we assume that


U �U = 0. (12)

In various publications on geophysical applications of the
Marchenko equation, the medium is assumed to be layered
with moderately curved interfaces [1], [2]. Under these condi-
tions, the focusing function consists of a time-reversed direct
wave, which is timed at −tUd , and a coda, which is timed
thereafter. A common interpretation is that the direct wave
focuses at x when injected into the medium from the upper
boundary [28], while the coda is associated with all (pri-
mary and multiple) reflections that are generated between this
boundary and x. In media with increasing propagation velocity
(which are common in geophysical settings), problems arise
at long offsets, due to incorrect handling of refracted waves
and postcritical reflections [9], [33]. In the presence of sharp
discontinuities in the lateral direction, such as point diffractors,
the focusing function contains additional forward-scattered
components (i.e., waveforms that have not altered their vertical
propagation direction between the upper boundary and x)
that are (partly) timed before −tUd [8], [10], [11]. To allow
these (unknown) components in our formulation, we formally
partition the focusing function in an initial focusing function
FUi , containing all waveforms in the interval (−∞,−tUd +tε],
and a coda FUm , containing all waveforms in the interval
(−tUd + tε,∞). With help of these definitions, we may write

FU = FUi + FUm . (13)

When the operators Z and 
U are applied successively to the
focusing function, it follows from these definitions that:


UZFU = 
UZFUm . (14)

When we substitute (13) into (10) and apply operator 
U

(from the left) to both sides of the result, it follows with help
of (12) and (14) that:

−
URU FUi = 
U (RU + Z)FUm . (15)

This result is generally known as the Marchenko equation.
If the initial focusing function FUi is known, (15) can be
solved for the coda FUm . It is common practice to approximate
the initial focusing function FUi for any relevant (x, x′

U )-
pair by a time-reversed direct wave FUd , which is typi-
cally computed in an approximate macro velocity model [4].
We refer to this practice as the direct-wave approximation.
Under this approximation, we ignore additional waveforms
FUa that are (mostly) related to forward scattering, which we
define formally as

FUa = FUi − FUd . (16)

Substitution of FUi = FUd + FUa into (15) yields

−
URU (FUd + FUa) = 
U (RU + Z)FUm . (17)

By assuming FUa = 0 (i.e., the direct-wave approximation),
the coda FUm can be resolved from (17) by linear inversion.
A common strategy for the inversion is to rewrite the equation
by a Neumann series expansion, which is guaranteed (at least
in 1-D for infinite frequency content) to converge as long as
the spectral radius of operator RU is less than one [31], [34].
However, a variety of alternative numerical solvers might be
employed [31], [34]–[36]. For the construction of operator
RU , we require access to a complete, well-sampled reflection
response [37], [38] and sufficient aperture [39]. Modifications
of the methodology have been proposed to allow for gaps
in the acquisition design [40] and imperfect sampling [41].
Once the coda FUm is resolved, the complete focusing func-
tion can be constructed with (13), and eventually, Green’s
function follows from (10). In this section, we have derived
a Marchenko equation for (vertical) dipole Green’s functions,
see (6). However, the theory can be modified for the retrieval
of monopole Green’s functions, see [25].

III. AUXILIARY EQUATION FOR TRANSMISSION DATA

It is well known that forward-scattered waveforms cannot
be accurately retrieved under the direct-wave approximation
[8]–[11]. Ideally, we would like to add the additional com-
ponents FUa to FUd , prior to solving the Marchenko equa-
tion (17). We show in the following that, when auxiliary
transmission data are available, some of these components
can be recovered. We acquire these data by placing additional
dipole sources at the lower boundary ∂D

′
L (which is located

just below ∂DL , see Fig. 1). We define their associated (dipole)
Green’s functions as

�
(
x, x′

L , ω
) = −2

iωρ ′
L

∂ ′
3,L G

(
x, x′

L , ω
)

(18)

with x′
L ∈ ∂D

′
L , ∂ ′

3,L denoting the vertical partial derivative at
x′

L and ρ ′
L being the density at ∂D

′
L . Here, G(x, x′

L , ω) is a
monopole Green’s function, obeying (2) with q = δ(x − x′

L).
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When we substitute p = �(x, x′
L , ω) into (4), it follows

∀x ∈ D that:
�

(
x, x′

L, ω
) =

∫
∂DU

FU (x, xU , ω)�−(
xU , x′

L , ω
)
dxU (19)

where we used the fact that the medium is nonreflective above
∂DU such that �+(x, x′

L , ω)|x3=x3,U = 0. In this representation,
�−(xU , x′

L , ω) can be interpreted as the (upgoing) transmission
response of the medium recorded at xU , stemming from a
dipole source at x′

L . After inverse Fourier transformation, (19)
can be compactly rewritten as

�L = TLU FU (20)

where �L = �(x, x′
L , t). Furthermore, TLU is an operator for

multidimensional convolution with the transmission response,
obeying

TLU FU =
∫

∂DU

FU (x, xU , t) ∗ �−(
xU , x′

L , t
)
dxU . (21)

Once more, we assume that the traveltimes tLd(x, x′
L) of the

first (or direct) arrivals of �(x, x′
L , t) can be estimated from

a macro velocity model such that an operator 
L can be
constructed, which mutes all arrivals at t ≥ tLd −tε (where tε is
a small time shift, as defined earlier, and subscript L denotes
the lower boundary, where the window operator is applied).
Akin to (12), causality leads to the assumption that


L�L = 0. (22)

When we apply operator 
L to (20), it follows straight
from (22) that FU should be in the nullspace of operator

LTLU :


LTLU FU = 0. (23)

We may substitute FU = FUd + FUa + FUm into (23) and
rewrite the result strategically as

−
LTLU (FUd + FUm) = 
LTLU FUa . (24)

We refer to (24) as our auxiliary equation for transmission
data. In this article, we investigate whether this equation can
be solved in a medium with density contrast and constant
propagation velocity. At first glance, the left-hand side of (24)
seems to depend on both FUd and FUm . However, since the
waveforms in FUm are timed after the time-reversed direct
wave, they reside mainly in the nullspace of 
LTLU . There-
fore, we assume that −
LTLU FUm ≈ 0. Consequently, (24)
can be rewritten/approximated as

−
LTLU FUd = 
LTLU FUa . (25)

In Fig. 2(a), we show that the presence of forward-scattered
waveforms that are generated below x yield −
LTLU FUd = 0.
On the other hand, when forward-scattered waveforms are
generated above x, we find −
LTLU FUd �= 0, as shown in
Fig. 2(b). Based on (25), these data should match 
LTLU FUa ,
resulting in a linear inverse problem that can be solved for
FUa , for instance, by LSQR [42]. Since FUi and FUd are
only allowed to be nonzero at (−∞,−tUd + tε], so does
FUa = FUi − FUd , which we enforce during the inversion
by restricting the unknown quantity to this time interval.

Fig. 2. Let xP be a scattering point in a medium with constant
propagation velocity, generating a forward-scattered event with traveltime
td(xU, xP)+ td(xP,x′

L) (where x′
L is a source at ∂D′

L and xU is a receiver at
∂DU). (a) Situation where x3,P > x3. When the transmission data are con-
volved with the direct focusing function FUd(x, xU, t), a physical event is
generated with traveltime td(xP, x′

L)+ td(xP,x). This process is illustrated
in the figure, where the solid and dashed black lines indicate causal and
acausal raypaths, respectively (the dashed gray lines designate ∂DU and
∂D′

L, while the black dots indicate specific locations). From the triangle
inequality, it follows that td(xP, x′

L) + td(xP,x) ≥ td(x,x′
L). Hence, the

event maps at or after the direct arrival of ΓL = Γ(x, x′
L, t), resulting

in ΘLTLUFUd = 0. (b) Situation where x3,P < x3. Now, the generated
event is a nonphysical arrival with traveltime td(xP, x′

L) − td(xP, x). From
the triangle inequality, it follows that td(xP,x′

L) ≤ td(xP,x) + td(x,x′
L) or

td(xP,x′
L) − td(xP, x) ≤ td(x, x′

L). Hence, the event maps before or at the
direct arrival of ΓL = Γ(x, x′

L, t), resulting in ΘLTLUFUd �= 0 as long as
xP, x and x′

L are not collinear. In the collinear case, FUa overlaps with
FUd (i.e., the propagation direction is not altered by scattering at xP) and
cannot be recovered.

Forward-scattered components can only be resolved if they
are kinematically separated from the direct wave such that
they reside outside the nullspace of 
LTLU . The dependence
of operator 
L on tε reveals that the separation of waveforms
that can be recovered from waveforms that cannot be recovered
is intimately related to the frequency content of the data.
This observation also means that the transmission loss that
forward-scattering imposes on the direct wave should be for-
mally included in our definition of FUd . In practice, we neglect
these effects by approximating FUd in a macro velocity model,
which could lead to amplitude mismatches in the retrieved
wavefields.

Once FUa is resolved, we may evaluate the Marchenko
equation again with the (conventional) workflow that was
described in the previous section. However, this time we
include FUa in the left-hand side of (17) such that we can
retrieve (estimates of) waveforms in the coda FUm beyond the
direct-wave approximation.

IV. NUMERICAL EXAMPLE

In this section, we apply the proposed methodology to ultra-
sonic data from a 2-D numerical experiment in the 0–150-kHz
frequency range. In Fig. 3, we show our synthetic model,
which contains two rectangular density contrasts. These con-
trasts have been intentionally designed such that their corners
(labeled as A, B, . . . , H) and vertical interfaces (labeled as
AB, CD, EF, and GH) generate forward-scattered waveforms
that are not handled well by the conventional Marchenko
methodology, which we want to improve on by incorporating
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Fig. 3. Configuration for the 2-D numerical experiment. The medium
has a constant velocity of 1500 m/s and a background density ρwhite =
1000 kg/m3. The two black rectangles are density anomalies with ρblack =
2000 kg/m3. The gray dots (labeled as A, B, . . . ,H) denote sharp corners
that generate forward-scattered waveforms. The upper boundary ∂D′

U
contains 101 coinciding vertical force (dipole) sources and pressure
receivers with a spacing of 5 mm. The lower boundary ∂D′

L contains
101 vertical force (dipole) sources with a spacing of 5 mm. Additional
taper zones have been added to these arrays at the intervals x1 ∈
[ − 0.5 m,−0.25 m) and x1 ∈ ( − 0.25 m,0.5 m] to eliminate truncation
artifacts of the spatial integrals. The black dot marks the specific location
xI = (0,−0.0205 m), where we retrieve our focusing function and Green’s
function.

auxiliary transmission data. Our aim is to retrieve FU , �U and
�L at the specific location xI = (0,−0.0205 m), which is
shown in Fig. 3.

As a wavelet, we take the second derivative of a Gaussian
function (also known as a Ricker wavelet) with a 50-kHz peak
frequency (for the truncation operators, we choose tε = 20 μs).
Our traces consist of 1024 time samples with dt = 3(1/3) μs.
Reflection and transmission data are generated by solving
an interface integral equation [43], for which we discretize
the mass density model on a spatial grid with a spacing of
2 mm. In Fig. 4, we show sections of these data, as well
as an analytic Green’s function �0 that we computed in a
background homogeneous medium.

For the estimation of the direct focusing function, we would
like to reverse the analytic Green’s function �0 from 4(c)
in time. Unfortunately, this procedure does not take care of
transmission loss, which leads to an unacceptable amplitude
error. Although methodologies exist to predict the transmission
losses from the data [7] (even in angle-dependent mode),
we mitigate this problem here with help of a single (angle-
independent) scaling factor α, which is determined by

α(xI ) =
∫ ∫

∂DU
�0(xI , xU , t)G0(xU , xI , t)dxU dt∫ ∫

∂DU
�0(xI , xU , t)G(xU , xI , t)dxU dt

. (26)

In the numerator of (26), we focus Green’s function G0 in the
background medium at xI , while in the denominator, we do the
same with Green’s function G that is computed in the actual
medium. The amplitude ratio between both focusing processes
determines our scaling factor α, which can be interpreted

Fig. 4. (a) Reflection response: ∀x′
U ∈ ∂D′

U : Γ−(x0, x′
U, t). (b) Transmis-

sion response: ∀x′
L ∈ ∂D′

L : Γ−(x0,x′
L, t). In both panels, we have set x0 =

(�,−0.120 m) as a reference location. (c) Analytic dipole Green’s function
in a homogeneous background medium: ∀x′

U ∈ ∂D′
U : Γ0(xI,x′

U, t).
All panels are convolved with the wavelet and clipped at 10% of the
maximum amplitude.

Fig. 5. (a) Direct focusing function FUd. (b) Coda of the focusing
function FUm as retrieved by solving the Marchenko equation under the
direct-wave approximation FUa = 0. (c) Updated focusing function FU,
as obtained by adding the retrieved coda FUm to FUd. All panels are
clipped at 10% of the maximum amplitude of the direct wave.

as an estimate of the average inverse transmission loss for
propagation between ∂D

′
U and xI . By this procedure, we find

α = 1.1141 for the focal point that is specified in Fig. 3. The
direct focusing function is then estimated as FUd ≈ αZ�0 and
is shown in Fig. 5(a).

First, we solve Marchenko (17) in a conventional manner,
using reflection data only. We do so by evaluating the first ten
terms of its associated Neumann series under the direct-wave
approximation FUa = 0, see Fig. 5(b). The retrieved coda FUm

is added to FUd and the result is shown in Fig. 5(c).
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Fig. 6. (a) Reference Green’s function ΓU, as obtained by forward
modeling. (b) Same Green’s function, as retrieved by solving Marchenko
equation under the direct-wave approximation FUa = 0. (c) Difference
between Fig. 6(b) and (a). The green curve marks the traveltime of
tUd − tε. All panels are clipped at 10% of the maximum amplitude of
the direct wave.

For our reference, we compute the desired Green’s function
�U directly from the model parameters by solving an interface
integral equation [43], see Fig. 6(a). In Fig. 6(b), we show
the same Green’s function, as retrieved by the Marchenko
equation under the direct-wave approximation FUa = 0 [which
is obtained by substituting the retrieved focusing function from
Fig. 5(c) into (10)]. The difference between the retrieved and
reference Green’s functions is given in Fig. 6(c). Events AB′
and CD′, which are shown in Fig. 6, relate to forward-scattered
waveforms that have not been retrieved accurately (where ′ is
used to indicate forward-scattered waveforms). These events
are mainly generated by the vertical interfaces AB and CD
(as shown in Fig. 3). A similar statement can be made about
the (weaker) events EG� and FH�, which seems to be related to
the reflections of event AB′ at the horizontal interfaces EG and
FH in Fig. 3 (where � is used to indicate reflected waveforms).

Green’s function �L can be estimated by applying the
transmission operator to the retrieved focusing function FU ,
see (20). In Fig. 7, we compare the result of this proce-
dure with a reference Green’s function that we found by
solving an interface integral equation [43]. Events EF′ and
GH′ relate to forward-scattered waveforms that have been
retrieved accurately. These events are mainly generated by
the vertical interfaces EF and GH (as shown in Fig. 3).
Based on Fig. 2(a), it is clear that these waveforms map in
the interval [tLd − tε,∞) (i.e., below the green curve in the
figure). Hence, they will be in the nullspace of the operator

LTLU . On the other hand, events AB× and CD× are artifacts
that are generated by forward-scattered waveforms from the
vertical interfaces AB and CD in Fig. 3 (where × is used to
indicate nonphysical events). We confirm that these artifacts
map mostly in the interval (−∞, tLd − tε) (i.e., above the
green curve in the figure), as we already predicted in Fig. 2(b).
Hence, 
LTLU FU �= 0, which violates (23). This observation
can be exploited to retrieve the missing components of the

Fig. 7. (a) Reference Green’s function ΓL, as obtained by forward
modeling. (b) Same Green’s function, as retrieved by solving Marchenko
equation under the direct-wave approximation FUa = 0. (c) Difference
between Fig. 7(b) and (a). The green curve marks the traveltime of tLd−tε.
All panels are clipped at 10% of the maximum amplitude of the direct
wave.

Fig. 8. (a) Initial focusing function FUi as obtained by adding FUa [which is
retrieved by least-squares inversion of (25)] to FUd. (b) Focusing function
FU as retrieved by solving the Marchenko equation with FUi = FUd +FUa.
(c) Difference between Figs. 8(b) and 5(c). Furthermore, all settings are
similar as in Fig. 5.

focusing function FUa from the auxiliary equation, as we do
shortly. Furthermore, we have indicated A•, B•, C•, and D•
in Fig. 7(c). We interpret these as diffractions (indicated by •)
from the corners A, B, C, and D in Fig. 3, which have not
been retrieved accurately.

Next, we show how the missing components of the focus-
ing function can be resolved from the transmission data.
To achieve this, we solve (25) for FUa on the interval
(−∞,−tUd + tε] by 20 iterations of LSQR [42]. We add
our solution to FUd and show the result in Fig. 8(a). Then,
we use FUd and FUa to invert (17) for FUm by evaluat-
ing the first ten terms of its associated Neumann series.
This results in a renewed estimate of the focusing function
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Fig. 9. (a) Green’s function ΓU, as retrieved by solving the auxil-
iary equation and the Marchenko equation successively. (b) Difference
between Figs. 9(a) and 6(b). (c) Difference between Figs. 9(a) and 6(a).
Furthermore, all settings are similar as in Fig. 6.

FU = FUd + FUa + FUm , see Fig. 8(b). In Fig. 8(c),
we show the difference between Figs. 8(b) (obtained with
transmissions) and 5(c) (obtained without transmissions). Sev-
eral events can be observed in this figure, not only on the
interval (−∞,−tUd + tε] (i.e., updates of FUa) but also on
(−tUd + tε,∞) (i.e., updates of FUm ). These events help us
to improve the retrieval of forward-scattered waveforms and
their associated multiple reflections in Green’s functions �U

and �L , as we demonstrate next.
In Fig. 9(a), we show Green’s function �U , as obtained by

substituting our renewed estimate of the focusing function
into (10). In Fig. 9(b), we show the difference between
Figs. 9(a) (obtained with transmissions) and 6(b) (obtained
without transmissions). As indicated in this figure, the
forward-scattered waveforms that were indicated as AB′ and
CD′, as well as EG� and FH� (relating to high-order scat-
tering), can be recognized. In Fig. 9(c), we show the differ-
ence between Fig. 9(a) and the reference Green’s function in
Fig. 6(a). By comparing this result with Fig. 6(c), we see that
the forward-scattered waveforms (AB′ and CD′) and some of
their associated multiples (EG� and FH�) have been better
resolved. We also observe that our result is not optimal, which
we assume to be attributed to the incorrect amplitude spectrum
of the direct focusing function (where transmission losses have
not been handled well) and finite aperture.

We may also retrieve Green’s function �L by substituting
our renewed estimate of the focusing function into (20). The
result of this operation (including the associated difference
plots) is shown in Fig. 10. Comparing this result with Fig. 7, it
is clear that the artifacts AB× and CD× have been suppressed,
as enforced by the inversion of (25). We also observe that
the diffractions A• and C• have been retrieved better, which
is not so much the case for the diffractions B• and D•. The
latter difference might be attributed to finite aperture. More
specifically: the Fresnel zones [44] that are required for the
retrieval of B• and D• are more extended and closer to the
edges of the array compared to the those of A• and C•.

Fig. 10. (a) Green’s function ΓL, as retrieved by solving
the auxiliary equation and the Marchenko equation successively.
(b) Difference between Figs. 10(a) and 7(b). (c) Difference between
Figs. 10(a) and 7(a). Furthermore, all settings are similar as in Fig. 7.

Fig. 11. Frobenius norm of the residual (normalized by the residual
at iteration 0) when solving (a) the Marchenko equation under the
direct-wave approximation FUa = 0, (b) the auxiliary equation and
(c) the Marchenko equation with an updated initial focusing function
FUi = FUd + FUa.

Consequently, they seem to suffer more from the finite aperture
of the acquisition array.

In Fig. 11(a), we provide the convergence curve of the
Marchenko equation, when solved under the direct-wave
approximation. An equivalent curve of the auxiliary equation
can be found in Fig. 11(b). In Fig. 11(c), we show the con-
vergence curve when solving the Marchenko equation after
updating the initial focusing function. Note that this curve is
not too different from Fig. 11(a).

V. APPLICATION TO INVERSE SOURCE PROBLEMS

As a potential application of the proposed method, we focus
our attention on inverse source problems, which are common
in photoacoustic imaging [24]. We consider the configuration
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in Fig. 1 and assume that a distribution of sources is located
inside the volume D. We characterize this source distribution
as qe(x, t), where subscript e stands for “experiment.” An
important assumption is that all sources are ignited at t = 0,
with a zero-phase wavelet (which might have to be enforced
in practice by additional preprocessing). Let ∀xU ∈ ∂DU :
pe(xU , t) be the recorded wavefield at the upper boundary.
Our goal is to reconstruct the initial pressure distribution
∀x ∈ D : pe(x, t = 0) from these recordings. A common
strategy is to propagate the data back into the volume with
Green’s functions from a (typically smooth) macro model [45].
However, a range of alternative solutions exists [46]. When
reflection and transmission data are available, we may compute
focusing functions by the methodology that we have derived
in this article and rely on (4) for the required wavefield
reconstruction process. Unfortunately, (4) can only be applied
to a wavefield p if its associated source distribution q is zero
throughout the volume D, which is obviously not the case for
p = pe and q = qe. To overcome this problem, we symmetrize
the wavefield by the following operation:

ph(x, t) = pe(x, t) + pe(x,−t). (27)

Here, subscript h stands for “homogeneous,” referring to the
fact that ph is a solution to the homogeneous (=source-free)
wave equation [16], [47]; i.e., ph satisfies (2) with q = 0.
Consequently, we can use (4) to reconstruct ph throughout
volume D, given our recorded data at the upper boundary ∂DU .
To facilitate this process, we substitute p = ph into (4) and
rewrite the result in the time domain as

ph(x, t) =
∫

∂DU

FU (x, xU , t) ∗ p−
h (xU , t)dxU

+
∫

∂DU

FU (x, xU ,−t) ∗ p+
h (xU , t)dxU . (28)

Next, we realize that ∀xU ∈ ∂DU : p−
h (xU , t) = pe(xU , t)

and p+
h (xU , t) = pe(xU ,−t). Substitution into (28) yields

ph(x, t) =
∫

∂DU

FU (x, xU , t) ∗ pe(xU , t)dxU

+
∫

∂DU

FU (x, xU ,−t) ∗ pe(xU ,−t)dxU . (29)

We can utilize this result to reconstruct the symmetrized data
ph throughout the volume D from the recordings pe at the
boundary ∂DU . To retrieve the initial pressure field, we may
evaluate

pe(x, t = 0) = 1

2
ph(x, t = 0) (30)

where we used (27). In the following, we will demonstrate
the potential of the proposed strategy with a simple synthetic
example, based on the configuration that we presented earlier
in Fig. 3. We choose the following (point) source distribution:
qe(x, t) = δ(x−xI )S(t), where xI = (0,−0.0205 m) and S(t)
is the second derivative of a Gaussian wavelet with a 50 kHz
peak frequency, as in our previous example. We compute the
response ∀xU ∈ ∂DU : pe(xU , t) of this source distribution
by forward modeling. Then, we reconstruct the symmetrized
wavefield ∀x ∈ D : ph(x, t) by (29), with help of focusing

Fig. 12. Reconstructed initial pressure field ∀x ∈ D : pe(x, t = 0).
In panel (a) (which serves as a reference for the other panels), data have
been computed in a homogeneous background medium and FUd acted
as our focusing function. In panels (b)–(d), data have been computed
in the heterogeneous medium of Fig. 3. (b) FUd acted as our focusing
function. (c) The focusing function is obtained by solving the Marchenko
equation under the direct-wave approximation FUa = 0. (d) The focusing
function is obtained by solving the auxiliary equation (with FUm = 0) and
the Marchenko equation successively. All panels are clipped at 10% of
the maximum amplitude.

functions that we retrieve from reflection and transmission
data. Finally, we evaluate (1/2)ph(x, t = 0) to estimate the
initial pressure field pe(x, t = 0), following (30).

For reference, we start with data ∀xU ∈ ∂DU : pe(xU , t) that
was computed in a homogeneous medium with c = 1500 m/s
and ρ = 1000 kg/m3 (i.e., without mass density contrast).
We reconstruct the initial pressure distribution from these data,
where we let FUd act as our focusing function. The result of
this procedure is shown in Fig. 12(a). Since the model has not
generated any scattered or reflected waveform, FUd is identical
to the complete focusing function (i.e., both FUa and FUm are
zero in this case). Consequently, our initial result cannot be
improved by any of the approaches that we have discussed in
this article. Next, we repeat the exercise for data that were
computed in the heterogeneous medium of Fig. 3, but we
still choose FUd as our focusing function for the evaluation
of (29). The image that is obtained by this procedure is shown
in Fig. 12(b). Compared to Fig. 12(a), we observe two kinds
of artifacts. Artifact EG� is related to reflections from the
horizontal interface EG (see Fig. 3). This phenomenon can
be understood as follows: the initial radiation from xI has
reflected at the interface EG; this reflection was recorded
at ∂DU and has been backpropagated by FUd , generating a
mirror image below xI . Artifacts AB× and CD× are related
to forward scattering. These phenomena can be understood as
follows: the initial radiation from xI has interacted with the
(corners and vertical interfaces of) the density contrast above
xI , generating forward-scattered waveforms. These waveforms
have been backpropagated by FUd (where forward-scattered
components have not been accounted for), resulting in addi-
tional events/artifacts (all intersecting at xI ). Next, we solve
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the Marchenko equation under the direct-wave approximation
FUa = 0 and we use the retrieved focusing functions to
evaluate (29). This leads to the image in Fig. 12(c). Note that
the reflection-based artifact EG� has been removed by this
procedure, but the artifacts from forward scattering remain.
Finally, we compute the focusing functions by solving the
auxiliary equation and the Marchenko equation successively,
leading to the image in Fig. 12(d). This time, both types of
artifacts have been suppressed significantly. It is also observed
that some weaker artifacts have emerged in the image, which is
indicated as noise in Fig. 12(d). To quantify the quality of our
results, we introduce a global normalized root-mean-square
error as

E =
√∫

D
|I (x) − I0(x)|2dx∫

D
|I0(x)|2dx

. (31)

Here, I is our image and I0 is the associated reference
image in Fig. 12(a). For the image I in Fig. 12(b), we find
E = 0.246. This number is reduced significantly to E =
0.079 for the image in Fig. 12(c), and down to E = 0.059 in
case of Fig. 12(d). This reduction of E suggests that the
result has improved. In our numerical example, we have
chosen a monopole point source at xI as our unknown
source distribution. However, the linearity of the equations
allows for arbitrary source distributions and mechanisms,
as has been demonstrated in equivalent geophysical prob-
lems [48]. It is remarkable that—apart from the propaga-
tion velocity—no medium parameters are required for the
reconstruction.

VI. DISCUSSION

In this article, we have proposed to partition the focusing
function at an arbitrary location x ∈ D as

FU = FUd + FUa + FUm . (32)

Here, FUd is the direct focusing function, while FUa and FUm

contain all other waveforms in the intervals (−∞,−tUd + tε]
and (−tUd + tε,∞), respectively. We have assumed that
FUm resides in the nullspace of 
LTLU , such that it can
be excluded from the auxiliary equation, while FUa is not
in this nullspace, and hence can be recovered. The latter
assumption is motivated by Fig. 2(b), where we illustrate that
forward-scattered waveforms which are generated above x are
not in the nullspace of 
LTLU . To investigate the validity
of the abovementioned assumptions (especially in media with
additional velocity contrast), it would be highly valuable to
model FU directly from the medium parameters, for instance
by depth extrapolation [49].

From the illustration in Fig. 2(b), it is clear that
forward-scattered waveforms can only be retrieved from the
auxiliary equation if they are sufficiently delayed (with respect
to the direct wave). On a similar note, we have learned
before that reflected waveforms can only be retrieved from
the Marchenko equation if they are sufficiently delayed [12].
It has been shown that the latter problem can be mitigated
by introducing an augmented focusing function [13]–[15].

It might be worthwhile to investigate if a similar strategy could
also be applied to the auxiliary equation.

In our study, we have not investigated the effects of finite
spatial aperture, which can have a detrimental effect on
Marchenko-based Green’s function retrieval [38], [39]. In our
numerical examples, potential problems have been circum-
vented by choosing long spatial arrays and applying significant
spatial tapers. With shorter arrays, it is well-understood that
particular components of Green’s functions cannot be retrieved
when the stationary points of the underlying integrals are not
properly evaluated [10].

Further, we have chosen to demonstrate the validity of
our workflow for 2-D wave propagation only. Various pub-
lications have emerged recently on the implementation of
the Marchenko equation for 3-D wave propagation problems
[50]–[52]. Building on these developments, we prospect that
a 3-D implementation of the auxiliary equation should also be
feasible.

We emphasize that our methodology has been derived under
the assumption that the medium is lossless. By utilizing two-
sided (rather than single-sided) reflection data and solving an
alternative system of Marchenko equations, Green’s functions
can also be retrieved in dissipative media [53]. A potential
direction of further research is to include losses in our for-
mulation of the auxiliary equation, such that forward-scattered
waveforms and their associated multiples can also be retrieved
in dissipative media. Such an approach might be beneficial not
only for acoustic problems but also for related applications
that involve electromagnetic wave propagation, where losses
typically cannot be neglected [54].

Last but not least, our work may have an impact on
elastodynamic Green’s function retrieval in solid media (in
those fortunate cases where auxiliary transmission data are
available). Although the underlying representations of the
Marchenko equation are well established for elastodynamic
wave propagation [55], [56], it remains challenging to retrieve
elastodynamic focusing functions in practice, since they over-
lap partly with their associated Green’s functions in the
time-space domain (due to the different velocities of P- and
S-waves) and their forward-scattered components are generally
unknown [57]. It seems likely that these problems can be
mitigated (at least to some extent) with help of auxiliary
transmission data, by extending the theory from our paper to
the elastodynamic case.

VII. CONCLUSION

Marchenko-type focusing functions are useful tools to allow
Green’s function retrieval from single-sided reflection data.
We can partition the focusing function in an intial focusing
function and a coda. The initial focusing function contains
the inverse direct wave and all preceding waveforms, which
are typically associated with forward scattering. The coda
contains all events after the inverse direct wave, which are
typically associated with (primary and multiple) reflections.
Given the initial focusing function, we can retrieve the coda
from reflection data by solving a multidimensional Marchenko
equation. In practice, the initial focusing function is often
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approximated by a time-reversed direct wave, which is gen-
erally computed in a macro velocity model. Under this
(direct-wave) approximation, forward-scattered components of
Green’s function and their associated multiples cannot be
successfully recovered. In this article, we have proposed to
mitigate this problem by incorporating additional transmission
data. We derived an auxiliary equation, which can be used to
resolve the missing components of the initial focusing function
from the transmission data by least-squares inversion. Once
this is done, we can use our updated initial focusing function
and the reflection data to solve the Marchenko equation
beyond the direct-wave approximation. This procedure can
be used to retrieve forward-scattered constituents of Green’s
function in a medium with density contrast and constant
propagation velocity, as we have demonstrated numerically.
Implementing this methodology in a medium with velocity
contrast is more challenging and requires additional research to
be conducted.
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