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AD is the most common form of dementia. The heritability 
is high, estimated to be between 60% and 80%1. This strong 
genetic component provides an opportunity to determine 

the pathophysiological processes in AD and to identify new bio-
logical features, new prognostic/diagnostic markers and new thera-
peutic targets through translational genomics. Characterizing the 
genetic risk factors in AD is therefore a major objective; with the 
advent of high-throughput genomic techniques, a large number of 
putative AD-associated loci/genes have been reported2. However, 
much of the underlying heritability remains unexplained. Hence, 
increasing the sample size of genome-wide association studies 
(GWASs) is an obvious solution that has already been used to char-
acterize new genetic risk factors in other common, complex dis-
eases (e.g., diabetes).

GWAS meta-analysis
The European Alzheimer & Dementia Biobank (EADB) consor-
tium brings together the various European GWAS consortia already 
working on AD. A new dataset of 20,464 clinically diagnosed AD 
cases and 22,244 controls has been collated from 15 European coun-
tries. The EADB GWAS results were meta-analyzed with a proxy-AD 
GWASs of the UK Biobank (UKBB) dataset. The UKBB’s proxy-AD 
designation is based on questionnaire data in which individuals are 
asked whether their parents had dementia. This method has been 
used successfully in the past3 but is less specific than a clinical or 
pathological diagnosis of AD; hence, we will refer to these cases as 
proxy AD and related dementia (proxy-ADD). EADB stage I (GWAS 
meta-analysis) was based on 39,106 clinically diagnosed AD cases, 
46,828 proxy-ADD cases (as defined in the Supplementary Note), 
401,577 controls (Supplementary Tables 1 and 2) and 21,101,114 
variants that passed our quality control (Fig. 1; see Supplementary 
Fig. 1 for the quantile–quantile plot and genomic inflation factors). 
We selected all variants with a P value below 1 × 10−5 in stage I. We 
defined nonoverlapping regions around these variants, excluded the 
region corresponding to APOE and examined the remaining vari-
ants in a large follow-up sample that included AD cases and controls 
from the ADGC, FinnGen and CHARGE consortia (stage II; 25,392 
AD cases and 276,086 controls). A signal was considered as signifi-
cant on the genome-wide level if it (1) was nominally associated 
(P ≤ 0.05) in stage II, (2) had the same direction of association in the 
stage I and II analyses and (3) was associated with the ADD risk with 

P ≤ 5 × 10−8 in the stage I and stage II meta-analysis. Furthermore, 
we applied a PLINK clumping procedure4 to define potential inde-
pendent hits within the stage I results (Methods). After validation 
by conditional analyses (Supplementary Note and Supplementary 
Tables 3 and 4), this approach enabled us to define 39 signals in 
33 loci already known to be associated with the risk of developing 
ADD3,5–10 and identify 42 loci defined as new at the time of analysis 
(Tables 1 and 2, Supplementary Table 5 and Supplementary Figs. 
2–29). Of the 42 new loci, 17 had P ≤ 5 × 10−8 in stage I and 25 were 
associated with P ≤ 5 × 10−8 after follow-up (stage I and stage II 
meta-analysis, including the ADGC, CHARGE and FinnGen data). 
We also identified 6 loci with P ≤ 5 × 10−8 in the stage I and stage 
II analysis but with P > 0.05 in stage II (Supplementary Table 6). It 
is noteworthy that the magnitude of the associations in stage I did 
not change substantially if we restricted the analysis to clinically 
diagnosed AD cases (Supplementary Table 7 and Supplementary 
Fig. 30). Similarly, none of the signals observed appeared to be 
especially driven by the UKBB data (Supplementary Table 7 and 
Supplementary Figs. 2–29). Nine of these loci (APP, CCDC6, GRN, 
LILRB2, NCK2, TNIP1, TMEM106B, TSPAN14 and SHARPIN) 
were recently reported in three articles using part of the GWAS 
data included in our study11–13. We also generated a detailed anal-
ysis of the human leukocyte antigen (HLA) locus on the basis of 
the clinically diagnosed AD cases (Supplementary Tables 8 and 9, 
Supplementary Figs. 31 and 32 and Supplementary Note).

Genetic overlap with other neurodegenerative diseases
We tested the association of the lead variants within our new loci 
with the risk of developing other neurodegenerative diseases or 
AD-related disorders (Supplementary Fig. 33 and Supplementary 
Tables 10–12). We also performed more precise colocalization 
analyses (using Coloc R package, https://cran.r-project.org/web/
packages/coloc/index.html) for five loci known to be associated 
with Parkinson’s disease (IDUA and CTSB), types of frontotem-
poral dementia (TMEM106B and GRN) and amyotrophic lateral 
sclerosis (TNIP1) (Supplementary Tables 13 and 14). The IDUA sig-
nal for Parkinson’s disease was independent of the signal in ADD 
(coloc posterior probability (PP)3 = 99.9%), but we were not able to 
determine whether the CTSB signals colocalized. The TMEM106B 
and GRN signals in frontotemporal lobar degeneration with TAR 
DNA-binding protein (TDP-43) inclusions (frontotemporal lobar 

New insights into the genetic etiology of 
Alzheimer’s disease and related dementias
Characterization of the genetic landscape of Alzheimer’s disease (AD) and related dementias (ADD) provides a unique 
opportunity for a better understanding of the associated pathophysiological processes. We performed a two-stage 
genome-wide association study totaling 111,326 clinically diagnosed/‘proxy’ AD cases and 677,663 controls. We found 75 risk 
loci, of which 42 were new at the time of analysis. Pathway enrichment analyses confirmed the involvement of amyloid/tau 
pathways and highlighted microglia implication. Gene prioritization in the new loci identified 31 genes that were suggestive 
of new genetically associated processes, including the tumor necrosis factor alpha pathway through the linear ubiquitin chain 
assembly complex. We also built a new genetic risk score associated with the risk of future AD/dementia or progression from 
mild cognitive impairment to AD/dementia. The improvement in prediction led to a 1.6- to 1.9-fold increase in AD risk from the 
lowest to the highest decile, in addition to effects of age and the APOE ε4 allele.
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degeneration TDP) probably share causal variants with ADD (coloc 
PP4 = 99.8% and coloc PP4 = 80.1%, respectively). Lastly, we were 
not able to determine whether the TNIP1 signals colocalized for 
ADD and amyotrophic lateral sclerosis.

Pathway analyses
Next, we sought to perform a pathway enrichment analysis on the 
stage I association results to gain better biological understanding 
of this newly expanded genetic landscape for ADD. Ninety-three 
gene sets were still statistically significant after correction for mul-
tiple testing (q ≤ 0.05; Methods and Supplementary Table 15). As 
described previously, the most significant gene sets are related to 
amyloid and tau5; other significant gene sets are related to lipids, 
endocytosis and immunity (including macrophage and microglial 
cell activation). When restricting this analysis to the meta-analysis 
based on the clinically diagnosed AD cases, 54 gene sets were sig-
nificant (q ≤ 0.05). Of these 54 gene sets, 33 reached q ≤ 0.05 in 
the stage I analysis and all reached P ≤ 0.05. This indicates that 
the inclusion of proxy-ADD cases does not cause disease-relevant 
biological information to be missed and underlines the additional 
power of this type of analysis.

We next performed a single-cell expression enrichment analysis 
by using the average gene expression per nucleus (Av. Exp.) data in 
the human Allen Brain Atlas (49,495 nuclei from 8 human brains). 
Only the microglial expression reached a high level of significance 
(P = 1.7 × 10−8; Supplementary Table 16); greater expression corre-
sponded to a more significant association with ADD. After adjust-
ing for microglial Av. Exp., the remaining associations became 
nonsignificant; this indicates that microglial Av. Exp. drives all the 
other cell-type associations. These results were observed whatever 
the brain region studied (Supplementary Table 16). A similar result 

was observed using a mouse single-cell dataset14 (Supplementary 
Table 17 and Supplementary Note).

Lastly, we looked at whether the relationship between an elevated 
microglia Av. Exp. and a genetic association with the ADD risk was 
specific to particular biological processes (Supplementary Table 18) 
by analyzing the interaction between microglia Av. Exp. and pathway 
membership in MAGMA15. Of the five most significant interaction 
signals (q ≤ 10−3), two were directly associated with endocytosis pro-
cesses (GO:0006898 and GO:0031623); this suggested a functional 
relationship between microglia and endocytosis, which is known to 
be involved in phagocytosis (Supplementary Table 18). It is notewor-
thy that we also detected an interaction between GO:1902991 (regu-
lation of amyloid precursor protein (APP) catabolic process) and 
the gene expression level in microglia (q = 1.4 × 10−3; Supplementary 
Table 18). Even though these data suggest a functional relationship 
between microglia and APP/amyloid beta (Aβ) peptide pathways, 
this observation reinforces the likely involvement of microglial endo-
cytosis in AD, a mechanism that is also strongly involved in APP 
metabolism16. Of note, there are overall similarities in the interaction 
effects of human and mouse microglia expression with genes in bio-
logical pathways of relevance to the AD genetic risk (Supplementary 
Table 18 and Supplementary Note).

Gene prioritization
We next attempted to identify the genes most likely to be respon-
sible for the association signal with ADD at each new locus. To 
this end, we studied the downstream effects of ADD-associated 
variants on molecular phenotypes (i.e., expression, splicing, pro-
tein expression, methylation and histone acetylation) in various 
cis-quantitative trait locus (cis-QTL) catalogues from AD-relevant 
tissues, cell types and brain regions. We investigated the genetic 
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Fig. 1 | Manhattan plot of the stage i results. P values are two-sided raw P values derived from a fixed-effect meta-analysis. Variants with a P value 
below 1 × 10−36 are not shown. Loci with a genome-wide significant signal are annotated (known loci in black and new loci in red). Variants in new loci are 
highlighted in red. The red dotted line represents the genome-wide significance level (P = 5 × 10−8), and the black dotted line represents the suggestive 
significance level (P = 1 × 10−5).
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colocalization between association signals for the ADD risk and 
those for the molecular phenotypes and the association between 
the ADD risk and these phenotypes by integrating cis-QTL infor-
mation into our ADD GWAS. Moreover, we considered the lead 
variant annotation (the allele frequency, protein-altering effects 
and nearest protein-coding gene) and a genome-wide, high-content 
short interfering RNA screen for APP metabolism17. Based on this 
evidence, we developed a systematic gene prioritization strategy 

that yielded a total weighted score of between 0 and 100 for each 
gene (Supplementary Fig. 34 and Supplementary Note). This score 
was used to compare and prioritize genes in the new loci within 
1 Mb upstream and 1 Mb downstream of the lead variants. Genes 
either were ranked as tier 1 (greater likelihood of being the causal 
risk gene responsible for the ADD signal) or tier 2 (lower likeli-
hood and the absence of a minimum level of evidence as a causal 
risk gene) or were not ranked.

Table 1 | Summary of association results in the stage i and stage ii analysis for known loci with a genome-wide significant signal

Varianta chromosome Positionb Genec Known locus Minor/major allele MAFd Ore 95% ci P value

rs679515 1 207577223 CR1 CR1 T/C 0.188 1.13 1.11–1.15 7.2 × 10−46

rs6733839 2 127135234 BIN1 BIN1 T/C 0.389 1.17 1.16–1.19 6.1 × 10−118

rs10933431 2 233117202 INPP5D INPP5D G/C 0.234 0.93 0.92–0.95 3.6 × 10−18

rs6846529 4 11023507 CLNK CLNK/HS3ST1 C/T 0.283 1.07 1.05–1.08 2.2 × 10−17

rs6605556 6 32615322 HLA-DQA1 HLA G/A 0.161 0.91 0.90–0.93 7.1 × 10−20

rs10947943 6 41036354 UNC5CL TREM2 A/G 0.142 0.94 0.93–0.96 1.1 × 10−9

rs143332484 6 41161469 TREM2 TREM2 T/C 0.013 1.41 1.32–1.50 2.8 × 10−25

rs75932628 6 41161514 TREM2 TREM2 T/C 0.003 2.39 2.09–2.73 2.5 × 10−37

rs60755019 6 41181270 TREML2 TREM2 G/A 0.004 1.55 1.33–1.80 2.1 × 10−8

rs7767350 6 47517390 CD2AP CD2AP T/C 0.271 1.08 1.06–1.09 7.9 × 10−22

rs6966331 7 37844191 EPDR1 NME8 T/C 0.349 0.96 0.94–0.97 4.6 × 10−10

rs7384878 7 100334426 SPDYE3 ZCWPW1/NYAP1 C/T 0.31 0.92 0.91–0.94 1.1 × 10−26

rs11771145 7 143413669 EPHA1 EPHA1 A/G 0.348 0.95 0.93–0.96 3.3 × 10−14

rs73223431 8 27362470 PTK2B PTK2B T/C 0.369 1.07 1.06–1.08 4.0 × 10−22

rs11787077 8 27607795 CLU CLU T/C 0.392 0.91 0.90–0.92 1.7 × 10−44

rs7912495 10 11676714 USP6NL ECHDC3 G/A 0.462 1.06 1.05–1.08 9.7 × 10−19

rs10437655 11 47370397 SPI1 CELF1/SPI1 A/G 0.399 1.06 1.04–1.07 5.3 × 10−14

rs1582763 11 60254475 MS4A4A MS4A A/G 0.371 0.91 0.90–0.92 3.7 × 10−42

rs3851179 11 86157598 EED PICALM T/C 0.358 0.9 0.89–0.92 3.0 × 10−48

rs74685827 11 121482368 SORL1 SORL1 G/T 0.019 1.19 1.13–1.25 2.8 × 10−11

rs11218343 11 121564878 SORL1 SORL1 C/T 0.039 0.84 0.81–0.87 1.4 × 10−21

rs17125924 14 52924962 FERMT2 FERMT2 G/A 0.089 1.1 1.07–1.12 8.3 × 10−16

rs7401792 14 92464917 SLC24A4 SLC24A4/RIN3 G/A 0.371 1.04 1.02–1.05 4.8 × 10−8

rs12590654 14 92472511 SLC24A4 SLC24A4/RIN3 A/G 0.328 0.93 0.92–0.95 4.2 × 10−21

rs8025980 15 50701814 SPPL2A SPPL2A G/A 0.345 0.96 0.94–0.97 1.3 × 10−8

rs602602 15 58764824 MINDY2 ADAM10 A/T 0.28 0.94 0.93–0.96 2.1 × 10−15

rs117618017 15 63277703 APH1B APH1B T/C 0.144 1.11 1.09–1.13 2.2 × 10−25

rs889555 16 31111250 BCKDK KAT8 T/C 0.281 0.95 0.94–0.97 2.0 × 10−11

rs4985556 16 70660097 IL34 IL34 A/C 0.115 1.07 1.05–1.09 6.0 × 10−10

rs12446759 16 81739398 PLCG2 PLCG2 G/A 0.403 0.95 0.94–0.96 1.2 × 10−13

rs72824905 16 81908423 PLCG2 PLCG2 G/C 0.008 0.74 0.68–0.81 8.5 × 10−12

rs7225151 17 5233752 SCIMP SCIMP/RABEP1 A/G 0.124 1.08 1.05–1.10 4.1 × 10−13

rs199515 17 46779275 WNT3 MAPT G/C 0.219 0.94 0.93–0.96 9.3 × 10−13

rs616338 17 49219935 ABI3 ABI3 T/C 0.012 1.32 1.23–1.42 2.8 × 10−14

rs2526377 17 58332680 TSPOAP1 TSPOAP1 G/A 0.445 0.95 0.94–0.97 1.6 × 10−12

rs4277405 17 63471557 ACE ACE C/T 0.384 0.94 0.93–0.95 8.8 × 10−20

rs12151021 19 1050875 ABCA7 ABCA7 A/G 0.336 1.1 1.09–1.12 1.6 × 10−37

rs6014724 20 56423488 CASS4 CASS4 G/A 0.09 0.89 0.87–0.91 4.1 × 10−21

rs2830489 21 26775872 ADAMTS1 ADAMTS1 T/C 0.281 0.95 0.94–0.97 1.7 × 10−10

P values are two-sided raw P values derived from a fixed-effect meta-analysis.Ci, confidence interval; Or, odds ratio; MAF, minor allele frequency. areference single-nucleotide polymorphism (SNp) 
(rs) number, according to dbSNp build 153. bGrCh38 assembly. cNearest protein-coding gene according to GENCODE release 33. dWeighted average MAF across all discovery studies. eApproximate Or 
calculated with respect to the minor allele.
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Table 2 | Summary of association results in the stage i and stage ii analysis for new loci at the time of analysis with a genome-wide 
significant signal

Locus 
number

Varianta chromosome Positionb Genec Minor/major 
allele

MAFd Ore 95% ci P value

1 rs141749679 1 109345810 SORT1 C/T 0.004 1.38 1.24–1.54 7.5 × 10−9

2 rs72777026 2 9558882 ADAM17 G/A 0.144 1.06 1.04–1.08 2.7 × 10−8

3 rs17020490 2 37304796 PRKD3 C/T 0.145 1.06 1.04–1.08 3.3 × 10−9

4 rs143080277 2 105749599 NCK2 C/T 0.005 1.47 1.33–1.63 2.1 × 10−13

5 rs139643391 2 202878716 WDR12 T/TC 0.131 0.94 0.92–0.96 1.1 × 10−8

6 rs16824536 3 155069722 MME A/G 0.054 0.92 0.89–0.95 3.6 × 10−8

6 rs61762319 3 155084189 MME G/A 0.026 1.16 1.11–1.21 2.2 × 10−11

7 rs3822030 4 993555 IDUA G/T 0.429 0.95 0.94–0.96 8.3 × 10−12

8 rs2245466 4 40197226 RHOH G/C 0.343 1.05 1.03–1.06 1.2 × 10−9

9 rs112403360 5 14724304 ANKH A/T 0.073 1.09 1.06–1.12 2.3 × 10−9

10 rs62374257 5 86927378 COX7C C/T 0.23 1.07 1.05–1.09 1.4 × 10−15

11 rs871269 5 151052827 TNIP1 T/C 0.326 0.96 0.95–0.97 8.7 × 10−9

12 rs113706587 5 180201150 RASGEF1C A/G 0.11 1.09 1.07–1.12 2.2 × 10−16

13 rs785129 6 114291731 HS3ST5 T/C 0.35 1.04 1.03–1.06 2.4 × 10−9

14 rs6943429 7 7817263 UMAD1 T/C 0.42 1.05 1.03–1.06 1.0 × 10−10

15 rs10952097 7 8204382 ICA1 T/C 0.114 1.07 1.05–1.10 6.8 × 10−9

16 rs13237518 7 12229967 TMEM106B A/C 0.411 0.96 0.94–0.97 4.9 × 10−11

17 rs1160871 7 28129126 JAZF1 G/GTCTT 0.222 0.95 0.93–0.97 9.8 × 10−9

18 rs76928645 7 54873635 SEC61G T/C 0.103 0.93 0.91–0.95 1.6 × 10−10

19 rs1065712 8 11844613 CTSB C/G 0.053 1.09 1.06–1.12 1.9 × 10−9

20 rs34173062 8 144103704 SHARPIN A/G 0.081 1.13 1.09–1.16 1.7 × 10−16

21 rs1800978 9 104903697 ABCA1 G/C 0.13 1.06 1.04–1.08 1.6 × 10−9

22 rs7068231 10 60025170 ANK3 T/G 0.403 0.95 0.94–0.96 3.3 × 10−13

23 rs6586028 10 80494228 TSPAN14 C/T 0.196 0.93 0.91–0.94 2.0 × 10−19

24 rs6584063 10 96266650 BLNK G/A 0.043 0.89 0.86–0.92 6.7 × 10−11

25 rs7908662 10 122413396 PLEKHA1 G/A 0.467 0.96 0.95–0.97 2.6 × 10−9

26 rs6489896 12 113281983 TPCN1 C/T 0.076 1.08 1.05–1.10 1.8 × 10−9

27 rs7157106 14 105761758 IGH gene cluster A/G 0.36 1.05 1.03–1.07 2.0 × 10−8

27 rs10131280 14 106665591 IGH gene cluster A/G 0.133 0.94 0.92–0.96 4.3 × 10−10

28 rs3848143 15 64131307 SNX1 G/A 0.22 1.05 1.04–1.07 8.4 × 10−11

29 rs12592898 15 78936857 CTSH A/G 0.133 0.94 0.92–0.96 4.2 × 10−9

30 rs1140239 16 30010081 DOC2A T/C 0.379 0.94 0.93–0.96 2.6 × 10−13

31 rs450674 16 79574511 MAF C/T 0.373 0.96 0.95–0.98 3.2 × 10−8

32 rs16941239 16 86420604 FOXF1 A/T 0.029 1.13 1.08–1.17 1.3 × 10−8

33 rs56407236 16 90103687 PRDM7 A/G 0.069 1.11 1.08–1.14 6.5 × 10−15

34 rs35048651 17 1728046 WDR81 T/TGAG 0.214 1.06 1.04–1.08 7.7 × 10−11

35 rs2242595 17 18156140 MYO15A A/G 0.112 0.94 0.92–0.96 1.1 × 10−9

36 rs5848 17 44352876 GRN T/C 0.289 1.07 1.06–1.09 2.4 × 10−20

37 rs149080927 19 1854254 KLF16 G/GC 0.48 1.05 1.04–1.07 5.1 × 10−10

38 rs9304690 19 49950060 SIGLEC11 T/C 0.24 1.05 1.03–1.07 4.7 × 10−9

39 rs587709 19 54267597 LILRB2 C/T 0.325 1.05 1.04–1.07 3.6 × 10−11

40 rs1358782 20 413334 RBCK1 A/G 0.246 0.95 0.94–0.97 1.6 × 10−8

41 rs6742 20 63743088 SLC2A4RG T/C 0.221 0.95 0.93–0.97 2.6 × 10−9

42 rs2154481 21 26101558 APP C/T 0.476 0.95 0.94–0.97 1.0 × 10−12

P values are two-sided raw P values derived from a fixed-effect meta-analysis. ars number, according to dbSNp build 153. bGrCh38 assembly. cNearest protein-coding gene according to GENCODE release 
33. dWeighted average MAF across all discovery studies. eApproximate Or calculated with respect to the minor allele.

NAture GeNeticS | VOL 54 | ApriL 2022 | 412–436 | www.nature.com/naturegenetics 415

https://www.ncbi.nlm.nih.gov/snp/?term=rs141749679
https://www.ncbi.nlm.nih.gov/snp/?term=rs72777026
https://www.ncbi.nlm.nih.gov/snp/?term=rs17020490
https://www.ncbi.nlm.nih.gov/snp/?term=rs143080277
https://www.ncbi.nlm.nih.gov/snp/?term=rs139643391
https://www.ncbi.nlm.nih.gov/snp/?term=rs16824536
https://www.ncbi.nlm.nih.gov/snp/?term=rs61762319
https://www.ncbi.nlm.nih.gov/snp/?term=rs3822030
https://www.ncbi.nlm.nih.gov/snp/?term=rs2245466
https://www.ncbi.nlm.nih.gov/snp/?term=rs112403360
https://www.ncbi.nlm.nih.gov/snp/?term=rs62374257
https://www.ncbi.nlm.nih.gov/snp/?term=rs871269
https://www.ncbi.nlm.nih.gov/snp/?term=rs113706587
https://www.ncbi.nlm.nih.gov/snp/?term=rs785129
https://www.ncbi.nlm.nih.gov/snp/?term=rs6943429
https://www.ncbi.nlm.nih.gov/snp/?term=rs10952097
https://www.ncbi.nlm.nih.gov/snp/?term=rs13237518
https://www.ncbi.nlm.nih.gov/snp/?term=rs1160871
https://www.ncbi.nlm.nih.gov/snp/?term=rs76928645
https://www.ncbi.nlm.nih.gov/snp/?term=rs1065712
https://www.ncbi.nlm.nih.gov/snp/?term=rs34173062
https://www.ncbi.nlm.nih.gov/snp/?term=rs1800978
https://www.ncbi.nlm.nih.gov/snp/?term=rs7068231
https://www.ncbi.nlm.nih.gov/snp/?term=rs6586028
https://www.ncbi.nlm.nih.gov/snp/?term=rs6584063
https://www.ncbi.nlm.nih.gov/snp/?term=rs7908662
https://www.ncbi.nlm.nih.gov/snp/?term=rs6489896
https://www.ncbi.nlm.nih.gov/snp/?term=rs7157106
https://www.ncbi.nlm.nih.gov/snp/?term=rs10131280
https://www.ncbi.nlm.nih.gov/snp/?term=rs3848143
https://www.ncbi.nlm.nih.gov/snp/?term=rs12592898
https://www.ncbi.nlm.nih.gov/snp/?term=rs1140239
https://www.ncbi.nlm.nih.gov/snp/?term=rs450674
https://www.ncbi.nlm.nih.gov/snp/?term=rs16941239
https://www.ncbi.nlm.nih.gov/snp/?term=rs56407236
https://www.ncbi.nlm.nih.gov/snp/?term=rs35048651
https://www.ncbi.nlm.nih.gov/snp/?term=rs2242595
https://www.ncbi.nlm.nih.gov/snp/?term=rs5848
https://www.ncbi.nlm.nih.gov/snp/?term=rs149080927
https://www.ncbi.nlm.nih.gov/snp/?term=rs9304690
https://www.ncbi.nlm.nih.gov/snp/?term=rs587709
https://www.ncbi.nlm.nih.gov/snp/?term=rs1358782
https://www.ncbi.nlm.nih.gov/snp/?term=rs6742
https://www.ncbi.nlm.nih.gov/snp/?term=rs2154481
http://www.nature.com/naturegenetics


Articles NATure GeNeTiCs

From all newly identified loci, this gene prioritization yielded 31 
tier 1 genes and 24 tier 2. The 55 prioritized genes, the details of 
the analyses and the supporting evidence are summarized in Fig. 
2a and the Supplementary Note (Supplementary Tables 19–30 and 
Supplementary Figs. 35–45). Among the 31 tier 1 genes, we observed 
that 25 of these genes were the only prioritized gene in their respec-
tive locus. For the remaining 6 tier 1 genes, we also found tier 2 genes 
in their respective locus. We also identified five loci containing sev-
eral tier 2 prioritized genes. In one of these loci, locus 39 (L39), the 
tier 2 prioritized gene LILRB2 had strong additional support from 
published literature (Supplementary Note). In five loci, our prioriti-
zation score did not identify sufficient molecular evidence to priori-
tize genes with exception of being the nearest gene (L10, L12, L13, 
L14 and L32). Finally, we excluded the complex IGH cluster (L27) 
from gene prioritization analyses due to genomic complexity of the 
telomeric locus as a consequence of known fusion events18.

We highlight two examples, L18 and L23. In L18, the lead vari-
ant, rs76928645 (MAF = 10%), is intergenic and is located more than 
100 kb downstream or upstream of the two nearest protein-coding 
genes (SEC61G and EGFR, respectively). Our gene prioritization anal-
yses suggested that EGFR was the only risk gene (Fig. 3). We found that 
both the lead variant (rs76928645) and the other nearby variants in 
linkage disequilibrium (LD) are significant expression QTLs (eQTLs) 
for regulating EGFR expression downstream. The eQTL signals in 
brain strongly colocalized with the GWAS signal (with eQTL coloc 
PP4s of 98.3% in the temporal cortex (TCX) and 99.5% in the dor-
solateral prefrontal cortex (DLPFC)). Accordingly, the fine-mapped 
expression transcriptome-wide association study (eTWAS) associa-
tions (Fine-mapping Of CaUsal gene Sets (FOCUS) posterior inclu-
sion probability (PIP) = 1; eTWAS P = 6.9 × 10−9, eTWAS Z = + 5.8 
in the TCX; eTWAS P = 3.1 × 10−11, eTWAS Z = + 6.6 in the DLPFC) 
indicated that genetic downregulation of EGFR expression is associ-
ated with a lower ADD risk (Fig. 3; Supplementary Tables 22, 24 and 
26; and Supplementary Figs. 36a, 39 and 41).

In L23, we observed numerous eQTL-GWAS and methylation 
QTL (mQTL)-GWAS hits for TSPAN14 that support the hypoth-
esis that increased brain expression of TSPAN14 is associated with 
increased ADD risk. We also identified several splice junctions in 
TSPAN14 whose genetic regulation signals in lymphoblastoid cell 
lines (LCLs) and brain colocalized with the ADD association signal. 
These splice junctions were also associated with ADD risk (Fig. 4, 
Supplementary Tables 22–28 and Supplementary Figs. 36–42 and 
44c). As three of these splice junctions were related to new complex 
cryptic splicing events that were predicted to result in two cryptic 
exons not previously described in known TSPAN14 transcripts 
(based on GENCODE v38), we designed a long-read single-molecule 
(Nanopore) sequencing experiment (Supplementary Note) to 
validate these cryptic exons on a total of 93 complementary DNA 
(cDNA) samples derived from LCLs, frontal cortex and hippo-
campus and consequently validated those cryptic exons (Fig. 4). 
All three of the validated cryptic splicing events occur within the 
ADAM10-interacting domain of TSPAN14. Cryptic exon 1 is at 
least 45 bp long, and cryptic exon 2 is 118 bp long.

Lastly, we used STRING v11 (ref. 19) to analyze protein–pro-
tein interaction for (1) previously known AD genes from GWASs, 
(2) our prioritized new genes (tier 1 in Fig. 2a and Supplementary 
Table 20) and (3) a combination of the two (Supplementary Note). 
The largest networks contained 14, 8 and 30 proteins, respectively 
(Supplementary Fig. 46). These networks were larger than would 
be expected by chance (respectively, P < 2 × 10−5, P = 2.8 × 10−3 and 
P < 2 × 10−5 based on comparison with 50,000 randomly simulated 
protein lists matched for the number of proteins and the total num-
ber of interactions for each protein). Notably, the number of inter-
actions between our prioritized genes and previously known genes 
is also significantly greater than would be expected (P < 1 × 10−4), 
indicating that the newly prioritized genes are biologically relevant 
in AD. No such enrichment (P = 0.88) was observed for the remain-
ing genes in the new loci, again highlighting the value of our priori-
tization approach.

We next performed a pathway enrichment analysis of the tier 
1 genes using STRING. We found that several gene sets linked to 
the immune system remained statistically significant after correc-
tion for multiple testing (Fig. 2b and Supplementary Table 31), 
especially regulation of the tumor necrosis factor (TNF)-mediated 
signaling pathway (GO:0010803). We report the potential genetic 
implication of the linear ubiquitin chain assembly complex 
(LUBAC), which is a major regulator of the aforementioned sig-
naling pathway20. Two of the LUBAC’s three complements are 
encoded by the new tier 1 prioritized genes SHARPIN and RBCK1, 
and the complex’s function is directly regulated by OTULIN (also a 
new tier 1 prioritized gene).

GrS
We next looked at whether the genetic ADD burden (as measured 
by a genetic risk score (GRS)) generated from our genome-wide sig-
nificant variants (n = 83, excluding APOE; Supplementary Table 32) 
might influence the rate of conversion to AD in (1) individuals from 
several prospective, population-based cohorts and (2) patients with 
mild cognitive impairment (MCI) in prospective memory clinic 
studies (Supplementary Table 33). We used Cox regression models 
to assess the association after adjustment for age at baseline, sex, 
the number of APOE-ε4 and APOE-ε2 alleles, and genetic principal 
components (PCs).

In population-based cohorts with clinically diagnosed AD cases, 
the GRS was significantly associated with conversion to AD; this was 
shown in a fixed-effect meta-analysis (hazard ratio (HR) (95%CI) 
per average risk allele = 1.076 (1.064–1.088), P = 9.2 × 10−40; Fig. 5 
and Supplementary Table 34). Likewise, the GRS was significantly 
associated with AD conversion in patients with MCI (HR = 1.056 
(1.040–1.072), P = 2.8 × 10−12; Fig. 5 and Supplementary Table 35). 
Furthermore, we found that the GRS association increased sig-
nificantly when the new variants discovered in the present study 
were added to the previously described variants (Supplementary 
Table 36) for both population-based studies (HR = 1.052 (1.037–
1.068), P = 1.5 × 10−11) and MCI cohorts (HR = 1.034 (1.013–1.055), 
P = 1.4 × 10−3).

Fig. 2 | Gene prioritization. a, Summary of weighted scores for each evidence category for the prioritized genes in the 42 new genome-wide-significant 
loci. Using our gene prioritization method, we considered the genes within 1 Mb of each new lead variant and prioritized a total of 55 genes in 42 new 
loci at two different confidence levels (31 tier 1 genes and 24 tier 2 genes). The leftmost squares indicate the new locus index number. The different types 
of evidence are colored according to the seven different domains to which they belonged. Weighted scores for each evidence category are rescaled to 
a 0–100 scale, and the proportions of mean human brain cell-type-specific expression for each gene are also rescaled to a 0–100 scale; darker colors 
represent higher scores or higher expression proportions. Tier 1 genes are shown in dark green, and tier 2 genes are shown in light green. Only tier 1 and 
tier 2 genes are shown for each locus. Supplementary Fig. 35 shows full results. MAFs and CADD (v1.6) pHrED scores for rare and/or protein-altering rare 
variants are labeled in white within the respective squares. b, pathway enrichment analysis based on the tier 1 gene list. Only the ten strongest associations 
(according to STriNG software) are presented here. coloc, colocalization; eQTL, expression QTL; eTWAS, expression transcriptome-wide association 
study; GO, Gene Ontology; haQTL, histone acetylation QTL; Mon. Mac., monocytes and macrophages; sTWAS, splicing transcriptome-wide association 
study; m/haQTL, methylation/histone acetylation QTL; sQTL, splicing QTL; FDr, false discovery rate.
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Matching proteins in the networkFDR

GO:0001775 4.09 × 10–51,024 GRN,CTSH, BLNK, NCK2, DGKQ, EGFR, APP, ADAM17, CTSB, RHOH, TSPAN14, MME

GO:0002376 2.60 × 10–42,370 GRN,CTSH, BLNK, NCK2, OTULIN, APP, LIME1, ADAM17, TNIP1, CTSB, RBCK1, PLEKHA1, RHOH, TSPAN14, MME

GO:0009966 GRN,CTSH, BLNK, NCK2, DGKQ, EGFR, OTULIN, APP, ADAM17, TNIP1, RBCK1, PLEKHA1, ABCA1, RHOH, SHARPIN, TSPAN14, RITA1

GO:0010646 GRN,CTSH, BLNK, NCK2, DGKQ, EGFR, OTULIN, APP, ADAM17, TNIP1, RBCK1, PLEKHA1, ABCA1, RHOH, ICA1, SHARPIN, TSPAN14, RITA1

GO:0023051 2.60 × 10–43,360 GRN,CTSH, BLNK, NCK2, DGKQ, EGFR, OTULIN, APP, ADAM17, TNIP1, RBCK1, PLEKHA1, ABCA1, RHOH, ICA1, SHARPIN, TSPAN14, RITA1

GO:0045321 2.60 × 10–4894 GRN, CTSH, BLNK, NCK2, APP, ADAM17, CTSB, RHOH, TSPAN14, MME
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Importantly, the results of our meta-analysis suggest that 
the risk of conversion to AD rises with the number of risk 
alleles from non-APOE risk variants in the GRS by 1.9-fold in 
population-based cohorts (HR = 1.93 (1.75–2.13); Fig. 5) and 
1.6-fold in MCI cohorts (HR = 1.63 (1.42–1.87); Fig. 6) on top of 
effects of age and the APOE ε4 allele. These observations result 
from the comparison of hypothetical individuals with a GRS value 
at the first decile of the distribution versus those with a GRS value 
at the ninth decile (Fig. 6). With regard to APOE, carrying an 
additional APOE-ε4 allele was associated with a slightly higher 
increase in the AD risk in population-based cohorts (HR = 2.19 
(2.03–2.37)) and MCI cohorts (HR = 1.90 (1.73–2.07)). There 
was no interaction between the GRS and the number of APOE-ε4 
alleles (Supplementary Table 37).

In an MCI cohort setting, this effect of the GRS corresponds 
to a median AD conversion probability within 3 years of 21.9% 
in patients with a GRS below the first decile (range, 4.1–34.9%) 
and 37.5% (range, 10.8–56.2%) in patients with a GRS above the 
ninth decile. There was a consistent increase in probability between 
these deciles in all cohorts (median (range), 13.8% (6.6–25.0%); 
Supplementary Table 38).

To better define the GRS discriminative ability regarding AD con-
version, we assessed the improvements in three indices of predictive 
performance after adding the GRS to a Cox model containing age, 
sex, PCs and the number of APOE-ε4 and APOE-ε2 alleles as covari-
ates (Supplementary Tables 34 and 35). We found a small but con-
sistent increase in the discrimination between AD converters and 
nonconverters, as indicated by the concordance index (C-index) in 
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population-based cohorts (Δ5years-C-indexfixed-effects = 0.002 (0.0004–
0.004)) and MCI cohorts (Δ3years-C-indexfixed-effects = 0.007 (0.001–
0.012)). This finding was further supported by small-to-moderate 
increases in the continuous NRI (net reclassification improvement) 
index in population-based cohorts (NRI5year-fixed-effects = 0.248 (0.159–
0.336)) and MCI cohorts (NRI3year-fixed-effects = 0.232 (0.140–0.325)); 
this indicates that the risk assignment is more appropriate to indi-
viduals when the GRS is taken into account21. Furthermore, an 
increase in the index of prediction accuracy (IPA) was observed in 
all of the population-based cohorts (average Δ5years-IPAfixed-effects = 0.
29% (0.23%–0.35%)) and all but one of the MCI cohorts (average 
Δ3years-IPAfixed-effects = 1.53% (1.31%–1.76%)), indicating an overall 
improvement in predictive performance. As expected, the amount 
of improvement in this index varied greatly from one cohort to 
another, given its dependency on incidence rates. The value of add-
ing the new genetic variants was emphasized by the fact that effect 
sizes (as measured by the indices of predictive ability) were lower 
when only previously known AD risk variants were included in the 
GRS (Supplementary Table 39).

The results were similar when we (1) computed indices for other 
follow-up time points, (2) applied a random effects meta-analysis, 
(3) considered conversion to all-cause-dementia as the outcome and 
(4) excluded the Framingham Heart Study (FHS), as it was part of 
the stage II of the GWAS from which ORs for PRS computation were 
extracted (Supplementary Tables 34–44 and Supplementary Fig. 47).

Discussion
Our meta-analysis combined a large, new case–control study with 
previous GWASs. We identified 75 independent loci for ADD; 33 
had been reported previously, and 42 correspond to new signals 
at the time of this analysis. The prioritized genes and their poten-
tial impact on the pathophysiology of AD are described in the 
Supplementary Note.

Our pathway enrichment analyses removed ambiguities con-
cerning the involvement of tau-binding proteins and APP/Aβ 
peptide metabolism in late-onset AD processes at a much higher 
level than had been described previously5. It is noteworthy that 
new genetic risk factors are often first evaluated in the context of 
known pathways; many new research approaches were developed to 
systematically characterize putative links among APP metabolism, 
tau function and ADD genetic risk factors22,23. This approach can 
lead to circular reasoning and thus artificial enrichment in specific 
processes. However, we implicate ADAM17, a gene whose protein 
product is known to carry α-secretase activity as ADAM10 (ref. 
24). This observation suggests that the nonamyloidogenic pathway 
for APP metabolism might be deregulated in AD. In addition to 
APP, we also identified six highly plausible prioritized (tier 1) genes 
(ICA1L, DGKQ, ICA1, DOC2A, WDR81 and LIME1) that are likely 
to modulate the metabolism of APP.

These pathway enrichment analyses also confirmed the involve-
ment of innate immunity and microglial activation in ADD 
(Supplementary Table 15). Our single-cell expression enrich-
ment analysis also highlighted genes expressed in microglia 
(Supplementary Tables 16 and 17). Indeed, three of our prioritized 
(tier 1) genes (RHOH, BLNK and SIGLEC11) and two of our tier 2 
genes (LILRB2 and RASGE1FC) appeared to be mainly expressed in 
microglia (>90% relative to the total expression summed across cell 
types; Fig. 2a and Supplementary Table 45). Importantly, SIGLEC11 
and LILRB2 have already been linked to Aβ peptides/amyloid 
plaques25,26.

Here, we also provide genetic evidence of the LUBAC’s poten-
tial implication in ADD. Two of the LUBAC’s three complements 
are encoded by SHARPIN and RBCK1, and the LUBAC is regulated 
by OTULIN; all three genes were found to be high-confidence, pri-
oritized risk genes in our study. The LUBAC is the only E3 ligase 
known to form linear ubiquitin chains de novo through ubiquitin’s 
N-terminal methionine. The complex has mostly been studied in 
the context of inflammation, innate immunity and defense against 
intracellular pathogens. For instance, the LUBAC is reportedly 
essential for NLRP3 inflammasome activation27 and thus acts as a 
key innate immune regulator28. In turn, the NLRP3 inflammasome 
is essential for the development and progression of Aβ pathology in 
mice29 and may drive tau pathology through Aβ-induced microglial 
activation30. The LUBAC is also reportedly involved in autophagy, 
and linear ubiquitin chain modifications of TDP-43-positive neuro-
nal cytoplasmic inclusions have been described as potential induc-
ers of autophagic clearance31. Lastly, the LUBAC has been studied as 
a regulator of TNF-α signaling in particular20.

Interestingly, the TNF-α signaling pathway was also flagged by 
other genetic findings in our study (Supplementary Fig. 48). For 
example, ADAM17 (also known as TNF-α-converting enzyme) is 
of pivotal importance in the activation of TNF-α signaling32. For 
TNIP1, its gene product (TNF-α-induced protein 3-interacting pro-
tein 1) is involved in the inhibition of the TNF-α signaling pathway 
and nuclear factor κB activation/translocation33. Additional signal 
related to TNF-α is the one found at SPPL2A (one of the 33 con-
firmed loci). The protein encoded by SPPL2A is involved in non-
canonical shedding of TNF-α34, and PGRN has been described as a 
TNF receptor ligand and an antagonist of TNF-α signaling35. Several 
lines of evidence had linked the inhibition of TNF-α signaling with 
reduction of both Aβ and tau pathologies in vivo36,37. Although a 
potential inflammatory connection has been suggested for TNF-α 
through the activation of NLRP3 inflammasome38, the TNF-α sig-
naling pathway is also involved in many other brain physiological 
functions (e.g., synaptic plasticity in neurons) and pathophysiologi-
cal processes (e.g., synapse loss) in the brain39. Furthermore, the 
involvement of the TNF-α signaling pathway and the LUBAC might 
be important in cell types other than microglia in AD. It is important  

Fig. 4 | Focus on TSPAN14 locus. a, Splicing QTL (sQTL)-GWAS integration results. Known TSPAN14 transcripts (GENCODE v38; green, coding sequences; 
gray, noncoding) plotted with −log10(P) for (1) EADB GWAS stage i (n = 487,511) signal (black), (2) sQTL signal for chr10:80509471–80510106 junction 
(supporting cryptic exon 1) in the EADB Belgian LCL sQTL catalog (n = 70 individuals, blue) and (3) sQTL signal for chr10:80512269–80512719 junction 
in the MayorNAseq TCX sQTL catalog (n = 259 individuals, red); hg38 genomic position is shown above. LCL and brain-based sQTL coloc and sTWAS 
analyses associate ADD risk with these junctions that suggest cryptic splicing within ADAM10-interacting domain of TSPAN14 (magenta), which was 
predicted to result in two cryptic exons. b, Long-read sequencing validation of TSPAN14 cryptic exons. Nanopore sequencing results (Supplementary Note) 
in the zoomed-in region of chr10:80506973–80516400 (cumulative coverage in log10 scale). pooled LCL cDNA sample sequenced for cDNA Amplicon2 
shown in blue. cDNA Amplicon1 was sequenced on biologically independent hippocampal (HpC; n = 16, red), frontal cortex (FC; n = 18, pink) and LCL 
(n = 59, orange) cDNA samples. Green, canonical exons (8–12); dotted black lines, canonical splicing; blue, cryptic exon 1 (>45 bp); red, cryptic exon 2 
(118 bp). All annotated junctions use canonical splice donor (GT) and acceptor (AG) sites. c,d, sQTL-GWAS colocalization plots for chr10:80509471–
80510106 (supporting cryptic exon 1) in the EADB Belgian LCL sQTL catalog (n = 70 individuals) (c) and chr10:80512269–80512719 (supporting cryptic 
exon 2) in the MayorNAseq TCX sQTL catalog (n = 259 individuals) (d). sQTL signals for the two junctions colocalize with ADD signal (pp4s of 98.8% 
and 97.4%, respectively), and sTWAS associates with increased preference for the cryptic splicing with decreased ADD risk (sTWAS P = 6.28 × 10−12 
and 1.6 × 10−13, sTWAS Z = −6.9 and −7.4, respectively). y axis, sQTL −log10(P); x axis, EADB GWAS stage i −log10(P). LD r2 values calculated within 
EADB-TOpMed dataset (n = 42,140) based on the lead variant rs6586028 (purple) are indicated on a color scale.
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to note that six of our prioritized (tier 1) genes (ICA1L, EGFR, 
RITA1, MYO15A, LIME1 and APP) are expressed at a low level in 
microglia (<10%, relative to the total expression summed across cell 
types; Supplementary Table 45), emphasizing that ADD results from 
complex crosstalk between different cell types in the brain23,40. It is 
also noteworthy that the EGFR pathway is known to interact with 
the TNF-α signaling pathway41, which suggests interplay between 
the two signaling pathways during the ADD development.

A better understanding of the etiology of ADD might also result 
from the observation that the risks of developing ADD and fronto-
temporal dementia are associated with the same causal variants in 
GRN and TMEM106B. This association might be due to the misclas-
sification of clinical diagnosis of AD and the presence of proxy-ADD 
cases in the UKBB. However, GRN and TMEM106B have also been 
linked to brain health and many other neurodegenerative diseases. 
For instance, GRN and TMEM106B are reportedly potential genetic 
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risk factors for differential aging in the cerebral cortex42 and cogni-
tive impairment in amyotrophic lateral sclerosis43 and Parkinson’s 
disease44,45. Lastly, both GRN and TMEM106B have already been 
associated with neuropathological features of AD46–48. Taken as 
a whole, these data may thus emphasize a potential continuum 
between neurodegenerative diseases in which common pathologi-
cal mechanisms are driven by GRN and TMEM106B. Interestingly, 
both GRN and TMEM106B are reported to be involved in defective 
endosome/lysosome trafficking/function49,50, a defect that is also 
observed in AD.

By applying a GRS derived from all the genome-wide-significant 
variants discovered in this study, we identified an association with 
the risk of incident AD in prospective population-based cohorts 
and with the risk of progression over time from MCI to AD (Fig. 5 
and Supplementary Table 33). In patients with MCI, previous asso-
ciations of AD risk with a GRS built on previously known genetic 
AD risk variants has been inconsistent51. It is important to note that 
the GRS has an impact on the AD risk in addition to that of age and 
that the GRS’s effect is independent of APOE status. With a view to 
translating genetic findings into preventive measures and personal-
ized medicine, we also sought to provide the GRS’s added value for 
risk prediction by calculating the discriminative capacity through 
three different indices. Overall, the indices suggested that the effect 
size for the association between the GRS and AD was small but sig-
nificant. Despite this modest effect, the inclusion of the GRS into 
the predictive model consistently improved the assignment of the 
risk of progression, as expressed by the net reclassification improve-
ment (NRI) index21. Importantly, the cumulative improvements in 
risk prediction (due to inclusion of the new variants in the GRS) led 

to a 1.6- to 1.9-fold increase in the AD risk from the lowest to the 
highest decile, in addition to the effects of age and APOE status. We 
also showed that in addition to known risk variants, the new risk 
variants identified in the present study are significantly associated 
with progression to AD. The results of future GWASs are expected 
to further improve AD-risk prediction. Hence, the GRS will help to 
sharpen the threshold that differentiates between people at risk of 
progressing to dementia and those who are not.

A recent study estimated that fewer than 100 causal common 
variants may explain the entire AD risk52; if that estimate is correct, 
then our study might have already characterized a large proportion 
of this genetic component due to common variants. However, sev-
eral reasons strongly underscore the need for additional efforts to 
fully characterize the still-missing AD genetic component. First, it is 
probable that additional, yet-unknown loci bear common variants 
modulating the risk for AD. Second, identification of rare variants 
with very low frequencies is a major challenge for genetic studies, 
because available samples with sequencing data in AD are under-
powered. Notably, almost all the genes with rare variants associated 
with AD risk also present common variants associated with AD 
risk (i.e., TREM2, SORL1, ABCA7, ABCA1, PLCγ2 and ADAM10)53. 
Third, gene–gene and gene–environment interactions have not yet 
been studied in detail. Hence, by increasing the GWAS sample size 
and improving imputation panels, conventional and (above all) 
more complex analyses will have more statistical power and should 
enable the characterization of associations with rare/structural vari-
ants. Lastly, higher-powered GWASs of multiancestry populations 
will be particularly welcome for characterizing potential new genetic 
risk factors, improving fine-mapping approaches and developing 
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Fig. 5 | Association between the GrS and the risk of progression to AD. a,b, Meta-analysis results of the association between the GrS and the risk 
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specific GRSs (because GRSs developed with European-ancestry 
populations are known to be less effective with other ancestries).

In conclusion, we have validated 33 previous loci, doubled the 
total number of genetic loci associated with the ADD risk, expanded 
our current knowledge of the pathophysiology of ADD, identified 
new opportunities for the development of GRSs and gene-specific 
treatments and opened up a pathway to translational genomics and 
personalized medicine.
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M et ho ds
Samples. All of our stage I meta-analysis samples came from the following 
consortia/datasets: EADB, GR@ACE, EADI, GERAD/PERADES, DemGene, 
Bonn, the Rotterdam study, the CCHS study, NxC and the UKBB. In the UKBB, 
individuals who did not report dementia or any family history of dementia were 
used as controls; the analysis included 2,447 diagnosed cases, 46,828 proxy cases of 
dementia and 338,440 controls. All individuals included in stage I are of European 
ancestry; demographic data on these case–control studies are summarized in 
Supplementary Table 1, and more detailed descriptions are available in the 
Supplementary Note. Stage II samples are from the ADGC, CHARGE and FinnGen 
consortia (Supplementary Table 1 and Supplementary Note) and are described 
in detail elsewhere5,6,9,10,54–56. Written informed consent was obtained from study 
participants or, for those with substantial cognitive impairment, a caregiver, 
legal guardian or other proxy. Study protocols for all cohorts were reviewed and 
approved by the appropriate institutional review boards.

Quality control and imputation. A standard quality control was performed on 
variants and samples from all datasets individually. The samples were then imputed 
with the TOPMed reference panel57,58. The Haplotype Reference Consortium 
(HRC) panel59 was also used for some datasets (Supplementary Table 2). For the 
UKBB, we used the provided imputed data generated from a combination of the 
1000 Genomes, HRC and UK10K reference panels (Supplementary Note).

Stage I analyses. Tests of the association between clinical or proxy-ADD status 
and autosomal genetic variants were conducted separately in each dataset by using 
logistic regression and an additive genetic model, as implemented in SNPTEST 
2.5.4-beta3 (ref. 60) or PLINK v1.90 (ref. 4). However, a logistic mixed model (as 
implemented in SAIGE v0.36.4 (ref. 61)) was considered for the UKBB data. We 
analyzed the genotype probabilities in SNPTEST (using the newml method) and 
dosages in PLINK and SAIGE. Analyses were adjusted for PCs and genotyping 
centers, when necessary (Supplementary Table 2). For the UKBB dataset, only 
variants with a MAF above 0.01% and a minor allele count (MAC) above 3 were 
analyzed, and effect sizes and standard errors were corrected by a factor of two, 
because proxy cases were analyzed7. This approach is appropriate for variants 
with a moderate-to-high frequency and a small effect size. For all datasets, we 
filtered out duplicated variants and variants with (1) missing data on the effect size, 
standard error or P value; (2) an absolute effect size above 5; (3) an imputation 
quality below 0.3; and (4) a value below 20 for the product of the MAC and the 
imputation quality (MAC-info score). For datasets not imputed with the TOPMed 
reference panel, we also excluded (1) variants for which conversion of position or 
alleles from the GRCh37 assembly to the GRCh38 assembly was not possible or 
problematic or (2) variants with very large difference of frequency between the 
TOPMed reference panel and the reference panels used to perform imputation.

Results were then combined across studies in a fixed-effect meta-analysis 
with an inverse-variance weighted approach, as implemented in METAL v2011-
03-25 software62. We filtered out (1) variants with a heterogeneity P value below 
5 × 10−8, (2) variants analyzed in less than 20% of the total number of cases and (3) 
variants with frequency amplitude above 0.4 (defined as the difference between 
the maximum and minimum frequencies across all the studies). We also excluded 
variants not analyzed in the EADB-TOPMed dataset.

The genomic inflation factor lambda was computed with the GenABEL 
1.8-0 R package63 and a median approach after exclusion of the APOE region 
(44–46 Mb on chromosome 19 in GRCh38). The LD score regression intercept 
was computed with LDSC v1.0.1 software using the ‘baselineLD’ LD scores built 
from 1000 Genomes phase 3 (ref. 64). The analysis was restricted to HapMap 3 
variants and excluded multiallelic variants, variants without an rs ID and variants 
in the APOE region.

Definition of associated loci. A region of ±500 kb was defined around each 
variant with a stage I P value below 1 × 10−5. These regions were then merged 
(using bedtools v2.27.0 software; https://bedtools.readthedocs.io/en/latest/) to 
define nonoverlapping regions. The region corresponding to the APOE locus was 
excluded. We then used the PLINK clumping procedure to define independent 
hits in each region. An iterative clumping procedure was applied to all variants 
with a stage I P value below 1 × 10−5, starting with the variant with the lowest 
P value (referred to as the index variant). Variants with a stage I P value below 
1 × 10−5, located within 500 kb of this index variant and in LD with the index 
variant (r2 above 0.001) were assigned to the index variant’s clump. The clumping 
procedure was then applied until all the variants had been clumped. LD in the 
EADB-TOPMed dataset was computed using high-quality (probability ≥0.8) 
imputed genotypes.

Stage II analyses. Variants with a stage I P value below 1 × 10−5 were followed up 
(Supplementary Note). Results were combined across all stage I and II studies 
in a fixed-effect meta-analysis with an inverse variance weighted approach, as 
implemented in METAL. In each clump, we then reported the variants with 
positive follow-up results (i.e., the same direction of effect in stage I and stage 
II, and a stage II P value below 0.05) and the lowest P value in the meta-analysis. 
Those variants were considered to be associated at the genome-wide significance 

level if they had a P value below 5 × 10−8 in the stage I and II meta-analysis. 
However, we excluded the chr6:32657066:G:A variant, because its frequency 
amplitude was high.

Pathway analysis. A total of 10,271 gene sets were considered for analysis 
(Supplementary Note). Gene set enrichment analyses were performed in 
MAGMA v1.08 (refs. 65,66), with correction for the number of variants in each 
gene, LD between variants and LD between genes. LD was computed from the 
EADB-TOPMed dataset using high-quality (probability ≥0.9) imputed genotypes. 
The measure of pathway enrichment was the MAGMA ‘competitive’ test (in which 
the association statistic for genes in the pathway is compared with those for all 
other protein-coding genes), as recommended by De Leeuw et al.67. We used 
the ‘mean’ test statistic, which uses the sum of −log(variant P value) across all 
genes. The primary analysis assigned variants to genes if they lay within the gene 
boundaries, although a secondary analysis used a window of 35 kb upstream and 
10 kb downstream to assign variants to genes (as in Kunkle et al.5). The primary 
analysis included all variants with an imputation quality above 0.8. We used q 
values68 to account for multiple testing.

Expression in various cell types. The expression of genes was assigned to specific 
cell classes of the adult brain, as described previously69. Briefly, middle temporal 
gyrus single-nucleus transcriptomes from the Allen Brain Atlas dataset (49,555 
total nuclei derived from 8 human tissue donors aged 24–66 years) were used to 
annotate and select six main cell classes using Seurat 3.1.1 (ref. 70): glutamatergic 
neurons, GABAergic neurons, astrocytes, oligodendrocytes, microglia and 
endothelial cells. Enrichment analyses were performed by using the mean gene 
expression per nucleus for each cell type relative to the total expression summed 
across cell types as a quantitative covariate in a MAGMA gene property analysis.

Functional interpretation of GWAS signals and gene prioritization. To 
prioritize candidate genes in the new loci, we systematically searched for 
evidence for these genes in seven different domains: (1) variant annotation, 
(2) eQTL-GWAS integration, (3) sQTL-GWAS integration, (4) protein QTL 
(pQTL)-GWAS integration, (5) mQTL-GWAS integration, (6) histone acetylation 
QTL (haQTL)-GWAS integration and (7) APP metabolism. On the basis of this 
evidence, we then defined a gene prioritization score of between 0 and 100 for each 
candidate gene (Supplementary Fig. 34). Detailed information on the domains, 
categories (e.g., the tissue or cell type for QTL-GWAS integration domains) and 
subcategories (for the type of evidence) is given in Supplementary Table 19. A brief 
summary of how evidence was assessed in each domain is provided below, together 
with a detailed description of the gene prioritization strategy.

Candidate genes. We considered protein-coding candidate genes within a ±1-Mb 
window of the new lead variants. The genes in overlapping loci (i.e., L28, L30 
and L37) were assigned to their respective loci based on proximity to the lead 
variants, and the distal genes were not considered for gene prioritization in 
the investigated loci. Moreover, we did not perform gene prioritization in the 
complex IGH gene cluster locus (L27), as this telomeric region contains complex 
splicing events (spanning a high number of IGH genes) that probably result from 
known fusion events18.

The variant annotation domain. In this domain, we determined whether the 
candidate gene was the nearest protein-coding gene to the lead variant and/or 
whether the lead variant was a rare variant (MAF < 1%) and/or protein-altering 
variant of the investigated candidate gene.

Molecular QTL–GWAS integration domains. To study the downstream effects of 
new ADD-associated variants on molecular phenotypes (i.e., expression, splicing, 
protein expression, methylation and histone acetylation) in various AD-relevant 
tissues, cell types and brain regions, molecular cis-QTL information (i.e., the 
genetic variants that regulate these molecular phenotypes) was integrated with 
the stage I ADD GWAS results in genetic colocalization analyses, TWASs and 
a genetically driven DNA methylation scan. These molecular QTLs include 
eQTLs, sQTLs, pQTLs, mQTLs and haQTLs. We mapped and prepared eQTL/
sQTL catalogs in AD-relevant bulk brain regions from AMP-AD cohorts71–74 
and in LCLs from the EADB Belgian cohort. We used additional eQTL/sQTL 
information in AD-relevant bulk brain regions from GTEx75 and microglia from 
the MiGA study76. Furthermore, eQTLs in monocytes and macrophages from 
various datasets77–82 (as prepared by eQTL Catalogue83) were included in the 
analyses. Data on pQTLs84, mQTLs85 and haQTLs85 were available for DLPFC. 
Using each molecular QTL catalogue, the effect of the lead variants was queried 
and significant associations were reported. Moreover, genetic colocalization studies 
were conducted by comparing ADD association signals with the eQTL/sQTL 
signals from AMP-AD bulk brain, MiGA microglia and EADB LCL cohorts. We 
also conducted eTWASs and splicing TWASs (sTWAS) of the ADD risk, along with 
fine mapping of the eTWAS results. To this end, we trained functional expression 
and splicing reference panels based on the AMP-AD bulk brain and EADB LCL 
cohorts, and we leveraged precalculated reference panel weights86 for the GTEx 
dataset75 in tissues and cells of interest. Lastly, for the mQTL-GWAS integration 
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domain, we also tested for associations between ADD and genetically driven 
DNA methylation (MetaMeth analysis) in blood (with blood–brain methylation 
correlation estimates obtained from BECon87) using the procedures described 
by Freytag et al.88 and Barbeira et al.89. A detailed description of the datasets and 
methods used for each of these analyses is given in the Supplementary Note.

APP metabolism domain. We assessed the functional impact of gene 
underexpression on APP metabolism for all candidate genes based on a 
genome-wide high-content short interfering RNA screen17 (Supplementary Note).

Gene prioritization score. We computed a gene prioritization score for each 
candidate gene as the weighted sum of the evidence identified in the seven 
domains. We specified a weight for each type of evidence, as detailed in 
Supplementary Table 19. For the molecular QTL-GWAS integration domains, 
we gave more weight to replicated hits (i.e., evidence in several datasets) than to 
single hits. We also gave more weight to hits observed in brain (the bulk brain 
and microglia datasets) than to hits observed in other tissues/cell types (LCLs, 
monocytes, macrophages and blood). To avoid score inflation, several specific 
rules were applied: (1) for the results of sQTL- and mQTL-based analyses, 
multiple splice junctions or CpGs annotated for the same genes were aggregated 
prior to weighting due to correlated data; (2) if we observed a fine-mapped 
eTWAS association for a gene, its other significant (but not fine-mapped) 
eTWAS associations were not considered; (3) for genes having several significant 
CpGs (prior to aggregation) in MetaMeth analyses, the associated CpGs with a 
low (<75% percentile) blood–brain methylation correlation estimate were not 
considered if the gene also had associated CpGs with a high (≥75% percentile) 
blood–brain methylation correlation estimate.

Gene prioritization strategy. After obtaining a total weighted score per gene, we 
ranked genes per locus according to their prioritization scores and compared 
the relative score differences between the highest ranked gene and other genes 
in the investigated locus. If this relative difference was at least 20% and the gene 
prioritization score for the highest ranked gene was ≥4, then we classified this gene 
as a tier 1 prioritized gene in the investigated locus (i.e., a greater likelihood of 
being the true risk gene responsible for the ADD signal). If this absolute threshold 
was not met, then the highest ranked gene was classified as a tier 2 prioritized gene 
(i.e., a lower level of confidence and absence of the minimum level of evidence for 
a true risk gene). Furthermore, other genes in a locus harboring a tier 1 gene were 
classified as tier 2 prioritized genes if the relative score difference versus the highest 
ranked (tier 1) gene was between 20% and 50%. Lastly, when the relative score 
difference between the highest ranked gene and other genes in the same locus was 
<20%, then both the highest ranked gene and all genes with a score difference 
<20% were classified as tier 2 prioritized genes in the investigated locus; based on 
the current evidence, it is difficult to prioritize two or more similarly scored genes. 
The gene prioritization strategy is summarized in Supplementary Fig. 34. Detailed 
descriptions and discussions of prioritized genes and tier levels in each investigated 
new locus can be found in the Supplementary Note.

GRS analysis. Eight longitudinal MCI cohorts and seven population-based studies 
were included in the analysis and are fully described in the Supplementary Note 
and Supplementary Table 33. The GRSs were calculated as previously described90. 
Briefly, we considered variants with genome-wide significant evidence of 
association with ADD in our study. We did not include any APOE variants in the 
GRS. Variants were directly genotyped or imputed (R² ≥ 0.3). Imputation was 
performed using the HRC panel59 for subcohorts from the Rotterdam study and the 
TOPMed panel for the other cohorts57. For HRC-imputed data, LD proxies were 
considered for variants that were not available in this reference panel. The GRS was 
calculated as the weighted average of the number of risk-increasing alleles for each 
variant, using dosages. Weights were based on the respective log(OR) obtained in 
stage II. The GRS was then multiplied by the number of included variants. Thus, 
the HR measured the effect of carrying one additional average risk allele.

To assess whether the new variants in this study contribute to the risk of 
conversion to AD (in addition to known AD genes), we calculated two GRSs: 
one based solely on variants known before this study (GRSknown, n = 39; Table 1) 
and another based on variants identified in the present study (GRSnovel, n = 44; 
Table 2). These GRSs were calculated in the same way as the GRS encompassing 
all the variants.

The association between the GRS and the risk of progression to dementia in 
individuals from population-based cohorts or patients with MCI from memory 
clinics was tested statistically using Cox proportional hazards models. The models 
were adjusted for age, sex, the first four PCs (to correct for potential population 
stratification) and the number of APOE-ε4 and APOE- ε2 alleles (assuming 
an additive effect). In the FHS study, the generation was used as an additional 
covariate. In the 3C study, the analysis was adjusted for age, sex, the number of 
APOE alleles, the two first PCs and center. The PCs used were generated for each 
cohort, using the same variants as in the case/control study’s PC analysis. The 
number of APOE-ε4 alleles was obtained from direct genotyping or, if missing, the 
genotypes (with probability >0.8) derived from the TOPMed imputations. The 
interaction between the GRS and the number of APOE-ε4 alleles was tested on 

the multiplicative scale. In the primary analysis, conversion to AD was used as the 
outcome (conversions to non-AD dementias were coded as being censored at time 
of conversion), but analyses were repeated using all-cause dementia as the outcome.

To quantify the effect size of the potential association between the GRS and 
conversion to dementia regarding predictive performance, we computed three 
different indices measuring different aspects of the predictive performance of the 
GRS in our prospective, longitudinal cohort studies91: the continuous version of the 
C-index,92,93 the continuous NRI94 and IPA95 (Supplementary Note). For all indices, 
we provide point estimates and 95% CIs.

In the main analysis, indices were computed at the time point for which all 
cohorts in a specific setting (i.e., population-based studies or memory clinics, 
respectively) provided follow-up observations (that is 5 years for population-based 
cohorts and 3 years for MCI cohorts). In a sensitivity analysis, indices for longer 
or shorter follow-up periods were also derived (that is 3 years and 10 years for 
population-based cohorts and 5 years for MCI cohorts). Standard errors for indices 
were derived by non-parametric bootstrapping with 1,000 samples.

To determine the average effect of the GRS across the various cohorts 
examined, individual cohort results were subjected to both inverse-variance 
weighted meta-analyses (primary analyses) and random effects meta-analysis 
(Supplementary Note). To facilitate comparisons of results for different time 
points, cohorts with longer follow-up periods were meta-analyzed separately. 
Furthermore, two memory clinic cohorts with a limited sample size (N < 50) were 
excluded to assess their impact on the final meta-analysis results. Meta-analyses 
were performed using the ‘metafor’ (3.0.2) R package96.

To further illustrate the clinical relevance of the GRS, we pooled computed 
GRSs across four population-based cohorts (3C, AgeCoDe, VITA and MAS) 
and computed deciles of the GRS distribution for use as a common reference for 
all cohorts. We then computed the increase in risk when augmenting the GRS 
value from the first decile (GRS = 50.76) to the ninth decile (GRS = 59.74) of the 
distribution. To represent this risk increase in the HR, we rescaled the HR derived 
from our meta-analyses results using the equation elog(HR)∗(GRS9thdecile−GRS1stdecile). 
Importantly, this approach yields exactly the same results as transforming the GRS 
so that a one unit increment corresponds to the increase from the lowest decile to 
the highest decile.

Furthermore, we approximated the probability of conversion to AD at 3 and 5 
years in memory clinic patients with MCI by using Cox models implemented in 
the ‘PredictCox’ function from the ‘riskRegression’ (2020.12.8) R package97. We 
did not derive AD conversion probabilities for two cohorts with very small sample 
sizes (N < 50). Predicted AD conversion probabilities were derived and averaged 
for all patients in each of the groups formed by the decile of the GRS distribution 
in each cohort. The difference between the groups with the highest and lowest 
GRSs was computed in each cohort. We report the median (range) results in each 
group formed by the GRS deciles.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data Availability
Genome-wide summary statistics have been deposited to the European 
Bioinformatics Institute GWAS Catalog (https://www.ebi.ac.uk/gwas/) under 
accession no. GCST90027158.
The significant eQTLs/sQTLs mapped and eTWAS/sTWAS functional reference 
panel weights generated for this study (in AD-relevant bulk brain regions from 
AMP-AD cohorts and in LCLs from the EADB Belgian cohort) are publicly 
available at https://doi.org/10.5281/zenodo.5745927 and https://doi.org/10.5281/
zenodo.5745929.
Anonymized aligned reads of the amplicon-based long-read Nanopore cDNA 
sequencing experiment conducted for the TSPAN14 splicing analysis are available 
through the European Nucleotide Archive under accession PRJEB49234.
Moreover, the following data used in the gene prioritization are publicly available:
AMP-AD rnaSeqReprocessing Study (https://www.synapse.
org/#!Synapse:syn9702085);
MayoRNAseq whole-genome sequencing variant call formats (WGS VCFs) 
(https://www.synapse.org/#!Synapse:syn11724002);
ROSMAP WGS VCFs (https://www.synapse.org/#!Synapse:syn11724057);
MSBB WGS VCFs (https://www.synapse.org/#!Synapse:syn11723899);
eQTLGen (https://www.eqtlgen.org/);
eQTL Catalogue database (https://www.ebi.ac.uk/eqtl/);
Brain xQTL serve (http://mostafavilab.stat.ubc.ca/xqtl/);
GTEx v8 eQTL and sQTL catalogs (https://www.gtexportal.org/);
GTEx v8 expression and splicing prediction models (http://predictdb.org/);
MiGA eQTLs (https://doi.org/10.5281/zenodo.4118605);
MiGA sQTLs (https://doi.org/10.5281/zenodo.4118403);
MiGA meta-analysis (https://doi.org/10.5281/zenodo.4118676); and
Wingo et al.84 pQTL data (https://www.synapse.org/#!Synapse:syn23627957).

code availability
We used publicly available software for all analyses. The software are listed in the 
Supplementary Note with their appropriate citations and/or URLs.
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