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a b s t r a c t 

Effort s to identify and visualize near-wall structures typically focus on the region y + � 5 , where large- 

scale structures with significant turbulent kinetic energy content reside, such as the high-speed and low- 

speed streaks associated with sweep and ejection events. While it is true that the level of the turbulent 

kinetic energy drops to zero as one approaches the wall, the organization of near-wall turbulence does 

not end at y + ≈ 5 . Large-scale structures with significant streamwise extent and spatial organization exist 

even in the immediate proximity of the wall y + < 5 . These coherent structures have received less atten- 

tion so far, but it would be both useful and enlightening to bring them to focus in order, on one hand, 

to understand them, but also to analyze their interaction with the energetic structures that reside at 

somewhat higher distances from the wall. 

We have recently developed a rigorous mathematical and computational framework that can be used for 

the calculation of the turbulence structure tensors in arbitrary flow configurations. In this work, we use 

this new framework to compute, for the first time, the structure tensors in a fully-developed turbulent 

pipe flow. We perform Direct Numerical Simulation (DNS) at Reynolds number Re b = 5300 , based on the 

bulk velocity and the pipe diameter. We demonstrate the diagnostic properties of the structure tensors, 

by analyzing the DNS results with a focus on the near-wall structure of the turbulence. We develop a 

new eduction technique, based on the instantaneous values of the structure tensors, for the identification 

of inactive structures (i.e. large-scale structures without significant turbulent kinetic energy). This leads 

to the visualization of “vorticity crawlers” and “streak shadows”, large-scale structures with low energy 

content in the extreme vicinity of the wall. Furthermore, comparison with traditional eduction techniques 

(such as instantaneous iso-surfaces of turbulent kinetic energy) shows that the structure-based eduction 

method seamlessly captures the large-scale energetic structures further away from the wall. We then show 

that the one-point structure tensors reflect the morphology of the inactive structures in the extreme 

vicinity of the wall and that of the energy-containing large-scale structures further away from the wall. 

The emerging complete picture of large-scale structures helps explain the near-wall profiles of all the 

one-point structure tensors and is likely to have an impact in the further development of Structure-Based 

Models (SBMs) of turbulence. 

© 2016 The Author(s). Published by Elsevier Ltd. 

This is an open access article under the CC BY license. ( http://creativecommons.org/licenses/by/4.0/ ) 
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1. Introduction 

One-point measures of large-scale, energy-containing turbu-

lence structures are important in turbulence modeling and for flow

diagnostics. Kassinos and Reynolds [18] were the first to develop

a comprehensive one-point mathematical formulation that can be
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sed to quantify different aspects of the energy-containing turbu-

ence structures. In this regard, they showed that it is possible for

wo turbulence fields to share the same componentality state, i.e. to

ave the same Reynolds stress tensor values R ij , but yet have differ-

nt underlying turbulence structure. Differences in the turbulence

tructure, although undetectable through the componentality in-

ormation, lead to different dynamic behavior of the turbulence,

or example in response to external deformation or system rota-

ion. Hence, a complete one-point description of the turbulence re-

uires the information contained in the structure tensors [21] . The
under the CC BY license. ( http://creativecommons.org/licenses/by/4.0/ ) 
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tructure dimensionality D ij gives information about the directions

f independence in the turbulence, the structure circulicity F ij gives

nformation on the large-scale circulation in the flow, and the inho-

ogeneity C ij gives the degree of inhomogeneity of the turbulence.

he third-rank stropholysis Q 

∗
i jk 

becomes important when mean ro-

ation breaks the reflectional symmetry of the turbulence [21] . Ex-

ct definitions of these tensors are given in the next section. 

One-point turbulence models that use only the Reynolds

tresses and the turbulence scales to characterize the turbu-

ence are fundamentally incomplete as shown by Kassinos and

eynolds [18] . Contrariwise, Structure-Based turbulence Models

SBMs) [17,18,20,21,35,39] are a class of turbulence models that

ake use of the one-point turbulence tensors. SBMs hold promise

or resolving inherent limitations of simple eddy-viscosity closures

nd of Reynolds Stress Transport (RST) models. However, an ob-

tacle in the further development of SBMs has been the relatively

carce availability of accurate data that could be used for model

alibration and validation. 

The one-point structure tensors can not be extracted from ex-

eriments. Hence, one normally turns to Direct Numerical Simu-

ations (DNS) or Large Eddy Simulations (LES) for obtaining data

n the structure tensors. Even in this case, however, the specifi-

ation of proper boundary conditions for the computation of the

tructure tensors is a daunting task. The underlying ambiguity over

ow one can compute the structure tensors in complex domains

as discouraged the more widespread inclusion of the tensors in

urbulence databases. We have only recently developed a rigorous

athematical and computational framework that can be used for

he calculation of the structure tensors in arbitrary flow configura-

ions [48] . We will refer to this as the General Framework (GF) . In

he past, a different framework had been considered [18,21] , which

s only applicable in simple, wall-bounded, streamwise periodic ge-

metries, e.g. fully-developed channel flow, pipe flow, square duct

ow. We will refer to this as the Limited Framework (LF) . In this

ork, we use both aforementioned frameworks (GF and LF) to

ompute, for the first time, the structure tensors in fully-developed

urbulent pipe flow. We perform direct numerical simulation at

eynolds number Re b = 5300 , based on the bulk velocity and the

ipe diameter. 

The main objectives of the current study are: 

a) To illustrate that LF and GF lead to different results for the

structure tensors. The same was shown in a fully-developed

turbulent channel flow by Vartdal [52] . 

b) To explain that both LF and GF are correct, and that the afore-

mentioned differences should be attributed to the lack of gauge

invariance of the structure tensors. 

c) To provide arguments in favor of using the GF for the compu-

tation of the structure tensors. For example, the GF preserves

the essence of the structure tensors (as defined in the ho-

mogeneous limit) even in inhomogeneous regions of the flow,

whereas the LF introduces serious deviations. 

d) To provide a database for the development and validation of

new or existing SBMs. 

e) To manifest the diagnostic properties of the structure tensors,

by analyzing the DNS results and comparing with traditional

eduction techniques (such as instantaneous iso -surfaces of Q-

criterion and turbulent kinetic energy). 

f) To establish a new flow structure characterization technique

that allows the identification of inactive structures (i.e. large-

scale structures without significant turbulent kinetic energy)

based on the instantaneous values of the structure tensors. 

We believe that this contribution will encourage the inclusion

f the structure tensors in DNS databases, thus accelerating the

evelopment of structure-based models and promoting the use of

tructure tensors as a flow diagnostic tool. 
. Structure tensors 

.1. Definitions 

The structure tensors are determined through the fluctuating

tream vector ψ 

′ 
i 
, defined by the equations 

 

′ 
i = εi jk ψ 

′ 
k, j ψ 

′ 
k,k = 0 ψ 

′ 
i,kk = −ω 

′ 
i , (1)

here u ′ 
i 

and ω 

′ 
i 

are the fluctuating velocity and vorticity com-

onents, and ε ijk is the Levi-Civita alternating tensor. Hereafter, a

omma followed by an index denotes partial differentiation with

espect to the implied coordinate direction. The Einstein summa-

ion convention is implied on repeated Roman indices. We require

 

′ 
i 

to be divergence-free so that the simplified Poisson equation 

n Eq. (1) holds, a feature that is important for the physical inter-

retation of the resulting structure tensors as explained by Kassi-

os et al. [21] . To complete the stream vector definition suitable

oundary conditions must be supplied [48] . 

Expressing the definition of the Reynolds stresses in terms of

he fluctuating stream vector, 

 i j = u 

′ 
i 
u 

′ 
j 
= εipq ε jrs ψ 

′ 
q,p ψ 

′ 
s,r , (2) 

nd using the identity 

ipq ε jrs = det 

( 

δi j δir δis 

δp j δpr δps 

δq j δqr δqs 

) 

, (3) 

eads to the constitutive relation 

 i j + D i j + F i j − (C i j + C ji ) = δi j q 
2 , (4)

here q 2 = R ii = 2 k is twice the turbulent kinetic energy. Based on

his equation, the second-rank structure tensors are defined as 

omponentality: R i j = u 

′ 
i 
u 

′ 
j 

r i j = R i j /R kk (5a) 

Dimensionality: D i j = ψ 

′ 
k,i 

ψ 

′ 
k, j 

ˆ d i j = D i j /D kk (5b) 

Circulicity: F i j = ψ 

′ 
i,k 

ψ 

′ 
j,k 

ˆ f i j = F i j /D kk (5c) 

nhomogeneity: C i j = ψ 

′ 
i,k 

ψ 

′ 
k, j 

ˆ c i j = C i j /D kk . (5d) 

Unlike the other structure tensors, the inhomogeneity C ij is not

ositive semi-definite and thus the trace C kk = D kk − R kk can be

egative or even zero. For this reason, C ij is normalized in terms

f the traces D kk or F kk , which by their definition are the same

 kk = F kk . Another possibility would have been to normalize all

tructure tensors with the trace R kk , but this choice is ill-defined

n solid boundaries, where R kk is zero. On the contrary, D kk is non-

ero at the walls and proves to be the most meaningful choice for

ormalizing all the structure tensors. 

A detailed discussion on the interpretation of each structure

ensor is provided by Kassinos et al. [21] , but the key features

re recounted here. While the structure tensors carry complemen-

ary information, the constitutive equation provides a linear de-

endence among them. The componentality R ij (the Reynolds stress

ensor) gives information about which components of the fluctu-

ting velocity are more energetic. The dimensionality D ij carries in-

ormation about the directions of independence of the turbulence.

o understand this, notice that the free indices in the definition

f D ij are associated to the gradients of ψ 

′ 
i 
, which tend to van-

sh along directions of substantial structure elongation and tend to

e strongest along directions in which short structures are stacked.

he circulicity F ij identifies the directions with large-scale circula-

ion concentrated around them. To appreciate this, notice that the

ree indices in the definition of F ij are associated with ψ 

′ 
i 
, which in

urn, through the Poisson equation ψ 

′ 
i,kk 

= −ω 

′ 
i 
, represents a large-

cale, smooth version of ω 

′ 
i 
. Finally, the inhomogeneity C ij detects
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the inhomogeneity of the turbulence. In fact, the inhomogeneity

tensor vanishes identically in homogeneous flows, as can be shown

by recasting the inhomogeneity definition into the form 

 i j = ( ψ 

′ 
i 
ψ 

′ 
k, j 

) ,k − ψ 

′ 
i 
ψ 

′ 
k,k j 

. (6)

Here, the first term is zero only in homogeneous flows, while the

second term is always zero due to the specific choice ψ 

′ 
k,k 

= 0 . The

inhomogeneity is significant near solid boundaries and relaxes to

zero far away from them. At intermediate distances from the wall,

the magnitude C kk becomes small compared to that of the other

structure tensors. Since little is known on how to model C ij in gen-

eral flows, structure-based turbulence models, such as the Alge-

braic Structure-Based Model (ASBM) [3,22,27,36,42] , are based on

the homogenized tensors. These are obtained by absorbing C ij in-

side D ij and F ij , 

D 

cc 
ij ≡ D ij −

1 

2 

(
C ij + C ji 

)
F cc 

ij ≡ F ij −
1 

2 

(
C ij + C ji 

)
. 

(7)

Note that the homogenized tensors now satisfy D 

cc 
kk 

= F cc 
kk 

= R kk =
q 2 . 

To complete the one-point tensorial base, an additional third-

rank structure tensor must be defined as one can show that it car-

ries information that is not contained in the second-rank tensors,

Q i jk = −u 

′ 
j 
ψ 

′ 
i,k 

= ε jrs ψ 

′ 
r,s ψ 

′ 
i,k 

. (8)

Using the definitions of the second-rank structure tensors, one can

show that 

εimp Q m jp = R i j Q ik j − Q jki = εi jp R pk (9a)

εimp Q pm j = D i j − C i j Q jik − Q i jk = εi jp (D pk − C pk ) (9b)

εimp Q jpm 

= F i j − C ji Q k ji − Q ki j = εi jp (F pk − C kp ) . (9c)

The homogenized tensors can also be calculated from the third-

rank tensor, 

D 

cc 
ij = 

1 

2 

(
εimp Q pmj + εjmp Q pmi 

)
F cc 

ij = 

1 

2 

(
εimp Q jpm 

+ εjmp Q ipm 

)
. 

(10)

A third-rank constitutive equation connects all the structure ten-

sors, 

Q ijk = 

1 

6 

εijk q 
2 + 

1 

3 

εikp R pj + 

1 

3 

εjip 

(
D pk − C pk 

)
+ 

1 

3 

εkjp 

(
F pi − C ip 

)
+ Q 

∗
ijk (11)

where the Stropholysis tensor 

Q 

∗
i jk = 

1 

6 

(Q i jk + Q jik + Q jki + Q k ji + Q ik j + Q ki j ) (12)

is the fully symmetric part of the third-rank structure tensor.

Stropholysis literally means “breaking by rotation”, a mnemonic to

the fact that this tensor remains zero in turbulence that has been

deformed only by irrotational mean strain. However, mean and

frame rotation break the reflectional symmetry of turbulence and

generate Q 

∗
i jk 

. Once generated, the stropholysis can be further mod-

ified by irrotational mean strain [18] . It is worth noting that the

bi-traces of the third-rank tensor are 

Q kik = 0 

Q kki = Q ikk = −
(
u 

′ 
k 
ψ 

′ 
i 

)
,k 

Q 

∗
kik = Q 

∗
kki = Q 

∗
ikk = −2 

3 

(
u 

′ 
k 
ψ 

′ 
i 

)
,k 

, 

(13)

which all vanish in homogeneous turbulence. 
.2. Non-local information 

Even though the structure tensors are one-point correlations

hey still carry important non-local information about the struc-

ure of turbulence. We provide two arguments to support this

tatement. 

First, the fluctuating stream vector ψ 

′ 
i 

(the constituent of the

tructure tensors) is obtained from the solution of a vector Poisson

quation, namely ψ 

′ 
i,kk 

= −ω 

′ 
i 
. The fluctuating vorticity vector field

 

′ 
i 

acts as the source term for this vector Poisson equation. A basic

roperty of the Poisson equation is that its solution at any point in

he domain receives source term contributions not only from that

oint, but from distant points as well. Therefore, the fluctuating

tream vector will contain non-local information of the flow field

hat is transferred to the structure tensors. 

Second, the fluctuating pressure field (which contains non-local

nformation as it emerges from a solution of a Poisson equation) is

ntimately connected to the structure tensors. To demonstrate this,

e consider a simple problem of homogeneous turbulence subject

o mean rotation. In this case, the Poisson equation for the rapid

ressure fluctuations 1 
ρ p ′ r 

,kk 
= −2 G i j u 

′ 
j,i 

reduces to 

1 

ρ
p ′ r 

,kk = ω i ω 

′ 
i , (14)

here G i j = u i , j is the mean deformation tensor, and ω i is the

ean vorticity vector. In homogeneous turbulence the mean veloc-

ty gradients are uniform, and therefore if we replace the fluctuat-

ng vorticity with the Poisson equation of the fluctuating stream

ector we arrive at the relation 

1 
ρ p ′ r = ω i ψ 

′ 
i 
. Based on this expres-

ion, we can connect the Circulicity with the rapid pressure gradi-

nt 

1 

ρ2 
p ′ r 

,k 
p ′ r 

,k 
= ω i ω j F i j . (15)

learly, in this simple example F ij carries the non-local information

ontained in the intensity of the rapid pressure gradient. 

.3. Uniquely defining the structure tensors 

In our previous work [48] , we have stated that the structure

ensors are gauge invariant , which is actually misleading. The prop-

rty of gauge invariance should be attributed only to quantities

hat are independent of the specific gauge conditions chosen to de-

ne uniquely the ψ 

′ 
i 
, i.e. the Euclid gauge condition and boundary

auge condition [40,48] . As it is shown in this work, the structure

ensors do not have this property. Based on two different sets of

oundary gauge conditions for ψ 

′ 
i 
, we have calculated two differ-

nt ψ 

′ 
i 

fields along with their associated structure tensors. Even

hough both ψ 

′ 
i 

fields successfully reproduce the same u ′ 
i 

field,

hey do not produce the same values for the structure tensors. 

Here, we also prove analytically the lack of gauge invariance of

he structure tensors. The incompressibility condition of u ′ 
i 

implies

he relation u ′ 
i 
= εi jk ψ 

′ 
k, j 

, which is considered as the backbone of

he definition for ψ 

′ 
i 
. This relation does not define uniquely the ψ 

′ 
i 
,

ince adding a gradient of a scalar function θ to ψ 

′ 
i 

 

′ 
i → ψ 

′ 
i + θ,i (16)

till satisfies the relation between u ′ 
i 

and ψ 

′ 
i 
. This is a consequence

f the identity 

i jk θ,k j = 0 . (17)

f we apply the gauge transformation Eq. (16) to the definition of

he structure tensors (apart from the Reynolds stress) we can show

hat they are not gauge invariant. To clarify the issue of gauge in-

ariance, we will focus on the particular example of the structure

imensionality tensor D ij . If we allow for the gauge transformation
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b  
f the stream vector ψ 

′ θ
i = ψ 

′ 
i 
+ θ,i , then D ij transforms according

o 

 

ψ 

θ

i j 
≡ ψ 

′ θ
k,i ψ 

′ θ
k, j = D 

ψ 

i j 
+ ψ 

′ 
k,i 

θ,k j + θ,ki ψ 

′ 
k, j 

+ θ,ki θ,k j (18)

hich is clearly not gauge invariant since D 

ψ 

θ

i j 
� = D 

ψ 

i j 
. Therefore,

ifferent gauge conditions (chosen to uniquely define ψ 

′ 
i 
) lead to

ifferent values for the structure tensors. Since the structure ten-

ors were originally defined with the aim to describe the coher-

nt structures of turbulence, we must identify the specific gauge

onditions that preserve their intended meaning. In the following

aragraphs, we provide strong arguments that point to the pre-

erred gauge conditions. 

In homogeneous flows only one gauge condition is needed to

niquely define ψ 

′ 
i 
. We impose the Euclid gauge condition ψ 

′ 
i,i 

= 0 ,

ince this particular choice imparts a number of desirable proper-

ies to the structure tensors, namely: 

a) the inhomogeneity tensor becomes identically zero in homoge-

neous flows (see Eq. (6) ), 

b) a simple relation connects the circulicity spectrum tensor to the

vorticity spectrum tensor in homogeneous flows (see [18] Sec-

tion 2.6), 

c) the differential equation for the stream vector reduces to a

Poisson type (see [48] Section 3.3), 

d) the relations between ψ 

′ 
i 
, u ′ 

i 
, and ω 

′ 
i 

follow a recursive

form: [ ψ 

′ 
i,i 

= 0 , u ′ 
i,i 

= 0 , ω 

′ 
i,i 

= 0] , [ u ′ 
i 
= εi jk ψ 

′ 
k, j 

, ω 

′ 
i 
= εi jk u 

′ 
k, j 

] ,

[ ψ 

′ 
i,kk 

= −εi jk u 
′ 
k, j 

, u ′ 
i,kk 

= −εi jk ω 

′ 
k, j 

] . 

In inhomogeneous flows, the Euclid gauge condition alone can-

ot uniquely define ψ 

′ 
i 
. An additional boundary gauge condition

ust be specified. There are two possibilities: 

a) either restrict the stream vector components that are tangential

to the local surface boundary: εi jk n j ψ 

′ 
k 

∣∣
S 

= εi jk n j a 
′ 
k 
, which leads

to the Limited Framework (LF) , 

b) or restrict the stream vector component that is normal to the

local surface boundary: n i ψ 

′ 
i 

∣∣
S 

= n i a 
′ 
i 
, which leads to the Gen-

eral Framework (GF) . 

In both frameworks the vector surface field a ′ 
i 

must satisfy spe-

ific conditions that can be found in Stylianou et al. [48] , with

 rigorous mathematical proof given by Quartapelle [40] . For the

ase of fully-developed periodic turbulent pipe flow, we can sim-

ly set a ′ 
i 
= 0 in both formulations. As explained by Quartapelle

40] , the GF is applicable in domains with any type of connected-

ess, while the LF is only applicable to simply connected domains.

n addition to this mathematical superiority of GF, we provide be-

ow the physical arguments that point to the preference of GF over

F for the computation of the structure tensors: 

a) Through the Poisson equation ψ 

′ 
i,kk 

= −ω 

′ 
i 
, the stream vector

ψ 

′ 
i 

represents a large-scale, smooth version of ω 

′ 
i 
. The boundary

gauge condition enforced on ψ 

′ 
i 

should preserve this property,

so that the interpretation of the structure tensors remains un-

affected as the wall boundary is approached. Since n i ω 

′ 
i 

∣∣
S 

= 0 at

the solid boundaries, the GF gauge boundary condition n i ψ 

′ 
i 

∣∣
S 

=
0 satisfies this requirement. This is not the case for the LF. 

b) As an inhomogeneous wall is approached, the gauge boundary

condition should constrain the normal stream vector compo-

nent rather than the tangential components. Constraining just

the normal stream vector component is less restrictive than

constraining the two tangential components. The GF does take

this effect into account, but LF does not. 

c) In this work, we have calculated the structure tensors using

both the GF and the LF. Comparing the results shows that the

GF produces simpler profiles for the structure tensors that de-

scribe more accurately the structures of turbulence. In view of
this simplicity, the modeling of structure tensors will be easier

under the GF. 

It should be clear that both LF and GF are correct, and that any

ifferences in the resulting profiles of the structure tensors are at-

ributable to their lack of gauge invariance. In light of this degree

f freedom, one has to choose the gauge condition that preserves

he intended meaning of the structure tensors. We comment fur-

her on this in Section 3.5 . 

. Details of the present computation 

DNS of fully-developed incompressible turbulent flow through

 smooth pipe have been computed previously by Eggels et al.

10] , Loulou et al. [29] , Satake et al. [44] , Wagner et al. [55] , Fuka-

ata and Kasagi [12] , Veenman [53] , Wu and Moin [56] and more

ecently by El Khoury et al. [11] . What differentiates the current

ork from the previous studies is the calculation of the struc-

ure tensors and their use for visualizing the near-wall structures.

omputing the structure tensors involves statistical averages of the

uctuating stream vector gradient components. In the following

ubsections, we provide detailed information on the numerical as-

ects of our simulation. For validation purposes, we compare our

esults with the results of Eggels et al. [10] , Wu and Moin [56] ,

nd El Khoury et al. [11] . Then, we proceed to present the pro-

les of the structure tensors along the pipe radius, and extract the

hysical information concerning the large-scale, energy-containing

tructures of turbulence. Finally, we also demonstrate how the in-

tantaneous values of the structure tensors can be used to iden-

ify inactive structures, i.e. large-scale structures without signifi-

ant energy content. Structures of this type are located adjacent to

he wall. 

.1. Computational framework 

For our simulations, we have used the CDP software developed

t the Center for Turbulence Research (Stanford, NASA Ames). CDP

s an unstructured, collocated, nodal-based, finite-volume code that

olves the incompressible Navier–Stokes equations. The fractional-

tep method [24] is used to numerically solve the continuity and

omentum equations. Briefly, an intermediate velocity is obtained

rom the momentum equation by using the pressure from the pre-

ious time step. A Poisson system for the pressure is solved us-

ng the intermediate velocity. The final values of the nodal and

ace-normal velocities are obtained by utilizing the nodal and face-

ormal pressure gradients to correct the corresponding interme-

iate values. The final velocity satisfies the incompressibility con-

ition. The Crank–Nicolson time discretization scheme is used for

he nodal velocity, present in the diffusive and non-linear terms,

hile the Adams-Bashforth advancement scheme is used for the

ace-normal velocity appearing in the non-linear term. Simple in-

erpolation schemes are used from nodal to face quantities. Space

iscretization of diffusive and convective terms is treated via the

auss theorem and the summation-by-parts (SBP) operators as

xplained by Ham et al. [15] . The face-centered gradient related

o the diffusive/Laplacian terms are treated via a second-order

ccurate centered-difference scheme. A very detailed description

f the numerical techniques used by this code is reported in

1,2,14,15,32,33,57] . 

.2. Mesh details 

Our computational resources constrained the mesh size to a

aximum of approximately 5 million grid points. Taking this limi-

ation into account, we created a computational mesh that is suit-

ble for capturing all physical phenomena taking place in a tur-

ulent pipe flow at low Reynolds numbers. Close to the pipe wall,



454 F.S. Stylianou et al. / Computers and Fluids 140 (2016) 450–477 

Table 1 

Overview of numerical parameters, mean flow properties, and mesh resolution. Since the exact 

Re τ of the simulation is not known a priori, during the construction of the mesh we have used 

the approximate value Re τ ≈ 180 to identify the approximate viscous units. 

Parameter Eggels Veenman Wu and Moin El Khoury Stylianou 

Re b = u b D/ν 5300 5299 5300 5300 5300 

Re τ = u τ R/ν 180 181 181.37 181.05 181.34 

u b / u τ 14.73 14.63 14.611 14.637 14.613 

C f = τw / ( 
1 
2 
ρu 2 

b 
) 9 . 22 ×10 −3 9 . 35 ×10 −3 9 . 369 ×10 −3 9 . 336 ×10 −3 9 . 366 ×10 −3 

T stats / ( 
R 

u τ
) 8.0 20.0 20.53 ∼60 a 98.54 

L x / R 10 10 15 25 15 

N r × N φ × N x 3,145,728 1,785,856 67,108,864 ∼18,670,0 0 0 5,064,108 

N r 96 109 256 – –

N φ 128 128 512 – –

N x 256 128 512 – 361 

�r + 
min 

0.94 0.11 0.17 0.14 0.333 

�r + max 1.88 4.03 1.65 ∼4.44 ∼3.500 

R �φ+ 
max 8.84 8.89 2.22 4.93 4.189 

�x + 7.00 14.10 5.31 [3.03, 9.91] 7.500 

a vailable after private communication with El Khoury et al. 
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viscous forces dominate and thus the mesh has to be very fine. The

viscous scales 

u ν = u τ p ν = ρu 

2 
τ δν = 

ν

u τ
t ν = 

δν

u τ
(19)

for velocity, pressure, length, and time respectively, are used for

normalization purposes. Normalization with the viscous scales is

symbolized by superscript “+ ”. 

Our computational domain has a streamwise extent of L x = 15 R .

The length was chosen to be the same with the one used in

the study of Wu and Moin [56] . As they note in their work, ex-

perimental data suggests the existence of very large-scale mo-

tions that range in length form 8 R to 16 R , and therefore the

choice of L x = 15 R is justified. The simulation was performed at

bulk Reynolds number Re b = 5300 by setting the following val-

ues: pipe radius R = 1 , fluid density ρ = 1 , bulk velocity u b = 1 ,

and kinematic viscosity ν = 

1 
5300 u b D (where D = 2 R is the pipe di-

ameter). In Appendix A , we explain how the specification of the

previous parameters led to the averaged pressure gradient d p w 
dx 

=
−0 . 009366 

ρu 2 
b 

R and friction velocity u τ = 0 . 06843 u b . Computational

details of our simulation, along with details of previous simulations

by other researchers at the same Reynolds number, are summa-

rized in Table 1 . 

The total number of computational grid points is 5,064,108.

In the streamwise direction the number of points is N x = 361 ,

and therefore the corresponding grid resolution is �x + = 7 . 5 . In

the r − φ plane, the number of points is N r−φ = 14 , 028 . At the

wall, the grid is structured with N φ = 270 and a grid resolution

of R �φ+ 
max = 4 . 189 , �r + 

min 
= 0 . 333 . The structured grid extends for

N l = 26 layers with increasing radial ratio of λ = 1 . 08 . Therefore,

the structure mesh starts at the wall ( r = R ) and ends at a distance

(measured from the axis of the pipe): 

r = R − �r min 

λN l − 1 

λ − 1 

= 0 . 852 . (20)

The interior part of the pipe (unstructured part) consists of trian-

gular prisms. In this region, the maximum radial extent of the tri-

angles is approximately �r + max ≈ 3 . 5 . The computational mesh in

the r − φ plane (or equivalently in the y − z plane) is shown in

Fig. 1 . 

3.3. Cusp at (R − r) + ≈ 27 

For some line figures displayed in upcoming sections, the vari-

ables plotted with respect to the radial direction exhibit a cusp at

around (R − r) + ≈ 27 . This is not part of the physics of the flow. It
s attributed to the transition of the mesh from the regular hex-

hedra to the triangular prisms. A comparison of the nodal dis-

retization and cell-centered discretization of CDP on asymmetric

eshes, shows that the nodal-based formulation (the one adopted

n our computations) is less sensitive to mesh asymmetries [15] .

ll unstructured codes are prone to this type of mesh sensitivity. 

.4. Implementational details 

In order to reach the fully-developed state as fast as possible,

e have set the initial velocity field to 

 i = u i 
E + u 

′ 
i , (21)

here u i 
E corresponds to the DNS data of Eggels et al. [10] . Ran-

om velocity fluctuations satisfying the constrains of zero diver-

ence and zero wall value were added, i.e. the turbulent flow was

ripped with a solenoidal disturbance. One can achieve this by tak-

ng the curl of a unit random vector field ξ i 

 

′ 
i = εi jk ξk, j u 

′ 
i 

∣∣
r= R = 0 . (22)

he time step was set to �t = 0 . 008 R/u b . This time step satisfies

he viscous stability limit (VSL) and the Courant–Friedrichs–Lewy

CFL) criterion. The VSL gives 

 SL = ν
�t 

(�r min ) 2 
= 0 . 895 , (23)

hich satisfies the stability requirement. The real time CFL calcu-

ated during the simulation is given by the relation 

F L = 

�t 

dV 

∮ | u i n i | dA 

2 

, (24)

here n i is the normal to the surface unit vector, and the surface

ntegration dA concerns the control volume dV of each grid node.

he maximum CFL fluctuates in time around CFL max ≈ 0.6, while

he smallest CFL fluctuates around CFL min ≈ 0 . 2 × 10 −3 . The maxi-

um value of the CFL is also less than one as the corresponding

riterion dictates. 

The initial unrealistic and uncorrelated velocity field was

volved for 30,0 0 0 time steps (equivalent to 16 × 15 R / u b , enough

o allow a particle to travel 16 times through the pipe axial di-

ension at the bulk velocity), in order to ensure that the fully-

eveloped state is reached. We also note that the entrance length

eeded for a pipe flow to reach the fully-developed state is given

y the empirical relation L e ≈ 1 . 6 Re 1 / 4 
b 

, which for our Re b number

ives 27.3 R . This is many times less than the 16 × 15 R . 

The entire simulation lasted for 210,0 0 0 time steps and thus

he collection of statistics took place for 180,0 0 0 time steps. This
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Fig. 1. Computational mesh (a) in the y − z plane, and (b) close up of its one quarter. Close to the wall the mesh has structured Cylindrical form, while the core of the pipe 

is made up of triangular prisms which form the unstructured part of the mesh. 
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s equivalent to T stats = 96 × 15 R/u b , enough to allow a fluid parti-

le to travel 96 times through the pipe axial dimension at the bulk

elocity. Expressing T stats in terms of the eddy-turnover time R / u τ
e get T stats ≈ 98.54 R / u τ , which is considerably longer than the re-

pective times used in previous studies as indicated in Table 1 . To

void round-off errors during the time averaging process, the sim-

lation was split into 3 equal parts of 60,0 0 0 time steps each. In

ach part, statistics were collected every 20 steps (i.e. 30 0 0 sam-

les). This approach was adopted for two reasons: (a) to avoid col-

ecting correlated samples and (b) to avoid solving the time de-

anding stream vector Poisson equations at every time step. The

nal time averaged quantities were obtained from a simple average

f the 3 aforementioned parts. In addition to averaging in time, the

tatistical sample was enhanced by averaging in the two homoge-

eous directions x and φ. The averaging in the streamwise direc-

ion is straightforward, while the averaging in the circumferential

irection involves interpolation in a polar mesh. 

.5. Boundary conditions 

The instantaneous pressure is given by the relation p = 

dp w 
dx 

x +
˜ p , where dp w 

dx 
is the part that is explicitly set by the pressure gra- 

ient controller (see Appendix A ), and ˜ p is the part that is solved

ia the pressure Poisson equation in order for the incompressibil-

ty condition to be satisfied. Due to the symmetry of the flow the

unctional form of the mean pressure is p (x, r) = 

d p w 
dx 

x + g(r) and

herefore it follows that ˜ p = g(r) + p ′ (x, r, φ, t) . While the mean

ressure p is linear in the x direction, ˜ p is periodic. Thus, peri-

dic boundary conditions can be assigned to the pressure at the

ipe inlet and outlet as done for the other flow variables. At the

urface of the pipe wall, no-slip boundary conditions (due to im-

ermeability and viscous forces) are applied for the velocity field

i.e. u i | r= R = 0 ), along with zero wall-normal gradient for the pres-

ure (i.e. d ̃ p 
dr 

∣∣
r= R = 0 ). 

For the calculation of the structure tensors one needs the fluc-

uating stream vector, defined via the three Poisson equations of

q. (1) . These equations involve the fluctuating vorticity, which is

nknown since the mean vorticity is not available a priori. To avoid

his difficulty, we solve for the instantaneous stream vector, which

nvolves the instantaneous vorticity. Due to the streamwise peri-

dicity, the domain is considered as multiply connected and as ex-
lained by Stylianou et al. [48] and Quartapelle [40] , the proper

oundary conditions for the instantaneous stream vector are 

F : 
∂ψ x 

∂r 

∣∣∣
r= R 

= 0 ψ r | r= R = 0 

∂(rψ φ ) 

∂r 

∣∣∣
r= R 

= 0 . (25)

his set of boundary conditions comprises the General Framework

GF) for computing the stream vector. In this framework, the wall-

ormal stream vector component is restricted. 

Another possibility is to restrict the wall-tangential stream vec-

or components 

F : ψ x | r= R ! = 0 

∂ ( rψ r ) 

∂r 
| r= R ! = 0 ψ φ| r= R ! = 0 . (26) 

his set of boundary conditions correspond to the Limited Frame-

ork (LF) for computing the stream vector. The exclamation mark

s used to indicate that these boundary conditions should be used

ith caution. As illustrated by Stylianou et al. [48] , these bound-

ry conditions create a stream vector that does not reconstruct the

orrect instantaneous velocity vector. There is a constant offset be-

ween the original and the reconstructed velocity. It was assumed

y Vartdal [52] that this constant offset is responsible for the dif-

erences between the structure tensors calculated via GF and LF. As

 matter of fact, the constant shift does not affect the values of the

tructure tensor components since they involve only the fluctuat-

ng part of the velocity and stream vector fields (i.e. the constant

ffset is canceled out). Therefore, the LF boundary conditions can

e used for the calculation of the structure tensors, but not for

he mean velocity field in a pipe geometry. The differences in the

tructure tensors generated via the GF and LF are due to the lack of

auge invariance and should in fact be expected. The choice of the

F over the LF must be based on arguments related to the physical

ontent of the resulting tensors, as outlined in Section 2.3 . 

In cylindrical coordinates, both the differential equations and

he boundary conditions for the stream vector components are de-

oupled from each other. Since our computational software is built

n Cartesian coordinates we transform the boundary conditions to

hese coordinates. In Cartesian coordinates, the Poisson equations

or the stream vector components are decoupled, while the bound-

ry conditions are coupled. This is illustrated via the transforma-

ions 

 r = + cos ( φ) ψ y + sin ( φ) ψ z (27) 
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ψ φ = − sin ( φ) ψ y + cos ( φ) ψ z , (28)

where cos (φ) = y/r and sin (φ) = z/r. Using a simple first-order

difference scheme for the radial derivative 1 , the radial and circum-

ferential boundary conditions take the following form 

GF : 

(
ψ 

W 

y 

ψ 

W 

z 

)
= 

−1 

1 + 

�r 
R 

(−sin 

2 
( φ) sin ( φ) cos ( φ) 

sin ( φ) cos ( φ) −cos 2 ( φ) 

)
·
(

ψ 

I 
y 

ψ 

I 
z 

)
(29)

LF : 

(
ψ 

W 

y 

ψ 

W 

z 

)
= 

1 

1 + 

�r 
R 

(
cos 2 ( φ) sin ( φ) cos ( φ) 

sin ( φ) cos ( φ) sin 

2 
( φ) 

)
·
(

ψ 

I 
y 

ψ 

I 
z 

)
(30)

where W stands for the grid point on the wall, while I stands for

the internal grid point in the normal direction. The simplicity of

the above relation is based on the assumption that the first inter-

nal grid point away from the wall must lie along the wall-normal

direction. This is the main reason that we have not used an O-

grid mesh. Even though �r is very small at the wall ( �r = δν/ 3 =
1 . 837 × 10 −3 ), it should never be neglected since this will reduce

the ψ φ boundary condition of Eq. (25) to 
∂ψ φ

∂r 

∣∣∣
r= R 

= 0 , and the ψ r 

boundary condition of Eq. (26) to ∂ψ r 

∂r 

∣∣∣
r= R 

= 0 , which are incorrect.

Initially, a sequential method was adopted to solve the stream

vector equations, with inner iterations to ensure that the coupled

boundary conditions are satisfied at each time step. Even though

this process gives the correct solution, the convergence of the in-

ner iterations was found to be slow. Motivated by the need of a

faster convergence rate, a second coupled method was embraced.

This method treats the last two components of the stream vector

as fully-coupled, making the incorporation of the boundary condi-

tions an easy task. An additional advantage of this approach is the

elimination of the inner iteration process. 

3.6. Validation of velocity and pressure statistics 

The mean velocity profile scaled with inner and outer variables

is presented in Fig. 2 . Our results (denoted by “S”) are in excel-

lent agreement with the DNS data of El Khoury et al. [11] (denoted

by “K”), Wu and Moin [56] (denoted by “M”) and Eggels et al.

[10] (denoted by “E”). In our simulation, the first grid point away

from the wall is located at δν /3, therefore the viscous sublayer is

well-resolved. The data in this region follow the theoretical linear

velocity distribution u + x = (R − r) + . 
At larger distances from the wall, the “log-law” velocity dis-

tribution with “universal” constants ( κ = 0 . 41 , B = 5 . 0 ) is not fol-

lowed. This is true even at Reynolds numbers above Re b = 20 , 0 0 0 ,

which is the starting point of the existence of the overlap re-

gion (where the arguments leading to “log-law” are valid) in the

channel flow. Even at Re b = 44 , 0 0 0 Wu and Moin [56] showed

with their DNS data that the assumptions made by Millikan to

derive the log-law are not valid. A number of studies referenced

in the paper of Wu and Moin [56] , rule out the applicability of

a logarithmic scaling theory for Reynolds numbers at least up to

Re b = 230 , 0 0 0 . Only at these very high Re b does a separation be-

tween inner and outer scales arise. Therefore, the logarithmic trend

of the data at low Re τ (such as the present one) should not be

attributed to the log-law. As explained by Wu and Moin [56] the

approximate logarithmic variation of u + on (R − r) + at low Re τ is
x 

1 A second-order scheme for the radial derivative will not improve the overall 

accuracy of the method since the neighboring node distances in the streamwise 

and circumferential directions at the wall are one order of magnitude greater than 

the radial distances (see Table 1 ). Furthermore, the first grid points from the wall 

are already very close to the boundary, less than 0.5 δν . 

n  

g  

s  

t  

f  

s  
ictated by the nature of the curvature of the mean velocity gradi-

nt profile. 

The mean pressure difference p + (r) − p + (R ) as a function of r

s reported in Fig. 3 . The plot compares our result to the data of

l Khoury et al. [11] and Wu and Moin [56] . Eggels et al. [10] did

ot report the mean pressure difference. Close to the pipe wall the

wo results match each other, but as we move towards the pipe

enterline small deviations arise. In the range r/R = [0 , 0 . 35] our

esults are closer to the results of El Khoury et al. [11] , while in

he range r/R = [0 . 35 , 0 . 75] our data are closer to the data of Wu

nd Moin [56] . 

The Reynolds stress components are presented in Fig. 4 . Our

ata are in very good agreement with the data of El Khoury et al.

11] and Wu and Moin [56] . The data of Eggels et al. [10] exhibit

mall deviations from the data of the remaining computations, at

east the normal components. The data for the shear stress compo-

ent from all computations collapse at the same trend. 

The pressure fluctuation statistics are reported in Fig. 5 . In the

ear-wall region the data of El Khoury et al. [11] and Wu and

oin [56] match each other, while in the outer region small dif-

erences exist. Our data and the data of Eggels et al. [10] ) in the

uter region exhibit also small differences with respect to the data

f Wu and Moin [56] , but with reverse sign in regard to the data

f El Khoury et al. [11] . The maximum value in our data is the

ame with the one of Wu and Moin [56] , but its radial location

s matches better by El Khoury et al. [11] . In the near-wall region

ur data exhibit the same trends with the ones of El Khoury et al.

11] and Wu and Moin [56] . The discrepancies between the four

omputations are attributed to the differences in the domain size,

he mesh resolution, and the order of the numerical schemes ap-

lied. 

. Active and inactive structures 

.1. Terminology 

In this section, we define the terms “active structures” and “in-

ctive structures” and use them to distinguish large-scale structures

ith high turbulent kinetic energy content (i.e. active) from large-

cale structures with low turbulent kinetic energy (i.e. inactive).

hese should not be confused with the already existing terminol-

gy of “active motions” and “inactive motions”. The concept of “ac-

ive motions” and “inactive motions” was advanced by Townsend

49–51] and Bradshaw [6,7] , in order to distinguish the motions

hat contribute to the wall-normal velocity fluctuations, from the

otions that contribute primarily to the wall-parallel velocity fluc-

uations. 

.2. Identification criteria 

Effort s to identify and visualize near-wall structures typically

ocus in the region 5 � y + � 50 where large-scale structures with

ignificant turbulent kinetic energy content reside, such as the

igh-speed and low-speed streaks and the associated sweep and

jection events. While it is true that the level of the turbulent ki-

etic energy drops to zero as ones approaches the wall, the or-

anization of near-wall turbulence does not end at y + ≈ 5 . Large-

cale structures with significant streamwise extent exist even in

he immediate proximity to the wall and it would be both use-

ul and enlightening to bring them to focus in order to under-

tand them. Furthermore, it would be interesting to analyze their
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Fig. 2. Mean axial velocity profile scaled with (a) wall units, and (b) bulk units. 

Fig. 3. Normalized mean pressure difference. 
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Fig. 4. Diagonal and off-diagonal Reynolds stress components normalized with wall 

units. 
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nteraction with the more energetic structures that reside at some-

hat higher distances from the wall. To visualize the active struc-

ures one can use iso -surfaces of high values of turbulent kinetic

nergy. On the other hand, a clear visualization criterion for the

nactive structures does not exist. Here, we develop one such cri-

erion. 

Our treatment starts by decomposing the fluctuating stream

ector gradient to a symmetric and an antisymmetric part 

 

′ 
i, j = 

1 

2 

(ψ 

′ 
i, j + ψ 

′ 
j,i ) ︸ ︷︷ ︸ 

S 
ψ ′ 
i j 

+ 

1 

2 

(ψ 

′ 
i, j − ψ 

′ 
j,i ) ︸ ︷︷ ︸ 

�
ψ ′ 
i j 

. (31) 

ecalling the stream vector definition u ′ 
i 
= εi jk ψ 

′ 
k, j 

, a direct rela-

ion between the fluctuating velocity vector u ′ 
i 

and the antisym-

etric tensor �
ψ 

′ 
i j 

is evident 

 

′ 
i = εi jk �

ψ 

′ 
k j 

⇐⇒ �ψ 

′ 
k j 

= 

1 

εki j u 

′ 
i . (32)
2 
n the other hand, the symmetric tensor S 
ψ 

′ 
i j 

does not directly con-

ribute to the fluctuating velocity vector u ′ 
i 
. In homogeneous flows

ith mean rotation ω i , it can be shown that the symmetric ten-

or S 
ψ 

′ 
i j 

is directly related to the gradient of the rapid fluctuating

ressure, 1 
ρ p ′ r 

,i 
= S 

ψ 

′ 
i j 

ω j + 

1 
2 εi jk ω j u 

′ 
k 
. Therefore, the symmetric ten-

or S 
ψ 

′ 
i j 

can be assumed to affect indirectly the fluctuating velocity

hrough the gradient of the fluctuating rapid pressure that appears

n the momentum transport equations. Our criterion for the iden-

ification of inactive structures involves the invariant quantity 

 

ψ 

′ ≡ −1 

2 

ψ 

′ 
i, j ψ 

′ 
j,i (33) 

nd for this reason we call it the Q 

ψ 

′ 
-criterion. One can rewrite

he Q 

ψ 

′ 
invariant in the form 

 

ψ 

′ = 

1 

(�ψ 

′ 
i j 

�ψ 

′ 
i j 

− S 
ψ 

′ 
i j 

S 
ψ 

′ 
i j 

) , (34)

2 
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Fig. 5. Normalized pressure fluctuation statistics. 
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2 The arctangent function with two arguments atan2(_,_) is used in order to iden- 

tify the appropriate quadrant of the computed angle. 
which now involves the symmetric S 
ψ 

′ 
i j 

and antisymmetric �
ψ 

′ 
i j 

tensors. Using this form, it is clear that Q 

ψ 

′ 
< 0 whenever the sec-

ond part S 
ψ 

′ 
i j 

S 
ψ 

′ 
i j 

is larger than the first part �
ψ 

′ 
i j 

�
ψ 

′ 
i j 

, and therefore

this condition identifies large-scale structures that contribute only

indirectly to the fluctuating velocity field (i.e. inactive structures). 

To link all the above quantities with the definitions of the struc-

ture tensors, we note the exact relations 

Q 

ψ 

′ = −1 

2 

C t kk 

�ψ 

′ 
ij 

�ψ 

′ 
ij 

= 

1 

2 

R 

t 
kk 

S 
ψ 

′ 
ij 

S 
ψ 

′ 
ij 

= 

1 

2 

(
D 

t 
kk + C t kk 

)
. 

(35)

Since the above relations refer to instantaneous quantities, we have

dropped the time average from the definitions of the structure

tensors (hence the superscript t ). Based on the above relations, it

should be clear that the Q 

ψ 

′ 
< 0 criterion identifies regions where

 

t 
kk 

> 0 , and hence, regions with positive values of inhomogeneity

are occupied by inactive structures. According to this connection,

Fig. 14 of Section 5 can be used to identify regions where the in-

active structures reside on average. Based on this figure, the near-

wall and centerline regions have a higher probability to host in-

active structures than the region in-between the two. In the near

wall region, turbulent kinetic energy drops to zero while the first

invariant of dimensionality and inhomogeneity do not. This indi-

cates that in this region we can find large-scale coherent struc-

tures that have low energy content. This is counter to the notion

that large-scale structures are associated with high energy content,

a link established from homogeneous arguments, where the inho-

mogeneity tensor is identically zero. 

We have developed our stream vector based Q 

ψ 

′ 
-criterion along

the lines that the traditional velocity-based Q 

u ′ -criterion was de-

veloped [16] . The velocity-based criteria are built to identify co-

herent vortex structures [9] . Such structures are extracted from re-

gions of Q 

u ′ > 0 , which reduces to �u ′ 
i j 
�u ′ 

i j 
> S u 

′ 
i j 

S u 
′ 

i j 
and therefore to

high values of the first invariant of vorticity tensor W 

t 
kk 

> 2 S u 
′ 

i j 
S u 

′ 
i j 

.

Our criterion identifies regions of �
ψ 

′ 
i j 

�
ψ 

′ 
i j 

< S 
ψ 

′ 
i j 

S 
ψ 

′ 
i j 

corresponding

to Q 

ψ 

′ 
< 0 . These arguments justify the use of inverted inequality

conditions in the two criteria, a point that should be noted. Having

this in mind, one can proceed to construct the λψ 

′ 
2 

and the �ψ 

′ 

criteria, all of which will have inverted condition symbols com-

pared to the traditional λu ′ and �u ′ velocity criteria (for details

2 
ee [9] ). Any of the new stream vector based criteria ( Q 

ψ 

′ 
< 0 ,

ψ 

′ 
2 

> 0 , �ψ 

′ 
< 0 ) could be used to identify inactive structures.

owever, we propose the use of Q 

ψ 

′ 
since it is the only one that is

xpressible directly in terms of the structure tensors and thus can

e more easily comprehended. For the same reason, Q 

ψ 

′ 
can more

asily be linked to structure-based turbulence models in order to

ensitize them to the presence of near-wall inactive structures. This

s a direction we plan to explore in the near future. 

As we will show shortly, the condition Q 

ψ 

′ 
> 0 is also useful

n that it can be used to identify large-scale structures with high

urbulent kinetic content. In this sense, the conditions Q 

ψ < 0 and

 

ψ > 0 provide a unified structure-based criterion for capturing

oth active and inactive structures. 

.3. Visualizations 

In this subsection, we use visualization criteria to identify tur-

ulence structures. For the identification of small-scale vortical

tructures we use iso-surfaces of positive values of Q 

u ′ . For ac-

ive structures we use iso-surfaces of high values of turbulent ki-

etic energy k t . For inactive structures, we use the newly devel-

ped criterion based on the iso-surfaces of negative values of Q 

ψ 

′ 
.

e show the inactive structures as extracted from both the LF and

he GF, in order to highlight the effect of the gauge choice. 

Fig. 6 represents an overview of the various types of turbu-

ence structures appearing in a fully-developed turbulent pipe flow.

he pipe domain is shown in orthogonal Cartesian and orthogonal

ylindrical coordinates. For the construction of the radial and cir-

umferential 2 axes we use the transformations: r = 

√ 

y 2 + z 2 , φ =
tan2 (z, y ) . The radial and circumferential coordinates take values

n the range [0, R ] and (−π, + π ] respectively. An artifact of the

oordinate transformations is the stretching of the structures in

he circumferential direction as we move from the wall towards

he center of the pipe. The pipe wall is illustrated with gray color.

igh/Low-speed streaks are shown with red/blue color. Vortical

tructures with right/left hand sense of rotation around the pos-

tive x -axis are shown with gray/black color. Inactive structures are

hown with green color. For the top/bottom part of Fig. 6 the LF/GF

as been used for the computation of inactive structures. In the

lectronic supplementary material one can find animations of time

onsecutive iso -surfaces of the structures shown in Fig. 6 (b) and

d). 

Focusing our attention in the near region of high-speed and

ow-speed streaks, we see an increased vortical activity around

hese structures. The generation mechanism of streaks [23,26] de-

ands the existence of vortical structures. Counter-rotating vorti-

al structures that drive fluid towards the wall (sweep event) will

enerate high-speed streaks. Due to the splatting process the high-

peed streaks have larger extent in the circumferential direction

han in the radial direction. On the other hand, counter-rotating

ortical structures that drive fluid away from the wall (ejection

vent) will generate low-speed streaks. Due to the bursting pro-

ess the low speed streaks have smaller extent in the circumferen-

ial direction than in the radial direction. 

Now we move our attention to the inactive structures. We use

oth the LF and the GF to compute the inactive structures. In the

ase of LF ( Fig. 6 a,b), the inactive structures reside beneath the

treaks as if they are the shadow of the streaks on the wall. In

he case of GF ( Fig. 6 c,d), the inactive structures are again adjacent

o the wall, but they are located on the sides of the streaks. For

he construction of the inactive structures we choose negative val-

es of Q 

ψ 

′ 
. Other Q 

ψ 

′ 
values closer to zero but still negative, will
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Fig. 6. Visualization of turbulence structures in (a,c) orthogonal Cartesian, and (b,d) orthogonal Cylindrical coordinate system. In (a,b)/(c,d) the LF/GF has been used for the 

computation of inactive structures. The pipe wall is illustrated with gray color. High/Low-speed streaks with positive/negative streamwise fluctuating velocity u ′ x are shown 

with red/blue color. The streaks are visualized using iso-surfaces of turbulent kinetic energy with value k t = 3 . 20 k max . Vortical structures with positive/negative streamwise 

fluctuating vorticity ω 

′ 
x are shown with gray/black color. The vortical structures are visualized using iso-surfaces of the Q u 

′ 
-criterion with value Q u 

′ = 0 . 18 W 

max 
kk 

. Inactive 

structures are shown with green color. The Inactive structures are visualized using iso-surfaces of the Q ψ 
′ 
-criterion with value Q ψ 

′ = −1 . 78 C max 
kk 

. (For interpretation of the 

references to color in this figure legend, the reader is referred to the web version of this article.) 

i  

t  

a  

s  

s  
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t  
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t  

i  

r  
ndicate regions around the active structures. Animation of the

ime consecutive iso-surfaces of the structures reveals that the in-

ctive structures follow the high-speed and low-speed streaks in

uch a way that they are always beneath them. This is interesting

ince the inactive structures are located in regions with lower lo-

al velocities than the streaks. This indicates the interplay between
he active and inactive structures and reveals the non-local nature

f these disturbances. 

Fig. 7 illustrates the radial locations where the active and inac-

ive structures tend to exist. The active structures are generated

n the region (R − r) + > 5 . High-speed streaks dominate in the

egion 5 < (R − r) + < 12 and low-speed streaks dominate in the
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Fig. 7. Same as in Fig. 6 but different viewpoint (vortical structures are omitted for clarity of the remaining structures). On the top/bottom figure the LF/GF has been used 

for the computation of inactive structures. The flow direction is towards the reader. The continuous line represents the pipe wall, while the following dashed lines are placed 

at (R − r) + = 5 , 12 , 30 , 50 . (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 

Fig. 8. Visualization of vortical/streaky structures in Cylindrical coordinate system (top/bottom). Translucency is used in order to observe all structures located at different 

circumferential locations. Inclination angles are shown on the structures. See also the details of Figs. 6 and 7 . (For interpretation of the references to color in this figure 

legend, the reader is referred to the web version of this article.) 
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region 12 < (R − r) + < 30 . On the other hand, the inactive struc-

tures are mainly located close to the wall. The top/bottom part of

Fig. 7 shows the inactive structures as computed via the LF/GF. In-

active structures computed via the LF occupy the region (R − r) + <
5 , while inactive structures computed via the GF are located in the

region (R − r) + < 12 . 

Representative inclination angles of streaks and vortices are

shown in Fig. 8 . It is evident that the streaks have lower inclination

angles than the quasi-streamwise vortices. The inclination angle of

streaks (more specifically of the low-speed streaks) are around 10 o ,

while for the quasi-streamwise vortices the inclination angle de-

pends highly on the radial location of the structures. Later on, we

will show that the inclination angles of the structures are in good

agreement with the rotation angles that place the structure tensors

in their principal axes (see discussion for Fig. 23 ). 

To quantify the mean streamwise extent of the streaks and the

mean separation between high-speed and low-speed streaks, Wu

and Moin [56] used two-point correlations of the streamwise fluc-
uating velocity (Figs. 29, and 31 therein). Since we have not com-

uted two-point correlations in our simulation, we use Fig. 9 to

ualitatively compare with the data of Wu and Moin [56] . The vi-

ualizations and correlations of Wu and Moin [56] suggest that

t Re τ = 180 turbulent pipe flow possesses large-scale, near-wall

tructures that are coherent over significant axial dimensions (8R

r larger). This is in agreement with our data illustrated in Fig. 9 . 

According to the literature the mean separation between high-

peed and low-speed streaks is about φ r + = 50 ∼ 60 . Close to

he wall the data of Wagner et al. [55] (Fig. 15 therein) indicate

igh-speed to low-speed streak azimuthal separation of φ r + ≈ 60 .

or channel flow at Re τ = 180 , the near-wall data of Kim et al.

25] (Fig. 23 therein) indicate spanwise separation of z + ≈ 55 . This

eans that close to the wall there must be around 18 streaks

counting both high-speed and low-speed) along the azimuthal

irection. Our data in Fig. 9 are in accordance to Wagner et al.

55] and Kim et al. [25] . 
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Fig. 9. Contour plot of the normalized streamwise fluctuating velocity component at r = 0 . 9338 R or (R − r) + = 12 . The range of the horizontal axis is x : [0, 15 R ] or x + : 
[0 , 2720] , while the range of the vertical axis is r φ : (−0 . 9338 π, +0 . 9338 π ] or φ r + : (−532 , +532] . Red/Blue color indicates regions of high/low-speed streaks. A rough 

estimation of the streamwise and circumferential extent of the streaks can be extracted from this figure. (For interpretation of the references to color in this figure legend, 

the reader is referred to the web version of this article.) 

Fig. 10. A representative schematic of the various types of structures appearing in 

a turbulent pipe flow at Re b = 5300 . The wall is marked with a thick line while the 

rest of the lines are placed at (R − r) + = 5 , 12 , 30 , 50 . The streamwise direction is 

towards the reader. Two low-speed streaks and one high-speed streak are shown 

with blue and red color respectively. Vortical structures with right/left hand rota- 

tion around the positive x -axis are shown with gray/black color. Inactive structures 

predicted by the LF/GF are illustrated with light/dark green color. (For interpreta- 

tion of the references to color in this figure legend, the reader is referred to the 

web version of this article.) 
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.4. A representative schematic of the structures 

The figures of this section highlight the spatial organization of

 representative collection of structures located in the viscous wall

egion, and allow one to understand the interaction taking place

mong the various types of structures. To assist the reader we pro-

ide in the electronic supplementary material a viewpoint anima-

ion of the schematics of Figs. 10 –12 . 

We begin with the well-known quasi-streamwise vortices,

hich have been observed both experimentally [45] and numeri-

ally [25] . The vortical structures of Fig. 10 are colored based on

heir streamwise rotational sense; i.e. gray/black color corresponds

o right/left hand rotation around the streamwise direction. For fur-

her understanding, Fig. 11 a shows the wrapping of fluctuating ve-

ocity lines around the vortical structures, which is in agreement

ith the rotational sense of these structures. In the pipe circumfer-

ntial direction, the vortical structures are organized with alternat-

ng sense of streamwise rotation. Any such pair of counter-rotating

ortices acts as a redistribution engine, either sending high-speed

uid towards the wall, thus generating a high-speed streak, or

jecting low-speed fluid further away from the wall, thus gener-
ting a low-speed streak. As a result of the splatting events high-

peed streaks are located closer to the wall, having higher extend

n the circumferential direction than in the radial. On the other

and, the ejection events place the low-speed streaks somewhat

urther away from the wall, giving them a higher extend in the ra-

ial direction than in the circumferential. 

According to Fig. 11 b the areas directly under the streaks have

he same sign of fluctuating streamwise velocity as with the

treaks. Taking into account the no-slip condition on the wall,

he fluctuating vorticity vectors become tangent to the wall and

 dominant circumferential fluctuating vorticity component is an-

icipated in the areas directly under the streaks. Furthermore, as

hown in Fig. 12 b, the areas directly under a high/low-speed streak

ust have a positive/negative circumferential fluctuating vorticity.

he opposite must hold for the areas directly above the streaks.

herefore, directly under and above the streaks, the radial com-

onent of the fluctuating vorticity remains small compared to the

ircumferential component. However, any two neighboring high-

peed and low-speed streaks tend to organize the fluid between

hem, generating significant radial fluctuating vorticity. The sign of

he generated radial fluctuating vorticity depends on the circum-

erential arrangement of the streaks, and thus alternates in sign

s one moves in the circumferential direction. Low-speed/high-

peed pairs of streaks generate positive radial fluctuating vorticity

n their in-between region, while high-speed/low-speed pairs gen-

rate negative radial fluctuating vorticity. The combined effect of

ll previous comments explains the wrapping of fluctuating vortic-

ty lines around the streaks demonstrated in Fig. 12 a. 

We proceed with the newly defined inactive structures. In

igs. 10–12 the inactive structures predicted by the LF/GF are il-

ustrated with light/dark green color. According to the GF, the

djacent to the wall inactive structures are located in areas be-

ween the streaks, where the fluctuating vorticity field is reor-

anized from a wall-tangent mode to a wall-normal orientation.

ased on Fig. 10 the shape of the GF inactive structures is lean-

ng towards the side of low-speed streaks. Fig. 12 b shows clearly

ow the GF inactive structures act as organizers of the near-wall

uctuating vorticity field. In their periphery, which reaches be-

ow the streaks, the fluctuating vorticity vectors are tangent to the

all and primarily aligned with the circumferential direction. Only
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Fig. 11. Same as in Fig. 10 but different viewpoint. In addition fluctuating veloc- 

ity lines are shown in the near region of the structures. Short fluctuating velocity 

lines with black color are attached to the inactive structures. The fluctuating ve- 

locity lines with blue/red color indicate negative/positive local streamwise fluctuat- 

ing velocity component. The bottom part of the figure illustrates only the inactive 

structures and their associated fluctuating velocity lines. Note that the pipe wall 

is illustrated with gray color. (For interpretation of the references to color in this 

figure legend, the reader is referred to the web version of this article.) 

 

 

 

 

 

 

 

 

 

Fig. 12. Same as in Fig. 10 but different viewpoint. In addition fluctuating vortic- 

ity lines are shown in the near region of the structures. Short fluctuating vorticity 

lines with black color are attached to the inactive structures. The fluctuating vor- 

ticity lines with blue/red color indicate negative/positive local streamwise fluctuat- 

ing velocity component. The bottom part of the figure illustrates only the inactive 

structures and their associated fluctuating vorticity lines. Note that the pipe wall 

is illustrated with gray color. (For interpretation of the references to color in this 

figure legend, the reader is referred to the web version of this article.) 
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u  
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i  
the head and tail of these structures have a streamwise fluctuat-

ing vorticity component. The central region of these structures ex-

tends to higher distances from the wall and has primarily wall-

normal fluctuating vorticity. The sign of the fluctuating vorticity

vector depends on the circumferential arrangement of the streaks.

A low-speed/high-speed pair of streaks generates fluctuating vor-

ticity lines splatting towards the wall, while a high-speed/low-

speed pair produces fluctuating vorticity lines ejecting from the

wall. Finally, we note that the organization of the vorticity in the
nactive structures is associated with a velocity field that lies pri-

arily in the wall-tangential plane. 

According to the LF, the adjacent to the wall inactive structures

re located exactly below the streaks. Based on Fig. 10 the radial

xtend of these structures is very small. Fig. 11 reveals a coherent

nidirectional character for the fluctuating velocity lines along the

F inactive structures, in the same direction with the one of the

treaks just above them. The same holds for the fluctuating vortic-

ty as Fig. 12 indicates. The poor choice of the LF boundary gauge
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Fig. 13. Side view (a,b) and front view (c,d) of a representative pipe section (with length �L x = 1 . 37 R and angle �φ = 65 o ) illustrating different types of structures appearing 

in a turbulent pipe flow at Re b = 5300 . In (a,c)/(b,d) the LF/GF has been used for the construction of the Q ψ 
′ 
-based structures. The streaks, one high-speed (red color) and 

two low-speed (blue color), are constructed from iso-surfaces of high turbulent kinetic energy values k t � 0. Gray translucent structures correspond to Q ψ 
′ � 0 , while green 

structures correspond to Q ψ 
′ � 0 . (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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ondition, breaks the link between the vorticity and stream vector

s one approaches the wall. As a result, the LF inactive structures

epresent merely the footprint of the streaks on the wall. They fail

o bring to focus the localized organization of the fluctuating vor-

icity field that takes place in-between the streaks. 

Animation of structures in time reveals that the inactive struc-

ures are always located in areas below the streaks (i.e. they travel

ith the same speed as the streaks). For this reason we have

amed the GF inactive structures as “vorticity crawlers” to highlight

heir roll as spatial organizers of fluctuating vorticity, and to em-

hasize the fact that they move on the wall. On the other hand,

e have named the LF inactive structures as “streak shadows”, for

bvious reasons. 

So far, we have paid attention to Q 

ψ 

′ 
< 0 as a criterion for iden-

ifying vorticity crawlers and streak shadows. However, Q 

ψ 

′ 
> 0 is

lso a useful diagnostic as it captures the active structures, i.e. the

arge-scale structures that contribute directly to the turbulent ki-

etic energy. Therefore, the instantaneous iso -surfaces of Q 

ψ 

′ 
can

e used to differentiate between active and inactive structures. For

xample, Fig. 13 highlights the spatial organization of a represen-

ative set of structures located in the viscous near-wall region, ex-

ending from the wall to y + � 50 . Two different criteria are used

or the visualization of structures. The first corresponds to high

alues of the turbulent kinetic energy k t , while the second to either

b  
ositive or negative values of Q 

ψ 

′ 
. High values of k t identify lo-

ations of high-speed and low-speed streaks, shown with red and

lue color respectively. These are located in the region 5 � y + � 50 .

n the same range, positive values of Q 

ψ 

′ 
, illustrated with translu-

ent gray color, coincide with the areas of high k t values. Evidently,

 

ψ 

′ 
> 0 captures the near-wall streaks. This holds true for both LF

 Fig. 13 a,c) and GF ( Fig. 13 b,d). Of course, below y + � 5 , negative

alues of Q 

ψ 

′ 
(shown in green color) identify regions with “inac-

ive structures” already discussed. 

. One-point turbulence structure tensors 

In the previous section, we have examined the near-wall struc-

ures using both standard visualization criteria, such as the Q 

u ′ and

 

t , as well as the newly introduced Q 

ψ 

′ 
-criterion. Having in mind

he picture of the near-wall structures, we now proceed to re-

ort the associated profiles of the one-point structure tensors. The

tructure tensors have been previously reported in a DNS of fully-

eveloped turbulent channel flow by Grigoriadis et al. [13] and

assinos et al. [21] using only the LF. Recently, Vartdal [52] has

sed the GF to compute the profiles of the structure tensors in

ully-developed channel flow, which he compared to the profiles

enerated via the LF. The focus of his work was on the difference

etween the two frameworks. The connection between the struc-
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R  
ture tensor profiles and the structures of turbulence was not ad-

dressed. 

In this section, we report for the first time the one-point struc-

ture tensors in a fully-developed turbulent pipe flow and we ex-

tract the information carried by them. We demonstrate how the

profiles of the structure tensors capture the key features of the

large-scale near-wall structures. We use both the LF and GF to

compute the structure tensors, and we demonstrate the superior-

ity of GF over LF in describing effectively the coherent structures

of turbulence. In the figures that follow, lines with/without cross

symbols represent computation using the LF/GF. We report both

the unnormalized and normalized structure tensors, but we dis-

cuss mainly the normalized ones. The normalization removes the

strong dependence on the local turbulent kinetic energy level and

brings to focus the inter-component relationships, thus leading to

a clearer physical interpretation. 

5.1. Alternative implementations and error estimates 

The calculation of the structure tensors can follow two alterna-

tive routes. One can either use their definitions or use appropri-

ate contractions of the third-rank tensor Q ijk . Analytically the two

approaches are equivalent, but numerically they involve different

levels of numerical error. The two approaches are described by the

relations 

R 

u ′ 
i j = u 

′ 
i 
u 

′ 
j 

R 

Q 
i j 

= εimp Q m jp (36)

D 

ψ 

′ 
i j 

= ψ 

′ 
n,i 

ψ 

′ 
n, j 

D 

Q,C 
i j 

= εimp Q pm j + C 
ψ 

′ 
i j 

(37)

F 
ψ 

′ 
i j 

= ψ 

′ 
i,n 

ψ 

′ 
j,n 

F Q,C 
i j 

= εimp Q jpm 

+ C 
ψ 

′ 
ji 

. (38)

For the calculation of the inhomogeneity and the third-rank ten-

sors we use 

 

ψ 

′ 
i j 

= ψ 

′ 
i,n 

ψ 

′ 
n, j 

Q i jk = −u 

′ 
j 
ψ 

′ 
i,k 

. (39)

The calculation of the inhomogeneity is unique, whereas for the

calculation of the third-rank tensor one can either use Eq. (39) or

the second half of Eq. (8) . Here, we have used only Eq. (39) be-

cause it can be shown to provide better accuracy, owing to the fact

that the velocity is identically zero on the wall. 

In the remaining part of this subsection, we use the alternative

methods given above to compute the first invariants of the struc-

ture tensors. This allows us to compare the corresponding levels of

numerical error in the stream vector computation. Once this is es-

tablished, in the following subsections we proceed to use the most

accurate method to compute the remaining profiles of the struc-

ture tensors. 

The first invariants of the structure tensors are of great signif-

icance. These invariants are important ingredients in turbulence

modeling and they are used to normalize the structure tensors.

Fig. 14 depicts the first invariant of the componentality, dimension-

ality, circulicity, and inhomogeneity tensors. The non-zero contrac-

tions of the stropholysis tensor are also presented. A single method

has been used for the computation of the stropholysis tensor con-

tractions. For the calculations of the first invariants of the Reynolds

stress, dimensionality, and circulicity, we use the two methods of

Eqs. (36) –(38) , while for the inhomogeneity we use the following

three methods 

 

ψ 

′ 
kk 

= ψ 

′ 
k,n 

ψ 

′ 
n,k 

 

ψ 

′ ,u ′ 
kk 

= D 

ψ 

′ 
kk 

− R 

u ′ 
kk 

 

Q,C,u ′ 
kk 

= D 

Q,C 
kk 

− R 

u ′ 
kk . 

(40)

Another possibility is to use: C 
ψ 

′ ,Q 
kk 

= D 

ψ 

′ 
kk 

− R Q 
kk 

, but we have con-

firmed numerically that it gives the same result as C Q,C,u ′ 
kk 

. The
ption C Q,C,Q 
kk 

= D 

Q,C 
kk 

− R Q 
kk 

is redundant because analytically is the

ame with C 
ψ 

′ 
kk 

. 

Some important conclusions follow from Fig. 14 . Considering

he velocity-based calculation of the Reynolds stress R u 
′ 

kk 
as error-

ree, then the differences between R u 
′ 

kk 
and R Q 

kk 
give an indication

f the level of the numerical errors in the stream vector computa-

ions. These errors are small throughout the pipe radius. The com-

arison for the computation of the inhomogeneity trace involves

nly three lines, since two of the four possible ways to calcu-

ate C kk give the same results (as explained above). For this rea-

on, we consider the C Q,C,u ′ 
kk 

as the method with the lowest nu-

erical errors. The two remaining methods give results that bound

he values of C Q,C,u ′ 
kk 

, and thus again give an indication on the nu-

erical errors. For the computation of dimensionality, we consider

 

Q,C 
kk 

to be the most accurate method, since it satisfies numerically

he identity C kk = D kk − R kk if the most accurate computations of

he inhomogeneity and the componentality traces are substituted,

amely C Q,C,u ′ 
kk 

and R u 
′ 

kk 
. 

.2. Interpretation of the invariants of the structure tensors 

Examination of the tensor traces offers a valuable overview of

he behavior of the structure tensors. For example, each of the

tropholysis contractions is at least one order of magnitude smaller

han the level of the second-rank tensor traces. The degree of inho-

ogeneity is large in the viscous wall region (R − r) + < 50 . This is

xpected, and is attributed to the wall effects. The small (but non-

ero) value of inhomogeneity in the outer layer is attributed to the

radually vanishing velocity gradient and to non-local effects that

nfluence the pipe centerline region. In the log-law region, the in-

omogeneity is almost zero, and thus the flow can be considered

s locally homogeneous. The inhomogeneity invariant attains neg-

tive values, as allowed by the lack of positive semi-definiteness of

 ij , while the dimensionality and circulicity contractions are iden-

ical to each other and everywhere positive. This is always true in

ny flow and geometry as their definition implies. The Reynolds

tress contraction (which is twice the turbulent kinetic energy) is

f comparable size with the contraction of dimensionality (or cir-

ulicity), except very close to the wall. In general, at the wall the

urbulent kinetic energy is always zero, while the dimensionality

an have non-zero values. It is straight forward to show that at

 wall D 

wall 
kk 

= F wall 
kk 

= C wall 
kk 

and R wall 
kk 

= 0 . Since the degree of in-

omogeneity is always large at a wall, it follows that the first in-

ariant of dimensionality or circulicity will be non-zero, rendering

hem more suitable for normalization purposes than the Reynolds

tress invariant. We also note that the footprint of the inactive

tructures is reflected in the profile of C kk , which becomes large

nd positive very close to the wall. Finally, it is worth noting the

ifferences between the LF and GF results, especially in the region

lose to the wall, where the effect of the imposed boundary condi-

ions is strongest. While the profiles are quite similar in the bulk of

he flow, the near-wall differences can have important implication

or the tuning of structure-based RANS closures (see Appendix B ). 

Next, we consider the profiles of the components of each of the

tructure tensors in light of the structure visualizations presented

n Sections 4.3 and 4.4 . In the discussion that follows, emphasis is

laced on the structure tensor profiles obtained with the GF im-

lementation, which we consider to be the superior choice. Where

ppropriate, differences between the LF-based and GF-based pro-

les are discussed. 

.3. Componentality tensor 

In Fig. 15 we report the unnormalized and self-normalized

eynolds stress tensor. For the computation of the self-normalized
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Fig. 14. (a) First invariant of componentality Eq. (36) , dimensionality Eq. (37) , circulicity Eq. (38) , and inhomogeneity Eq. (40) . (b) Non-zero contractions of the stropholysis 

tensor Eq. (12) . The results are normalized with wall units. Lines with/without cross symbols represent computation using the LF/GF. 

Fig. 15. (a) Componentality tensor Eq. (36) , normalized with wall units. (b) Self-normalized componentality tensor Eq. (41) . 
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eynolds stress tensor we use the following expression 

 i j = 

R 

u ′ 
i j 

R 

u ′ 
kk 

. (41) 

he minuscule value of R kk in the proximity of the wall gives rise

o distinct cusps in the profiles of r ij that should be disregarded

i.e. division by zero). The shear stress r xr is zero at the wall and

t the centerline, which results in a zero production at the same

ocations. Since the Reynolds stress is a measure of the componen-

ality, it is evident that at the wall the flow is two component (2 C ),

hile away from the wall the flow is three component (3 C ). At the

enterline, r rr and r φφ are indistinguishable. 

Using a Taylor series expansion for the fluctuating velocity com-

onents near the wall, it can be shown [38] that r xx and r φφ at-

ain non-zero values, while r rr and r xr attain zero values with a

uadratic and linear functional form respectively, 

r xx = (1 − α) + β ˜ r − γ ˜ r 2 + O ( ̃ r 3 ) (42) 
r rr = (γ − γ ′ ) ̃ r 2 + O ( ̃ r 3 ) (43) 

 φφ = α − β ˜ r + γ ′ ˜ r 2 + O ( ̃ r 3 ) (44) 

r xr = β ′′ ˜ r − γ ′′ ˜ r 2 + O ( ̃ r 3 ) , (45) 

here ˜ r = 1 − r/R, the constants are all positive, γ > γ ′ , and α
 0.5. These trends are captured correctly in Fig. 15 . The no-slip

oundary condition and the viscous forces in the near-wall region,

rive the tangential components of velocity to zero. The inviscid

all blocking mechanism, which acts at distances far larger than

he viscous effects, drives the wall normal velocity component to

ero faster. In the near-wall region, the energy-containing struc-

ures that dominate, are high-speed and low-speed streamwise

treaks. Since the energy is concentrated mainly on the streamwise

uctuating velocity component, r xx is considerably larger than the

 φφ . The near-wall maximum of r xx (and therefore the minimum of

 φφ) can be explained by the maximum of the shear rate parame-

er at the same location [28] . 
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Fig. 16. Turbulent kinetic energy k , pseudo dissipation ε, shear rate S , and shear 

rate parameter ST as a function of the distance form the wall. The maximum value 

of the shear rate parameter ST = 19 . 75 is located at (R − r) + = 9 . 
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Fig. 16 shows the profiles of the turbulent kinetic energy k =
1 
2 u 

′ 
i 
u ′ 

i 
, pseudo dissipation ε = νu ′ 

i, j 
u ′ 

i, j 
, shear rate S = − d u x 

dr 
, and

shear rate parameter ST = S k ε . The shear rate parameter is a di-

mensionless parameter that compares the eddy turnover time

T = 

k 
ε , to the time scale of mean deformation 

1 
S . High values of

the shear rate parameter correspond to regions of high Reynolds

stress anisotropy. For example, both ST and the Reynolds stress

anisotropy attain their maximum values at around (R − r) + = 9

(see Figs. 15 and 16 ), while both drop as one moves away from

this radial position. 

Lee et al. [28] compared instantaneous structures and statisti-

cal correlations between homogeneous shear flow and an inhomo-

geneous channel flow at comparable high shear rate parameters.

They found considerable similarities: coherent motions consisting

of regions of low-speed and high-speed fluid (streaks), elongated

in the streamwise direction and alternating in the shear/spanwise

direction. They conjectured that (a) high shear rate produces struc-

tures in homogeneous turbulence similar to the streaks that are

present in wall-bounded turbulent shear flows, and (b) high shear

rate alone is sufficient for generation of streaky structures, and

that the presence of a solid boundary is not necessary. Because

of the high shear rate, rapid distortion theory (RDT) predicts re-

markably well the anisotropic behavior of the normalized Reynolds

stress tensor at (R − r) + ≈ 9 . When the shear rate parameter is

large ST � 1, the large-scale structures of turbulence do not have

time to come into equilibrium with the mean flow. In this case the

Reynolds stresses depend upon the total shear St , and thus the tur-

bulence has a viscoelastic-like character. The appropriate theory in

this limit is the RDT, where the turbulence-turbulence interactions

are negligible; turbulence is affected mostly by the mean flow and

not by the turbulence itself. To obtain the RDT anisotropy levels of

the normalized Reynolds stress tensor we have used the Particle

Representation Model (PRM) [19] . The PRM model is exact in the

homogeneous inviscid RDT limit. For a homogeneous rapid plane

shear mean flow (which corresponds to a mean deformation ten-

sor G i j = u i, j = −Sδi, 1 δ j, 2 ) the PRM predictions are shown Fig. 17 .

The Reynolds stress components at St = 19 . 75 compare remarkably

well with the respective values of Fig. 15 at (R − r) + ≈ 9 corre-

sponding to ST = 19 . 75 . Lee et al. [28] showed similar agreement

between channel flow and DNS of homogeneous rapid shear flow
note that the PRM was not developed back then). We will come

ack to Fig. 17 to discuss the dimensionality results. 

Lee et al. [28] also observed that the shear rate in the loga-

ithmic layer of wall-bounded turbulent flows compares well to

he shear rate used in the slow homogeneous shear case in the

NS of Rogers and Moin [43] . In these simulations, the authors did

ot observe elongated streak-like structures, but instead found the

resence of hairpin vortices. The identification of quasi-streamwise

ortical structures in these studies is consistent with the trends

n Fig. 15 . Away from the rapid shear location (R − r) + > 9 , the

treamwise fluctuating velocity decreases while the secondary fluc-

uating velocities increase, indicating that the structures transition

rom a jetal to a vortical character as one moves away from the

all and into the logarithmic layer. 

For comparison purposes between the normalized structure

ensors, we adopt the first invariant of dimensionality as the com-

on normalization factor. To this end we construct a second def-

nition for the normalized Reynolds stress (distinguishable by the

ver-hat) 

ˆ 
 i j = 

R 

u ′ 
i j 

D 

Q,C 
kk 

. (46)

n Fig. 18 we compare the normalized Reynolds stress ˆ r i j as com-

uted by LF and GF. Note that the normalization factor D kk is solely

esponsible for the differences between the LF and GF. At the wall,

ll components drop to zero since the dimensionality normaliza-

ion factor is non-zero. The dominant component of the Reynolds

tress tensor is the R xx , which corresponds to the fraction of tur-

ulent kinetic energy found in streamwise fluctuations. When nor-

alized by R kk it attains its maximum value at (R − r) + ≈ 9 (see

ig. 15 ), while when normalized by D kk the location of the max-

mum shifts to (R − r) + ≈ 12 for the LF, and to (R − r) + ≈ 17 for

he GF (see Fig. 18 ). Note that the strong streamwise jetal charac-

er prevails over the streamwise vortical character throughout the

ipe radius ( r xx � r rr , r φφ). 

.4. Inhomogeneity tensor 

We proceed with the normalized inhomogeneity, 

ˆ 
 i j = 

C 
ψ 

′ 
i j 

D 

Q,C 
kk 

. (47)

ote, that ˆ c i j is non-symmetric and thus all nine components are

nique. The profiles of Fig. 19 give a measure of the relative impor-

ance of inhomogeneity effects throughout the pipe radius. Recast-

ng the definition of inhomogeneity into the form C i j = ( ψ 

′ 
i 
ψ 

′ 
k, j 

) ,k 
nd noticing that for any set of i, j the summation index k will

un over the radial inhomogeneous direction, we can expect non-

ero values even for C xx and C φφ (i.e. the elements of inhomogene-

ty with indices in the purely homogeneous directions). This is in

nalogy with the flow field, where all velocity components (with

omogeneous or inhomogeneous indices) are affected by the pres-

nce of the walls. 

It has been shown by Kassinos and Reynolds [18] , that at the

all C wall 
i j 

= C wall 
ji 

= D 

wall 
i j 

= F wall 
i j 

. One can easily prove these equal-

ties by simply noticing that at the wall ψ 

′ wall 
i, j 

= ψ 

′ wall 
j,i 

(i.e. the

tream vector definition, along with the zero velocity at the wall

mply this definition). The equality of inhomogeneity and dimen-

ionality at the wall can help us understand why ˆ c wall 
xx � ˆ c wall 

φφ
�

ˆ  wall 
rr . As it has be shown through the visualizations, the near-

all inactive structures (i.e. vorticity crawlers and streak shad-

ws) have large streamwise extent with a comparably small size

n the circumferential and radial directions. The shape of these

tructures is described well by the dimensionality components as
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Fig. 17. The PRM (which is exact in the homogeneous RDT limit) is used to obtain the evolution of the self-normalized (a) Reynolds stress and (b) dimensionality components. 

The case represents a homogeneous rapid plane shear mean flow which corresponds to the mean deformation tensor G i j = u i, j = −Sδi, 1 δ j, 2 . Isotropic state is used as initial 

condition for the Reynolds stress and dimensionality tensors. The vertical dashed lines are located at total shear St = 19 . 75 , same as the maximum value of the shear rate 

parameter in the current DNS pipe flow. 

Fig. 18. Componentality tensor normalized by the first invariant of dimensionality 

Eq. (46) . Lines with/without cross symbols represent computation using the LF/GF. 
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ˆ 
 

wall 
xx � ˆ d wall 

φφ
� 

ˆ d wall 
rr (see the next subsection), and this explains the

nhomogeneity values at the wall. 

According to Kassinos and Reynolds [18] and Kassinos et al.

21] , it can be shown analytically that ˆ c center 
rr = ˆ c center 

φφ
at the pipe

enterline, and that ˆ c wall 
rr = ˆ c wall 

φφ
+ ̂  c wall 

xx at the wall. This is consis-

ent with the computational results of Fig. 19 . As expected, ˆ c rr and

ˆ  φφ are large in the near-wall region (R − r) + < 30 , indicating a

trong degree of inhomogeneity. At the pipe centerline small levels

f inhomogeneity persist, which can be attributed to the gradual

anishing of the shear rate parameter ST as the pipe centerline is

pproached (see Fig. 16 ). A gradual change of the shear rate pa-

ameter mimics a near-wall region. 

It is easier to appreciate the relative importance of the near-

all and centerline inhomogeneity values by looking at the un-

ormalized profiles of Fig. 19 a. We note that when using LF/GF,

 

+ 
rr = C + 

φφ
≈ 0 . 215 / 0 . 153 at the centerline, while C + rr ≈ 1 . 488 / 1 . 533 ,
 

+ 
φφ

≈ 1 . 416 / 1 . 448 at the wall. The trends of the unnormalized pro-

les of inhomogeneity are similar with the normalized ones. It is

oteworthy that, in the adjacent to the wall region, the LF leads to

 sharper and stronger local minimum than what GF leads to. Also,

n average, the values obtained via LF have higher levels than the

nes obtained by GF. These effects are attributed to the unphysical

oundary conditions of LF which introduce inhomogeneous resid-

als. 

It is important to point out the almost zero inhomogeneity in

he log-law region, which indicates that the flow will have locally

omogeneous characteristics. Local homogeneity in the log-region

as been noted in the past, for example by Rogers and Moin [43] .

he inhomogeneity tensor provides a quantitative measure of this

ffect. The approximate vanishing of ˆ c i j means that in the log-

egion one-point statistics, like R ij , D ij and F ij , satisfy constitutive

quations normally associated with homogeneous turbulence. This

s an important remark for turbulence modeling. 

.5. Dimensionality tensor 

For the computation of the normalized dimensionality we use

he following relation 

ˆ 
 i j = 

D 

Q,C 
i j 

D 

Q,C 
kk 

, (48) 

nd in Fig. 20 we compare the LF and GF results. The various

ypes of structures that are prevalent in a specific region of a tur-

ulent flow provide a distinct contribution to the instantaneous

imensionality components. For example, an elongated structure

ligned with a specific direction will have a small value for the

orresponding dimensionality component. The statistical signature

f the structures will in general be imprinted on the averaged one-

oint dimensionality tensor as well, which describes the directions

f statistical independence of the turbulence. As is evident from

ig. 20 , over the entire pipe radius the streamwise component ˆ d xx 

s smaller than 

ˆ d rr and 

ˆ d φφ, indicating the existence of structures

hat are preferentially elongated in the streamwise direction. 

As previously indicated, the maximum shear rate parameter

T = 19 . 75 corresponds to the radial location (R − r) + = 9 . At this
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Fig. 19. (a) Inhomogeneity tensor Eq. (39) , normalized with wall units. (b) Inhomogeneity tensor normalization by the first invariant of dimensionality Eq. (47) . Lines 

with/without cross symbols represent computation using the LF/GF. 

Fig. 20. (a) Dimensionality tensor Eq. (37) , normalized with wall units. (b) Self-normalized dimensionality tensor Eq. (48) . Lines with/without cross symbols represent 

computation using the LF/GF. 
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radial location, RDT predicts remarkably well the levels of the self-

normalized Reynolds stress components. The same holds true for

the dimensionality. A comparison of the self-normalized dimen-

sionality components at (R − r) + = 9 with the PRM predictions of

Fig. 17 , reveals that the results of GF are very close to the PRM pre-

dictions (this is not the case for the LF). Apparently, despite prox-

imity to the wall, the morphology of the structures at the location

of maximum ST is strikingly similar to that obtained under rapid

homogeneous shear. The above comparison provides quantitative

support to the qualitative observation that was first made by Lee

et al. [28] . The implications for turbulence modeling are easy to

imagine; for example, in structure-based models, RDT is used as

guide for modeling the structure tensors even in inhomogeneous

flows. 

To further explain the GF profiles of Fig. 20 , we divide the ra-

dial distance into regions according to the mapping of structures

shown in Figs. 7 and 10 . In the viscous sublayer (R − r) + < 5 , the

turbulent kinetic energy ( k = 

1 
2 R ii ) attains its smallest values (see
ig. 14 or Fig. 16 ) and thus all scales collapse to the Kolmogorov

nd viscous scales. Therefore, the structure tensors in this region

o not represent the active structures. Instead, as it has been

hown earlier, positive values of C kk indicate the existence of in-

ctive structures. In the viscous sublayer C kk ≈ D kk (see Fig. 14 ).

hus, in this region, the dimensionality tensor reflects the shape of

he inactive structures. As revealed by our visualizations, the near-

all inactive structures, i.e. the vorticity crawlers , tend to be long in

he streamwise direction, fat in the azimuthal direction, and short

n the radial direction. This description is consistent with the near-

all dimensionality values ˆ d GF 
xx � ˆ d GF 

φφ
< 

ˆ d GF 
rr of Fig. 20 . In the case

f LF, the near-wall dimensionality values ˆ d LF 
xx � ˆ d LF 

rr < 

ˆ d LF 
φφ

do not

xactly describe the structural shape of the streak shadows. This

nconsistency can be traced back to the boundary conditions used

n the LF, which affect the dimensionality profiles over the entire

ipe radius. Note though, that for (R − r) + > 5 (i.e. away from the

ource region of inactive structures) the trends of the dimension-
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lity profiles between LF and GF are the same. When 

ˆ d GF 
i j 

increases

r decreases the same does ˆ d LF 
i j 

. 

We proceed with the buffer layer 5 < (R − r) + < 30 . In this re-

ion, the turbulent kinetic energy obtains its maximum values

nd overtakes C kk , and thus the dimensionality shows the struc-

ural shape of the active structures. In turbulent channel flow

t Re τ = 180 , quadrant analysis (see [25] , Fig. 16 therein) reveals

hat y + = 12 is the point of equal prevalence of sweep and ejec-

ion events, with sweep events being dominant below and ejec-

ion events above this value. Since ejections and sweeps produce

urbulent kinetic energy their signature is captured by the struc-

ure tensors. To explain the dimensionality profiles, we subdivide

he buffer layer into two regimes: 5 < (R − r) + < 12 and 12 < (R −
) + < 30 . In the regime of sweeps, high-speed fluid impinges to-

ards the wall through the splatting process. The sweeps have the

endency to increase the circumferential extent of the high-speed

treaks at the expense of reducing their radial extent. This ex-

lains the reduction of ˆ d φφ and the increase of ˆ d rr in the regime of

weeps. On the other hand, in the regime of ejections, low-speed

uid is ejected away from the wall through the bursting process.

he ejections have the tendency to increase the radial extent of

he low-speed streaks at the expense of reducing their circumfer-

ntial extent. This explains the increase of ˆ d φφ and the decrease

f ˆ d rr in the regime of ejections. Both high-speed and low-speed

treaks have very long streamwise extent and this is imprinted in

he low value of ˆ d xx . 

Now that the bulk of the regimes (R − r) + < 5 , 5 < (R − r) + <
2 , and 12 < (R − r) + < 30 is understood, we concentrate on the

ransition points (R − r) + = 5 , and (R − r) + = 12 . Our visualiza-

ions show that vorticity crawlers have similar aspect ratios to

hat of high-speed streaks, with the latter having more profound

tructural anisotropy. This is consistent with the linear trends of

F profiles at (R − r) + = 5 . As concerning the LF, our visualiza-

ions show that the high-speed and low-speed streaks in the re-

ion (R − r) + > 5 are always associated with inactive structures

i.e. streak shadows) that are placed with mirror symmetry in the

egion (R − r) + < 5 . This explains the mirroring effect of ˆ d LF 
φφ

and

ˆ 
 

LF 
rr at (R − r) + = 5 . Now at (R − r) + = 10 we observe, for both LF

nd GF, a local minimum for ˆ d φφ and a local maximum for ˆ d rr .

hese extrema are induced by the increasing occurrence of low-

peed streaks in the area (R − r) + > 12 , which have different shape

han the high-speed streaks. 

Note that ˆ d xr is small but not exactly zero; this indicates that

he streamwise extent of the streaks is slightly lifted up with re-

pect to the wall. The rotation angle at each radial location needed

o take the local dimensionality tensor to its principal axes, rep-

esents this inclination angle (see Fig. 23 ). In the range 5 < (R −
) + < 30 , the inclination angle θ is less than 10 o . This is coincident

ith the shallow inclination angles of low-speed and high-speed

treaks. Based on this analysis it is evident that the dimensionality

ensor captures the structural features of the streaks. 

As we enter the log-law region the ˆ d xx increases to significant

alues. This indicates that the streamwise extent of the structures

s significantly reduced. The difference between the ˆ d rr and 

ˆ d φφ

omponents is also reduced, giving evidence of structures with

oughly circular cross-section. The inclination angle in the region

0 < (R − r) + < 100 varies almost linearly between the values 8 o <

< 13 o . This is consistent with the existence of quasi-streamwise

ortices that have a smaller streamwise extent and higher inclina-

ion angles than the streaks. As we move further into the outer

egion (R − r) + > 100 , the inclination angles start to drop till they

each a zero value at the pipe centerline. In this region, ˆ d xx is only

oderately lower than 

ˆ d rr and 

ˆ d φφ . This structural signature is

a  

l  
onsistent with the presence of large-scale turbulent bulges in the

uter layer of turbulent flows. 

.6. Circulicity tensor 

For the normalized circulicity we use the following relation 

ˆ f i j = 

F Q,C 
i j 

D 

Q,C 
kk 

, (49) 

nd in Fig. 21 we compare the LF and GF results. To explain the

rofiles of Fig. 21 we divide the radial distance into the same re-

ions as used for the examination of dimensionality. In the vis-

ous sublayer (R − r) + < 5 , where all scales collapse, the circulic-

ty describes the inactive structures. According to the visualizations

f Fig. 12 , vorticity crawlers are characterized by weak stream-

ise and equally strong radial and azimuthal fluctuating vorticity.

his coherent vorticity of crawlers is identified by the circulicity

s ˆ f GF 
xx � ˆ f GF 

φφ
≈ ˆ f GF 

rr . In the case of LF, the near-wall circulicity val-

es ˆ f LF 
xx � ˆ f LF 

φφ
< 

ˆ f LF 
rr are not consistent with the fluctuating vor-

icity characterization of streak shadows (see Fig. 12 ). This is at-

ributed to the poor choice of the LF boundary gauge condition,

hich breaks the link between the vorticity and stream vector.

he mirroring effect of ˆ f LF 
φφ

and 

ˆ f LF 
rr at (R − r) + = 5 , is attributed

o the streaks and their associated streak shadows. Nevertheless,

or (R − r) + > 5 (i.e. away from the source region of inactive struc-

ures) the trends of the circulicity profiles between LF and GF are

he same. When 

ˆ f GF 
i j 

increases or decreases the same does ˆ f LF 
i j 

. 

As previously indicated, the maximum shear rate parameter

T = 19 . 75 corresponds to the radial location (R − r) + = 9 . As we

ave seen, at this radial location, RDT predicts remarkably well

oth the self-normalized Reynolds stress and dimensionality com-

onents. At the same radial location, the GF inhomogeneity in-

ariant C kk is zero, which indicates that the structure tensors sat-

sfy constitutive equations normally associated with homogeneous

urbulence, i.e. C i j = 0 , D kk = F kk = R kk , and r i j + d i j + f i j = δi j . It

s therefore not surprising that at (R − r) + = 9 , the GF circulicity

omponents also correlate very well with the PRM predictions (not

hown). 

The rapid change of the streamwise fluctuating velocity below

he streaks, generates a high shear area with increased azimuthal

uctuating vorticity. For this reason, ˆ f φφ increases at the expense

f ˆ f rr in the first part of buffer layer, 5 < (R − r) + < 12 . On the

ther hand, the area between a pair of streaks is characterized

gain by high shear, but with increased radial fluctuating vortic-

ty. This explains the increase of ˆ f rr at the expense of ˆ f φφ in the

econd part of buffer layer, 12 < (R − r) + < 30 . 

The rapid increase of ˆ f xx in the buffer layer implies growth

f streamwise circulation. The fluid motion around the quasi-

treamwise vortical structures generates streamwise vorticity, 

hich activates the ˆ f xx component. The splatting and busting pro-

esses of streaks demands the existence of quasi-streamwise vorti-

al structures, in order for the fluid to move away and towards the

all. This agrees with the high values of ˆ f xx away from the pipe

all. It is clear that ˆ f xx is an effect of streamwise vortical struc-

ures, while ˆ f rr and 

ˆ f φφ are an effect of streamwise streaks. We

an argue that the streaks are more energetic than the vortices

ince ˆ f xx < 

ˆ f φφ, ˆ f rr . 

The non-zero value of ˆ f xr indicates that the axis of the stream-

ise vortices is actually lifted up and at an angle relative to the

all; this justifies the use of the term “quasi-streamwise vortices”.

he rotation angle at each radial location needed to take the local

irculicity tensor to its principal axes, represents this inclination

ngle (see Fig. 23 ). For the LF the inclination angle θ increases

inearly between the values 7 o < θ < 25 o for the radial distances
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Fig. 21. (a) Circulicity tensor Eq. (38) , normalized with wall units. (b) Circulicity tensor normalization by the first invariant of dimensionality Eq. (49) . Lines with/without 

cross symbols represent computation using the LF/GF. 

Fig. 22. (a) Vorticity tensor normalized with wall units. (b) Self-normalized Vorticity tensor. Comparison between our data (denoted by “S”) and the data of Fukagata and 

Kasagi [12] (denoted by “F”). The subfigure is adopted from the work of Kim et al. [25] (Fig. 15 therein) and represents the average location of the quasi-streamwise vortices 

from the wall. The rotational direction is such that the streamwise fluctuating vorticity is positive. The opposite rotational direction has equal probability of appearance. 
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5 < (R − r) + < 30 . In the range 30 < (R − r) + < 70 , the inclination

angle increases again monotonically (but at a slower rate) between

the values 25 o < θ < 33 o . The inclination angle drops in the range

(R − r) + > 70 . For the GF the inclination angles are 5 o ∼ 10 o higher

in the viscous wall region. As the centerline is approached the dif-

ferences of the two frameworks become smaller. The angles of GF

are in better agreement with the visualizations of Fig. 8 . 

5.7. Vorticity tensor 

As already explained, the circulicity tensor represents the large-

scale coherent circulation. For further understanding of circulic-

ity tensor, we compare with the small-scale vorticity tensor. In

Fig. 22 , we report the non-normalized W i j = ω 

′ 
i 
ω 

′ 
j 

and normal-

ized w i j = 

W i j 

W kk 
vorticity tensor components. Our data are compared

with the data of Fukagata and Kasagi [12] . Note that they did not

report the values for W xr . While the data for W xx are in good
greement at the wall, this is not the case for W φφ . At the wall

(ω 

′ wall 
x ) 2 = 

( 

∂u ′ 
φ

∂r 

∣∣
r= R 

) 2 

and (ω 

′ wall 
φ

) 2 = 

(
∂u ′ x 
∂r 

∣∣
r= R 

)2 

, thus both vorticity

omponents depend on radial derivatives. Our grid spacing normal

o the wall is smaller than the one of Fukagata and Kasagi [12] .

lso our circumferential spacing is smaller, and the streamwise ex-

ent of our domain is larger. All the previous comments indicate

hat our data should be more accurate than the data of Fukagata

nd Kasagi [12] . In any case, the normalized vorticity tensor com-

onents are in good agreement. 

At the wall, it can be shown that r wall 
xx = w 

wall 
φφ

and r wall 
φφ

= w 

wall 
xx .

ur data satisfy these relations and thus they are consistent. Since

 

wall 
xx > r wall 

φφ
, the aforementioned relations indicate that W 

wall 
φφ

>

 

wall 
xx . The high value of W 

wall 
φφ

is merely an effect of high stream-

ise fluctuating velocity shear generated between the wall and the

treaks. The maximum of W rr is located at (R − r) + = 15 , exactly
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Fig. 23. The rotation angles θR , θD , θ F , and θW , that transform respectively the R u 
′ 

i j 
, 

D Q,C 
i j 

, F Q,C 
i j 

, and W ij to their principal axes (based on right hand rotations around the 

positive φ-axis). Lines with/without cross symbols represent computation using the 

LF/GF. 
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here R xx obtains its maximum value. This is not a coincidence

ince W rr is an effect of shear generated in the region between ad-

acent high-speed and low-speed streaks. The computed results of

 xx show a local minimum at (R − r) + = 5 and a local maximum

t (R − r) + = 20 . Moser and Moin [34] attributed this behavior to

he existence of streamwise vortices. As they explained the loca-

ion of local maximum of W xx corresponds to the average location

f the center of streamwise vortices, while the local minimum is

aused by the streamwise fluctuating vorticity with opposite sign

reated at the wall because of the no-slip boundary condition. To

laborate this we have included a subfigure schematic in Fig. 22 .

he schematic is adopted from Kim et al. [25] (Fig. 15 therein) and

t represents a near-wall vortical structure. As Kim et al. [25] ex-

lain, in a single realization the streamwise fluctuating vorticity

ust become zero somewhere between the center of the vortex

nd the wall, but on the average its rms value would have a local

inimum at the average location of the edge of the vortex. There-

ore, the streamwise vortices are located at (R − r) + = 20 with ra-

ius ρ+ = 15 . In the outer layer (R − r) + > 50 the values of the

nnormalized vorticity tensor components drop significantly. 

We proceed with the normalized vorticity tensor. If we exclude

he near viscous sublayer region (R − r) + < 10 , the normalized vor-

icity tensor components w xx and w xr have a remarkable resem-

lance with the respective components of circulicity. The same

olds true for the other two vorticity tensor components, w rr and

 φφ , which show a similar resemblance to the respective circulic-

ty components, ˆ f rr and 

ˆ f φφ (at least for the GF). This is interesting

ince one would think of w ij as being a small-scale quantity and

f f ij as being large-scale. The fact that the two behave similarly

ndicates that the streamwise vortical eddies have strong coher-

nce across scales. This explains why small-scale velocity gradient

ased criteria, such as the Q 

u ′ , λu ′ 
2 

, and �u ′ , are capable of identi-

ying coherent vortices which are also found in visualizations from

ther large-scale high-energy based methods, such as the Proper

rthogonal Decomposition analysis. As explained, in the near-wall

iscous sublayer region, the circulicity tensor describes the inactive

tructures, while away from this region it characterizes the active

tructures. On the other hand, note that the vorticity tensor has a

ingle meaning over the entire pipe radius (it represents the vor-

icity statistics). The ability of the circulicity to capture both types

f structures (versus the single meaning of the vorticity) explains
ifferences in the behavior of the two tensors in the near-wall vis-

ous sublayer region. 

.8. Rotation angles to principal axes 

Fig. 23 compares the rotation angles, that transform the respec-

ive tensors to their principal axes, as a function of the distance

rom the wall. A non-zero rotation angle is obtained whenever the

r component of a tensor is non-zero. These angles give a mea-

ure of the mean inclination angle (from the wall) of the associated

tructures. 

We note a sharp change in θW at (R − r) + ≈ 5 , which hap-

ens because near this radial location the components W xx and

 rr change their relative relation. However, away from this partic-

lar location, θW and θ F have similar radial functional forms and

omparable value and this is consistent with the notion of coher-

nce across scales that was introduced above. The rotation angles

hat place the structure tensors in their principal axes are in good

greement with the inclination angles of the structures (see Fig. 8 ).

pecifically, the rotation angle θD correlates well with the low in-

lination angles of the streaks, while the rotation angle θW agrees

ith the inclination angles of the quasi-streamwise vortices. 

.9. Homogenized tensors 

The one-point structure tensors contain the average structural

nformation of turbulence and thus are well-suited for one-point

urbulence modeling. In turbulence models, such as the ASBM, the

omogenized tensors D 

cc 
i j 

and F cc 
i j 

are modeled directly since little

s known on how to model C ij in general flows. The homogenized

ensors can be calculated by the gradients of the stream vector Eq.

7) , or using the third-rank tensor Eq. (10) . The method that in-

olves the third-rank tensor proves to be more accurate (i.e. at the

all the rr and φφ components are exactly zero only for the afore-

entioned method). To this end we use the following normaliza-

ions 

ˆ 
 

cc 
i j = 

D 

cc Q 
i j 

D 

Q,C 
kk 

(50) 

ˆ f cc 
i j = 

F cc Q 
i j 

D 

Q,C 
kk 

. (51) 

ig. 24 shows the profiles of these normalized homogenized ten-

ors. Their wall values are zero (same as ˆ r i j ) and they have the

ame trace with the Reynolds stress: D 

cc 
kk 

= F cc 
kk 

= R kk . The only

rawback of these modified tensors is that their diagonal compo-

ents can become negative, since they are no longer positive semi-

efinite. In fact, this is the case for ˆ d cc 
rr and 

ˆ f cc 
φφ

as computed with

he LF in the region (R − r) + < 5 . It is interesting to note that this

oes not happen for the GF. This is another indication that the GF

s more appropriate for turbulence modeling than the LF. For ex-

mple, in the ASBM model the diagonal components of the ho-

ogenized tensors are built such that they are never negative. 

.10. Stropholysis tensor 

Another important structure tensor is the stropholysis tensor

 

∗
ijk 

. It contains information on the turbulence structure that is

ot included in the other second-rank tensors. It is a crucial in-

redient for modeling the rapid pressure-strain tensor appearing

n the Reynolds stress evolution equations. It is intimately con-

ected with the effects of mean and frame rotation. Poroseva et al.

39] developed a Structure-Based turbulence Model (namely the Q-

odel) using the stropholysis tensor. It was found that this model

s able to predict accurately the turbulent flow in a pipe at various
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Fig. 24. (a) Homogenized dimensionality tensor normalization by the first invariant of dimensionality Eq. (50) . (b) Homogenized circulicity tensor normalization by the first 

invariant of dimensionality Eq. (51) . Lines with/without cross symbols represent computation using the LF/GF. 

Fig. 25. (a) Stropholysis tensor Eq. (12) , normalized with wall units. (b) Stropholysis tensor normalized by the first invariant of dimensionality Eq. (52) . Lines with/without 

cross symbols represent computation using the LF/GF. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

o  

s

6

 

c  

t  

b  

a  

o  

t  

p  

c  

t  

g  

L  
Reynolds numbers and under stronger rotation than what is possi-

ble with the Reynolds Stress Transport Models (RSTMs). For further

development of the Q-model the profiles of the stropholysis tensor

are needed. For this reason, in Fig. 25 we report the profiles of the

normalized stropholysis tensor 

ˆ q ∗i jk = 

Q 

∗
i jk 

D 

Q,C 
kk 

. (52)

Only ˆ q ∗
xxφ

, ˆ q ∗
r r φ

, ˆ q ∗
φφφ

, ˆ q ∗
xrφ

, out of the nine independent com-

ponents of the fully symmetric ˆ q ∗
i jk 

, are significantly energized.

The maximum value of the ˆ q ∗
i jk 

tensor is one order of magnitude

smaller than the maximum values of the second-rank structure

tensors. The non-zero components of ˆ q ∗
i jk 

contribute to the rapid

pressure-strain-rate term. Note that the ˆ q ∗
xxφ

is roughly equal to the

negative of ˆ q ∗
φφφ

, which indicates a transfer of energy from R φφ to

R xx (for more details and explanation see [21] ). Note that the pro-

files obtained via the GF have a simpler functional form than the
nes obtained via the LF. This signifies less effort in modeling the

tropholysis tensor under the GF. 

. Conclusions and future plans 

We have used Direct Numerical Simulations, along with our re-

ently developed computational framework for the calculation of

he fluctuating stream vector [48] , to compute the one-point tur-

ulence structure tensors in a fully-developed turbulent pipe flow

t bulk Reynolds number Re b = 5300 . We demonstrated that the

ne-point structure tensors lack gauge invariance, and therefore,

hat the proper choice of a gauge is very important for the inter-

retation of the tensors. We have shown that the boundary gauge

hoice made in the General Framework preserves the meaning at-

ached to the structure tensors under homogeneous turbulence ar-

uments. In this sense, the General Framework is superior to the

imited Framework, used in earlier studies, and leads to a more
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eaningful interpretation of the structure tensor profiles in near-

all flows. 

We have introduced a new structure identification criterion

ased on the second invariant of the fluctuating stream vector

radient ( Q 

ψ 

′ ≡ − 1 
2 ψ 

′ 
i, j 

ψ 

′ 
j,i 

) that allows extraction of large-scale

tructures with either very low or very high turbulent kinetic en-

rgy content. Using this criterion we have identified the “vorticity

rawlers”. These are large-scale structures of low turbulent kinetic

nergy content that populate the region below the high-speed and

ow-speed streaks. They are localized in the spanwise (circum-

erential direction) in the areas in-between the streaks. Vorticity

rawlers move with the same speed as the streaks and they cor-

espond to regions below the streaks where the vorticity field is

eorganized from wall-tangential alignment to a wall-normal ori-

ntation. The wall-normal alignment can be of positive or nega-

ive sign depending on the pair of streaks (high-speed - low-speed

r low-speed - high-speed). Thus, vorticity crawlers correspond to

vents in the vorticity field that are caused by the combined ac-

ion of near-wall streak pairs; these vorticity events mimic the

platting and ejection events in the velocity field that take place

t higher distances from the wall, as result of the combined ac-

ion of vortex pairs. Thus, one can think of a yin-yang sequence of

vents: the vortex structures organizing the velocity below them

nd then the velocity structures organizing the vorticity field just

elow them. The identification of the vorticity crawlers in the re-

ion y + ≤ 10 completes the picture of the near-wall and extreme-

ear-wall structures. In the past, the near-wall strong radial vari-

tion of the one-point structure tensors could only be attributed

oosely to the effect of boundary conditions. The emerging view

f large-scale structure organization near the wall allows a more

recise interpretation of the tensor profiles. 

Apart from its significance for flow visualization, the identifica-

ion of inactive structures (i.e. vorticity crawlers) is important for

he near-wall implementation of structure-based models (SBMs),

nd we expect that it will lead to improvements in the near-wall

reatment in SBMs, such as the ASBM. For this purpose, we are

urrently carrying fresh simulations designed to identify the sepa-

ate contributions of active and inactive structures to the near-wall

alues of the Reynolds stresses and the other one-point structure

ensors [47] . For this purpose, we are utilizing conditional averag-

ng based on the newly derived Q 

ψ -criterion. We suspect that ac-

ounting for the presence of the vorticity crawlers could lead to

mproved near-wall RANS closures in general. Furthermore, a very 

nteresting application of the Q 

ψ 

′ 
-criterion, would be to use the

umerical databases of square [37] and rectangular [54] turbulent

uct flows, and try to further pinpoint the mechanisms responsi-

le for the formation of Prandtl’s secondary flow of second kind.

ANS models based on the Boussinesq approximation are unable

o predict such secondary flows, which have an important effect

n a wide range of industrial applications. SBMs able to account

or the formation of these secondary flows would be of great rele-

ance to the community. 

Finally, we stress that the current work has been performed in

he context of low turbulent Reynolds numbers. This choice was

riven by our interest in developing SBMs to be used for the pre-

iction of pulmonary airflow in the human lungs, which is clas-

ified in the regime of low turbulent Reynolds numbers. The ap-

lication of our Q 

ψ 

′ 
-criterion at much higher Reynolds numbers is

ertainly in our interests. In this direction, we have initiated Di-

ect Numerical Simulations using the 6th-order compact finite dif-

erence cylindrical code of Boersma [4,5] . Clearly, the comparison

etween the low- and high-Reynolds number flows will provide

aluable information for the near-wall structure-based turbulence

odeling. In addition, at the high Reynolds numbers it will be in-

eresting to describe the profiles of the structure tensors, in light
f the vortex clusters (velocity gradient discriminant based struc-

ures) of del Álamo et al. [8] and the Q events (Reynolds shear

tress based structures) of Lozano-Durán et al. [31] , as well as their

volution in time [30] . 
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ppendix A. Pressure gradient controller 

To simulate a fully-developed turbulent pipe flow, it is stan-

ard practice to assume periodicity at the inlet and outlet part of

he considered finite pipe geometry. In doing so, a driving force

namely the pressure gradient) must be specified in order to put

nergy into the system. Without this term the fluid is stagnant.

here are two methods on how to specify the pressure gradient:

ither (a) by simply setting it as a constant number in order to fix

he mean wall shear stress, or (b) by adjusting it in time in order

o keep the volumetric flow rate constant. 

The first method leads to a constant turbulent Reynolds number

or Kármán number) 

e τ = 

u τ R 

ν
(A.1) 

here u τ is the friction velocity 

 τ = 

√ 

τw 

ρ
τw 

≡ −νρ
d u x 

dr 

∣∣∣
r= R 

= −1 

2 

R 

d p w 

dx 
. (A.2)

he above equation relates the time averaged wall shear stress in

he streamwise direction τw 

, with the time averaged pressure gra-

ient at the wall d p w 
dx 

, in the fully-developed state. However, one

eeds a method to obtain an estimate of τw 

. For a turbulent pipe

ow, the mean velocity profile is approximated by von Kármán’s

log-law” relation 

u x (r) 

u τ
≈ 1 

0 . 41 

ln 

(
u τ (R − r) 

ν

)
+ 5 . 0 , (A.3)

rom which only approximate expressions, relating the pressure

rop to the bulk velocity u b or the bulk Reynolds number Re b , can

e extracted, 

u b 

u τ
≈ 1 

0 . 41 

ln ( Re τ ) + 1 . 34 (A.4) 

https://ctr.stanford.edu/research-data
http://thtlab.jp/DNS/dns_database.html
http://dx.doi.org/10.1016/j.compfluid.2016.10.010
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Fig. A1. Bulk velocity deviation from the reference value, and pressure gradient as 

calculated by the PID controller. 
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1 √ 
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≈ 2 . 00 log 

(
0 . 40 Re b 

√ 

f turb 

)
f turb ≡ −d p w 

dx 

D 

1 
2 
ρu 

2 
b 

= 

32 Re 2 τ
Re 2 

b 

(A.5)

Re b ≈ 11 . 31 Re τ log ( 2 . 25 Re τ ) . (A.6)

The second equation is Prandtl’s friction law for smooth pipes. For

a given Re b (which corresponds to a specific u b ), one can use Eq.

(A.6) to obtain an approximate value for Re τ . Then for given values

of ρ , ν , and R , Eqs. (A .1) and (A .2) determine the pressure drop in

the pipe. However, the procedure described so far does not enforce

a constant bulk velocity. 

In this study we have used the second method, which leads to

a constant bulk Reynolds number 

Re b = 

u b D 

ν
(A.7)

where D = 2 R is the diameter of the pipe, R is the radius, and u b
is the bulk velocity 

u b = u b ( t ) 

u b ( t ) = 

1 

πR 

2 L x 

∫ L x 

0 

∫ 2 π

0 

∫ R 

0 

u x ( t, x, r, φ) rdrd φdx . 
(A.8)

The direction x of the coordinate system is along the pipe axis,

and L x is the length of the pipe. The overbar represents the time

average process. 

To make sure that the real time bulk velocity of the turbulent

pipe flow is equal to (with small variations) the reference value, we

have developed a Proportional Integral Derivative (PID) controller.

At the end of each time step, the controller adjusts appropriately

the value of the pressure drop, in order to keep the bulk velocity

equal (or at least around) the reference bulk velocity. In the rest of

this section, we explain how the pressure gradient is adjusted dur-

ing the simulation time in order to keep the bulk velocity constant

and consequently the Re b fixed at 5300. 

The PID controller is defined by the equation 

1 

ρ

d 

dx 
p w 

( t ) = K P e ( t ) + K I 

∫ t 

0 

e ( τ ) dτ + K D 
d 

dt 
e ( t ) 

e ( t ) = u 

ref 

b 
− u b ( t ) 

(A.9)

where e ( t ) is the instantaneous deviation of the bulk velocity form

the desired reference value u 
re f 

b 
, and K P , K D , K I are tunable con-

stants, namely the proportional, integral and derivative gains. Time

discretization is used in the above equation to obtain the final form

of the pressure gradient controller 

1 

ρ

d 

dx 
p w 

( k ) = �P ( k ) + �I ( k ) + �D ( k ) (A.10)

�P ( k ) = K P e ( k ) (A.11)

�I ( k ) = �I ( k − 1 ) + K I 
�t 

2 

( e ( k ) + e ( k − 1 ) ) (A.12)

�D ( k ) = 

1 

1 + N�t 

(
�D ( k − 1 ) + K D N�t 

e ( k ) − e ( k − 1 ) 

�t 

)
, (A.13)

where �t is the time step of the simulation, k is the time step

number, and N is the filter derivative coefficient. Using appropri-

ate values for the parameters one can control the speed, stability

and damping of the system. The integral part of the controller is

important in order to give a zero steady state error (bulk velocity

becomes equal to the reference value). 
Recently, we have also implemented an alternative method

ased on the relation 

1 

ρ

d 

dx 
p w 

( k ) = −e ( k − 1 ) 

�t 
+ 

2 ν

R 

〈
d 

dr 
u x ( k − 1 ) 

∣∣∣∣
r= R 

〉
, (A.14)

here the brackets denote wall surface averaging. This is inspired

y a similar approach reported in Veenman [53] . This relation is

etter grounded on physical arguments because it follows from

aking the volumetric integral of the streamwise momentum equa-

ion and requiring e (k ) = 0 . Both approaches are successful in

aintaining an essentially constant bulk velocity. 

In our turbulent pipe simulation we have used the following

alues 

R = 1 ρ = 1 ν = 

2 

5300 

u 

ref 

b 
= 1 

⇒ Re b = 5300 

(A.15)

t = 0 . 008 ( K P , K I , K D ) = ( −0 . 5 , −1 . 0 , −2 . 0 ) N = 30 (A.16)

D ( 0 ) = 0 �I ( 0 ) = − 2 

R 

τw 

= −2 ρ
( νRe τ ) 

2 

R 

3 
, (A.17)

here an approximate value of 180 for Re τ is obtained from Eq.

A.6) for Re b = 5300 . The values of K P , K D , K I are empirically chosen

or the specific Re b = 5300 . Note that since ρ , R and u b have unit

alues, it follows that all results are automatically normalized by

roper combinations of these variables. 

In Fig. A.1 the pressure drop and the difference of the real time

ulk velocity to the reference value are shown with respect to the

umber of time steps. In the first 60 0 0 time steps an expected

vershoot is shown. The small fluctuations of e ( k ) after the dashed

ine are attributed partly to the finite length of the pipe, and partly

o the inherent phase lag in the response of the bulk velocity to

he applied pressure drop. The dashed vertical line denotes the

tarting point for the collection of statistics. Fig. A.1 shows also

he average values of e ( k ) and 

dp w 
dx 

(k ) over the range of 30 , 0 0 0 –

10 , 0 0 0 time steps 

 = 1 . 185 × 10 

−8 d p w 

dx 
= −9 . 366 × 10 

−3 . (A.18)
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Fig. B1. Comparison between the ASBM predictions and the DNS data computed via GF and LF. (a) Turbulent time scale and length scale (multiplied by constant factor) 

as calculated from the DNS simulation. (b) Componentality, (c) Homogenized dimensionality, and (d) Homogenized circulicity tensors. Lines with/without cross symbols 

represent computation using the LF/GF. 
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he above values imply 

u b = 1 . 0 τw 

= 4 . 683 × 10 

−3 u τ = 6 . 843 × 10 

−2 

⇒ Re τ = 181 . 34 . 
(A.19) 

ppendix B. Assessment of the ASBM performance 

The Algebraic Structure-Based Model (ASBM) belongs to the

amily of Structure-Based turbulence Models (SBMs) that incor-

orate information on the large-scale turbulence structures. The

SBM requires as input the turbulence time and length scales, and

he mean flow velocity gradients. Via algebraic relations (that are

uilt to capture turbulent physics) and a differential equation (that

ncorporates wall effects), the ASBM returns the normalized struc-

ure tensors, including the Reynolds stresses. The unnormalized

tructure tensors are obtained by multiplying with twice the ki-

etic energy. A full description of the latest version of ASBM is re-

orted in Panagiotou et al. [36] . 
To demonstrate the ability of ASBM to predict all the compo-

ents of the structure tensors, we use our DNS data as input to

he model. From the DNS data we compute the turbulent kinetic

nergy k and the pseudo dissipation ε ( Fig. 16 shows the profiles

or these variables). Based on these variables we calculate the tur-

ulent time T and length L scales using the expressions 

T = 

√ √ √ √ 

(
k 

ε

)2 

+ 

( 

C T 

√ 

ν

ε

) 2 

L = C L max 

( 

k 3 / 2 

ε
, C η

(
ν3 ̂ ε

)1 / 4 
) 

, 

(B.1) 

here C T = 6 . 0 , C L = 0 . 23 , C η = 70 , ˆ ε = 

√ 

ε2 + ε̄2 , and ε̄ =
u i , j u i , j . In Fig. B.1 a we report the profiles for these variables. For

he turbulent time scale the ASBM uses the above smooth func-

ional relation instead of the classical max operator. For the length

cale a similar smooth function is not necessary; in the ASBM the

ength scale is involved in a differential equation the solution of
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which is smooth. In the Kolmogorov part of the length scale the

mean flow dissipation is included to avoid unreasonably high val-

ues when the dissipation decays (i.e. in the corners of a square

duct flow configuration). The modification in the Kolmogorov scale

was introduced by Reif and Andersson [41] . Non-physical large val-

ues of the Kolmogorov scales result in an overgrowth of length

scale, which in turn result in an enforced wall blocking [22] . 

Fig. B.1 compares the ASBM predictions for the structure ten-

sors, and the DNS data computed via the GF and LF. Given the

fact that the ASBM was tuned to capture the structure tensors ex-

tracted from a DNS of a channel flow (using the LF), its agreement

with the respective DNS data in our turbulent pipe flow is not un-

expected. The agreement is even higher, especially for the xr com-

ponents, when the ASBM is coupled with the k − ε − v 2 − f model

[46] which was initially tuned. In this study, we have presented

strong arguments in favor of using the GF (instead of LF) for the

computation of the structure tensors. This suggests that the ASBM

should be retuned to capture the GF results. No attempt was made

in the present study to retune the coefficients of the ASBM model.

It is interesting to note that the diagonal components of the ho-

mogenized tensors D 

cc 
i j 

and F cc 
i j 

lack positive semi-definiteness and

can in principle attain negative values. This is indeed the case for

the DNS data of the LF in the viscous sublayer. On the other hand,

it just so happens that the GF data do not have negative values.

This is a positive outcome for the ASBM which enforces positive

semi-definiteness on the modeled D 

cc 
i j 

and F cc 
i j 

. 
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