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Analysis of Spherical Shell Solutions for the Radially Symmetric Aggregation
Equation\ast 

Daniel Balagu\'e Guardia\dagger , Alethea Barbaro\dagger , Jose A. Carrillo\ddagger , and Robert Volkin\S 

Abstract. We study distributional solutions to the radially symmetric aggregation equation for power-law
potentials. We show that distributions containing spherical shells form part of a basin of attraction
in the space of solutions in the sense of ``shifting stability."" For spherical shell initial data, we prove the
exponential convergence of solutions to equilibrium and construct some explicit solutions for specific
ranges of attractive power. We further explore results concerning the evolution and equilibria for
initial data formed from convex combinations of spherical shells.

Key words. aggregation equation, gradient flow, spherical shells

AMS subject classifications. 35Q70, 35F25, 35Q92

DOI. 10.1137/20M1314549

1. Introduction and general problem. Agent based models have become a rich subject
of study in kinetic theory. Various models have been proposed and studied regarding the
collective motion of biological organisms. In this paper, we focus on a macroscopic system of
nonlocal interaction equations governing biological aggregation referred to as the aggregation
equation. These equations have been proposed as basic models for collective behavior, and
they show up in different forms in many application areas. For instance, these equations are
used to study phenomena such as insect swarms [11, 19, 34, 47, 53, 52], bird flocking [1, 37, 48,
49], schools of fish [7, 8, 13, 28], and bacteria colonies [29, 14, 15]. These models also appear in
descriptions of vortex density evolution in superconductors [3, 43, 31, 45, 46, 50, 51, 57, 47, 54],
self-assembly of particles [39], opinion formation [38, 35], and simplified models for granular
media [23, 24, 9, 41, 55]. We refer the reader to [21, 40] for recent reviews on this subject.

We write the aggregation equation for a density of particles \rho (t, x) with velocity v(t, x) as

\partial \rho 

\partial t
+\nabla \cdot (\rho v) = 0, v =  - \nabla W \ast \rho .
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SPHERICAL SHELL SOLUTIONS FOR AGGREGATION EQUATION 2629

The repulsive-attractive potential W (x) drives the particle dynamics of the system. Particles
attract each other when far apart but repel each other when very close. We restrict our
attention to potentials which are radially symmetric and follow a power law, specifically,

W (x) =
| x| a

a
 - | x| b

b
, a > b >  - d,

where d is the dimension of the space in which the particles move, typically 2 or 3. We use
the standard convention that | x| c

c is interpreted as log | x| when c = 0.
Such a system has a naturally associated entropy/interaction energy. Assuming that

the potential W is bounded below, we describe this interaction energy by first defining the
following functional E[\mu , \nu ] \in ( - \infty ,\infty ] for finite measures \mu and \nu on \BbbR d:

(1.1) E[\mu , \nu ] =
1

2

\int \int 
\BbbR d\times \BbbR d

W (x - y) d\mu (x)d\nu (y).

Using the notation that E[\mu ] = E[\mu , \mu ], the interaction energy for the density \rho (t, x) is

E[\rho ](t) =
1

2

\int \int 
\BbbR d\times \BbbR d

W (x - y)\rho (t, x)\rho (t, y) dxdy.

As established in [2, 23, 24, 56], the aggregation equation is a gradient flow of this energy
functional on the space of probability measures with finite second moment \scrP 2(\BbbR d) equipped
with the 2-Wasserstein metric under additional assumptions on the interaction potential W .
Solutions travel along paths of steepest descent, decreasing the functional until reaching a
fixed point. This structure is central to the new results presented in this paper.

It has been further established in [12, 6, 5] that for radially symmetric potentials with
repulsive power not worse than Newtonian, if the initial distribution is radially symmetric,
compactly supported, and an element of the Sobolev space W 2,\infty (\BbbR d), then the problem is
well-posed and solutions remain radially symmetric and confined for all time. Invoking the
radial symmetry and writing \~\rho (t, r) = \omega dr

d - 1\rho (t, r), where \omega d is the surface area of the unit
sphere in \BbbR d, the aggregation equation becomes

(1.2)
\partial \~\rho 

\partial t
+

\partial 

\partial r
(\~\rho \~v) = 0, \~v(t, r) =

\int \infty 

0
\omega (r, s)\~\rho (t, s)ds,

where

(1.3) \omega (r, s) =  - 1

\omega d

\int 
\partial B(0,1)

\nabla W (re1  - s\eta ) \cdot e1d\sigma (\eta ).

In this notation, \partial B(0, 1) is the boundary of the unit ball in \BbbR d and \sigma is the area measure on
its surface. Similarly, the energy functional can be rewritten as

(1.4) E[\~\rho ](t) =
1

2\omega d

\int \int 
\BbbR 2
+

\int 
\partial B(0,1)

W (re1  - s\eta )\~\rho (t, r)\~\rho (t, s) d\sigma (\eta )drds.

Several papers exist addressing aspects of the energy minimizers. Existence results may
be found in [18, 16]. In [4], it is proved that the dimensionality of the local minimizer ofD
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Figure 1. Parameter regime diagram.

the energy functional must be at least 2  - b for b \in (2  - d, a). These geometric results are
expanded upon in [20, 42]. Several stability results in radial coordinates can be found in [5].
To elaborate further, they define the following quantities dependent on a, b, and d,

(1.5) Rab =
1

2

\Biggl[ 
\beta 
\bigl( 
b+d - 1

2 , d - 1
2

\bigr) 
\beta 
\bigl( 
a+d - 1

2 , d - 1
2

\bigr) \Biggr] 1
a - b

, b\ast =
(3 - d)a - 10 + 7d - d2

a+ d - 3
,

where \beta (x, y) = \Gamma (x)\Gamma (y)
\Gamma (x+y) is the beta function. If b \in (b\ast , a), then the uniform distribution on

the spherical shell of radius Rab, denoted by \delta Rab
, is a stable steady state. If b \in ( - d, b\ast ),

then \delta Rab
is unstable. We present the parameter regimes in Figure 1 for clarity.

Close attention has been paid to potentials where the attractive exponent is an integer
multiple of 2, i.e., a = 2k for k \in \BbbN , especially a = 2, 4. The authors of [22] provide a
general procedure for constructing candidate explicit equilibrium solutions for even a > 0 and
b \in ( - d, b\ast ) based on minimizing the interaction energy. We refer to these possible minimizers
as the Carrillo--Huang equilibria. When a \geq 4, the proposed equilibria are only viable when
b \in ( - d,\=b), where \=b = 2+2d - d2

d+1 < b\ast . All of these solutions can be converted to radial form

by taking \~\rho (r) = \omega dr
d - 1\rho (r). Since we only consider the radially symmetric case, we drop all

tildes from this point forward for clarity.
Uniqueness of minimizers for the case 2 \leq a \leq 4 and b < 0 is addressed in [44]. The

proof of uniqueness relies on strict convexity of the energy functional on an admissible set
of solutions in L1(\BbbR d) \cap L\infty (\BbbR d). Unfortunately, equilibrium solutions to the aggregation
equation cannot be expected to be uniformly bounded except when the repulsive component
of the potential is sufficiently singular near the origin, specifically b \leq 2 - d for the Carrillo--
Huang equilibria. Much of the theory for the aggregation equation involves a functional setting
of Lp-spaces. This setting provides many important and deep results, such as existence and
uniqueness for solutions [12] and the previously mentioned uniqueness of minimizers of the
interaction energy [44]. Yet, distributional solutions also arise quite naturally. The previously
mentioned steady state \delta Rab

for the PDE is one example. Another example [11] shows that
in the underlying particle system solutions tend toward steady states formed from multiple
spherical shells. Understanding these steady states may also help shed light on continuous
ones, such as the proposed Carrillo--Huang equilibria, if the number of spherical shells tends
toward infinity. In fact, based on the results in [4] about the dimensionality of the support ofD
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SPHERICAL SHELL SOLUTIONS FOR AGGREGATION EQUATION 2631

the equilibria, one could conjecture that Morrey spaces of measures are a natural setting for
the global well-posedness of the aggregation equation in the range of exponents b \in (2 - d, 2).
However, this question is still widely open.

Throughout this paper, we discuss radial probability distributions that contain spherical
shells. These shells correspond to a uniform distribution of particles on the surface of a
(d  - 1)-dimensional sphere. They are expressed succinctly in radial coordinates as Dirac
delta functions. We show results pertaining to distributional solutions that demonstrate a
significant but as of yet unexplored domain of study. We begin in section 2 by explaining the
pseudo-inverse formulation of the problem, which provides a numerically stable framework
for working with spherical shell solutions. In section 3, we formally demonstrate that all
distributions containing spherical shells lie in a basin of attraction of solutions to the radially
symmetric aggregation equation for b \in (1  - d, a). This result is fully rigorous as soon as a
gradient flow formulation for the equation in radial coordinates (1.2) allowing general radial
measures as initial data exists.

Section 4 presents some exact solutions for spherical shell initial data when a = 2 and
special cases for a = 3, 4. We also show exponential convergence of the interaction energy
under suitable assumptions. Section 5 focuses on a new approach for studying problems
where the initial data is a convex combination of spherical shells. Specifically, we derive
an associated ODE system and prove existence and uniqueness of solutions. In section 6,
we explore stability results for the steady state \delta Rab

in the context of this ODE system.
In particular, we characterize the ODE system as a gradient flow of the energy functional
restricted to the appropriate class of solutions. We then show that \delta Rab

is a local minimum of
this discrete energy under an appropriate assumption on the parameters. Moving to section 7,
we fully characterize steady states for parameters a = 2 and b = 2 - d and then demonstrate
the convergence of these steady states to the continuous case as the number of spherical shells
grows arbitrarily large. These sections allow us to conjecture that the rigorous gradient flow
formulation of the aggregation equation in radial coordinates (1.2) should extend for exponents
b > 1 - d, which is left for future exploration.

2. Pseudo-inverse approach. We consider many situations involving initial conditions
and/or equilibrium solutions that are spherical shells. The numerics involved can become
difficult to handle using standard techniques. One approach to avoid these problems is to
recast the PDE in terms of the pseudo-inverse of the corresponding cumulative distribution
function (CDF) to the density \rho as proposed in [14, 25, 36, 32]. We outline this process here.

For the particle density \rho (t, r), define its corresponding CDF, F (t, r), as

F (t, r) =

\int r

0
\rho (t, s)ds.

The pseudo-inverse of this function, \varphi (t, \xi ) for \xi \in [0, 1], is defined as

\varphi (t, \xi ) = inf \{ r \in \BbbR + | F (t, r) \geq \xi \} .

Since F (t, r) is nondecreasing and c\`adl\`ag with respect to r, the function \varphi (t, \xi ) is similarly
nondecreasing and c\`adl\`ag in \xi . If F (t, r) is strictly increasing in r, then \varphi (t, \xi ) is precisely itsD
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inverse function. That is, \varphi (t, F (t, r)) = r. The corresponding PDE for \varphi (t, \xi ) can be derived
using this relationship.

We start by noting that

0 =
dr

dt
=

d

dt
\varphi (t, F (t, r)) =

\partial \varphi 

\partial t
(t, F (t, r)) +

\partial \varphi 

\partial \xi 
(t, F (t, r))

\partial F

\partial t
(t, r).

Using the same relationship, we compute the derivative with respect to r:

1 =
dr

dr
=

d

dr
\varphi (t, F (t, r)) =

\partial \varphi 

\partial \xi 
(t, F (t, r))

\partial F

\partial r
(t, r) =

\partial \varphi 

\partial \xi 
(t, F (t, r))\rho (t, r).

From the definition of F (t, r) and the PDE for \rho (t, r), we conclude that

d

dt
F (t, r) =

d

dt

\int r

0
\rho (t, s) ds =

\int r

0

\partial \rho 

\partial t
(t, s) ds

=  - 
\int r

0

\partial 

\partial s
(\rho (t, s)v(t, s))) ds =  - \rho (t, r)v(t, r) + \rho (t, 0)v(t, 0).

The quantity v(t, 0) is identically zero. This is best shown geometrically in [10]. They argue
that given the radial symmetry of W (x), its gradient \nabla W (x) has vanishing integral along
any sphere as the values at antipodal points cancel each other. Since \rho (t, r) is also radially
symmetric, this relationship is preserved in the velocity term.

Putting all of this information together, we are left with the equation

0 =
\partial \varphi 

\partial t
(t, F (t, r)) - v(t, r) =

\partial \varphi 

\partial t
(t, F (t, r)) - 

\int \infty 

0
\omega (r, s)\rho (t, s) ds

=
\partial \varphi 

\partial t
(t, F (t, r)) - 

\int \infty 

0
\omega (r, s)

\partial F

\partial s
(t, s) ds.

Using the substitutions \varphi (t, F (t, r)) = r, \varphi (t, F (t, s)) = s, \xi = F (t, r), and \zeta = F (t, s), we
concisely write the evolution equation for the pseudo-inverse as

(2.1)
\partial \varphi 

\partial t
=

\int 1

0
\omega (\varphi (t, \xi ), \varphi (t, \zeta )) d\zeta .

To see the numerical stability advantages of this approach, consider how a Dirac delta
function appears in pseudo-inverse form. Let \rho (r) = \delta R(r). The corresponding CDF for this
density will be F (r) = uR(r), the Heaviside function shifted to R. Namely,

uR(r) =

\Biggl\{ 
1, r > R,

0, r < R.

By definition, the pseudo-inverse is

\varphi (\xi ) =

\Biggl\{ 
R, \xi \in (0, 1],

0, \xi = 0.D
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Since we are integrating \varphi (\xi ) with respect to the Lebesgue measure, we may ignore sets of
measure zero. From a numerical perspective, the pseudo-inverse corresponding to a spherical
shell is simply a constant function. The numerical stability advantages of dealing with constant
functions on [0, 1] over delta functions on [0,\infty ) should be obvious.

The pseudo-inverse formulation of the aggregation equation will be crucial to deriving
several results in this paper. In addition to the numerical stability properties, the analytic
reframing of this method makes it a powerful tool of investigation.

3. Spherical shell dynamics: A variational indication. We will expand upon the current
literature by showing the existence of a basin of attraction of solutions in the space of radially
symmetric probability distributions. We will demonstrate that distributions formed by spher-
ical shells will evolve by having the radius of the spherical shells simply expand or contract if
b > 3 - d. This will be fully achieved in sections 5 and 6.

Here we first give an indication based on variational arguments that the result should
hold for general radial densities having a spherical shell concentration. The claim is that if
a radial initial data has a spherical shell at any location, this spherical shell will evolve by
contracting or expanding in time. Our argument centers on examining perturbations of the
energy functional. Recall that in [2, 23, 24, 56], the aggregation equation is a gradient flow
of the interaction energy in the space of probability distributions with finite second moments
equipped with the 2-Wasserstein metric, denoted by \scrP 2(\BbbR d).

Technical assumptions on the potential require that it be \lambda -convex and sufficiently non-
singular for a gradient flow theory to be fully rigorous for general measures as initial data. In
particular, these assumptions require the repulsive strength b \geq 2. No well-posedness result
for general measures as initial data is known for the range  - d < b < 2.

However, restricting oneself to the radial setting clearly improves the regularity of the
kernel \omega (r, s) involved in the velocity field (1.2). In fact, using [5] and the computations in
Appendix A, the function \omega (r, s) is continuously differentiable in both variables for r, s > 0 for
b > 3 - d due to additional factor rd - 1 coming from the radial change of variables. This fact
indicates that developing a gradient flow theory leading to well-posedness for general radial
measures should be possible for b > 3 - d. This is an interesting line of research not pursued
in this work. Numerical investigation in sections 5 and 6 suggests that the result extends to
the range b > 1 - d.

Our claim here is that given a radial density \rho , the velocity field generated by the density
via (1.2) is realized taking the directional derivative of the interaction energy in the direction
determined by \delta \prime R, formally speaking. Since the velocity field corresponds to the direction of
steepest descent of the energy, this indicates that the mass already concentrated at location
R should not be able to escape from R without increasing the interaction energy. This
computation is purely formal due to the form of the perturbation, but we will substantiate
the result in sections 5 and 6 in the case of finite number of spherical shells.

We begin with a perturbation \mu (r) of the energy functional at a fixed time t satisfying\int 
\BbbR +
\mu (r)dr = 0 and having compact support:

E[\rho + \varepsilon \mu ] = E[\rho ] + 2\varepsilon E[\mu , \rho ] + \varepsilon 2E[\mu ].

We use this perturbation expression to define a new functional L[\mu ] that gives the rate ofD
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change for the interaction energy for a density \rho in the direction \mu :

L[\mu ] = lim
\varepsilon \rightarrow 0

E[\rho + \varepsilon \mu ] - E[\rho ]

\varepsilon 
= lim

\varepsilon \rightarrow 0
(2E[\mu , \rho ] + \varepsilon E[\mu ]) .

To take the limit as \varepsilon \rightarrow 0 requires that the quantities E[\mu , \rho ] and E[\mu ] be well-defined
and finite. We remark that the functional L[\cdot ] corresponds to the Gateaux derivative of the
interaction energy. Nearly identical expressions can be found in [4, 16].

The directional ansatz we wish to plug into this expression is \mu (r) = \delta \prime R(r). Direct
substitution yields

E[\delta \prime R] =
1

2\omega d

\int \int 
\BbbR 2
+

\int 
\partial B(0,1)

W (re1  - s\eta )d\sigma (\eta )\delta \prime R(r)\delta 
\prime 
R(s)drds

=  - 1

2\omega d

\int 
\BbbR +

\int 
\partial B(0,1)

e1 \cdot \nabla W (Re1  - s\eta )d\sigma (\eta )\delta \prime R(s)ds =  - 1

2
\partial 2\omega (R,R)

and

2E[\delta \prime R, \rho ] =
1

\omega d

\int \int 
\BbbR 2
+

\int 
\partial B(0,1)

W (re1  - s\eta )d\sigma (\eta )\delta \prime R(r)\rho (s) drds

=  - 1

\omega d

\int 
\BbbR +

\int 
\partial B(0,1)

e1 \cdot \nabla W (Re1  - s\eta )d\sigma (\eta )\rho (s) ds

=

\int 
\BbbR +

\omega (R, s)\rho (s) ds = v(R).

The quantity E[\delta \prime R] is finite for b > 3 - d and infinite for b \leq 3 - d. The quantity E[\delta \prime R, \rho ] will
be infinite when b \leq 1 - d and there is a spherical shell with radius R.

Assuming first that b > 3  - d, the velocity at each radius R is generated by evolving in
the direction \delta \prime R. For distributions containing a spherical shell with radius R0, this direction
corresponds to an instantaneous contraction/expansion of the shell. Thus, at any given time
a spherical shell is expected to shrink/grow to a spherical shell of smaller/larger radius.

The result extends to b \in (1 - d, 3 - d], but the argument requires more subtlety. The limit
in the expression for L[\mu ] has an indeterminant form. Consider approximating the ansatz

\mu \lambda (r) =

\left\{     
1
\lambda 2 , R - \lambda < r < R,

 - 1
\lambda 2 , R < r < R+ \lambda ,

0 otherwise

for 0 < \lambda < R. Plugging in the approximations and using the nonradial formulation (see (1.1)
from section 1),

E[\mu \lambda ] =
1

2

\int \int 
\BbbR d\times \BbbR d

\biggl[ 
| x - y| a

a
 - | x - y| b

b

\biggr] \biggl[ 
\mu \lambda (| x| )
\omega d| x| d - 1

\biggr] \biggl[ 
\mu \lambda (| y| )
\omega d| y| d - 1

\biggr] 
dxdy.

From this comes the inequality

| E[\mu \lambda ]| \leq 
1

2\omega 2
d\lambda 

4

\biggl[ \int \int 
D

| x - y| a

| a| | x| d - 1| y| d - 1
dxdy +

\int \int 
D

| x - y| b

| b| | x| d - 1| y| d - 1
dxdy

\biggr] 
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where D =
\bigl\{ 
x, y \in \BbbR d | R - \lambda < | x| , | y| < R+ \lambda 

\bigr\} 
. If a and b are positive, then the integrals

are clearly bounded. As such, suppose b < 0; then\int \int 
D

| x - y| b

| b| | x| d - 1| y| d - 1
dxdy \leq 

\int \int 
D
C| x - y| bdxdy, C =

1

| b| | R - \lambda | 2(d - 1)
.

This integral is finite for b >  - d. Since a > b, the associated integral to a will also be finite
regardless of sign.

For each \lambda \in (0, R), L[\mu \lambda ] = 2E[\mu \lambda , \rho ] is well-defined and finite. E[\delta \prime R, \rho ] is also well-
defined and finite for b > 1 - d. To compute the limit, first define the antiderivative

\Omega (r, s) =

\int 
1

\omega d

\int \infty 

0

\int 
\partial B(0,1)

W (re1  - s\eta )d\sigma (\eta )\rho (s)dsdr.

Then, letting \lambda \rightarrow 0,

lim
\lambda \rightarrow 0

L[\mu \lambda ] = lim
\lambda \rightarrow 0

2E[\mu \lambda , \rho ]

= lim
\lambda \rightarrow 0

1

\omega d

\int \int 
\BbbR 2
+

\int 
\partial B(0,1)

W (re1  - s\eta )d\sigma (\eta )\mu \lambda (r)\rho (s)drds

= lim
\lambda \rightarrow 0

1

\lambda 2

\Biggl[ \int R

R - \lambda 

1

\omega d

\int \infty 

0

\int 
\partial B(0,1)

W (re1  - s\eta )d\sigma (\eta )\rho (s)dsdr

 - 
\int R+\lambda 

R

1

\omega d

\int \infty 

0

\int 
\partial B(0,1)

W (re1  - s\eta )d\sigma (\eta )\rho (s)dsdr

\Biggr] 

= lim
\lambda \rightarrow 0

[\Omega (R, s) - \Omega (R - \lambda , s)] - [\Omega (R+ \lambda , s) - \Omega (R, s)]

\lambda 2

= lim
\lambda \rightarrow 0

 - \Omega (R+ \lambda , s) + 2\Omega (R, s) - \Omega (R - \lambda , s)

\lambda 2

=  - \partial 2

\partial r2

\bigm| \bigm| \bigm| \bigm| 
r=R

\Omega (r, s) =

\int \infty 

0
\omega (R, s)\rho (s)ds = 2E[\delta \prime R, \rho ].

Thus, the result is extended to b > 1 - d.
This variational argument cannot hold for b \in ( - d, 1 - d]. In this range, the function \omega (r, s)

is properly singular along the diagonal. As such, no density of particles may concentrate on
a spherical shell. Doing so would produce an infinite instantaneous velocity term.

Notably, the previous proof is kernel independent in the following sense: as long as the
corresponding \omega (r, s) function for a kernel is well-defined on the diagonal, this argument
holds. This is especially noteworthy for regularized kernels W\varepsilon (x) = \psi \varepsilon \ast W \ast \psi \varepsilon (x), where
\psi \varepsilon (x) = \varepsilon  - d\psi 

\bigl( 
x
\varepsilon 

\bigr) 
is an appropriate mollifier for the kernel; i.e., \psi is a positive, radially

symmetric, smooth function with unit integral. Regularized kernels appear, for example, in
[27, 26] in a blob method for the particle model. Such kernels may be used to approximate
singular kernels and extend the range of the parameter b in which numerical methods are
viable.

The spherical shell dynamics lie at the heart of the rest of the results. We will show
that convex combinations of spherical shells will have steady states that are also convexD
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combinations, with possibly less different radii, of spherical shells in sections 5 and 6 for
b > 3 - d. We remind the reader that \delta Rab

is the only steady state solution for single spherical
shell initial data when b \in (1  - d, a) as shown in [5]. It remains an open problem whether
other types of distributional solutions may also constitute part of the basin of attraction.

4. Exact solutions and exponential convergence of the entropy/interaction energy. As
mentioned, some immediate consequences follow the existence of this basin of attraction. For
certain parameter values, we can find exact solutions to the aggregation equation when the
initial data is a spherical shell. We articulate this precisely in the following corollary. From
section 3, \varphi (t, \xi ) = R(t) for a single spherical shell. The pseudo-inverse equation (2.1) then
reduces to the ODE

(4.1)
dR

dt
= \omega (R,R) = c(a, d)Ra - 1  - c(b, d)Rb - 1,

with c(x, d) defined by (A.1). Note that for x > 1 - d and d \geq 2, c(x, d) < 0. We remark that
Rab, defined in (1.5), is the root of the right-hand side and refer the reader to Appendix A for
calculations involving \omega .

Theorem 4.1. Let R(0) = R0, and let Rab be given by (1.5):
1. If a = 2 and b \in (1 - d, a), then

R(t) =
\Bigl[ 
R2 - b

ab

\Bigl( 
1 - e(2 - b)c(2,d)t

\Bigr) 
+R2 - b

0 e(2 - b)c(2,d)t
\Bigr] 1

2 - b
.

2. If a = 3 and b = 2, then

R(t) =
Rab

1 +
\Bigl( 
Rab
R0

 - 1
\Bigr) 
ec(3,d)Rabt

.

3. If a = 3 and b = 1, then

R(t) =

\Biggl( 
1 + ke2c(3,d)Rabt

1 - ke2c(3,d)Rabt

\Biggr) 
Rab, k =

R0  - Rab

R0 +Rab
.

4. If a = 4 and b = 2, then

R(t) = RabR0

\Bigl[ 
R2

0

\Bigl( 
1 - e2c(4,d)R

2
abt
\Bigr) 
+R2

abe
2c(4,d)R2

abt
\Bigr]  - 1/2

.

Proof. (1) Let a = 2, and let R(0) = R0. Equation (4.1) reduces to the ODE

dR

dt
= c(2, d)R - c(b, d)Rb - 1 = c(2, d)Rb - 1

\Bigl( 
R2 - b  - R2 - b

ab

\Bigr) 
.

Then \int 
R1 - b

R2 - b  - R2 - b
ab

dR =

\int 
c(2, d)dt.
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Using the substitution u = R2 - b  - R2 - b
ab , we have du = (2 - b)R1 - bdR. Therefore, we deduce

that R2 - b  - R2 - b
ab = (R2 - b

0  - R2 - b
ab )e(2 - b)c(2,d)t after basic calculus, finally yielding

R(t) =
\Bigl[ 
R2 - b

ab

\Bigl( 
1 - e(2 - b)c(2,d)t

\Bigr) 
+R2 - b

0 e(2 - b)c(2,d)t
\Bigr] 1

2 - b
.

(2) For a = 3 and b = 2,
dR

dt
= c(3, d)R (R - Rab) .

From this,

dR

R(R - Rab)
= c(3, d)dt \Rightarrow R(t) =

Rab\Bigl( 
Rab
R0

 - 1
\Bigr) 
ec(3,d)Rabt + 1

.

(3) When a = 3 and b = 1,

dR

dt
= c(3, d)(R2  - R2

ab) \Rightarrow dR

(R - Rab)(R+Rab)
= c(3, d)dt.

We then deduce that\int 
1

R - Rab
 - 1

R+Rab
dR =

\int 
2c(3, d)Rabdt \Rightarrow R(t) =

\Biggl( 
1 + ke2c(3,d)Rabt

1 - ke2c(3,d)Rabt

\Biggr) 
Rab.

(4) We turn now to a = 4 and b = 2:

dR

dt
= c(4, d)R

\bigl( 
R2  - R2

ab

\bigr) 
\Rightarrow 

\int 
dR

R(R - Rab)(R+Rab)
=

\int 
c(4, d)dt.

Using partial fraction decomposition as above, integrating and using basic algebra leads to
the stated formula.

When applying the previous procedure to cases where a > 2 and b is outside the param-
eters given, explicit expressions are not possible. Problems involving convex combinations of
spherical shells as initial data must generally be dealt with using other techniques since the
interactions between spherical shells sufficiently complicate the differential equations.

While for many parameter choices explicit solutions cannot be given, some qualitative
behavior can be deduced. We demonstrate in this section that for certain parameter choices
with spherical shell initial data, solutions converge exponentially fast to the steady state.
Consequently, the corresponding energy also converges exponentially fast.

We again use the pseudo-inverse equation to prove these convergence results. We remark
that in the one-dimensional and radial cases, convergence of measures in the p-Wasserstein
distance corresponds to convergence of their respective pseudo-inverses in Lp-distances. Since
the pseudo-inverse is merely a scalar here, all Lp-norms reduce to absolute value.D
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Theorem 4.2. For a > 1  - d, b \in (1  - d, a), d \geq 2, and \varphi (0, \xi ) = R0, the pseudo-inverse
solution converges exponentially fast to the steady state.

Proof. Recall that for spherical shell initial data, the equation takes the form of (4.1):

dR

dt
= f(R), f(R) = c(a, d)Ra - 1  - c(b, d)Rb - 1.

For R > 0, this has the unique steady state R = Rab. Consider the derivative of f evaluated
at the fixed point

f \prime (Rab) = c(a, d)Ra - b
ab (a - b).

This term must be negative when a > 1  - d based on (A.1). By the standard linearization
theorem for dynamical systems (see [58], for example), there exists a neighborhood of the
unique steady state within which solutions will converge exponentially fast. Taking into
account that the right-hand side of (4.1) changes sign only once at Rab, and then solutions
are increasing (resp., decreasing) for 0 < R0 < Rab (resp., for R0 > Rab). Thus, all solutions
converge exponentially fast to Rab.

Corollary 4.3. The entropy/interaction energy also converges exponentially fast.

Proof. Consider the dissipation in the pseudo-inverse form

d

dt
E[\varphi ](t) =  - 

\int 1

0

\biggl( 
\partial \varphi 

\partial t
(t, \xi )

\biggr) 2

d\xi .

We deduce from \varphi (t, \xi ) = R(t) that

d

dt
E[\varphi ](t) =  - \omega (R(t), R(t))2 =  - \omega (R(t), R(t))R\prime (t).

Integrating both sides gives

 - 
\int \infty 

t

d

ds
E[R](s)ds = c(a, d)

\int \infty 

t
Ra - 1(s)R\prime (s)ds - c(b, d)

\int \infty 

t
Rb - 1(s)R\prime (s)ds

\Rightarrow E[R](t) - E[Rab] = c(a, d)[Ra(t) - Ra
ab] - c(b, d)[Rb(t) - Rb

ab].

The right-hand side may be rewritten as

sgn(R(t) - Rab)

\biggl[ 
 - c(a, d)

\biggl( 
Ra(t) - Ra

ab

R(t) - Rab

\biggr) 
+ c(b, d)

\biggl( 
Rb(t) - Rb

ab

R(t) - Rab

\biggr) \biggr] 
| R(t) - Rab| .

Invoking the inequality | R(t) - Rab| \leq ke - C1t,

E[R](t) \leq E[Rab] + C2| R(t) - Rab| \leq E[Rab] + C2ke
 - C1t,

where C2 > 0 depends on a, b, d, R(0), and T . Thus, the entropy/interaction energy converges
exponentially fast to that of the steady state.D
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5. ODE system for convex combinations of spherical shells. We turn our attention to
problems where the initial distribution of particles is a convex combination of spherical shells.
We write initial data for convex combinations of spherical shells as

\rho (0, r) =

N\sum 
i=1

\alpha i\delta Ri(r),

N\sum 
i=1

\alpha i = 1, \alpha i \in (0, 1), Ri < Ri+1.

The last assumption can be made without loss of generality for convenience by simply rela-
beling the shells. By the variational indication in section 3, we expect each spherical shell to
retain its respective weight \alpha i. In fact, each spherical shell should evolve simply by expanding
or contracting. In other words, the spherical shells should not split at least when b > 3  - d,
where we recall the critical value b\ast is given by (1.5). We will also give numerical evidence
that supports this to happen for b > 1 - d. Therefore, the number of spherical shells cannot
increase. We look for solutions that may be written as

\rho (t, r) =

N\sum 
i=1

\alpha i\delta Ri(t)(r),

N\sum 
i=1

\alpha i = 1, \alpha i \in (0, 1).

From this result it follows that the equilibrium solutions for b \in (1 - d, b\ast ) depend on both
n and the specific set of \alpha i's. Thus, for each n there is an uncountable family of equilibrium
solutions. To explore these solutions, we turn to another perspective particular to this specific
case. Namely, the aggregation equation with an initial condition given as a convex combination
of spherical shells reduces to a system of ODEs, each one governing one of the spherical shells.
We derive this system now using the pseudo-inverse formulation.

Consider an initial particle density of the previous form. The corresponding pseudo-inverse
solution will have the form

\varphi (t, \xi ) =
N\sum 
i=1

\chi i(\xi )Ri(t), \chi i(\xi ) = \chi (\beta i - 1,\beta i)(\xi ), \beta i =
i\sum 

j=1

\alpha j .

Each \chi i represents a characteristic function on the \xi axis. Note that they are all defined on
disjoint sets. We take \beta 0 = 0. Clearly, the following relationships hold:

\partial \varphi 

\partial t
(t, \xi ) =

N\sum 
i=1

\chi i(\xi )R
\prime 
i(t)

and

\chi j(\xi )
\partial \varphi 

\partial t
(t, \xi ) = \chi j(\xi )

N\sum 
i=1

\chi i(\xi )R
\prime 
i(t) = \chi j(\xi )R

\prime 
j(t).

We now use these relationships and the evolution of the pseudo-inverse to solve for each R\prime 
i(t):

\partial \varphi 

\partial t
(t, \xi ) =

\int 1

0
\omega (\varphi (t, \xi ), \varphi (t, \zeta )) d\zeta =

N\sum 
i=1

\int \beta i

\beta i - 1

\omega (\varphi (t, \xi ), Ri(t)) d\zeta 

=

N\sum 
i=1

\alpha i\omega (\varphi (t, \xi ), Ri(t))
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and

\chi j(\xi )
\partial \varphi 

\partial t
(t, \xi ) =

n\sum 
i=1

\alpha i\chi j(\xi )\omega (Rj(t), Ri(t)) .

We reformulate the evolution equation for \varphi (t, \xi ) as the system of ODEs

R\prime 
j(t) =

N\sum 
i=1

\alpha i\omega (Rj(t), Ri(t)) , j = 1, 2, . . . , N.

Such a system resembles an empirical distribution as seen at the kinetic level. In this case,
the delta functions are in radial coordinates. We take a moment to compare and contrast
convex combinations of spherical shells with empirical distributions.

The formal similarity of the two distributions produces some common properties. For ex-
ample, each distribution corresponds to a simplified and discretized picture that approaches,
in the distributional sense, continuous results when the number of ``particles"" is allowed to
grow arbitrarily large. However, each spherical shell ``particle"" is technically a uniform dis-
tribution of particles on a sphere. As such, these distributions are truly continuous despite
their discrete appearance. One consequence of this fact is that spherical shells interact with
themselves in their evolution while individual particles do not. Furthermore, the evolution
equations and energies have different forms.

Some similarity can be seen with the work of Fellner and Raoul on convex combinations
of delta functions in the nonradial, one-dimensional case [32]. In their case, particles that
are concentrated at points move along a line, as opposed to the present work where particles
concentrated on spheres expand or contract in dimension 2 or 3.

We now examine the problem from an ODE perspective. Considering the right-hand side
of the expression, we investigate the properties of \omega (r, s) to demonstrate that the problem is
well-posed.

Theorem 5.1. The initial value problem associated to the system of differential equations

(5.1) R\prime 
j(t) =

N\sum 
i=1

\alpha i\omega (Rj(t), Ri(t)), j = 1, 2, . . . , N,

is well-posed for b \in (3  - d, a) for initial data satisfying Ri(0) \not = Rj(0) for i \not = j. Thus, a
solution exists and up to its maximal time of existence is unique. Furthermore, if b \geq 2, then
the minimal radius remains strictly positive for all times.

Proof. From [5] and the computations in Appendix A, the function \omega (r, s) is continuously
differentiable in both variables r, s > 0 for b > 3  - d. The result follows immediately from
Picard's theorem for ODE systems (see [58] for reference). If b \geq 2, \omega is continuously dif-
ferentiable up to r = s = 0 and \omega (0, 0) = 0 being an equilibrium point of the system. The
uniqueness part of Picard's theorem implies the last statement.

In section 6, we will see that solutions additionally remain bounded in \BbbR + for all time.
As a consequence, existence and uniqueness of solutions applies for all time and no mergingD
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of spherical shells can occur for a positive radius. If two shells were to merge, that would
invalidate uniqueness of the solution, as those two shells could be recharacterized as a single
shell and the reverse time evolution could not be recovered.

We also remark that the exponent 3 - d is quite natural in a sense because when switching to
radial coordinates, as in section 1, one multiplies by a factor of \omega dr

d - 1. As such, | x| d - 1| x| 3 - d =
| x| 2, where | x| 2 is the minimal power satisfying the previously mentioned local Lipschitz
condition in the nonradial formulation.

The result of Theorem 5.1 extends somewhat to the range of values b \in (1 - d, 3 - d ]. To
see this, denote X = (0,\infty )\times (0,\infty ) and D = \{ (x, y) \in X | x = y\} . The partial derivatives of
\omega (r, s) are well-defined and continuous on (r, s) \in X \setminus D. Thus, \omega (r, s) is Lipschitz continuous
on X \setminus D. For (r, s) \in D, we may rewrite the expression as

\omega (r, r) = f(r) = c(a, d)ra - 1  - c(b, d)rb - 1.

The function f is continuously differentiable on (0,\infty ) and thus Lipschitz continuous. The
function f accounts for the self-interactions of the spherical shells. Since the sum of Lipschitz
continuous functions is also Lipschitz continuous, the right-hand side of the ODE system is
Lipschitz continuous as long as Ri \not = Rj for i \not = j. A consequence of the Cauchy--Lipschitz
theory is the well-posedness of a solution to the spherical shells equations (5.1) up to a maximal
time of existence.

Remark 5.2. Notice that the maximal time of existence is fully characterized by either the
time two different spherical shells collide or the radius of the largest spherical shell escapes to
infinity or the radius of the smallest spherical shell converges to zero. The collision corresponds
to the possibility of the system entering a state where the ODE is ill-defined since \omega fails to
be Lipschitz continuous (indeed, continuous at all for b \leq 2  - d). We have not observed any
of the three in the numerical simulations.

We confirm these results numerically using the pseudo-inverse formulation; see Figure 2.
When initial data corresponding to convex combinations of spherical shells is implemented,
the numerical evolution corresponds to the expansion/contraction dynamics. The shells tend
to converge to \delta Rab

when b \in (b\ast , a), but numerical results suggest the possibility of other
steady states for at least some parameter settings. When b \in (1  - d, b\ast ), the shells converge
to steady states with the number of shells and mass distribution conserved. None of these
steady states has previously been explored to our knowledge.

Given the well-posedness of the system of spherical shells, several questions arise about the
evolution of the system and the relationship to the continuous case. To what extent does the
evolution of the system approximate the evolution of continuous densities in the distributional
sense? What precisely are the steady states of the system? Do they converge in an appropriate
topology to the (global) minimizers of the energy functional? Answering these questions may
ultimately shed light on continuous solutions in parameter regimes that have eluded analytic
investigation. They are also interesting in their own right.

6. Gradient flow structure and asymptotics of spherical shells. We begin investigating
the steady states for the ODE system by first considering the single spherical shell steady
state \delta Rab

. We begin by first plugging in a spherical shell density into the radial form of theD
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Figure 2. Pseudo-inverse initial data versus steady states for d = 3, a = 4, b = 1.5 and d = 3, a = 2,
b =  - 0.5 with varying numbers of spherical shells. Note that the top range converges to \delta Rab while the bottom
range converges to other spherical shell steady states.

energy functional given by (1.4). Explicitly, given

\rho (t, r) =
N\sum 
i=1

\delta Ri(t)(r), \alpha i \in (0, 1),

N\sum 
i=1

\alpha i = 1,

the energy functional takes the form

E[\rho ](t) =
1

2\omega d

\int \int 
\BbbR 2
+

\int 
\partial B(0,1)

W (re1  - s\eta )d\sigma (\eta )\rho (t, r)\rho (t, s)drds

=
1

2\omega d

\int \int 
\BbbR 2
+

\int 
\partial B(0,1)

W (re1  - s\eta )d\sigma (\eta )

\Biggl( 
N\sum 
i=1

\alpha i\delta Ri(t)(r)

\Biggr) \left(  N\sum 
j=1

\alpha j\delta Rj(t)(s)

\right)  drds

=
1

2\omega d

N\sum 
i,j=1

\alpha i\alpha j

\int 
\partial B(0,1)

W (Ri(t)e1  - Rj(t)\eta )d\sigma (\eta ).

For this special case, we will denote the energy function by E[R](t), where R is the column
vector containing the radii. Taking the derivative of the energy function with respect to aD
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given radius yields

\partial E

\partial Rk
[R] =

1

2\omega d

\Biggl( 
 - 

N\sum 
i=1

\alpha i\alpha k

\int 
\partial B(0,1)

\eta \cdot \nabla W (Rie1  - Rk\eta )d\sigma (\eta )(6.1)

+

n\sum 
j=1

\alpha k\alpha j

\int 
\partial B(0,1)

e1 \cdot \nabla W (Rke1  - Rj\eta )d\sigma (\eta )

\right)  
=  - \alpha k

N\sum 
j=1

\alpha j\omega (Rk, Rj).

The second equality comes from using the antisymmetry of \nabla W , a change of variables in the
spherical coordinate, and relabeling the index i to j in the first sum.

For clarity, we denote by \alpha the column vector containing the probability weights of the
spherical shells and by A the diagonal matrix whose nonzero entries are the same respective
weights, i.e., (A)ii = \alpha i. Thus, the structure for the system of ODEs is given by

dR

dt
=  - A - 1\nabla RE[R].

The dynamical system for the shells is a rescaled gradient flow of the energy E[R]. The fixed
points of the system are then the critical points of the energy function.

Importantly, the energy function E[R] is bounded below. Indeed, the energy functional
defined in (1.1) is bounded below since it is easy to check that the radial potential W (x)
achieves its minimum for a > b at | x| = 1. Thus, W (x) \geq W\ast for all x and the energy
functional is bounded below on probability measure including a restriction to the subset of
radial distributions.

Theorem 6.1. For b \in (3 - d, a), the ODE system will converge to the set of steady states
of the associated energy function.

Proof. Given the gradient structure of the ODE system, we wish to invoke the LaSalle
invariance principle; see [58]. To do so, we must show that no solutions contain components
escaping to infinity. It suffices then to show that the largest radius remains bounded for all
time.

To see the confinement of the radii, note from Appendix A that the function \omega may be
written as

\omega (r, s) = rb - 1\psi b

\Bigl( s
r

\Bigr) 
 - ra - 1\psi a

\Bigl( s
r

\Bigr) 
,

\psi x(\tau ) =
\omega d - 1

\omega d

\int \pi 

0
(1 - \tau cos \theta )(1 + \tau 2  - 2\tau cos \theta )x/2 - 1 sind - 2 \theta d\theta .

Using the assumption that Ri(0) < Ri+1(0) and that merging does not occur for b \in (3 - d, a),D
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2644 BALAGU\'E GUARDIA, BARBARO, CARRILLO, AND VOLKIN

we consider

dRN

dt
(t) =

N\sum 
j=1

\alpha j\omega (RN (t), Rj(t))

=

N\sum 
j=1

\alpha j

\biggl[ 
Rb - 1

N (t)\psi b

\biggl( 
Rj(t)

RN (t)

\biggr) 
 - Ra - 1

N (t)\psi a

\biggl( 
Rj(t)

RN (t)

\biggr) \biggr] 
.

Since 0 \leq Rj(t) \leq RN (t), we must consider the function \psi x(\tau ) on [0, 1]. From Lemma A.1,
we have that \psi x is continuous in \tau with \psi x(0) = 1. Furthermore, \psi x is nondecreasing on [0, 1]
for x > 2, constant on [0, 1] for x = 2, and nonincreasing on [0, 1] for 3 - d < x < 2.

Using the constants

ka =

\left\{     
1, 2 \leq b < a,

1, 3 - d < b < 2 \leq a,

\psi a(1), 3 - d < b < a < 2,

kb =

\left\{     
\psi b(1), 2 \leq b < a,

1, 3 - d < b < 2 \leq a,

1, 3 - d < b < a < 2,

we obtain the inequality

dRN

dt
\leq 

N\sum 
j=1

\alpha j

\Bigl[ 
Rb - 1

N kb  - Ra - 1
N ka

\Bigr] 
= Rb - 1

N

\Bigl( 
kb  - Ra - b

N ka

\Bigr) 
.

The critical points of the right-hand side are RN = 0 and RN = (kb/ka)
1

a - b (which we will
denote by R\dagger ). For RN (0) \in (0, R\dagger ), the radius is bounded by the fact that the right-hand side
will vanish as RN (t) approaches R\dagger . If RN (0) > R\dagger , then the derivative is strictly negative
and RN (t) will decrease. As such, RN (t) is bounded by max

\bigl\{ 
RN (0), R\dagger \bigr\} . Thus, the result

is shown. Notice that R1(t) > 0 for all times if b \geq 2; however, we cannot prevent R1(t) from
converging to 0 asymptotically as t \rightarrow \infty . Even more for 3  - d < b < 2, the function \omega is
not differentiable at 0, so we cannot prevent R1(t) from touching 0 in finite time. Observe
that R1 = \cdot \cdot \cdot = RN = 0 is a stationary state of the problem in this range, and therefore the
asymptotic statement also holds in this hypothetical case; see the next remark.

Remark 6.2. In Theorem 5.1, we proved that the smallest radius remains strictly positive
for all times for b > 2. For 3 - d < b < a < 2, we can prove the same result in a very specific
configuration of the radii. Consider the equation for the derivative of R1(t). That is,

R\prime 
1(t) =

N\sum 
j=1

\alpha j

\biggl[ 
Rb - 1

1 (t)\psi b

\biggl( 
Rj(t)

R1(t)

\biggr) 
 - Ra - 1

1 (t)\psi a

\biggl( 
Rj(t)

R1(t)

\biggr) \biggr] 
.
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Then

R\prime 
1(t) = R1(t)

N\sum 
j=1

\alpha j

\biggl[ 
Rb - 2

1 (t)\psi b

\biggl( 
Rj(t)

R1(t)

\biggr) 
 - Ra - 2

1 (t)\psi a

\biggl( 
Rj(t)

R1(t)

\biggr) \biggr] 

= R1(t)

N\sum 
j=1

\alpha j

\Biggl[ 
Rb - 2

j (t)

\biggl( 
R1(t)

Rj(t)

\biggr) b - 2

\psi b

\biggl( 
Rj(t)

R1(t)

\biggr) 
 - Ra - 2

j (t)

\biggl( 
R1(t)

Rj(t)

\biggr) a - 2

\psi a

\biggl( 
Rj(t)

R1(t)

\biggr) \Biggr] 

= R1(t)
N\sum 
j=1

\alpha j

\Biggl[ 
Rb - 2

j (t)

\biggl( 
Rj(t)

R1(t)

\biggr) 2 - b

\psi b

\biggl( 
Rj(t)

R1(t)

\biggr) 
 - Ra - 2

j (t)

\biggl( 
Rj(t)

R1(t)

\biggr) 2 - a

\psi a

\biggl( 
Rj(t)

R1(t)

\biggr) \Biggr] 
.

Using that lim\tau \rightarrow \infty \psi x(\tau )\tau 
2 - x = d+x - 2

d from Lemma A.1, we can see that

(6.2) lim
R1\rightarrow 0

Rb - 2
j

\biggl( 
Rj

R1

\biggr) 2 - b

\psi b

\biggl( 
Rj

R1

\biggr) 
 - Ra - 2

j

\biggl( 
Rj

R1

\biggr) 2 - a

\psi a

\biggl( 
Rj

R1

\biggr) 
= Rb - 2

j

d+ b - 2

d
 - Ra - 2

j

d+ a - 2

d
.

One way to obtain that R1(t) > 0 is to show that the right-hand side of (6.2) is positive for
all j = 1, . . . , N . That is,

Rb - 2
j

d+ b - 2

d
 - Ra - 2

j

d+ a - 2

d
> 0.

Since Rj(t) < Rj+1(t), it is sufficient that the inequality is true for the largest radius. Equiv-
alently,

RN (t) <

\biggl( 
d+ b - 2

d+ a - 2

\biggr) 1
a - b

.

Concluding this remark, for 3 - d < b < a < 2, the smallest radius remains strictly positive if

RN (t) <
\bigl( 
d+b - 2
d+a - 2

\bigr) 1
a - b .

We note that the state where all radii are Rab is always a fixed point. For b < b\ast , the
numerical evidence (see Figure 2 for examples) suggests that solutions converge to a steady
state of N spherical shells. Based on Theorem 6.1, we know that steady states of the system
exist with support in [0, R\dagger ] and that solutions will converge toward them. However, precisely
characterizing these steady states is a nontrivial task we dedicate to future research.

To investigate the stability of \delta Rab
, we consider the Hessian of E[R], denoted simply by

H[R]. Its entries are

(H[R])ii =  - \alpha i

N\sum 
k=1

\alpha k\partial 1\omega (Ri, Rk) - \alpha 2
i \partial 2\omega (Ri, Ri), (H[R])ij =  - \alpha i\alpha j\partial 2\omega (Ri, Rj).

Evaluating when all radii are set to Rab yields the symmetric matrix

(H[Rab])ii =  - \alpha i\partial 1\omega (Rab, Rab) - \alpha 2
i \partial 2\omega (Rab, Rab), (H[Rab])ij =  - \alpha i\alpha j\partial 2\omega (Rab, Rab).D
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Using some simple algebra, we determine that H[Rab] has the form

H[Rab] =  - \partial 1\omega (Rab, Rab)A - \partial 2\omega (Rab, Rab)\alpha \alpha 
T ,

where the superscript T denotes the transpose. We now show that this Hessian evaluated at
the fixed point is positive definite for a certain range of the parameters. To that end, consider
the quadratic form

xTH[Rab]x =  - \partial 1\omega (Rab, Rab)x
TAx - \partial 2\omega (Rab, Rab)x

T\alpha \alpha Tx

=  - \partial 1\omega (Rab, Rab)

N\sum 
i=1

\alpha ix
2
i  - \partial 2\omega (Rab, Rab)

N\sum 
i=1

\alpha 2
i x

2
i

=  - 
N\sum 
i=1

\alpha i [\partial 1\omega (Rab, Rab) + \alpha i\partial 2\omega (Rab, Rab)]x
2
i .

By inspection, a sufficient condition for positive-definiteness is the pair of constraints

\partial 1\omega (Rab, Rab) < 0, \partial 1\omega (Rab, Rab) + \partial 2\omega (Rab, Rab) < 0.

These constraints are also necessary when accounting for all possible weights. From [5], these
hold whenever b \in (b\ast , a). As such, the spherical shell with radius Rab is a local minimizer
of the energy function in this range and all sufficiently close convex combinations of spherical
shells will converge to it. Consequently, if there is a range of parameters for which one can
show that \delta Rab

is the only stationary state, then all solutions will converge toward it.

Remark 6.3. Theorem 6.1 allows us to reduce the question of global asymptotic stability
of the spherical shell at Rab to the clarification of uniqueness/nonuniqueness of locally stable
stationary states, which is not a trivial task. One needs to find conditions for the uniqueness
of local (global) minimizers of the discrete energy (6.1).

To elucidate and extend this result, let us consider the Hessian evaluated for all radii
identical but an arbitrary value r. Then

xTH[r]x =  - 
N\sum 
i=1

\alpha i [\partial 1\omega (r, r) + \alpha i\partial 2\omega (r, r)]x
2
i .

The convexity at radius r constraints takes the form

0 > \partial 1\omega (r, r) =
1

2
c(a, d)rb - 2

\Bigl[ 
g(a, d)ra - b  - g(b, d)Ra - b

ab

\Bigr] 
and

0 > (\partial 1 + \partial 2)\omega (r, r) = c(a, d)rb - 2
\Bigl[ 
(a - 1)ra - b  - (b - 1)Ra - b

ab

\Bigr] 
.

See (A.1) and (A.3) for the expressions for c and g, respectively. In both cases, the factor out
front is negative, allowing us to reduce the constraints to

g(a, d)ra - b > g(b, d)Ra - b
ab , (a - 1)ra - b > (b - 1)Ra - b

ab .D
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These constraints provide a range of values along the diagonal for which the energy function
is convex.

For 2 \leq d \leq 6, the function g(x, d) > 0 for all x > 3  - d, so the energy function will
always be locally convex on the diagonal for sufficiently large radii. When d > 6, more care is
needed in characterizing the regions where this is true. These constraints extend the stability
of the steady state \delta Rab

to convex combinations of spherical shells sufficiently close to a range
of radii on the diagonal.

For further clarification, it is worth considering counterexamples. Consider the case d = 3
and a = 2, where b\ast = 1. Let b = 1.5; then Rab =

32
49 . From this, one can compute

\partial 1\omega (r, r) =

\surd 
2

7
\surd 
r
 - 1, (\partial 1 + \partial 2)\omega (r, r) =

2
\surd 
2

7
\surd 
r
 - 1,

so that

H[r] =

\Biggl( 
1 - 

\surd 
2

7
\surd 
r

\Biggr) 
A+

\Biggl( 
1 - 2

\surd 
2

7
\surd 
r

\Biggr) 
\alpha T\alpha .

Taking the radius r = 8
49 gives H

\bigl[ 
8
49

\bigr] 
=  - A, where A is a diagonal matrix with positive

entries. Therefore, the energy functional is locally concave here. This helps illustrate the
difficulties in determining global minimizers of the energy function.

Alternatively, taking equally weighted shells, i.e., each \alpha i =
1
N , simplifies the picture. In

particular, the Hessian at a diagonal point becomes

H[r] =  - 1

N
\partial 1\omega (r, r)I  - 

1

N2
\partial 2\omega (r, r)\vec{}1 \vec{}1

T ,

where I denotes the identity matrix and \vec{}1 denotes the column vector containing 1 in each
entry. This matrix is circulant and therefore diagonalizable by the Fourier transform.

Let \scrF denote the standard unitary representation of the discrete Fourier transform. Then

\scrF H[r]\scrF  - 1 =  - 1

N
\partial 1\omega (r, r)I  - 

1

N
\partial 2\omega (r, r)e1e

T
1 .

At each radius r on the diagonal, the Hessian has eigenvalues

\lambda 1 =  - 1

N
(\partial 1 + \partial 2)\omega (r, r), \lambda 2,...,N =  - 1

N
\partial 1\omega (r, r).

Therefore, the previous constraints completely characterize the behavior on the diagonal and
are necessary and sufficient for convexity.

7. Convergence of spherical shell steady states to continuous steady states. As men-
tioned previously, one avenue worth pursuing is determining the relationship between the
spherical shell solutions and those of the continuous PDE. To help shed some light on this
relationship and motivate further investigation into spherical shell solutions, we turn to a
particular case. Certain parameter choices simplify the evolution equations and allow steady
states to be computed by hand. For example, the parameter values d \geq 2, a = 2, and b = 2 - d
localize the PDE which results in a corresponding decoupled ODE system.D
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Consider the function \omega (r, s) for these parameters. The attractive component is

\omega a(r, s) =  - \omega d - 1

\omega d

\int \pi 

0
(r  - s cos \theta ) sind - 2 \theta d\theta =  - r.

The repulsive component is

\omega b(r, s) =  - \omega d - 1

\omega d

\int \pi 

0
(r  - s cos \theta )(r2 + s2  - 2rs cos \theta ) - d/2 sind - 2 \theta d\theta 

=  - 2d - 1r(1 + sgn(r  - s))

(r + s+ | r  - s| )d
,

where sgn(x) is the signum function

sgn(x) =

\left\{     
1, x > 0,

 - 1, x < 0,

0, x = 0.

From this, we can compute the evolution equations for a system of N spherical shells as

dRk

dt
=

N\sum 
j=1

\alpha j\omega (Rk, Rj) =
N\sum 
j=1

\alpha j

\biggl[ 
 - Rk +

2d - 1Rk(1 + sgn(Rk  - Rj))

(Rk +Rj + | Rk  - Rj | )d

\biggr] 
=  - Rk +

\sum 
j<k

\alpha j

Rd - 1
k

+
\alpha k

2Rd - 1
k

=  - Rk +
\gamma k

Rd - 1
k

, \gamma k =
\alpha k

2
+
\sum 
j<k

\alpha j ,

for k = 1, 2, . . . , N . One may easily deduce the steady state solution \=Rk = \gamma 
1/d
k . Indeed, the

solution of this system is easily given by

Rk(t) =
\Bigl[ 
\gamma k

\Bigl( 
1 - e - dt

\Bigr) 
+Rd

k(0)e
 - dt
\Bigr] 1/d

.

The continuous steady state for this case, found in [34, 33, 22], is a uniform distribution
on a ball of radius 1. We attain a powerful convergence result if we assume the ratio of largest
to smallest shell mass is uniformly bounded for all N . Such a hypothesis holds, for example,
in the case of equiweighted shells.

Theorem 7.1. Let d \geq 2, a = 2, and b = 2  - d. A sequence of steady states to the ODE
system

\{ \=\rho N\} \infty N=1 , \=\rho N (r) =
N\sum 
k=1

\alpha N,k\delta \=RN,k
(r), \alpha N,k \in (0, 1),

N\sum 
k=1

\alpha N,k = 1,

converges in the \infty -Wasserstein distance to the energy minimizer if the ratio of largest to
smallest spherical shell mass distribution is uniformly bounded for all N .D
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Proof. For the chosen parameters, the energy minimizer has the simple pseudo-inverse
\=\varphi (\xi ) = \xi 1/d. The spherical shell steady state pseudo-inverses are

\=\varphi N (\xi ) =
N\sum 
k=1

\chi N,k(\xi )\gamma 
1/d
N,k, \chi N,k(\xi ) = \chi (\beta N,k - 1,\beta N,k)(\xi ),

where

\gamma N,k =
\beta N,k - 1 + \beta N,k

2
, \beta N,k =

k\sum 
j=1

\alpha N,k, \beta N,0 = 0.

Consider the L\infty -distance of the pseudo-inverses

| | \=\varphi N  - \=\varphi | | L\infty = sup
0\leq \xi \leq 1

| \=\varphi N (\xi ) - \=\varphi (\xi )| = max
k

sup
\beta N,k - 1\leq \xi \leq \beta N,k

\bigm| \bigm| \bigm| \gamma 1/dN,k  - \xi 1/d
\bigm| \bigm| \bigm| .

The function \=\varphi (\xi ) is strictly increasing, and

\=\varphi (\beta N,k - 1) \leq \gamma 
1/d
N,k \leq \=\varphi (\beta N,k).

Thus,

sup
\beta N,k - 1\leq \xi \leq \beta N,k

\bigm| \bigm| \bigm| \gamma 1/dN,k  - \xi 1/d
\bigm| \bigm| \bigm| \leq \beta 

1/d
N,k  - \beta 

1/d
N,k - 1 \leq C(N)\alpha 

1/d
N,k.

To clarify the last inequality, note that f(x) = x1/d is a continuously differentiable function
on the interval [\beta N,k - 1, \beta N,k]. As a consequence,

\beta 
1/d
N,k  - \beta 

1/d
N,k - 1 \leq max

x\in [\beta N,k - 1,\beta N,k]

1

d
x1/d - 1(\beta N,k  - \beta N,k - 1)

=
1

d

\alpha N,k

\beta 
1 - 1/d
N,k - 1

\leq 
\alpha N,k

\alpha 
1 - 1/d
N,\mathrm{m}\mathrm{i}\mathrm{n}

\leq C(N)\alpha 
1/d
N,k, C(N) =

\biggl( 
\alpha N,\mathrm{m}\mathrm{a}\mathrm{x}

\alpha N,\mathrm{m}\mathrm{i}\mathrm{n}

\biggr) 1 - 1/d

.

For the special case k = 1, it trivially holds that

\beta 
1/d
N,1  - \beta 

1/d
N,0 = \alpha 

1/d
N,1.

Finally,

lim
N\rightarrow \infty 

| | \=\varphi N  - \=\varphi | | L\infty \leq lim
N\rightarrow \infty 

max
k

max \{ C(N), 1\} \alpha 1/d
N,k \leq C lim

N\rightarrow \infty 
\alpha 
1/d
N,\mathrm{m}\mathrm{a}\mathrm{x}.

The last inequality follows from the assumption on the ratio of mass distributions of the shells
and the fact that f(x) = x1/d is strictly increasing on (0, 1). Since f(x) is also continuous,
the right-hand side vanishes in the limit. The requirement that the masses sum to unity and
the ratio of largest to smallest remains bounded guarantees that all of the individual weights
become arbitrarily small as N \rightarrow \infty .D
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Approaching the general problem requires more sophisticated tools. Even minor changes
to the parameters, such as trying a = 4, b = 2 - d, or a = 2 with b general, introduce enough
complication to elude analytic techniques used in the previous proof. Furthermore, some care
is needed when attempting to make energy arguments.

For the parameter range b < b\ast , consider a sequence of steady states \{ \=\rho N\} \infty N=1 where \=\rho k
has k spherical shells. Let \=\rho \ast be a (potentially unique) minimizer of the energy functional. By
the fattening instability condition from [5], one should be able to arrange E[\=\rho \ast ] \leq E[\=\rho N ] \leq 
E[\=\rho 1] = E[\delta Rab

] for all N \in \BbbN . By the Bolzano--Weierstrass property, there exists a convergent
subsequence of \{ E[\=\rho N ]\} \infty N=1. Indeed, it may be arranged for the sequence \{ E[\=\rho N ]\} \infty N=1 to be
monotonically decreasing and thus convergent. However, it is not clear that the sequence of
steady state solutions \{ \=\rho N\} \infty N=1 converges to a limit.

One must be careful in arranging such a sequence of equilibria for increasing numbers
of shells. Numerical results suggest that increasing N may momentarily increase the en-
tropy/interaction energy of a steady state. In Figure 3, we show energy computations in
different parameter regimes for several values of N . In the case b = .7, the spherical shell \delta Rab

is the stable steady state. For b =  - .5 and b =  - 1.1, the Carrillo--Huang equilibrium is the
steady state. The value b =  - .1 lies in the ambiguous parameter regime.
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Figure 3. Entropy/interaction energy of steady states versus number of spherical shells for d = 3 and a = 4
when b = .7,  - .1,  - .5, and  - 1.1.

As the repulsive exponent moves to the region in which uniqueness is guaranteed by [44],
b \in ( - d, 2  - d), the energy curves become more stable. Investigating the energy functional
on the submanifolds spanned by larger numbers of spherical shells may help clarifying why
uniqueness holds in this parameter region and whether local minimizers may exist in others.D
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As seen in [11] for the particle system, as the repulsive power crosses the threshold of stability
for a single spherical shell, particles begin to align themselves on multiple spheres.

8. Conclusions and further research. The spherical shell framework provides an inter-
esting new approach to exploring solutions to the radially symmetric aggregation equation in
a broad functional setting. These distributional solutions exist in a kind of ``world of their
own"" yet may have important relationships to more regular Lp solutions. The authors are
currently exploring the explicit relationship between the spherical shell and continuous cases.
Approaches such as those in [27, 17] using \Gamma -convergence of interaction energy functionals
may ultimately bridge the gap.

Another aspect of this framework to be presented by the authors is the creation of a new
numerical method based on the ODE system. In short, allowing the number of spherical shells
to become arbitrarily large causes the ODE solutions to approximate those in the continuous
case. Initial findings have been promising.

Recall that in the case for a = 4, the Carrillo--Huang equilibria are only guaranteed for
 - d < b < \=b = 2+2d - d2

d+1 . When the repulsive power is in the region b \in (\=b, b\ast ), the proposed
equilibria of the energy functional become negative near the origin. Figure 4 shows several
cases of d = 3, a = 4, and correspondingly b \in ( - 1

4 ,
1
2).
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Figure 4. Several unphysical equilibrium densities for d = 3 and a = 4.

One advantage of the spherical shell approach is that it yields insight into the steady states
within the parameter region where the Carrillo--Huang equilibria have negative regions. By
allowing the number of spherical shells to approach infinity, we may be able to ascertain the
true equilibria.

Appendix A. Properties of the omega function. In this section, we present some com-
putations regarding the function \omega defined in (1.3). We focus on computationally convenient
forms of \omega (r, s) and its derivatives in each component, especially their evaluations along the
diagonal s = r.

For convenience, we first split \omega into separate attractive and repulsive components

\omega (r, s) = \omega a(r, s) - \omega b(r, s),D
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defined by restricting the definition to the attractive (resp., repulsive) part of the potential
W . By changing the surface integral from rectangular to spherical coordinates, one obtains
the expression for the component terms

\omega x(r, s) =  - \omega d - 1

\omega d

\int \pi 

0
(r  - s cos \theta )(r2 + s2  - 2rs cos \theta )x/2 - 1 sind - 2 \theta d\theta .

Evaluating along the diagonal simplifies the term to

\omega x(r, r) =  - \omega d - 1

\omega d
2x/2 - 1rx - 1

\int \pi 

0
(1 - cos \theta )x/2 - 1 sind - 2 \theta d\theta 

=  - 2x+d - 3\omega d - 1

\omega d
\beta 

\biggl( 
x+ d - 1

2
,
d - 1

2

\biggr) 
rx - 1,

which is well-defined for x > 1 - d. For simplicity, we denote the term

(A.1) c(x, d) =  - 2x+d - 3\omega d - 1

\omega d
\beta 

\biggl( 
x+ d - 1

2
,
d - 1

2

\biggr) 
,

so that

(A.2) \omega (r, r) = c(a, d)ra - 1  - c(b, d)rb - 1.

We remark briefly on an important relationship between quantities here. Noting that \omega 
vanishes along the diagonal at r = Rab [5], where Rab is still defined as in (1.5), we see that

0 = \omega (Rab, Rab) = c(a, d)Ra - 1
ab  - c(b, d)Rb - 1

ab .

Simply rearranging the terms gives the equality

Ra - b
ab =

c(b, d)

c(a, d)
.

We turn to the derivatives of \omega in both r and s. Working with the component terms,

\partial \omega x

\partial r
(r, s) = - \omega d - 1

\omega d

\int \pi 

0

\Bigl[ 
(r2 + s2  - 2rs cos \theta )x/2 - 1

+(x - 2)(r  - s cos \theta )2(r2 + s2  - 2rs cos \theta )x/2 - 2
\Bigr] 
sind - 2 \theta d\theta .

Evaluating along the diagonal gives

\partial 1\omega x(r, r) =  - \omega d - 1

\omega d
2x/2 - 2rx - 2

\int \pi 

0

\Bigl[ 
2(1 - cos \theta )x/2 - 1 + (x - 2)(1 - cos \theta )x/2

\Bigr] 
sind - 2 \theta d\theta 

=  - \omega d - 1

\omega d
2x+d - 4rx - 2\Gamma 

\biggl( 
d - 1

2

\biggr) \Biggl[ 
\Gamma 
\bigl( 
x+d - 3

2

\bigr) 
\Gamma 
\bigl( 
x
2 + d - 2

\bigr) + (a - 2)
\Gamma 
\bigl( 
x+d - 1

2

\bigr) 
\Gamma 
\bigl( 
x
2 + d - 1

\bigr) \Biggr] 

=  - \omega d - 1

\omega d
2x+d - 4rx - 2\beta 

\biggl( 
x+ d - 1

2
,
d - 1

2

\biggr) \Biggl[ x
2 + d - 2
x+d - 3

2

+ (x - 2)

\Biggr] 

=
1

2
c(x, d)rx - 2

\biggl[ 
x2 + (d - 4)x+ 2

x+ d - 3

\biggr] 
,
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which is well-defined for x > 3 - d. For concision, we denote

(A.3) g(x, d) =
x2 + (d - 4)x+ 2

x+ d - 3
,

so that

\partial 1\omega (r, r) =
1

2
c(a, d)g(a, d)ra - 2  - 1

2
c(b, d)g(b, d)rb - 2

=
1

2
c(a, d)rb - 2

\Bigl[ 
g(a, d)ra - b  - g(b, d)Ra - b

ab

\Bigr] 
.

Turning to the derivative with respect to s,

\partial \omega x

\partial s
(r, s) = - \omega d - 1

\omega d

\int \pi 

0

\Bigl[ 
 - cos \theta (r2 + s2  - 2rs cos \theta )x/2 - 1

+(x - 2)(r  - s cos \theta )(s - r cos \theta )(r2 + s2  - 2rs cos \theta )x/2 - 2
\Bigr] 
sind - 2 \theta d\theta .

This derivative by itself will not end up being insightful. However, we show later that the
sum of the respective derivatives along the diagonal will be. In that vein,

\partial \omega x

\partial r
(r, s) +

\partial \omega x

\partial s
(r, s) =  - \omega d - 1

\omega d

\int \pi 

0

\Bigl[ 
(1 - cos \theta )(r2 + s2  - 2rs cos \theta )x/2 - 1

+(x - 2)(r  - s cos \theta )(r + s - (r + s) cos \theta )(r2 + s2  - 2rs cos \theta )x/2 - 2
\Bigr] 
sind - 2 \theta d\theta .

Evaluating along the diagonal,

(\partial 1 + \partial 2)\omega x(r, r) =  - \omega d - 1

\omega d
2x/2 - 1rx - 2

\int \pi 

0
(x - 1)(1 - cos \theta )x/2 sind - 2 \theta d\theta 

=  - \omega d - 1

\omega d
2x+d - 3(x - 1)\beta 

\biggl( 
x+ d - 1

2
,
d - 2

2

\biggr) 
rx - 2.

This expression is well-defined for x > 1 - d. Putting both components together gives

(\partial 1 + \partial 2)\omega (r, r) = c(a, d)(a - 1)ra - 2  - c(b, d)(b - 1)rb - 2

= c(a, d)rb - 2
\Bigl[ 
(a - 1)ra - b  - (b - 1)Ra - b

ab

\Bigr] 
.

Additionally, we remark that following [5] the function \omega can be expressed as

\omega (r, s) = rb - 1\psi b

\Bigl( s
r

\Bigr) 
 - ra - 1\psi a

\Bigl( s
r

\Bigr) 
,

\psi x(\tau ) =
\omega d - 1

\omega d

\int \pi 

0
(1 - \tau cos \theta )(1 + \tau 2  - 2\tau cos \theta )x/2 - 1 sind - 2 \theta d\theta .

The properties of the function \psi x(\tau ) can be found in [30, Lemma 4.4] and are summarized in
the following lemma.D
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Lemma A.1 (properties of the function \psi x).
\bullet For x \in (2  - d, 2), the function \psi x(\tau ) is continuous, positive, and nonincreasing on
[0,\infty ).

\bullet For x = 2, the function \psi x(\tau ) \equiv 1 on [0,\infty ).
\bullet For x > 2, the function \psi x(\tau ) is continuous, positive, and nondecreasing on [0,\infty ).

In addition, in all three situations, \psi x(\tau ) satisfies

\psi (0) = 1 and lim
\tau \rightarrow \infty 

\psi x(\tau )\tau 
2 - x =

d+ x - 2

d
.

Appendix B. Polynomial expression for the omega function. In the case d = 3, the
function \omega (r, s) may be written in purely algebraic form. We present and deduce this form.
We begin by recalling that this function may be written as

\omega (r, s) = \omega a(r, s) - \omega b(r, s),

where

\omega a(r, s) =  - \omega d - 1

\omega d

\int \pi 

0
(r  - s cos \theta )(r2 + s2  - 2rs cos \theta )a/2 - 1 sind - 2 \theta d\theta .

When a = 2k, the attraction component is a polynomial of r and s. When d = 3, b >  - 2,
and r \not = s, the repulsive component may be written as

\omega b(r, s) =  - 1

2

\int \pi 

0
(r  - s cos \theta )(r2 + s2  - 2rs cos \theta )b/2 - 1 sin \theta d\theta 

=  - 1

8r2s

\int (r+s)2

(r - s)2
(u+ r2  - s2)ub/2 - 1du

=
 - (br + r  - s)(r + s)b+1 + (r  - s)(br + r + s)| r  - s| b

2b(b+ 2)r2s
.

The energy functional for convex combinations of spherical shells may also be rewritten
in algebraic form using similar substitutions. Noting that

E[\rho ] = Ea[\rho ] - Eb[\rho ],

where Ea[\rho ] is a polynomial for even a > 0, the repulsive component takes the form

Eb[\rho ] =
1

4b(b+ 2)

n\sum 
i=1

\alpha i

Ri

n\sum 
j=1

\alpha j

Rj

\Bigl[ 
(Ri +Rj)

b+2  - | Ri  - Rj | b+2
\Bigr] 
.
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