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Quad-plane is a popular type of electric vertical and takeoff/landing (eVTOL) vehicle that hybridizes a 
quadrotor and a fixed-wing airplane. However, the mechanical simplicity of a quad-plane also makes it 
vulnerable to rotor failures. When a complete rotor fails, it becomes physically impossible to stop the 
quad-plane from fast yaw spinning, which further induces considerable abnormal aerodynamic forces 
and moments on the wing. In this paper, a novel incremental adaptive sliding mode control (I-ASMC) is 
proposed to address these challenges. First, by exploiting sensor measurements, it simultaneously reduces 
the control model dependency and the minimum possible sliding mode control/observer gains. Second, 
finite-time convergence is guaranteed in the Lyapunov sense. Third, the control gains are automatically 
adapted to their minimum possible values without prior-knowledge on the uncertainty bounds. The 
proposed I-ASMC method is verified on a high fidelity simulation platform with computational fluid 
dynamic (CFD) aerodynamic models. Simulation results demonstrate that I-ASMC can drive a quad-
plane with a complete loss of a single rotor to follow a trajectory. Its robustness to aerodynamic 
model uncertainties and rotor faults is also better than the linear quadratic regulator (LQR) and the 
incremental nonlinear dynamic inversion (INDI) control. In conclusion, the reduced model dependency, 
implementation simplicity, and improved robustness make the proposed I-ASMC promising for enhancing 
quad-plane safety in real life.

© 2021 The Author(s). Published by Elsevier Masson SAS. This is an open access article under the CC 
BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Multi-rotor aerial vehicles are widely used nowadays, in applications such as drone delivery, inspections, agriculture, and even for 
future aerial transportation in the urban area. Among various types of multi-rotor aerial vehicles, quad-planes (Fig. 1) are widely used 
thanks to their structural simplicity and high aerodynamic efficiency. A quad-plane has two operating configurations. During the vertical 
take-off/landing and hovering phases, it operates like a quadrotor. During level flights, the four rotors stop rotating, and the quad-plane 
flies like a fixed-wing aircraft: uses wing(s) to generate lift and uses forward-facing propeller(s) to generate thrust.

The same as a quadrotor, a quad-plane is prone to crash if the complete failure of a rotor happens during the hovering phase because 
it lacks rotor redundancies. Fault-tolerant control (FTC) is a promising solution for rotor failures. However, FTC is physically incapable 
of stopping the faulty quad-plane from fast yaw spinning. The reason is explained as follows. Rotors of a quad-plane spin in opposite 
directions to make use of their reaction torques for heading control. Rotors diagonally across from each other spin in the same direction, 
to prevent yawing during pitching and rolling maneuvers. However, when a single rotor fails, another rotor on the diagonally opposite side 
needs to stop or reduce its thrust to prevent the vehicle from tipping over. As a consequence, the other two remaining rotors spinning 
in the same direction will generate most of the lift, which also produces a considerate amount of unbalanced yaw torque, leading to 
inevitable spinning motions.

The FTC problems for a quadrotor with complete loss of single or even double rotors have been addressed in the literature [2–
9]. Differently from a quadrotor, the large wing of a quad-plane can generate considerable aerodynamic forces and moments during 
the fast-spinning motions. It is challenging to model these aerodynamic effects because on one side of the quad-plane, the upstream 
flow can even blow from the trailing edge to the leading edge of the wing. This can induce local flow separations and intensify the 
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Fig. 1. A quad-plane example: Avy for medical delivery [1].

unsteadiness of the flow. If a controller relies on an accurate aerodynamic model, computational fluid dynamics analysis needs to be 
conducted for all the flow conditions, which is costly. Therefore, an FTC design that stabilizes the faulty spinning quad-plane and is robust 
to aerodynamic uncertainties is desirable. In the literature, the incremental nonlinear dynamic inversion (INDI) control method has been 
applied to quadrotor FTC problems considering external disturbances [10]. INDI is a sensor-based control method, which enhances control 
robustness by exploiting the sensor measurements.

Although INDI has shown promising effectiveness in quadrotor FTC problems and may also be capable in quad-plane FTC problems, 
its resulting closed-loop dynamics are still perturbed by bounded residual uncertainties. To solve this issue, the incremental sliding mode 
control driven by sliding mode disturbance observer was proposed in [11]. On the one hand, the residual uncertainties are observed and 
compensated for. On the other hand, the sensor-based incremental control framework reduces the minimum possible sliding mode control 
and observer gains. The method proposed in [11] has been further improved in [4], where both nonlinear sliding surface and nonlinear 
reaching laws have been designed for guaranteeing finite-time convergence. However, the method in [4] is only applicable for systems 
whose relative degrees are equal to two. In view of this, an incremental control scheme that is able to achieve higher-order sliding modes 
was proposed in [12]. Its stability in the presence of model uncertainties and external disturbances is guaranteed in the Lyapunov sense.

As compared to the mainstream model-based higher-order sliding mode control methods, the sensor-based incremental sliding mode 
control reduces the residual uncertainties in sliding variable dynamics in spite of its reduced model dependency. Nevertheless, the sliding 
variable stabilization still assumes known knowledge of the uncertainty upper bound. In practice, uncertainties are normally time-varying, 
thus it is meaningful to adapt the sliding mode control/observer gains such that they are as small as possible, but are still sufficient to 
maintain sliding modes. To this end, a novel dual-layer nested adaptive structure was proposed in [13]. However, the input of the first-
order scheme is discontinuous, while the second-order super-twisting scheme only adapts one of the gains under the assumption that 
the other gain is sufficiently large. This adaptive structure was further improved in [14], in which all the super-twisting gains are adapted 
without prior knowledge of the uncertainty bound.

To the best of the authors’ knowledge, this paper presents the first nonlinear fault-tolerant controller for a quad-plane with complete 
loss of a single rotor. A novel control method named incremental adaptive sliding mode control (I-ASMC) is first proposed in this paper, 
which has the following features: 1) it simultaneously reduces the model dependency of the controller and the residual uncertainties in 
the sliding variable dynamics; 2) the residual uncertainties are observed and compensated for in finite time; 3) on the sliding surface, the 
convergence time to the equilibrium is finite; 4) the sliding mode disturbance observer gains are adapted without requiring information 
about the bounds on uncertainties and their derivatives; 5) the virtual control is allocated optimally considering actuator position and rate 
limits.

The first feature of I-ASMC is enabled by the senor-based control structure of incremental control, thus it also holds in the conventional 
INDI control. By exploiting the sensor measurements, INDI naturally has certain robustness against faults. However, INDI does not have 
the rest four features of I-ASMC, which can lead to the worse performance of INDI in the presence of faults.

This paper is organized as follows. The quad-plane dynamics are presented in Sec. 2. The nonlinear fault-tolerant control is proposed 
in Sec. 3. The effectiveness of this controller is demonstrated in Sec. 4 with main conclusions drawn in Sec. 5.

2. Dynamic modeling

The quad-plane considered in this paper is shown in Fig. 2, which has four rotors and one pushing propeller (not used during hovering). 
The wing of the quad-plane is assumed to be rigid. The following right-handed reference frames are defined and shown in Fig. 2:

• Inertia Frame: FI (O I , xI , yI , zI ). Under the assumption that the Earth is flat and non-rotating, the Earth-center Earth-fixed reference 
frame can be used as an inertia frame.

• Body-fixed Reference Frame: FB (O b, xb, yb, zb). O b is selected at the center of mass of the quad-plane. O b xb and O b zb are defined 
in the symmetrical plane. Moreover, O bxb yb is parallel to the four-rotor planes.

• Local Airfoil Reference Frame: Fai (O ai , xai , yai , zai ). O ai is located at the aerodynamic center of the i-th strip. O ai xai is aligned with 
the chord, pointing towards the trailing edge. O ai yai is perpendicular to O ai xai , pointing towards the upper surface.

In this paper, bold symbols indicate vectors and matrices. R i j is used to denote the direction cosine matrix from the reference frame 
F j to the reference frame Fi . The superscript (·)k indicates expressing the vector (·) in the reference frame Fk . In addition, ˜(·) denotes 
the skew symmetric matrix of the vector (·). In×n denotes a n dimensional identity matrix.
2
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Fig. 2. Geometric properties and coordinate frame definitions of the quad-plane model.

2.1. Quadplane dynamic model

The kinematics and dynamics of a quad-plane are

ξ̈
I = V̇

I = g I + R I B(F B
r + F B

w)/m (1)

Ṙ I B = R I Bω̃
B (2)

I B
v ω̇B = −ω̃B I B

v ωB + M B
r + M B

w + M B
g (3)

where ξ I = [x, y, z]T and V I = [vx, v y, vz]T are quad-plane position and velocity vectors expressed in FI , respectively. The angular 
velocity of FB with respect to FI , expressed in FB is ωB = [ωx, ωy, ωz]T . The quad-plane total mass and inertia are denoted by m
and I v

B , respectively. g I denotes the gravitational acceleration vector. F B
r and M B

r represent the rotor-generated force and moment, 
respectively; F B

w and M B
w represent the force and moment caused by the wing, respectively. M B

g indicates the rotor-induced gyroscopic 
moment [2].

2.2. Quad-plane aerodynamic model

This section establishes the quad-plane aerodynamic model. It is noteworthy that INDI and the proposed I-ASMC do not know anything 
about the wing-induced aerodynamics; they only need the control effectiveness of the rotors. This will be further elaborated in Sec. 3.2.1.

2.2.1. Wing-induced aerodynamics
The aerodynamic effects of the wing are modeled using the quasi-steady strip theory. As shown in Fig. 2, the wing is discretized into 

n = 20 undeformable strips; each one of the strips, indexed by i, is attached with a local airfoil reference frame Fai (O ai , xai , yai , zai ). 
Denote the distance vector from O b to O ai , expressed in FB as rB

ai ,b
, then the absolute velocity of O ai , expressed in Fai is calculated as

V ai
ai

= [V x,ai , V y,ai , V z,ai ]T = Rai B(R B I V I + ω̃B rB
ai ,b

) (4)

It is noteworthy that flight dynamics and aerodynamics have different conventions: the former lets the airfoil move in the static air, 
while the latter anchors the airfoil and lets the flow blows towards the airfoil. Consequently, when observing in the local airfoil reference 
frame, the incoming flow speed vector actually equals −V ai

ai
. In nominal conditions, V x,ai < 0, which indicates that the flow travels from 

the leading-edge direction towards the trailing-edge direction. However, when a rotor of a quad-plane fails completely, the quad-plane 
starts to spin. Therefore, it becomes possible that the flow blows from the trailing-edge direction, i.e., V x,ai > 0. In spite of the sign of 
V x,ai , define the local dynamic pressure and angle of attack as follows:

q∞,i = 0.5ρ(V ai
ai

)TV ai
ai

, αi = −arcsin
(

V y,ai /‖V ai
ai

‖2
)

(5)

where ρ is the air density. The singularity at V x,ai = 0 is avoided by the definition of αi in Eq. (5). In this paper, the airfoil of the 
quad-plane is selected as NACA 24112. Using the computational fluid dynamics (CFD), the airfoil pressure distributions with constant 
‖V ai

ai
‖2 = 3 m/s and various V ai

ai
directions are shown in Fig. 3. Furthermore, the resulting aerodynamic coefficients are illustrated in 

Fig. 4.

Fig. 3. CFD results for the pressure distributions of a single wing strip.
3
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Fig. 4. CFD results for the three-axes aerodynamic coefficients of a single wing strip.

During flight dynamic simulations, based on the sign of V x,ai , the local aerodynamic coefficients are interpolated from either Fig. 4a 
or Fig. 4b. To consider the downwash effects caused by wingtip vortices, the resulting coefficients are multiplied with a local scaling 
factor kvo,i . This factor equals one for the root strip and elliptically reduces to zero towards the wingtip. The local aerodynamic force 
and moment expressed in Fai are f ai

ai
= q∞,i Si · [Cx,i, C y,i, 0]T and mai

ai
= q∞,i Sici · [0, Cm,i, 0]T , where Cx,i, C y,i, Cm,i are the aerodynamic 

coefficients; Si and ci respectively denote the local strip area and chord. Finally, the distributed forces and moments are integrated in the 
body reference frame, leading to total aerodynamic force and moment, expressed in FB as

F B
w =

n∑
i=1

R Bai f ai
ai

, M B
w =

n∑
i=1

R Bai m
ai
ai

+
n∑

i=1

r̃B
ai ,b(R Bai f ai

ai
) (6)

2.2.2. Rotor-induced aerodynamics
The rotor-induced aerodynamic model considers the thrust, drag torque, and in-plane forces and moments. For a rotor indexed by j, 

use F B
r, j = [Fr, j,x, Fr, j,y, Fr, j,z]T and M B

r, j = [Mr, j,x, Mr, j,y, Mr, j,z]T to represent the rotor-induced forces and moments expressed in 
FB . Specifically, the thrust and drag toque are expressed as

Fr, j,z = −Ct(μ j,α j,kt)ρπω2
j R4, Mr, j,z = s j Cq(μ j,α j,kq)ρπω2

j R5 (7)

where ω j is the angular rate of the j-th rotor, R is the rotor radius, s j ∈ {−1, 1} indicates the rotor rotation direction (1 for counter-
clockwise). Ct and Cq are thrust and torque coefficients. They are expressed as 2-D polynomial functions parameterized by kt and kq , 
respectively. The inputs of Ct and Cq , namely the rotor advance-ratio μ j and the angle-of-attack α j , are defined as

μ j = ‖V B
j ‖2/(ωi R), α j = arcsin

(
V z, j/‖V B

j ‖2

)
(8)

where the local velocity of each rotor is defined as

V B
j = [V x, j, V y, j, V z, j]T = R B I V I + ω̃B rB

j (9)

where rB
j = [r j,x, r j,y, r j,z]T is the distance vector from O b to the hub of the j-th rotor, expressed in FB .

The in-plane forces and moments of the j-th rotor are established as parametric models:

[Fr, j,x, Fr, j,y] = [k1 V x, jω j + k2s j V y, jω j, k1 V y, jω j − k2s j V x, jω j]
[Mr, j,x, Mr, j,y] = [−k3 V y, jω j + k4s j V x, jω j, k3 V x, jω j + k4s j V y, jω j]

(10)

where k1 to k4 are parameters identified from flight data. In this paper, the values of k1 to k4, kt and kq , are the same as parameters in 
Ref. [15]. Finally, the rotor-induced aerodynamic force and moment vectors are F B

r = ∑4
j=1 F B

r, j, M B
r = ∑4

j=1(M B
r, j + r̃B

j F B
j ).

3. Control design

3.1. Quad-plane reduced attitude control

As discussed in the preceding sections, a quad-plane inevitably spins when one rotor fails. Therefore, the reduced attitude control 
which relinquishes the heading control is adopted. To this end, the full kinematic model in Eq. (2) is replaced by the reduced attitude 
kinematic model [10]:

ṅB = ñBωB + R B I ṅ
I , (11)

where n is a unit vector and nB = [nx, ny, nz]T . Specifically, n is selected as the desired thrust direction, which is computed as n =
(ades − g) / (‖(ades − g)‖2). The designed acceleration ades is provided by an outer-loop proportional-integral-derivative (PID) position 
controller:

ades = K p
(
ξ ref − ξ

) + K d
(
ξ̇ ref − ξ̇

) + K I

∫ (
ξ ref − ξ

)
dt (12)
4
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where K p , K d , K I are positive diagonal gain matrices.
The reduced attitude control strategy then aligns a body-fixed vector nB

ref = [nref,x, nref,y, nref,z]T with nB . A most straightforward 
choice of the body-fixed unit vector nB

ref is the thrust direction, namely nB
ref = [0, 0, − 1]T . As such, the quadrotor spins flatly, and 

the rotor diagonally opposite to the damaged rotor does not produce any thrust. In other word, this rotor is saturated at its minimum 
value (zero), which is unfavourable for control purposes. Therefore, we select nB

ref slightly (10 to 15 deg) tilting towards the rotor that is 
diagonally opposite to the damaged rotor, such that it needs to produce a certain amount of thrust to maintain hovering, and its lower 
saturation can be circumvented. We recommend the readers to [16] for detailed analyses regarding the selection of nB

ref. Since both nref
and n are unit vectors, projecting them on FB and minimizing the differences of their first two components [nx − nref,x, ny − nref,y] are 
sufficient for driving n towards nref.

Based on the proceeding discussions, define the controlled variables as y = [z, nx, ny]T and its reference as yref = [zref, nref,x, nref,y]. 
The control input vector is defined as u = [ω2

1, ω2
2, ω2

3, ω2
4]T .

3.2. Incremental adaptive sliding mode control

3.2.1. Incremental control with control allocation
Considering the quad-plane dynamics in Eqs. (1)-(3) as well as the input and output vectors defined in Sec. 3.1, formulate the input-

output mapping as follows:

y(r) = α(x) +B(x)u + dy (13)

where the number of inputs m = 4 and the number of outputs p = 3. r = [r1, r2, ..., rp]T is the vector relative degree of y with respect to 
u. The total state vector is x ∈Rn . The external disturbance vector is dy ∈Rp . α(x) :Rn →Rp is the system dynamic vector. B(x) :Rn →
Rp×m is the control effectiveness matrix. In control design, only an estimation of B(x) is implemented.

Specifically, for the selected inputs and outputs, the system relative degree is r = [2, 2, 2]T , yielding

y(2) = [
z̈, n̈x, n̈y

]T =
⎡
⎣

∑4
j=1 Fr, j,z R−1

B I,33/m
−ṅzωy + ṅyωz − nzω̇y + nyω̇z

ṅzωx − ṅxωz + nzω̇x − nxω̇z

⎤
⎦ (14)

Substituting Eq. (3) and Eq. (11) into Eq. (14), we have

y(2) = α(x) + B̂(x)u +
(
B(x) − B̂(x)

)
u + dy (15)

where

α(x) =
⎡
⎣ 0

(Iz + Ix − I y)nyωxωy/Iz + (I y − Iz + Ix)nzωxωz/I y − (ω2
y + ω2

z )nx

(Iz − Ix + I y)nxωxωy/Iz + (Ix + I y − Iz)nzωyωz/Ix − (ω2
x + ω2

y)ny

⎤
⎦ (16)

B̂(x) = Ct,0ρπ R4

⎡
⎣ Bz

−nz Bq + ny Br

−nz B p − ny Br

⎤
⎦ (17)

with

Bz = [−1, − 1, − 1, − 1]/
(
mR B I,33

)
(18)

B p = [−r1,y, − r2,y, − r3,y, − r4,y
]
/Ix (19)

Bq = [
r1,x, r2,x, r3,x, r4,x

]
/I y (20)

Br = [s1, s2, s3, s4] Cq,0/
(
Ct,0 Iz

)
(21)

In Eqs. (14)-(21), s j , r j,x and r j,y ( j ∈ {1, 2, 3, 4}) have been defined in Sec. 2.2.2. R B I,33 denotes the bottom right entry of R B I . Ix , 
I y and Iz are the estimated inertia of the quadplane. Note that B̂(x) is an estimation of B(x) by neglecting complex high-speed induced 
aerodynamic effects introduced in Sec. 2.2. In other words, the coefficients defined in hovering condition, namely Ct,0 = Ct(0, 0, kt) and 
Cq,0 = Cq(0, 0, kq), are used in B(x). These coefficients can be identified from the hovering flight data. The usage of B̂(x) instead of B(x)

substantially simplifies the control design and implementation processes. Nevertheless, the controller should be robust to the mismatches 
between B̂(x) and B(x).

The incremental dynamic equation is derived by taking the first-order Taylor series expansion of Eq. (13) around the condition at t −�t
(denoted by the subscript 0) as:

y(r) = y(r)
0 + ∂[α(x) +B(x)u]

∂x

∣∣∣∣
0
�x +B(x0)�u + �dy + R1 (22)

in which �x, �u, and �dy respectively represents the state, control, and disturbance increments in one sampling time step �t . R1 is the 
expansion remainder. Define the output tracking error as e = y − yref. To stabilize the error dynamics, the control increment is designed 
to satisfy B̂�u = ν − y(r)

0 + y(r)

ref , where ν represents the virtual control input. When B̂ is a non-singular square matrix, �u is solved by 
inverting B̂, leading to the control input of the incremental nonlinear dynamic inversion (INDI) control. In the present paper, p < m, thus 
5
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the quadratic programming control allocation is adopted, which can also deal with input constrains. The incremental control allocation 
problem is formulated as follows [17]:

min
�u

J =
(
(y(r)

0 − ν − y(r)
ref )

TW 1B̂ + (u0 − u∗)Tσ W 2

)
�u + 1

2
�uT

(
B̂T

W 1B̂ + σ W 2

)
�u, (23)

subject to Au�u ≤ bu (24)

where W 1, W 2, σ are weights. u∗ is the nominal control, which is set to zero in this problem for saving control energy. Au and bu are 
designed for input constrains [17]. When the j-th rotor fails, the algorithm sets umin, j = umax, j = 0. Denote the control allocation error as 
εca = B̂�u − (ν − y(r)

0 + y(r)

ref ); using Eq. (22), the closed-loop error dynamics are:

e(r) = y(r) − y(r)
ref = ν + δ(x,�t) + (B(x0) − B̂)�u + εca + �dy � ν + εindi (25)

where δ(x, �t) is the closed-loop value of the �x-related variations and the expansion reminder. εindi is the remaining uncertain pertur-
bation term. Assume there exists a KB(x0) such that B(x0) = KB(x0)B̂, then the following theorem holds:

Theorem 1. [17] When the quadratic programming control allocation is used (Eq. (24)), if ‖I − KB(x0)‖2 ≤ b̄′ < 1, and if δ(x, �t), �dy , and εca are 
respectively bounded by δ̄, �d, and ε̄ca , then under sufficiently high sampling frequency, εindi in Eq. (25) is ultimately bounded.

Essentially, this theorem presents that when the control effectiveness estimation is close to its true value, while the disturbance 
increments and control allocation errors are bounded, then the lumped uncertainty term εindi is ultimately bounded.

3.2.2. Nominal virtual control design
The nominal virtual control is designed for stabilizing the nominal error dynamics: e(r) = ν , which assumes εindi = 0. The INDI control 

designs ν = −K r−1e(r−1) − K r−2e(r−2)... − K 0e. This design has two issues: first, εindi is not compensated for, thus e can only be ultimately 
bounded; second, even if εindi = 0, e only converges asymptomatically instead of in finite time.

To solve these two issues, the incremental adaptive sliding mode control (I-ASMC) is proposed in this paper. Different from INDI, the 
virtual control is designed as a summation of a sliding mode nominal virtual control νn and a robustify virtual control ν s .

Proposition 1. [12] Consider the unperturbed integrator chain set e(r) = νn, there exists εi ∈ (0, 1), i = 1, ..., p, such that for every αi ∈ (1 − εi, 1), 
e(r−1) = e(r−2) = ... = e = 0 is established in finite time by

νn = [νn,1, νn,2, ..., νn,p]T

νn,i = −Kr−1,i|e(ri−1)

i |αri ,i sign(e(ri−1)

i ) − K0,i|ei |α1,i sign(ei), i = 1, ..., p (26)

where the gains are chosen such that the rth
i - order polynomials qri + Kr−1,iqri−1 + Kr−2,iqri−2... + K0,i are Hurwitz. The scalars α1,i, ..., αri ,i satisfy

αk−1,i = αk,iαk+1,i

2αk+1,i − αk,i
, k = 2, ..., ri, i = 1, ..., p (27)

with αri+1,i = 1, αri ,i = αi .

3.2.3. Robustify virtual control design
The robustify virtual control νs is designed to compensator for the εindi in Eq. (25). Design an auxiliary sliding variable as s = e(r−1) −∫

νn , then using Eq. (25), the sliding variable dynamics are

ṡ = νs + εindi (28)

For stabilizing the dynamics of s, design the virtual control term as

νs = −λ|s|1/2sign(s) − β

T∫

0

sign(s(τ ))dτ + φ(s, L(t)) (29)

where λ = diag{λi}, β = diag{βi}, i = 1, ..., p, φ = [φ1, ..., φp]T , L(t) = [L1, ..., Lp]T . Their elements satisfy λi > 0, βi > 0, Li > l̄i > 0, and 
the following expressions:

λi = √
Li(t)λ̄i, βi = Li(t)β̄i, φi = − L̇i(t)

Li(t)
si(t) (30)

Proposition 2. Consider the dynamics in Eq. (28) with virtual control input Eq. (29), suppose L(t) is bounded and is chosen such that Li(t) >
max{|ε̇indi,i |, ̄li}, then ṡ = s = 0 is achieved in finite time if the gains λ̄i and β̄i are chosen as β̄i > 1 and λ̄i = 2

√
2β̄i for all i = 1, ..., p.

Proof: In the Proposition 3.1 of Ref. [14], the gains are chosen to satisfy a linear inequality, which is equivalent to the frequency domain 
constrain ‖Ḡ(s)‖∞ = ‖1/(2s2 + λ̄i s + β̄i)‖∞ < 1 (here s is the Laplace variable). This constrain can be met by the choices in Proposition 2. 
In addition, multi-input/multi-output expressions are used in this paper, because for aerospace applications, the gain choices for each 
control channel can be very different. Analogous to the proof of Proposition 3.1 in [14], the present Proposition 2 can be proved. �
6
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Fig. 5. Fault-tolerant trajectory tracking comparisons of the proposed three controllers.

The dual-layer adaption scheme [14] is applied to Li(t) such that it is as small as possible but is still sufficient for maintaining 
sliding motions. For each i = 1, ..., p, define δi(t) = Li(t) − (|ūeq(t)|/(ai β̄i) + κi), where ūeq(t) equals the low-pass filtered βisign(si(t)). 
On the sliding surface, ūeq(t) presents a real-time estimation of the equivalent control ueq(t) [14]. The scalar ai is chosen to satisfy 
0 < ai < 1/β̄i < 1, and κi is a positive scalar chosen to ensure |ūeq(t)|/(ai β̄i) + κi/2 > |ueq(t)|. The adaption law is given as

Li(t) = l̄i + li(t), l̇i(t) = −ρi(t)sign(δi(t)), ρi(t) = r̄i + ri(t), ṙi(t) = γi(t)|δi(t)| (31)

where l̄i and r̄i are small positive scalars for introducing safe margins.

Proposition 3. Consider the system in Eq. (28) subjects to uncertainty εindi , if the first- and second-order time derivatives of εindi,i are bounded for 
i = 1, ..., p, then the dual-layer adaption scheme in Eq. (31) ensures Li(t) > |ε̇indi,i | in finite time, without requiring the bound information.

Proof: This can be proved using the Proposition 3.2 in [14]. In addition, a small dead-zone can be applied to the adaptation for 
attenuating the side effects of measurement noise. �

By far, the derivations and theories of I-ASMC have been completed. As a summary, I-ASMC designs the control increment �u , which 
is solved from the quadratic programming problem formulated in Eq. (24). The designed control increment results in the closed-loop error 
dynamics in Eq. (25), in which the boundedness of the uncertainty term εindi is ensured in Theorem 1. Given an εindi term with bounded 
first- and second-order time derivatives, Proposition 3 proves that the dual-layer adaption scheme ensures Li(t) > |ε̇indi,i |, i = 1, ..., p in 
finite time. This condition further leads to ṡ = s = 0 in finite time when the remaining conditions in Proposition 2 are also satisfied. 
According to Eq. (28), −νs provides a real-time observation of εindi when s = 0. As a result, the nominal dynamics e(r) = νn are achieved 
in finite time in spite of uncertainties. Finally, the nominal virtual control designed in Proposition 1 ensures e(r−1) = e(r−2) = ... = e = 0 is 
established in finite time.

The proposed I-ASMC method has reduced model dependency than the widely used model-based sliding mode control (SMC) methods 
in the literature [4,11]. This is because in Sec. 3.2.1, only the estimated control effectiveness matrix B̂ is used. Even though the model 
dependency is reduced, the required minimum possible sliding mode control/observer gains are actually also diminished. The main reason 
is that in Eq. (25), the norm value of the residual error εindi is typically smaller than that of the residual error using model-based SMC 
methods [4,11].

4. Simulation results

The fault-tolerant performance of the proposed controllers will be numerically evaluated in this section. The geometry property of the 
tested quad-plane is illustrated in Fig. 2. The moment of inertia is I v = diag{[0.0027, 0.0027, 0.0052]} kg·m2, and the quad-plane mass 
is 1.0 kg. The rotor dynamics are modeled by first-order low-pass filters with time constant τ = 0.033 s. The maximum rotor angular 
velocity is 1200 rad/s.

Three control methods are compared: INDI, I-ASMC, and a linear quadratic regulator (LQR). The control frequency is 400 Hz. The LQR 
design and weight selections in this paper are the same as those in [16]. The only model information required by INDI and I-ASMC is 
the control effectiveness matrix. Also, the quadratic programming control allocation defined in Eq. (24) is used by both INDI and I-ASMC. 
The weight choices are W 1 = I 3×3, W 2 = I 4×4, and σ = 0.001. As discussed in Sec. 3.2.2, the INDI and I-ASMC differs in virtual control 
design. In this quad-plane fault-tolerant control problem, the relative degree equals r = [2, 2, 2]T , thus the overall INDI virtual control 
is ν = −K d ė − K pe, where K d = diag{[1.6, 12.8, 12.8]} and K p = diag{[1, 64, 64]}. The nominal virtual control of I-ASMC is given in 
Eqs. (26) and (27). In this specific application, νn,1 = −1.6|ė1|0.80sign(ė1) −|e1|2/3sign(e1), νn,2 = −12.8|ė2|0.80sign(ė2) − 64|e2|2/3sign(e2), 
νn,3 = −12.8|ė3|0.80sign(ė3) − 64|e3|2/3sign(e3). Note the nominal gains of I-ASMC are chosen to be equal to the gains of INDI for fair 
comparisons. Moreover, the adaptive sliding mode disturbance observer virtual control is given in Eq. (29). The gain choices are: β̄1 =
1.1, β̄2 = β̄3 = 5.1, a1 = 0.85, a2 = a3 = 0.18. The bandwidth of the low-pass filter is chosen as 100 rad/s. In Eq. (31), l̄i = 2.1, r̄i = 1.1, 
κi = 0.1, γi = 1, for all i = 1, 2, 3.

Initially, the quad-plane is hovering with four healthy rotors. Complete failure of rotor #3 occurs at t = 1 s (Fig. 2). The references are 
set as nref,x = 0.15 and nref,y = −0.15 to tilt nref towards rotor #1. The primary objective of the controllers is stabilization. As discussed in 
7
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Table 1
Tracking performance comparisons between INDI and I-ASMC.

Metrics rms(x − xref) rms(y − yref) rms(z − zref) rms(nx − nref,x) rms(ny − nref,y)

INDI 0.2895 0.3065 0.0263 0.0781 0.1190
I-ASMC 0.2692 0.2714 0.0046 0.0434 0.0522
Improvements 7.00 % 11.45 % 82.50 % 44.46 % 56.12 %

Fig. 6. Comparisons of the reduced-attitude tracking errors and rotor speeds of the proposed three controllers.

Fig. 7. Total and wing-induced forces and moments expressed in FB (excludes gravity).

Sec. 2.2, it is physically impossible to stop the quad-plane from spinning at low forward flight speed. Furthermore, once it starts spinning, 
the wing surface would lead to considerable forces and moments, which increase the stabilization difficulties. If the controller is able to 
stabilize the aircraft, one step further would be taken: way-point tracking.

As shown in Fig. 5, the damaged quad-plane is commanded to track a square trajectory. Even though the LQR controller can stabilize 
the quad-plane in a few seconds after the rotor failure, the responses deviate from the given commands and eventually results in a crash. 
On the contrary, both INDI and I-ASMC are able to control the damaged quad-plane to follow the square trajectory. Nevertheless, I-ASMC 
has better tracking performance. Table 1 summarizes the performance improvement percentages of I-ASMC over INDI.

The reduced-attitude tracking errors and the rotor inputs are illustrated in Fig. 6. After t = 10 s, LQR presents oscillatory responses and 
fails in stabilizing the quad-plane. By contrast, INDI and I-ASMC stabilize the reduced-attitude tracking errors around zero in spite of the 
rotor failure. The I-ASMC outperforms INDI by over 44% (Table 1) in terms of reduced-attitude tracking accuracy.

The failure of rotor #3 renders the quad-plane yawing around 15 rad/s from t = 1 s. Fig. 7 plots the total (excluding gravity) and 
wing-induced aerodynamic forces and moments. It can be seen that the wing-induced forces are relatively small, as those generated by 
the left and right wings roughly counteract each other. However, significant wing-induced rolling moments are observed from Fig. 7b. 
This is because the wing on the advancing side generates positive lift while the retreating side generates negative lift. Considering the 
difficulties in accurately model the spinning-induced aerodynamics, these effects are kept unknown to the controller. Even so, thanks to 
their robustness, both INDI and I-ASMC automatically generate more thrust on rotor #4 to compensate for this rolling moment (Fig. 6b). 
By contrast, the LQR inputs are saturated and eventually lead to the crash.

The sliding mode disturbance observer (SMDO) adaptive gains in the three control channels (z, nx, ny) are shown in Fig. 8a. Proposi-
tion 3 is verified by Fig. 8a as the gains Li(t), i = z, nx, ny are bounded and adapt themselves according to the trend of the uncertainties. 
According to Proposition 2, this further leads to ṡ = s = 0 in finite time, which is verified in Fig. 8b. Recall Sec. 3.2.3, the responses of 
8
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Fig. 8. Sliding variable comparisons between INDI and I-ASMC.

s reflect the effects of εindi on closed-loop dynamics. Fig. 8b shows that I-ASMC enforces s to zero in finite time, while the remaining 
perturbations in INDI are not neutralized.

5. Conclusions

This paper presents the first (to the best of the author’s knowledge) nonlinear fault-tolerant controller for a quad-plane subjected 
to a complete loss of a single rotor. Lyapunov-based stability and robustness analyses show that the proposed incremental adaptive 
sliding mode control (I-ASMC) enforces a generic nonlinear system to equilibrium in finite time, despite model uncertainties, external 
disturbances, and sudden faults. Moreover, the sliding mode control and observer gains are adapted automatically without knowing the 
uncertainty bounds. Furthermore, by virtue of its sensor-based control structure, I-ASMC only requires an estimated control effectiveness 
matrix for implementation, while being robust to the complex aerodynamic uncertainties during the quad-plane fast-spinning motions. 
Finally, simulation results demonstrate that a linear quadratic regulator (LQR) is insufficient to stabilize a quad-plane with only three 
rotors. By contrast, the proposed I-ASMC drives the faulty quad-plane to follow a trajectory and shows enhanced robust performance than 
the incremental nonlinear dynamic inversion control (INDI). Validating I-ASMC by higher fidelity simulations and real-world flight tests 
are recommended as future work.
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