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Abstract—Cognitive radar frameworks rely on the ability
to quantify and reason on future uncertainty, which allows
for the selection of an optimal decision policy. These methods
require that the uncertainty estimates provided by the underlying
statistical model are well-calibrated, i.e. consistent with true
uncertainty. In this work, the utilization of probability calibration
techniques for target classification is explored. It is shown from
simulations and experimental data that the proposed techniques
can be used to correct errors in uncertainty estimates caused
by incorrect modeling assumptions, such as the independence
of sensors and the independence of classification covariates. This
correction improves classification performance and the reliability
of cognitive systems so that resources are utilized in accordance
with user-defined cost functions.

Index Terms—Cognitive radar, probability calibration, re-
source management, target classification

I. INTRODUCTION

Networks of radar sensors can be utilized as an exten-
sion to single-radar observation and classification tasks, as
demonstrated in [1] and [2]. This improved performance is
attributable to e.g. complementary target information that spa-
tially separated sensors can acquire. To leverage this potential,
it is necessary to ensure consistency between the confidence
of the classifier and the true posterior probability for a given
prediction [3]. This confidence calibration is not only required
for the selection of an appropriate number of measurements in
a budget-limited radar network, but also for scenarios where
class probabilities are not used in isolation. An example of the
latter is sensor fusion or the evaluation of a Bayes estimator.

Radar resource management is a topical issue. In [4], an
adaptive model is developed which estimates the predicted
measurement uncertainty of a single radar sensor in order to
make a decision on when to take additional measurements.
This model is extended in [5] to include a decision on the
type of waveform to be used, prioritizing either tracking
or classification accuracy. A multi-target tracking solution is
proposed in [6], where resources are to be allocated in the
form of sensor time per target. Radar Resource management
for classification is covered more extensively in e.g. chapter 5
of [7]. The resource allocation problem extends to networks
of multiple sensors.

In this work, the calibration of a cognitive radar system is
explored by the definition of a minimal radar resource prob-
lem. A simulation of such a cognitive system will be employed

to investigate two methods of calibration: isotonic regression
and logistic regression. Furthermore, potential improvements
in classification accuracy when dealing with correlated sensors
under a budget constraint will be demonstrated. Using an ex-
perimentally acquired dataset of human motion, the improved
reliability of a classifier after calibration will be shown.

The main contributions in this work are as follows:
• Introduction of the calibration of probabilities for a full

radar network performing a classification task.
• Systematic exploration of calibration through a simulated

model, and validation with an experimental dataset from
five radar nodes.

• Demonstration of the need for probability calibration
in order to utilize radar resources in accordance with
mission objectives.

In Section II, the cognitive framework itself will be defined.
Section III contains a description of the case study which is
conducted to investigate calibration of the cognitive system,
followed by the results of this study in Section IV. For
reproducibility, code has been made available1.

II. METHOD

In this section, the constituent parts of the cognitive frame-
work are described. First, the procedure of class estimation is
described, followed by a definition of the resource manage-
ment problem. Finally, the two types of calibration employed
in this work are outlined. The notation is described in Table
I.

A. Class Estimation

The class of a target y is estimated from an observation of
features x which are modeled as independent and normally
distributed. The posterior is estimated as,

p(y | x) ∝ p(x | y) p(y), (1)

which follows from Bayes’ theorem for a prior distribution
p(y). A point estimate ŷ of the posterior is selected as the
maximum a posteriori estimate,

ŷ = MAP(p(y | x)) . (2)

1https://github.com/petersvenningsson/probability-calibration
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TABLE I: Table of notation

H(x) Entropy operator Entropy of a random variable x.
Ep(x,y) [H(y | x)] Expected entropy The expected entropy of y | x under the joint distribution p(y, x).

MAP(p(y | x)) Maximum a posteriori estimate A point estimate of y | x.
Q(y | x) Prediction confidence The probability of the MAP estimate of p(y | x) being true.

PCC(x, y) Pearson correlation coefficient The degree of linear correlation between random variables x and y.
PCC(x(i,l), x(i′,l)) Feature correlation The degree of correlation between two features measured by sensor l.
PCC(x(i,l), x(i,l′ ) Sensor correlation The degree of correlation for a feature when measured by sensor l and l′.

〈·〉 Ensemble Mean value of quantity · over a large number of samples.

B. Resource Management Problem

The resource management problem under consideration
consists of the selection of a sufficient amount of sensor
measurements to reach a goal posterior confidence qτ . Let
y indicate a class variable in a binary classification problem
and xk a measurement taken from k sensors. Following the
methodology of [4], a constraint is imposed that a goal entropy
Hτ should be reached. An optimization problem can then be
defined as:

min
k

k

s.t. Ep(x,y) [H(y | xk)] > Hτ .
(3)

Here, k denotes the number utilized sensors and H the entropy
operator. To aid interpretability, the goal entropy Hτ is mapped
to a goal confidence qτ . For the binary entropy function,

H(y | xk) =− p(y | xk) log p(y | xk)− . . .
(1− p(y | xk)) log(1− p(y | xk)),

(4)

let the confidence be defined as

Q(y | x) = H−1H(y | x), (5)

where H−1 is restricted to the range [0.5, 1]. The optimization
problem can then be expressed as

min
k

k

s.t. Ep(x,y) [Q(y | xk)] > qτ ,
(6)

where
Ep(x,y) [Q(y | xk)] ≈ 〈Q(y | xk)〉 , (7)

is estimated over N samples drawn from the recorded dataset.
A prediction ŷ has a probability p(y = ŷ | x) of being true.

It follows from the symmetry of the binary entropy H(y | x)
that many predictions drawn from p(y | xk) will reach Q(y |
xk) accuracy and that qτ can be interpreted as a goal accuracy.

C. Calibration

Predicted probabilities estimated by a classification model
can generally not be equated to the probability of the predic-
tion being true. As investigated in [8], various classification
models tend to produce class probabilities that are incorrect
estimates of true posterior probability due to their methods
of estimation. In this section, two calibration techniques are
described that are aimed to improve these estimates.

Calibration through logistic regression relies on the as-
sumption that class predictions are related to true posterior
probabilities through a sigmoidal transformation. The method,
proposed by Platt[9], employs a function with two parameters
to calibrate the class predictions ŷi,

m(ŷi) =
1

1 + exp (Aŷi +B)
(8)

where A and B are the function parameters. The parameters
are fit to a training set by minimizing the negative log
likelihood of the set,

argminA,B

{
−

∑
i

yi log(m(ŷi) + . . .

(1− yi) log(1−m(ŷi))
}

(9)

with yi indicating the true class labels.
A generalization of the logistic calibration described above

is calibration by isotonic regression, where the restriction
of sigmoid shape is released. Following [10], the isotonic
calibration function,

m̂ = argminm

{∑
i∈V

(yi −m(ŷi))
2

}
, (10)

is only restricted to be piecewise-constant and non-decreasing.
The regression can be fit using the pair-adjacent violators
algorithm [11].

III. CASE STUDY

A case study in two parts is conducted to investigate
probability calibration of a cognitive system. The first part
is a simulation of such a system, followed by experimental
validation.

A. Simulation

To demonstrate the effects of probability calibration for
the resource management problem defined in (6), a cognitive
system is simulated. The classification model from Section
II-A is employed to perform a binary classification task
whilst the cognitive system can select the amount of required
measurements from a set amount of sensors. Each sensor
draws a measurement from a bivariate normal distribution
which comprise two classification features, x(1,l) and x(2,l)

drawn from sensor l. The distribution has unit variance and
means shown in Table II.
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TABLE II: Parameters of Gaussian distribution x | y.

Mean Variance

Class p(y) x(1) x(2) x(1) x(2)

Class 1 0.5 0.5 -0.5 1.0 1.0
Class 2 0.5 1.0 0.0 1.0 1.0

Correlations in measurements are induced in two distinct
ways. Pearson correlation coefficient is defined as,

PCC(A,B) =
cov(A,B)

σA σB

for random variables A and B and their respective standard
deviations σA and σB . Sensor correlation is defined as the
correlation coefficient of feature i,

Sensor correlation = PCC(x(i,l), x(i,l
′)),

for sensors l and l′. Feature correlation is defined as the
correlation coefficient of the two features which comprise the
bivariate feature distribution measured by the same sensor,

Feature correlation = PCC(x(i,l), x(i
′,l)),

for feature i and i′.
The goal accuracy is set according to operational goals. The

effectiveness of probability calibration is evaluated under vary-
ing degrees of sensor correlation. Feature correlation is fixed
at 0.0 unless otherwise indicated. The conditional distributions
and the calibration parameters are fit from 106 samples and
are evaluated on 105 samples. The total number of available
sensors is 50 and the predictions are estimated from a uniform
prior.

It is expected that as the correlation between classification
increases, the classification model described in Section II-A
should provide estimates of p(y | x) which diverges from
the true posterior. This is a consequence of that the model
assumes that there is no correlation between the features.
The posterior estimate of p(y | x) is then corrected by the
calibration methods described in Section II-C.

B. Experiment

To validate the results obtained from the simulated system,
the same methodology is applied to experimental data recorded
from a human target which is either walking or stationary.
Full details of the experimental setup can be found in [12].
Measurements are taken by a set of five PulsON P410 Ultra
Wideband radars. The monostatic, omnidirectional radars are
arranged in a semicircle with a diameter of 6.38m and have
a center frequency and bandwidth of 4.3GHz and 2.2GHz
respectively. The acquired dataset can be found in [13].

Radar measurements are processed to yield velocity-time
representations, or spectrograms, of the complete sequences.
The spectrograms are divided into segments of 1 s, and 20
features are extracted from each segment through Principal
Component Analysis. Class estimation is subsequently per-
formed as described in Section II-A.
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Fig. 1: Accuracy versus sensor correlation for independent
features. Goal confidence is indicated by a dotted black
line. Accuracy decreases immediately with increasing sensor
correlation in the case of an uncalibrated model. The calibrated
models are able to reach and maintain the goal accuracy until
the point where all sensors have been utilized.

IV. RESULTS

In this section, the results for the case study described in
Section III are presented.

A. Simulation Results

Figure 1 shows the expected confidence and the accuracy
of the classification model with and without calibration. The
horizontal axis represents the amount of correlation between
the sensors and the goal confidence is set to 75%. At 0.0
sensor correlation both the calibrated and uncalibrated models
can achieve the required goal accuracy, as the expected con-
fidence is correctly estimated. For increasing values of sensor
correlation, the uncalibrated accuracy diverges from the goal
accuracy as the uncalibrated model incorrectly estimates the
expected posterior distribution, whilst the calibrated models
increase the amount of sensor measurements to maintain the
required accuracy.

The increased sensor utilization is displayed in Figure 2.
The rapid growth in sensor usage for greater sensor correlation
is explained by the diminishing contributions of additional
sensors. For sensor correlation greater than 0.3, the calibrated
systems are no longer able to utilize additional sensors, which
is seen in Figure 1 as the inability to reach the goal accuracy.
Important to note is that, whilst the calibrated models can no
longer reach the goal accuracy, their expected confidence and
accuracy are decreasing in equal measures. This contrasts with
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Fig. 2: Sensor utilization versus sensor correlation for simu-
lated data. Apparent features of the graph are the rapid increase
in required sensor utilization for the calibrated models and
the contrasting lack of sensor utilization for the uncalibrated
model.

the uncalibrated model and indicates that a good estimate can
be made on the ability to reach a goal accuracy with a given
amount of sensors.

In Figure 3, both the features and the sensors are correlated
with feature correlation fixed at 0.3. It can be seen in the figure
that even for completely independent sensors, the uncalibrated
classification model is overconfident and the cognitive system
does not take enough measurements to reach the goal accuracy.
In the case of human activity classification, it is realistic that
features are correlated to some degree, as they are different
characterizations of the same measurement. This result thus
shows the improved performance of calibrated classification
models.

To further demonstrate the improved sensor utilization of
the calibrated models, a plot of accuracy versus goal accuracy
is shown in Figure 4 for a fixed sensor correlation of 0.3.
Under ideal circumstances, a cognitive system will make a
perfect estimate of the true posterior probability and will
thus tend to the diagonal in this figure. This implies that
proximity to the diagonal is indicative of a well-calibrated
model. For lower goal accuracies, all three models achieve
an equal accuracy of approximately 0.64. This is due to the
minimum requirement of a single measurement resulting in a
minimum accuracy, regardless of calibration. Moving towards
higher goal accuracies, it can be seen that the calibrated
models remain closer to the optimal diagonal, as the improved
expected confidence provides a good indication of when to
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Fig. 3: Accuracy versus sensor correlation for correlated
features. Goal confidence is indicated by a dotted black line.
Of note is the inability of the uncalibrated model to utilize
enough sensors at 0.0 sensor correlation.

utilize an additional sensor. This trend continues until the max-
imally attainable accuracy of approximately 0.78 is reached,
after which the expected confidence for the calibrated models
remains constant.

Finally, Figure 5 displays reliability curves for all models,
to indicate the relations between predicted confidence and
true posterior probability. As mentioned in Section II, given
enough samples, the predicted confidence of a well-calibrated
model should approach the true posterior probability. Thus, the
diagonal in the figure again represents ideal calibration. The
inverse-sigmoidal shape of the uncalibrated model is typical
for statistical classifiers which assume feature independence
[8]. Due to this shape and the symmetry of the uncalibrated
reliability curve around (0.5, 0.5), the assumptions for logistic
regression to produce a well-calibrated model are largely
fulfilled. Calibration through isotonic regression provides the
most significant improvement over the uncalibrated model.

B. Experimental Results

A plot of accuracy versus goal accuracy is shown in Figure
6. The results are similar to those acquired from simulation,
with two notable differences. First, the uncalibrated model is
overconfident to a greater extent than in the simulated results.
This may be explained by high degrees of correlation between
the features used for activity classification. Secondly, fewer
steps are present in all plots due to the amount of sensors being
limited to five. It is apparent that the calibrated models almost
exclusively have an accuracy above the goal accuracy, up until
the point where there are no additional sensor measurements to
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Fig. 4: Accuracy versus goal accuracy for simulated data for a
maximum of 50 sensors. Dotted black line indicates equality
between accuracy and goal accuracy. Every vertical step in the
plots indicates the utilization of an additional sensor.

utilize. Furthermore, the expected confidence of the calibrated
models bears far better correspondence to the accuracy than
in the case of the uncalibrated model.

In Figure 7, the reliability curves for all three models are
shown. It can be seen that, when compared to simulation
results, logistic regression provides less improvement in cali-
bration effectiveness. This is primarily due to the uncalibrated
model not fulfilling the assumption of sigmoidal shape that is
necessary for the effective application of logistic calibration.
The calibration can however be seen to be effective for the
interval [0.8, 1.0], which explains the improvement over the
uncalibrated model in Figure 6. Isotonic regression shows
minimal deviation from ideal calibration when compared to the
uncalibrated model and can be considered to be an effective
method in this scenario.

V. CONCLUSIONS

In this work, calibration of class estimation is explored
in the context of a cognitive system resource management
problem. Improvements in reliability are demonstrated for a
simulated system through the usage of logistic and isotonic
probability calibration. The improved reliability results in
better estimates of the required number of measurements to
achieve a goal accuracy in a classification task. The simulation
results are experimentally verified using radar data of human
activities. It is shown that in both cases, isotonic regression is
a more effective method of calibration.

The task of class estimation in this work has been performed
through statistical modeling. In future works, applicability
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Fig. 5: Reliability curves for calibrated and uncalibrated mod-
els for simulated data. Ideal calibration is indicated with a
dotted black line. Overconfidence of the uncalibrated model
is indicated by the inequality of the predicted confidence and
the fraction of positives.

to approaches based on non-statistical models such as e.g.
support vector machines or other machine learning algorithms
may be investigated. Additionally, enhancements in simulation
fidelity may lead to novel insights. This may for example be
achieved through the simulation of nonlinear correlations in
data, or by mimicking realistic sensor correlations for a certain
radar network geometry. Finally, the method proposed in this
work may be extended for a dynamical model, to develop
improved real-time decision processes for cognitive systems.
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