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Abstract: We describe a method to control the cavity detuning in optomechanics ex-
periments. This helps accurate measurements of the asymmetry in the motional sidebands,
that testify the quantum behavior of the oscillator and quantifies its occupation number.

OCIS codes: 270.0270, 000.1600.

1. Introduction

A crucial outcome of cavity optomechanics [1] is the observation of peculiar quantum features in the behavior of
macroscopic mechanical oscillators. The most relevant indicator of the achieved mechanical quantum domain is
the so-called motional sidebands asymmetry. The optomechanical interaction generates spectral peaks around the
carrier frequency of a probe field, at distances equal to the mechanical oscillation frequency Ωm. Their amplitudes
are generally different according to quantum theory. Different interpretations have been proposed to explain such
asymmetry, all agreeing in recognizing it as a non-classical signature of the mechanical oscillator [2], as soon as
spurious experimental features are avoided. A particularly elucidating explanation considered that the anti-Stokes
(blue) sideband implies an energy transfer from the oscillator to the field (frequency up-conversion of photons),
and vice versa for the Stokes (red) sideband. Since the quantum oscillator cannot yield energy when it is in the
ground state, the anti-Stokes process is less favored. It turns out that the blue and red sideband strengths are
proportional respectively to n̄ and (n̄+1), where n̄ is the mean occupation number of the oscillator.

In this work we experimentally investigate the sidebands asymmetry as signature of quantum performance,
and we compare it with a further indicator, i.e., the oscillator displacement variance measured form the area
of the corresponding peak in the probe phase spectrum. Furthermore, we demonstrate a method for correcting
the measured sidebands asymmetry for non-null probe detuning, exploiting the spectral features of the device
oscillating modes that are weakly coupled to the cavity field (“heavy” modes).

2. Experimental results

Fig. 1. (a) Simplified scheme of the experimental setup. (b) Scheme of the beam frequencies. The
LO is placed on the blue side of the probe and detuned by ∆LO << Ωm, therefore the Stokes lines are
on the red side of the LO, while the anti-Stokes lines are on the blue side. In the heterodyne spectra,
they are located respectively at Ωm +∆LO (Stokes) and Ωm −∆LO (anti-Stokes).
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The measurements are performed on a circular SiN membrane with a thickness of 100nm and a diameter of
1.64mm, supported by a silicon ring frame [3–5]. The resonance frequencies of the drum modes are given by
the expression fmn = f0 αmn where αmn is the n-th root of the Bessel polynomial Jm of order m. For m > 0 we
expect couples of quasi-degenerate modes. The oscillator is placed in a Fabry-Perot cavity of length 4.38 mm, in
a “membrane-in-the-middle” setup. The cavity optical axis is displaced from the center of the membrane, so that
the optomechanical coupling and readout are much more efficient for one of the modes in each quasi-degenerate
couple. In this work we mainly focus on the (1,1) modes at 370 kHz, having a quality factor of 8.9× 106 at
cryogenic temperature. The optomechanical cavity is cooled down to ∼ 7K. The light of a Nd:YAG laser is split
into several beams, whose frequencies are controlled by means of acousto-optic modulators (AOM) (Fig. 1a), that
are used to cool optically cool the mechanical modes and to probe their displacement spectrum in heterodyne and
homodyne setups.

Fig. 2. Close symbols report the occupation number n̄ calculated from the corrected values R of the
sideband ratio for the “light twin” mode, according to n̄ = 1/(R−1). The red solid curve represents
the occupation number n̄ calculated according to a theoretical model using independently measured
parameters. Red, green and blue areas represent respectively the contributions of the thermal noise,
the probe beam back-action, and the cooling beam back-action.

The occupation number n̄ calculated from the corrected sideband ratio is shown in Figure 2 as a function of the
width Γeff of the mechanical resonance, obtained at increasing values of cooling power. Filled solid curves reflect
the expected n̄ and its different contributions, calculated according to a theoretical model. without any free fitting
parameters: all the contributions to n̄ are calculated on the basis of independent measurements. The agreement with
the experimental data is excellent, considering the experimental statistical uncertainty, suggesting the absence of
non-modeled extra noise. Each single data point can thus be exploited to extract the occupation number, using as
experimental error its statistical uncertainty.
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