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Abstract—High angular resolution is in high demand in au-
tomotive radar. To achieve a high azimuth resolution a large
aperture antenna array is required. Although MIMO tech-
nique can be used to form larger virtual apertures, a large
number of transmitter-receiver channels are needed, which is
still technologically challenging and costly. To circumvent this
problem, we propose a high-resolution Direction of Arrival (DoA)
estimation by using multiple small radar sensors distributed
on the fascia of the automobile. To exploit the diversity gain
due to different target observation angles by different radars,
a block Focal Under determined System Solver based approach
is proposed to incoherently fuse the data from multiple small
MIMO sensors. This method significantly improves the DoA
estimation compared to single sensor, decreases probability of
false alarm and increases probability of multiple target detec-
tion. Its performance is demonstrated through both numerical
simulations and experimental results.

Index Terms—Compressive Sensing (CS), FOCUSS, Block
sparsity, distributed radar, MIMO, automotive radar, OMP,
BOMP, incoherent processing, ambiguity function, single snap-
shot, DoA estimation.

I. INTRODUCTION

FMCW radars play an important role in the safety of
autonomous driving as they are robust to lighting and

weather conditions. They are mainly used to estimate the
distance, the radial velocity and the angular location of objects
relative to the car. With advances in signal processing tech-
niques and improvement of hardware used in radar sensors,
the estimation of distance (range) and velocity has been
improved over the years. There are sufficient cases which
needs to resolve the objects with same range and Doppler.
Resolving such objects in the angular domain, called Direction
of Arrival (DoA) estimation, is still a challenge. Traditional
approach to deal with it, is usage of radar sensors with multiple
transmit and receive antennas, i.e. Multiple Input Multiple
Output (MIMO) systems in which a higher angular resolution
is obtained by increasing the array size in the radar. This
approach is costly and leads to bulky systems that are difficult
to integrate in the design of the automobile. In this paper,
we look for a way to fuse the data from multiple smaller
radar units that are spread out on the fascia of a car. This
approach benefits from spatial diversity gain as discussed in
[1]. In automotive applications it is critical to provide real time
estimation of the DoA of targets. We develop a single snapshot

DoA estimation technique which fuse data from multiple radar
units after range and Doppler processing in each system cycle.

However, combining data from multiple sensors can be
challenging. When an extended target like a car is present in
the near field of the radar, it can appear as a non-isotropic
target to the system under consideration. The radar cross-
section (RCS) observed by individual sensors can be different
for such extended targets and the target will be perceived
incoherently by the radar sensors [1]. Moreover, achieving full
synchronization between the sensors is not easy as discussed
in [2]. The conditions under which coherent fusion of data
can be performed, the performance of the algorithm and the
drawbacks of the same are discussed in [3]. In this paper we
propose incoherent fusion of data from distributed sensors.

Sparsity based algorithms are advantageous as they do not
require a prior knowledge of the number of targets and have
good performance in estimating DoA using single snapshot
[4]. The imaging scene in automotive radar application can be
considered sparse, consisting of very few point targets with
the same range and Doppler [5]. Hence, in this paper sparsity-
driven algorithms are used to estimate the DoA from an under
determined system of equations [6]. Some of the grid based
algorithms are Basis Pursuit De-Noising (BPDN), Matching
Pursuit (MP), Orthogonal Matching Pursuit (OMP) and Focal
Under determined System Solver (FOCUSS), while there are
also grid-less algorithms [7]. Estimating the DoA of targets
in radar applications through sparsity based algorithms is ex-
plained in detail in [6]. Moreover, there have been some studies
on DoA estimation using data from multiple sensors [8]–
[13]. The resolution obtained by incoherent combining of data
from multiple apertures is limited by the largest sub-aperture
used in the distributed system [13]. The Block Orthogonal
Matching Pursuit (BOMP) algorithm, that incoherently fuses
the data from multiple apertures for DoA estimation, can be
considered as the state-of-the-art and is proposed in [13].
The BOMP algorithm is an extension of OMP which is a
greedy algorithm and thus does not always converge to the
true solution. On the other hand, FOCUSS outperforms OMP
in resolution capabilities [14]. In this paper the merits of
FOCUSS are exploited in a new sparsity-driven algorithm,
termed as Block FOCUSS, for high resolution DoA estimation
through incoherent fusion of data.
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Fig. 1. System model
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Fig. 2. Mono-static and bi-static response for a 3 × 4 MIMO sub-systems
M1 and M2

Some common notations used in this paper are as follows.
The notations x, x and X, represent a scalar, a vector and a
matrix respectively. XH and XT represent the Hermitian and
the transpose of a matrix X.

II. SYSTEM AND SIGNAL MODEL

A distributed system, comprising of two sub-systems, is
considered as shown in Fig. 1. The two sub-systems (M1
and M2) are separated by a distance B(= 2dm), called the
baseline (B) and centered at the origin (O). The proposed
system model can be easily extended with more sub-systems.
Each sensor comprises of NTx transmitters and NRx receivers
which can be operated in a MIMO configuration. The two
sub-systems are coarsely synchronized on millisecond level to
ensure the measurements are performed at the same time. This
allows us to assume that the targets are in the same range-
Doppler bin for a given field of view and that there is no
displacement due to difference in measurement time. A target
present at range R with DoA θ from the center of the system
is depicted in Fig. 1. It has range R1 with DoA ϕ from M1,
and range R2 with DoA ψ from M2. From the geometry of
the system, for every range R and angle θ the corresponding
range R1, R2 and angle ϕ, ψ from each sensor in the system
can be calculated, as B is known. The target is said to be in
the far-field if the distance of the target to the radar is greater
than the Fraunhofer distance (DF ) given as 2D2/λ, where D
is the virtual aperture of the sensor and λ is the wavelength.
For individual sensors M1 or M2 the target can be assumed to
be in the far-field, but for the distributed system the aperture is
now equivalent to baseline B and thus, the far-field assumption

is easily violated. Hence, for the distributed system the DoA
as seen by M1 and M2 will be different when the target is in
the near-field. Moreover, the RCS observed by the sub-systems
can be different as well.

The signal model to perform DoA estimation from spatial
samples obtained after the Range-Doppler processing is given
by [6].

y = Ax+ n, (1)

where y ∈ CN×1 is the measurement vector containing
samples from the N virtual antenna elements of the sensor,
x is the source vector to be estimated, A is the steering
matrix and n is the noise vector. In case of K targets, the
source vector x contains K elements and the steering matrix
A will consist of K steering vectors representing the DoA
of the K targets. Sparsity based algorithms use a similar
signal model for solving the DoA estimation problem, but
approximate the model by assuming that A is a dictionary
containing Ns > K steering vectors and the source vector
x is an Ns dimensional vector with K non-zero elements.
The Ns elements of the dictionary represent candidate DoAs
θ1, θ2, . . . , θNs , and is also called the search grid. From the
DoA estimation algorithm’s perspective, the matrix A is called
the sensing matrix and is given by :

A = [a(θ1), a(θ2), · · · , a(θNs
)] ∈ CN×Ns (2)

The steering vectors in the sensing matrix A are the
Kronecker product of transmitter and receiver steering vectors

a(θ) = aTx(θ)⊗ aRx(θ) (3)

with
aTx(θ) = exp (j2πdTx sin θ)

aRx(θ) = exp (j2πdRx sin θ)
(4)

where dTx and dRx denote the transmitter and receiver
element positions (normalized to the wavelength λ) in an
individual sensor, respectively. In (4) the Direction of Depar-
ture (DoD) and DoA are considered to be same, hence this
equation represents the steering vectors for co-located receiver
and transmitter elements and can be used for the mono-
static responses in the system. For bi-static responses, as the
transmitter and receiver positions are not co-located, the DoD
and DoA are different. For the system shown in Fig. 1, there
are four virtual apertures, two representing the mono-static
responses and two representing the bi-static responses. As an
example the four virtual responses for a system with baseline
of 8λ are depicted in Fig. 2. The mono-static responses
from M1 and M2 have DoA and DoD equal to ϕ and ψ,
respectively. The steering vectors of the bi-static responses
are given as aTx(ϕ)⊗ aRx(ψ) when M1 is transmitting and
M2 is receiving, and vice versa. The dictionary is defined in
terms of θ and the corresponding values for ϕ and ψ are used
to define the steering vectors for all the responses.
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III. INCOHERENT PROCESSING

Data from multiple apertures can be fused incoherently
to improve the DoA estimate. If the system is not fully
synchronized then only the mono-static responses can be used.
We assume that the signal to be recovered from multiple
apertures is block sparse [15], i.e., the vector x that needs to
be estimated has non-zero values at the same location in all the
apertures. If we have L virtual apertures then the optimization
problem can be written as

min
x1,..xL

L∑
l=1

‖yl −Alxl‖22 + µ‖X‖2,p (5)

X = [x1, x2, · · · , xL] ∈ CNs×L (6)

||X||2,p =

Ns∑
n=1

(cn)
p, (7)

where,

cn =

√√√√ L∑
l=1

|xn,l|2 (8)

‖X‖2,p (0 < p < 1) is calculated as shown in (7), where
each column in X corresponds to the estimated vector xl for
aperture l (xl ∈ CNs×1 for 1 ≤ l ≤ L). An alternative method
such as maximum of |xn,l| over all l’s in calculation of cn in
(8) can also be considered.

In (5), yl,xl and Al represent measurement vector, source
vector and sensing matrix, respectively for each aperture l (l =
1, . . . , L). Note that Al is defined for each aperture with its
corresponding DoA and DoD as shown in Fig. 1. A variant of
FOCUSS algorithm, termed as Block FOCUSS, is proposed
in this paper which can be used to solve the block sparse

Algorithm 1 Block FOCUSS algorithm for multiple apertures
(with noise)

1: Inputs: yl, Al for l = [1, 2, . . . L]
2: Outputs: x̂, δ
3: Initialize k = 0; W(0) = I; δt = 10−8; δ = 1; x̂(0) = y

µ = noise variance
4: while δ > δt do
5: k = k + 1
6: for l = [1, 2, . . . L] do
7: A

(k)
l = AlW

(k−1)

8: q
(k)
l = (A

(k)
l )H

(
A

(k)
l (A

(k)
l )H + µI

)−1
yl

9: x
(k)
l = W(k−1)q

(k)
l

10: end for
11: W(k) = diag

(
(c

(k)
1 )p, (c

(k)
2 )p, . . . , (c

(k)
Ns

)p
)

where c(k)n is calculated as per Eq. (8)

12: x̂(k) =
[
(c

(k)
1 )p, (c

(k)
2 )p, . . . , (c

(k)
Ns

)p
]T

13: δ = ‖x̂(k)−x̂(k−1)‖2
‖x̂(k−1)‖2

14: end while
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Fig. 3. Spatial diversity by combining the responses from two distributed
radar sub-systems

problem. In block sparse we assume that the non-zero values
occur in the same position for each virtual aperture, xl i.e.,
they have the same support vector. The non-zero values at the
same position don’t have to be identical and allow therefore
different reflection coefficients from the same target perceived
by the different apertures.

In each iteration of Block FOCUSS the ‖X‖2,p norm of
the estimated signal xl from each aperture is fused into a
single x. The combined estimate represented as x is used to
calculate the weighting matrix W. The detailed steps of the
Block FOCUSS are shown in Algorithm 1. In each iteration
the weighting matrix W is used to choose the columns
of A that best represent the sparse solution. In contrast to
greedy algorithms, initial estimates are reconsidered through
the iterations in order to improve the result. To further improve
the performance of Block FOCUSS, pruning of the solutions
in each iterations can be used [16].

IV. RESULTS

A. Simulation results

A simulation is performed with two targets at a distance
of 20 m from the system with varying angular separations.
The system consists of two sensors separated by a baseline of
128λ, where each MIMO sensor has a virtual aperture of 6λ.
We consider the Signal-to-Noise ratio (SNR) for both targets
to be 20 dB. In total 500 trials of Monte-Carlo simulations
were performed for each angular separation case, where a
random initial phase is added to the targets. A comparison
of Block FOCUSS is given along with the state-of-the-art
algorithm BOMP. A detection window (DTW) of 6◦ is defined
around the ground truth of the target position. If a detection
is found in this window then it is declared as a target. If
there is more than one detection then the closest to the ground
truth is declared as the target. To quantitatively evaluate the
performance of the algorithms the Root Mean Square Error
(RMSE), probability of resolution (PR), probability of false
alarms (PFA) and average false alarm (AvgFA) are used. The
RMSE is determined by taking the square root of the mean of
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Fig. 4. Results from Monte Carlo simulations for a baseline separation of
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Fig. 5. Two trihedral reflectors used as targets separated in the x-axis

the square of error between the ground truth of the target and
the detected target by the algorithm. PR is the number of times
all the targets are detected in the DTW in a single Monte Carlo
simulation. PFA is defined as the number of trials which detect
more than two targets in the entire Field of View (FOV). The
AvgFA is defined as the average number of detections found
in the entire FOV minus the number of detected targets.

Distributed systems enable the radar to view a potential
target from different angles such that each transmitter–receiver
pair can experience a different RCS. This provides spatial
diversity for the radar and enables better detection perfor-
mance. The phase difference between the targets consists of
two components, the phase difference due to different RCS
of the targets and the phase difference that arises due to
path length difference between the sensors and the targets.
A simulation is performed in software to create varying phase
difference between the targets among the two sensors. The
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0
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Comparison of Probability of Resolution (PR)

Block FOCUSS
BOMP

Fig. 6. RMSE and PR of two targets after DoA estimation using Block
FOCUSS and BOMP algorithms

results of the simulation is illustrated in Fig. 3, where the x-
axis represents the phase difference between the two targets as
seen by the radar and the y-axis represents the PR. It is shown
that sensors M1 and M2 when operated as standalone systems
fail to resolve the two targets for a certain phase difference
between the targets, whereas by incoherently combining the
responses of the two sensors the system can always resolve
the targets.

Fig. 4 shows the results of the algorithms for two targets
with varying angular separation in steps of one degree applied
in a system with a baseline of 128λ. The SNR after the Range-
Doppler processing is 20 dB and the targets are at a range of
20 m from the radar system. It is shown that Block FOCUSS
has a resolving capability of 5◦ with a PR greater than 80
percent, whereas BOMP has a resolving capability of 10◦ for
the same configurations. Block FOCUSS outperforms BOMP
with double resolving capability and lower PFA.

B. Experimental results

An experiment was conducted in an anechoic chamber in
TU Delft using two radar modules based on NXP’s TEF810X
radar transceiver IC [17]. The radar modules were operating
at 78.8 GHz with a bandwidth of 1 GHz, and in the experi-
ment separated by 0.4 m (about 104λ). Only the mono-static
responses are used as the modules are not synchronized. Two
trihedral reflectors with an RCS of 11.8 dBsm are used as
targets, placed at a distance of about 4.5 m from the sensors,
which are separated in the x-axis. The two targets are separated
along the x-axis to have angular separations in steps of 1◦ as
shown in Fig. 5.

The outcome for experimental data processing is shown in
Fig. 6. One can see that Block FOCUSS algorithm is able to
resolve targets separated by 3◦ and more with a PR greater
than 80 percent, whereas BOMP fails to do so. The RMSE
for most of the cases is also acceptable. The spatial diversity
gain obtained by the distributed system compared to single
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system is shown in Fig. 7. The Block FOCUSS achieves better
resolution compared to the single sensors M1 and M2 in terms
of both PR and PFA, providing a spatial diversity gain.

V. CONCLUSION

A novel sparsity based algorithm called Block FOCUSS,
which is an extension of FOCUSS, is proposed for high res-
olution DoA estimation through incoherent processing of dis-
tributed radar sensors. The proposed method is able to account
for non-isotropic behaviour of targets which is experienced
by sensors in a distributed system with a different reflection
coefficient when they observe a target from a different angle.
An angular resolution of 5◦ is achieved for two targets at a
range of 20 m and an SNR of 20 dB, with each MIMO sensor
having a virtual aperture of 6λ. The Block FOCUSS algorithm
outperforms the state-of-the-art algorithm BOMP by two times
in terms of angular resolution. However, it is to be noted
that BOMP is a greedy algorithm and thus computationally
more efficient than Block FOCUSS. Block FOCUSS algorithm
is also experimentally verified through hardware evaluation
achieving a 3◦ resolution in the near field. In-depth study on
scalability of the approach to a large number of scatterers is
a subject of future work.
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Serrano, “Design of mutually incoherent arrays for DoA estimation
via group-sparse reconstruction,” in 2019 IEEE Radar Conference
(RadarConf), 2019, pp. 1–6.

[14] D. Mateos-Nunez, M. A. Gonzalez-Huici, R. Simoni, F. B. Khalid,
M. Eschbaumer, and A. Roger, “Sparse array design for automotive
MIMO radar,” in EuRAD 2019 - 2019 16th European Radar Conference,
2019.

[15] J. H. G. Ender, “A compressive sensing approach to the fusion of pcl
sensors,” in 21st European Signal Processing Conference (EUSIPCO
2013), 2013, pp. 1–5.

[16] I. F. Gorodnitsky and B. D. Rao, “Sparse Signal Reconstruction from
Limited Data Using FOCUSS: A Re-weighted Minimum Norm Algo-
rithm,” Tech. Rep. 3, 1997.

[17] NXP Semiconductors. (2019, May) TEF810X product data
sheet. [Online]. Available: https://www.nxp.com/docs/en/data-
sheet/TEF810XDS.pdf

Authorized licensed use limited to: TU Delft Library. Downloaded on May 12,2022 at 13:28:48 UTC from IEEE Xplore.  Restrictions apply. 


