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Radar-based Human Activities Classification with
Complex-valued Neural Networks
Ximei Yang, Ronny G. Guendel, Alexander Yarovoy, Francesco Fioranelli

Microwave Sensing, Signals and Systems (MS3), Delft University of Technology, Delft, The Netherlands

Abstract—Human activities classification in assisted living is
one of the emerging applications of radar. The conventional
analysis considers micro-Doppler signatures as the chosen input
for feature extraction or deep learning classification algorithms,
or, less frequently, other radar data formats such as the range-
time, the range-Doppler, or the Cadence Velocity Diagram.
However, these data are typically used as real-valued images,
whereas they are actually complex-valued data structures. In this
paper, neural networks processing radar data as complex data
structures are investigated, with a focus on spectrograms, range-
time, and range-Doppler plots as the data formats of choice.
Different network architectures are explored both in terms of
complex numbers’ representations and the depth/complexity of
the architecture itself. Experimental data with 9 activities and
15 volunteers collected using an UWB radar are used to test
the networks’ performances. It is shown that for certain data
formats and network architectures, there is an advantage in
using complex-valued networks compared to their real-valued
counterparts.

Index Terms—Micro-Doppler Classification, Deep learning,
Human Activity Recognition, Complex-valued Networks

I. INTRODUCTION

Human activities recognition (HAR) in the context of as-
sisted living is an important and timely need in our aging
societies. This includes prompt detection of critical and life-
threatening activities such as falls, but also the recording and
interpretation of patterns of activities of daily living, with the
objective to identify anomalies or changes that can be linked to
worsening physical or cognitive conditions. In this context, a
number of different sensing technologies have been proposed
and validated in recent years, with radar-based technologies
increasingly investigated thanks to their contactless sensing
capabilities and the potential advantages in terms of perceived
privacy (e.g., compared to optical sensors) [1], [2].

The conventional signal processing pipeline for HAR with
radar is based on the generation of micro-Doppler signatures,
typically spectrograms resulting from the application of Short-
Time Fourier Transform (STFT), followed by feature extrac-
tion and the application of classifiers such as Support Vector
Machine (SVM), decision tree, and K-Nearest Neighbours
(kNN), amongst others [2], [3]. In recent years, deep learning
approaches for classification driven by the advances in image
and audio processing have also been applied to radar data
in HAR. These include convolutional neural networks, recur-
rent neural networks, autoencoders, and their combinations
[1], [4]–[6]. A variety of radar data representation formats,
e.g., range-time, range-Doppler, Cadence Velocity Diagrams
(CVD), radar data cubes, and point clouds, have also been

explored in both the traditional machine learning pipeline and
with deep learning [7], [8].

However, in most cases, radar data in HAR are processed
as real-valued matrices by taking their absolute value and
discarding the phase. To the best of our knowledge, only
few studied reported in the literature have explored phase
information and phase plots as the direct input of classifiers
for radar-based HAR, or in conjunction with complex-valued
representations of the data, for example [9]–[11], where the
phase of spectrograms and range-time plots was used to extract
features or directly as input to neural networks. Other studies
include [12]–[14] in the wider context of Synthetic Aperture
Radar (SAR) images classification and Ground Moving Target
Indication (GMTI), and [15] on drones classification using the
equivalence of complex numbers and 2D vectors to redefine
complex-valued operators and blocks.

In this paper, initial results of complex-valued neural
networks (CVNNs) implemented for radar-based HAR are
presented. A simple multi-channel architecture to process
separately real and imaginary parts or absolute value and phase
is compared with actual implementations of complex-valued
blocks for convolutional neural networks inspired by [16].
Different depth/complexity of the network architectures are
also investigated. The networks are tested with experimental
data with 9 activities and 15 volunteers collected with an Ultra
Wide Band (UWB) pulsed radar.

The rest of the paper is organized as follows. Section II
describes the proposed implementation of the complex-valued
networks. Section III presents the experimental setup and the
data used to test the networks. Results are discussed in section
IV, with conclusions provided in section V.

II. PROPOSED COMPLEX-VALUED NETWORKS

A. Complex-valued neural networks

Complex numbers may have a richer representational ca-
pacity than real numbers, but their usage in deep learning
architectures has been limited due to the absence of complex-
valued building blocks, and the fact that conventional image
processing and pattern recognition algorithms typically work
with real-valued data. In this paper, two approaches are
proposed for the implementation of CVNNs: Multi-Channel
Architecture, and Deep Complex Network (DCN) whose im-
plementation is based on [16].

1) Multi-Channel Architecture: Inspired by the conven-
tional processing of RGB images into three separate channels,
the multi-channel approach for complex-valued networks splits
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either the magnitude and phase or the real and imaginary parts
of the input data into two channels. This approach is simple,
as it essentially treats the complex number as two independent
real numbers, but does not capture the intrinsic relations and
dependencies between the two components.

2) Deep Complex Networks: The implementation of the
constituent blocks of the DCN is inspired by the work in
[16], which presents a general formulation for complex-valued
blocks such as complex convolutional layers, complex-valued
activation functions, complex batch normalization, and max-
pooling. The name “deep” should not deceive, as it is also
possible to have architectures with few blocks and layers to
make relatively shallow networks, especially compared to the
architectures used in image processing. This is an important
aspect for radar data processing to avoid overfitting in case of
a limited amount of training data.

As some of the scripts in [16] appeared to be outdated, all
the source code for the proposed building blocks has been
implemented again in PyTorch1 [17]. With this, complex-
valued networks can be realized in a very similar manner to
their real-valued counterparts, and the implementation is not
tight to specific formats of radar data. The specific operations
of each type of block/layer are presented in this section below.

• Complex convolutional layer (ComplexConv): A convo-
lution is performed to compute the output of neurons that
are connected to local regions of the input. A complex-
valued filter matrix W = A + iB is convolved with a
complex-valued feature cube h = x + iy, so that the
output neuron is defined as:

W ∗ h = (A ∗ x−B ∗ y) + i(B ∗ x+A ∗ y) (1)

Figure 1 illustrates the complex convolutional process.

Fig. 1: An illustration of the complex convolution operator

• Complex-valued activation function: In [16] three possi-
ble complex-valued activation functions were explored.
In this paper, we choose to use their proposed CReLU
activation function, as their experiments on various image
tasks proved that the CReLU function was the most
effective. The CReLU is defined as:

CReLU(z) = ReLU(<(z)) + iReLU(=(z)) (2)

1https://github.com/SherryYang1122/Radar-based-Human-Activities-
Classification-with-Complex-valued-Neural-Networks

where z is the complex input neuron.
• Complex batch normalization (ComplexBN): Consider-

ing that the input has real and imaginary components,
whitening 2D vectors z = (x, y)T can be defined for
this building block. This technique was firstly used in
the multi-channel signal processing area. The complete
expression is shown below:

z̃ = (V )−
1
2 (z − E[z]) (3)

where V is the covariance matrix defined as

V =

(
Vrr Vri

Vir Vii

)
=

(
Cov(<{z},<{z}) Cov(<{z},={z})
Cov(={z},<{z}) Cov(={z},={z})

) (4)

• Complex-valued max-pooling layer (ComxPooling): For a
complex data structure z = x+ iy, x and y are processed
separately. The equation for complex-valued max-pooling
is defined as:

ComxPooling(z) =

MaxPooling(<(z)) + iMaxPooling(=(z))
(5)

A very simple complex-valued CNN is chosen as an exam-
ple to show the processing pipeline using a combination of
the aforementioned DCN blocks. When real numbers are used
as inputs, the operations are performed with the sequence of
building blocks as follows:

Conv → BN → ReLU →MaxPooling (6)

When complex numbers are used as inputs, then the follow-
ing pipeline of complex-valued blocks is used:

ComplexConv → ComplexBN → CReLU

→ ComxPooling
(7)

It should be noted that a DCN network has twice as
many parameters as its real-valued counterpart, and that com-
plex arithmetic leads to more operations (e.g., a complex
multiplication implies four real-valued multiplications). This
potentially increased computational load should be carefully
considered as part of the performance evaluation together
when comparing real and complex networks.

B. CNN architectures

Three CNN architectures are proposed and investigated
to compare real-valued and complex-valued implementations.
These are specifically: a shallow ConvNet, a deep ConvNet,
and ResNet-18 [18], with details provided in this section.

1) Shallow ConvNet: A basic, simple CNN architecture is
demonstrated in Figure 2, consisting of a convolutional (Conv)
layer, batch normalization (BN), ReLU layer, pooling (Pool)
layer, flattening, fully-connected (FC) layer, ReLU layer, and
sigmoid activation function. This shallow network is explicitly
designed for the situation of limited data available, with only
one CONV layer and is referred to as “Shallow ConvNet” in
this paper. The first four layers (CONV, BN, ReLU, Pool) can
be regarded as one basic building block.
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Fig. 2: Shallow ConvNet with only one CONV layer in the
network

2) Deep ConvNet: Five building blocks are stacked in this
proposed architecture before flattening, in order to make the
network deeper. This is referred to as “Deep ConvNet” in this
paper, and is illustrated in Figure 3.

Fig. 3: Deeper ConvNet with 5 building blocks stacked (vs
only 1 used in the shallow network)

3) ResNet: Deep ConvNet may lose the benefit and effec-
tiveness of the additional layers due to the vanishing gradient
problem. A modern CNN architecture, ResNet, can solve
this degradation problem caused by activation functions with
residual units to perform “identity shortcut connections”. In
this case, we mainly referred to the structure and parameters
of ResNet 18-layer, the simplest model proposed in [18]. This
is important for the small size of the radar dataset considered
in this paper. A simple sketch of this network is shown in
Figure 4.

Fig. 4: ResNet 18-layer architecture stacked with one basic
building block in Figure 2 and 8 res blocks

III. EXPERIMENTAL SETUP AND RADAR DATA FORMATS

The radar data was collected in the MS3 research laboratory
at TU Delft. While data were acquired simultaneously with 5
distributed monostatic radars, only data from one radar are
used for the initial results in this paper, as shown in Figure 5.
The radar was a monostatic pulsed UWB radar, monitoring
the measuring space with a circumference diameter of 4.39m,
highlighted by the blue lines in Figure 5. The radar has a
carrier frequency of 4.3GHz and bandwidth of 2.2GHz, and

can detect objects in the range from 1m to 5.39m. Its pulse
repetition interval (PRI) was 8.2ms.

Fig. 5: Location of the experimental setup for data collection

A. Dataset description
Fifteen participants (of which 11 male and 4 female sub-

jects) joined in the experiment to perform nine activity classes,
including (1) walking, (2) stationary, (3) sitting down, (4)
standing up from sitting, (5) bending from sitting, (6) bending
from standing, (7) falling from walking, (8) standing up from
ground and (9) falling from standing. It is important to note
that the activities were performed as continuous sequences of
actions, with random transitions between pairs of activities.
Furthermore, the movements’ trajectories and the angles faced
by the different volunteers were also random [19].

28 measurements were carried out for each participant,
where the measurement recorded one person’s continuous mo-
tion consisting of one (walking) or multiple activities (walking
or standing plus other activities) with a total duration of about
2minutes for each sequence (corresponding to 14634 pulses).
Some activities (class 3, 4, 5, 7, 8, 9) were performed at prede-
fined locations with an uncertainty error of approximately 1m,
and other activities were performed freely at random locations
within the surveillance area.

B. Radar data formats
Data from radar with a single transmitter and receiver can

span across the 3 domains of range, Doppler and time. The
range is a measure of how far the target is located from the
radar, the Doppler represents the target’s radial speed, and the
time dimension represents the evolution of the signals over
the sequence of consecutive radar pulses. The information
from these 3 domains can be mapped into different complex-
valued 2D matrices, i.e., images to be used as inputs to neural
networks for classification. A few examples are shown in
Figure 6.

1) Range-time maps: In a pulsed UWB radar, each received
radar echo is digitized to generate fast-time samples represent-
ing the distance of targets. Repeating this for multiple pulses
over the slow-time at every PRI generates the range-time (RT)
map s(d,t), essentially a matrix where d is the distance and t
is the (slow) time.

2) Range-Doppler maps: Range-Doppler (RD) maps are
generated by performing a Fast Fourier Transform (FFT)
across the slow-time dimension of the RT maps. This allows
to simultaneously characterize the distance and the velocity of
human movements via the Doppler effect.
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(a) Label 1: walking

(b) Label 6: bending from standing

Fig. 6: Examples of range–time, range–Doppler, and spectro-
gram patterns for two human activities (Label 1 and 6)

3) Micro-Doppler spectrograms: Micro-Doppler spectro-
grams, essentially patterns of Doppler frequencies over time,
describe how the Doppler frequency of the different body parts
varies with time and reflect the unique patterns of specific
movements and activities. The STFT is applied on the RT
maps to obtain spectrograms. A variety of STFT window sizes
and step-width between consecutive RT maps were tested.
Finally, superior classification was achieved by Hann window,
the STFT step-width of 4 samples (32.8ms), and a window of
244 samples (approximately 2s).

IV. RESULTS AND DISCUSSION

In the tests presented in this section, the classification
accuracy and depth of real-valued CNN models are compared
with their corresponding complex-valued CNN models. All
models are trained using the Adam optimizer with dynamic
learning rates from 1e-4 to 1e-6. Cross-entropy loss is used
as a cost value or loss function to minimize. The training
stage of each model lasts 40 ∼ 60 epochs with a batch size
of 32, depending on the models. It should be noted that the
learning rate and the number of training epochs are crucial
hyper-parameters for performances. Hence they need to be
tuned for every model.

A. Accuracy of various radar data formats

In this subsection, validation accuracy results are presented
for the three aforementioned radar data formats and for
the different proposed implementations of complex and real-
valued networks. For complex networks, both DCN blocks and
multi-channel architectures with real & imaginary parts and
magnitude & phase are compared. For real-valued networks,
only the magnitude of the data is considered. The validation
accuracy is calculated on 20% of randomly selected samples
from the dataset in a hold-out manner.

1) Range-time maps: The overall accuracy of the different
networks on the validation set is shown in Table I. It can be
seen that the best prediction accuracy is 92.6% for the case

of ResNet & multi-channel network with real and imaginary
parts. In this case, implementing CVNNs helped improve the
accuracy only a bit (+1.5%) on the ResNet model, whereas
no advantages or even significantly worse performances were
seen for the deep and shallow network, respectively.

Notably, the classification accuracy obtained for this dataset
with RT maps yielded the highest classification accuracy
across all the data formats considered.

TABLE I: Accuracy on range-time maps

Models Shallow ConvNet Deep ConvNet ResNet
Real-valued network 78.4% 90.4% 91.1%
Multi-channel: Abs&phase 60.3% 90.4% 91.5%
Multi-channel: Real&imaginary 67.4% 89.1% 92.6%
DCN (Deep complex network) 36.7% 89.3% 91.5%

2) Range-Doppler maps: Table II shows that the highest
classification accuracy values for this radar data format are
63.5%, 76.6%, and 75.5%, respectively for the complex-valued
shallow ConvNet, the complex-valued deep ConvNet, and
the complex-valued ResNet. Compared with the correspond-
ing real-valued CNN model, the prediction accuracy of the
complex-valued model can improve by between +8% and
+10%. This is an interesting result compared with what is
seen with the range-time maps, where the usage of complex
information appeared to improve the performance only a little
compared to real-valued networks.

TABLE II: Accuracy on range-Doppler maps

Models Shallow ConvNet Deep ConvNet ResNet
Real-valued network) 55.3% 66.2% 65.9%
Multi-channel: Abs&phase 60.8% 66.0% 65.8%
Multi-channel: Real&imaginary 63.5% 76.6% 75.5%
DCN (Deep complex network) 41.4% 76.4% 74.6%

3) Spectrograms: The classification results for spectro-
grams are shown in Table III. For deep ConvNet and ResNet
models, the accuracy of DCN is slightly higher (86.6% and
87.5%) than for their real-valued CNN (86.2% and 87.0%).
From these results, it would appear that there is no significant
benefit in using complex-valued networks on spectrograms,
suggesting that the phase of the spectrogram has little infor-
mation for HAR, at least in this case.

TABLE III: Accuracy on spectrograms

Models Shallow ConvNet Deep ConvNet ResNet
Real-valued network 76.0% 86.2% 87.0%
Multi-channel: Abs&phase 74.6% 84.7% 86.5%
Multi-channel: Real&imaginary 74.2% 84.6% 85.6%
DCN (Deep complex network) 44.5% 86.6% 87.5%

B. Leave one person out

Every time the dataset is split randomly in a holdout
evaluation, the test accuracy may differ depending on the
split. A more robust methodology for testing classification
approaches in human activities is that the sequences of 15
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participants are split into test and training sets by excluding
one participant from the training data and keeping that for
testing. The procedure is well-known as leave one person
out (L1PO). This also enables to evaluate performances for
“unseen” participants in a perspective of generalisation of
capabilities. After 15 tests, one per participant, the average
accuracy (mean) and standard deviation (std) is calculated. In
this subsection, L1PO results are reported.

1) Case 1: Range-time maps + real-valued network: The
first case refers to the range-time domain with real-valued
networks, which offered good results and low complexity in
the previously discussed hold-out evaluation. The results are
reported in Table IV. It is shown that these leave one person
out results are lower than the hold-out results in the previous
subsection (about 84-85% vs 90-91% obtained before). The
depth of the network appears to help, with the “deep ConvNet”
model achieving about +15% accuracy compared with its shal-
low counterpart as well as lower standard deviation. However,
excessive model complexity, like in the case of ResNet, is
shown not to produce significant improvements in this case.

TABLE IV: L1PO mean and std accuracy (train; test) on range-
time maps and real-valued network

Models Shallow ConvNet Deep ConvNet ResNet
Mean 82.70%; 69.56% 97.95%; 84.96% 100.0%; 85.39%
Std 8.98%; 8.18% 0.44%; 6.24% 0%; 6.50%

2) Case 2: Range-Doppler + DCN: The second case with
range-Doppler maps and DCN implementations is discussed,
where it was shown that the accuracy is improved with
complex-valued architectures compared to the corresponding
real-valued models. Table V shows that these L1PO accuracy
values are still lower than the hold-out results, dropping around
5% in line with what seen in case 1. This is somewhat
expected as L1PO validation is more challenging than the
simpler hold-out evaluation, yet more realistic. Accuracy and
model stability of the complex-valued shallow ConvNet using
the DCN approach are low, while the performance of the deep
ConvNet is dramatically improved, achieving about +45%
accuracy, as well as some reduction of the standard deviation
across participants, which is typically a challenge in L1PO
implementations. ResNet suffers from the overfitting problem
since this complex model with many convolutional layers does
not boost performance in this case, compared to deep ConvNet
(which has 5 stacked building blocks, so to some extent is
shallow compared to ResNet).

TABLE V: L1PO mean and std accuracy (train; test) on range-
Doppler maps and complex-valued DCN

Models Shallow ConvNet Deep ConvNet ResNet
Mean 28.81%; 26.07% 92.18%; 70.62% 100.0%; 71.04%
Std 11.98%; 9.49% 1.16%; 6.30% 0%; 5.87%

C. Depth of the network
The effect of varying depths of the network is explored

in this subsection. Each DCN and its real-valued counterpart

are trained independently with seven different architectures
obtained by stacking one to seven basic building blocks shown
in section II. All three data formats are considered, with the
RT maps and spectrograms providing the highest accuracy.

The results are displayed in Figure 7. When n = 1, the DCNs
perform poorly, and the performance of real-valued networks
is much better, which appears to suggest that complex-valued
representations make little sense for a very shallow network.
From n = 2, the gap between DCN and real-valued CNN
becomes narrow, and DCN catches up or even outperforms
the corresponding real-valued CNN. The highest accuracy of
RT maps, range-Doppler maps, and spectrogram datasets is
90.4%, 76.4%, 86.6% respectively, with five building blocks.

It is noted that depth of more than five building blocks does
not provide classification advantages. Also, a neural network
with five blocks is not truly “deep” as deep CNNs generally
have hundreds of layers in the image-processing domain [18].
However, with the relatively small radar datasets, shallow
networks like those explored in this paper can still be suitable
or even preferable in some cases.

Fig. 7: Test accuracy of the ConvNet with different depths and
with the three radar data formats

D. Discussion on the results

A summary of the main points from the aforementioned
results is provided:

• Comparing the best results across all network architec-
tures for the three radar data formats, RT maps and
spectrograms perform best, with 92.6% and 87.5% ac-
curacy respectively, while the performance of RD maps
is lower with only 76.6% accuracy. The high accuracy
obtained for the RT format (without explicit Doppler
information) is notable, and it is hypothesized that the
very fine discretization in range enabled by UWB radar
was beneficial in this regard.

• Complex-valued networks appear to improve results for
the RD maps (around +10% accuracy), but not much in
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the other two formats. In general, the benefit of complex-
valued networks in terms of accuracy compared to real-
valued networks is visible in Deep ConvNet and ResNet
models, especially for the DCN implementation and
multi-channel with real and imaginary parts, compared
to the multi-channel with abs and phase. For the shallow
network, such a benefit is not visible.

• The analysis on the networks’ depth appears to show
that very deep networks are not suitable for this case
study. This is likely due to overfitting problems because
of the relatively small size of the radar dataset, also
accounting for the larger number of parameters that
complex-valued networks have, compared to their real-
valued counterparts.

• Leave one person out validation proves that deeper net-
works improve the prediction accuracy for this more chal-
lenging validation compared to simple hold-out. How-
ever, when the networks become too deep, it is important
to avoid overfitting problems caused by the small amount
of available radar data.

V. CONCLUSIONS

This paper presents initial results of complex-valued neu-
ral networks implemented for radar-based HAR, with tests
performed on a dataset measured with an UWB radar and
containing 15 participants performing 9 activities. Specifically,
two implementations of complex-valued networks are pro-
posed: one separating real/imaginary parts or magnitude/phase
into two separate channels, and one with purposely-coded
complex-valued building blocks for convolutional networks.

The results show that complex-valued implementations
yield an increase in classification accuracy only for certain
data formats and certain architectures. Specifically, the usage
of complex-valued networks showed improvement compared
with real-valued networks in the case of range-Doppler input
formats, but the overall best results were obtained for range-
time maps as the radar input data - for which, interestingly, the
complex-valued implementations did not appear to provide a
noticeable improvement in accuracy. L1PO validation was also
performed. With this validation approach, each participant is
tested as the unseen test subject for which the classifier was not
previously trained, in order to better test generalisation capa-
bilities. While L1PO results show about 5% ∼ 15% decrease
in accuracy compared to the simpler hold-out validation, the
results are still promising considering the relatively large
number of participants and the continuous and unconstrained
nature of the recorded activities. The effect of varying the
depth of the networks was also explored by stacking different
building blocks to go from a shallow to a deeper network with
7 stacked blocks. It is shown that there is no performance
improvement, at least for these data, in increasing the depth
of the network beyond 5 stacked building blocks.

Future work will explore complex-data processing in con-
junction with data augmentation techniques that can poten-
tially improve the training of the neural networks.

REFERENCES

[1] S. Z. Gurbuz and M. G. Amin, “Radar-based human-motion recognition
with deep learning: Promising applications for indoor monitoring,” IEEE
Signal Processing Magazine, vol. 36, no. 4, pp. 16–28, 2019.

[2] J. Le Kernec, F. Fioranelli, C. Ding, H. Zhao, L. Sun, H. Hong,
J. Lorandel, and O. Romain, “Radar signal processing for sensing in
assisted living: The challenges associated with real-time implementation
of emerging algorithms,” IEEE Signal Processing Magazine, vol. 36,
no. 4, pp. 29–41, 2019.

[3] Y. Kim and H. Ling, “Human activity classification based on micro-
doppler signatures using a support vector machine,” IEEE Transactions
on Geoscience and Remote Sensing, vol. 47, no. 5, pp. 1328–1337, 2009.

[4] A. Shrestha, H. Li, J. Le Kernec, and F. Fioranelli, “Continuous human
activity classification from fmcw radar with bi-lstm networks,” IEEE
Sensors Journal, vol. 20, no. 22, pp. 13 607–13 619, 2020.

[5] M. S. Seyfioglu, B. Erol, S. Z. Gurbuz, and M. G. Amin, “Dnn transfer
learning from diversified micro-doppler for motion classification,” IEEE
Transactions on Aerospace and Electronic Systems, vol. 55, no. 5, pp.
2164–2180, 2019.

[6] X. Li, Y. He, and X. Jing, “A survey of deep learning-based human
activity recognition in radar,” Remote Sensing, vol. 11, no. 9, 2019.
[Online]. Available: https://www.mdpi.com/2072-4292/11/9/1068

[7] B. Erol and M. G. Amin, “Radar data cube processing for human
activity recognition using multisubspace learning,” IEEE Transactions
on Aerospace and Electronic Systems, vol. 55, no. 6, pp. 3617–3628,
2019.

[8] Y. Kim, I. Alnujaim, and D. Oh, “Human activity classification based
on point clouds measured by millimeter wave mimo radar with deep
recurrent neural networks,” IEEE Sensors Journal, vol. 21, no. 12, pp.
13 522–13 529, 2021.

[9] R. G. Guendel, F. Fioranelli, and A. Yarovoy, “Phase-based classification
for arm gesture and gross-motor activities using histogram of oriented
gradients,” IEEE Sensors Journal, vol. 21, no. 6, pp. 7918–7927, 2021.

[10] J. Guo, C. Shu, Y. Zhou, K. Wang, F. Fioranelli, O. Romain, and
J. Le Kernec, “Complex field-based fusion network for human activities
classification with radar,” in IET International Radar Conference (IET
IRC 2020), vol. 2020, 2020, pp. 68–73.

[11] X. Wang, P. Chen, H. Xie, and G. Cui, “Through-wall human activity
classification using complex-valued convolutional neural network,” in
2021 IEEE Radar Conference (RadarConf21), 2021, pp. 1–4.

[12] T. Scarnati and B. Lewis, “Complex-valued neural networks for synthetic
aperture radar image classification,” in 2021 IEEE Radar Conference
(RadarConf21), 2021, pp. 1–6.

[13] H. Mu, Y. Zhang, C. Ding, Y. Jiang, M. H. Er, and A. C. Kot,
“Deepimaging: A ground moving target imaging based on cnn for sar-
gmti system,” IEEE Geoscience and Remote Sensing Letters, vol. 18,
no. 1, pp. 117–121, 2021.

[14] A. H. Oveis, E. Giusti, S. Ghio, and M. Martorella, “Cnn for radial
velocity and range components estimation of ground moving targets in
sar,” in 2021 IEEE Radar Conference (RadarConf21), 2021, pp. 1–6.

[15] D. A. Brooks, O. Schwander, F. Barbaresco, J.-Y. Schneider, and
M. Cord, “Complex-valued neural networks for fully-temporal micro-
doppler classification,” in 2019 20th International Radar Symposium
(IRS), 2019, pp. 1–10.

[16] C. Trabelsi, O. Bilaniuk, Y. Zhang, D. Serdyuk, S. Subramanian, J. F.
Santos, S. Mehri, N. Rostamzadeh, Y. Bengio, and C. J. Pal, “Deep
complex networks,” 2018.

[17] X. Yang, TU Delft MSc Thesis: Complex-Valued Neural Networks for
Radar-based Human-Motion Classification, 2021. [Online]. Available:
http://radar.tudelft.nl/Education/bio.php?id=1243

[18] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” arXiv 1512.03385, 2015.

[19] R. G. Guendel, M. Unterhorst, F. Fioranelli, and A. Yarovoy, “Dataset
of continuous human activities performed in arbitrary directions
collected with a distributed radar network of five nodes,” Nov 2021.
[Online]. Available: https://doi.org/10.4121/16691500.v2

Authorized licensed use limited to: TU Delft Library. Downloaded on May 12,2022 at 13:48:46 UTC from IEEE Xplore.  Restrictions apply. 


