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A B S T R A C T

Accurate parameter estimation for the Global Tide and Surge Model (GTSM) benefits from observations with
long time-series. However, increasing the number of measurements leads to a large computation demand and
increased memory requirements, especially for the ensemble-based methods that assimilate the measurements
at one batch. In this study, a memory-efficient parameter estimation scheme using model order reduction
in time patterns is developed for a high-resolution global tide model. We propose using projection onto
empirical time-patterns to reduce the model output time-series to a much smaller linear subspace. Then,
to further improve the estimation accuracy, we introduce an outer-loop, similar to Incremental 4D-VAR, to
evaluate model-increments at a lower resolution and subsequently reduce the computational cost. The inner-
loop optimizes parameters using the lower-resolution model and an iterative least-squares estimation algorithm
called DUD. The outer-loop updates the initial output from the high-resolution model with updated parameters
from the converged inner-loop and then restarts the inner-loop. We performed experiments to adjust the
bathymetry with observations from the FES2014 dataset. Results show that the time patterns of the tide series
can be successfully projected to a lower dimensional subspace, and memory requirements are reduced by a
factor of 22 for our experiments. The estimation is converged after three outer iterations in our experiment, and
tide representation is significantly improved, achieving a 34.5% reduction of error. The model’s improvement
is not only shown for the calibration dataset, but also for several validation datasets consisting of one year of
time-series from FES2014 and UHSLC tide gauges.
. Introduction

The risk from coastal flooding generally increases due to the sea
evel rise and climate changes (Jongman et al., 2012; Muis et al.,
017). The sea level can reach especially high values where tidal
mplitudes are large. It is even more destructive, especially when the
torm surge coincides with the high-water during spring tide (Pugh,
996). Hydrodynamic tide and storm-surge models play an important
ole in assessments of flood risk and sea level rise and for forecasting.
xtreme sea levels are often a combination of high tides and a storm
urge. The accuracy of the reproduction of both tides and storm surge
s important for these applications (Ward et al., 2015). In deep water,
ides and storm surge can be modeled independently, but in shallow
ater non-linear interactions are more prominent. With the future
im to model these interactions, we develop a combined global tide
nd surge model (GTSM). However, this paper focuses on the tides
nd considers tides separately. Stammer et al. (2014) summarized the
evelopments in global tide modeling and compared a number of global

∗ Corresponding author.
E-mail addresses: X.Wang-13@tudelft.nl (X. Wang), Martin.Verlaan@deltares.nl (M. Verlaan), Maialen.Irazoqui@deltares.nl (M.I. Apecechea),
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tide models regarding their physical processes, grid resolution and so
on. There are still a number of sources of model errors remaining, such
as neglected physics in the model formulation, uncertainty parameters
(e.g., bathymetry, bottom friction, and internal tides friction) that
are not accurately known. Data assimilation is a promising approach
for reducing parameter uncertainties with available observation data,
e.g., altimeter and tide gauge measurements. Several successful appli-
cations of data assimilation for improving tide model performance have
been reported in literatures (Edwards et al., 2015) with the adjoint
methods (Das and Lardner, 1991; Bannister, 2017; Heemink et al.,
2002; Zaron, 2019), and ensemble methods (Barth et al., 2010; Mayo
et al., 2014; Ngodock et al., 2016; Zijl et al., 2013). In a comparison
of several assimilative and non-assimilative models, Stammer et al.
(2014) reported that data assimilation can contribute significantly to
the accuracy of global tide models.

In our previous study, we proposed a computation-efficient param-
eter estimation scheme to estimate bathymetry for a high-resolution
Global Tide and Surge Model (GTSM) (Wang et al., 2021). GTSM is a 2D
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tide and surge model with an unstructured grid. The model is running
operationally to forecast storm surges worldwide. Another application
of GTSM is the assessment of flood risks and the potential impacts of sea
level rise to extreme storm tides (Verlaan et al., 2015). In Wang et al.
(2021), after the parameter estimation tide representation in GTSM was
improved significantly using an ensemble type algorithm without the
adjoint called DUD (Ralston and Jennrich, 1978). DUD (Does not use
derivative) is a derivative-free calibration algorithm that works in an
iterative way. In the estimation procedure, observation is compared
with the model output in the time series formula. Tidal constituents
are widely used as model output in estimation applications, such as the
estimation of the FES model (Lyard et al., 2021). But tidal constituents
cannot be directly computed in GTSM because GTSM is a time-stepping
model. The Time-stepping model allows a more accurate representa-
tion of non-linear interactions at the coast, which is also recognized
by Lyard et al. (2021). To obtain accurate tidal analysis results, we
have to simulate the GTSM for a year based on the Rayleigh criterion to
separate diurnal constituent S1 from K1. If one would include seasonal
constituents SA and SSA, several years would be required since they
show large inter-annual variability. Harmonic analysis needs a careful
consideration of which tidal constituents to be included. When the
length of the time-series is not an integer multiple of the period given
by the frequency difference of two constituents, or a large non-integer
value, then the estimation is potentially poorly conditioned, and the es-
timates will influence each other. In contrast, the proposed time-series
POD method will produce accurate orthogonal approximations without
any user intervention and regardless of the length of the time-series. In
addition, hundreds of model runs would be simulated in the estimation
process. Therefore, parameter estimation in tidal constituents is not
feasible with the computational facilities available to us. The use of
time series for weeks or a month can significantly reduce the simulation
time and computational complexity. But the simulation time length of
two weeks (one spring–neap cycle) is short and leads to estimates that
over-fit the data to some extent (Wang et al., 2021). However, longer
time series imply larger memory requirements in the analysis step,
which is not feasible for the current implementation and computational
cluster. Therefore, an efficient approach has to designed which can
reduce the memory requirement and enable a longer simulation time
length.

For ensemble-based data assimilation methods (Evensen, 1994), the
memory use is proportional to the number of measurements assimilated
in one batch multiplied by the number of perturbed model runs, called
ensemble members. This also applies to the method used in this paper.
Observations are often assimilated in one batch to maintain consis-
tency between the estimated parameters and model output after the
estimation (Evensen and van Leeuwen, 2000; Emerick and Reynolds,
2013), which cannot be guaranteed for incremental assimilation in
smaller batches. However, this leads to a large size of the linearized
model outputs 𝑂(𝑁𝑁𝑡𝑁𝑠), where 𝑁,𝑁𝑡, 𝑁𝑠 are the number of en-
sembles, number of observation time steps, and number of locations,
respectively. When we attempt to include more observations and to
estimate more parameters, this can result in a huge memory usage on
a single compute-node. There are at least two ways to ease the huge
memory usage problem: 1. parallelization of the linear solver; and 2.
reducing the size of the problem by approximation. Here we follow the
second approach by using model order reduction methods. Note that
variational methods have different characteristics in terms of memory
usage.

Model Order Reduction (MOR) is a collection of methods that
can be used to reduce the computational complexity of mathematical
models in numerical simulations with an approximation of the orig-
inal model (Antoulas et al., 2015). In this paper, we develop a new
method time-POD, which aims to reduce the size of the model output,
so that the memory needed for data assimilation can be reduced.
The method was inspired by the Proper Orthogonal Decomposition
(POD) (Chatterjee, 2000), which projects the spatial patterns of the
 m

2

state onto the leading singular vectors. Here we project onto the leading
singular vectors of the time patterns instead. POD is one of the MOR
techniques first introduced in fluid dynamics by Lumley (1967). It was
already known as the Karhunen–Loève expansion (Kosambi, 1943) in
statistics, and also as Principal Component Analysis (PCA) (Jolliffe and
Cadima, 2016) or Empirical Orthogonal Functions (EOF) (Monahan
et al., 2009) in meteorology. POD methods (Liang et al., 2002), such
as the Karhunen–Loève decomposition (KLD), PCA, and Singular Value
Decomposition (SVD), have been applied in various fields such as fluid
dynamics (Cazemier et al., 1998), pattern recognition (Kopp et al.,
1997), and more recently in control theory and inverse problems.

MOR has been applied in both ensemble-based and variational data
assimilation systems (Cane et al., 1996; Farrell and Ioannou, 2001; Beck
and Ehrendorfer, 2005; Cao et al., 2007). The typical application of
MOR is projected based on truncated characteristic vectors in spatial
patterns of model state variables. For instance, a dual-weighted proper
orthogonal decomposition (DWPOD) is proposed combining with four-
dimensional variational method (4DVar) to reduce state space orders
in a global shallow-water model (Daescu and Navon, 2008). Lin and
McLaughlin (2014) reduced the parameter dimension by POD for an
EnKF data assimilation system.

In this study, we proposed two new developments based on our
previous estimation scheme (Wang et al., 2021) . Firstly, a low memory
storage estimation approach is implemented using the model order
reduction techniques in the time patterns. Secondly, the implementa-
tion of outer-iteration improves the estimation accuracy, the reason
is to better deal with the optimization of non-linear models. Dud is
an iterative smoother type estimation algorithm, the memory needed
is linearly increased with the simulation time length. The total data
size is in the order of 𝑂(109) when the time length is larger than one

onth in this application, which leads to memory issues. Therefore, we
eveloped a time-POD approach to reduce the dimension of the model
utput by projecting the time space of the model output onto a smaller
ubspace. The main advantage of the time-POD is that the simulation
equired is not restricted by the Rayleigh criterion, which normally re-
uires a year’s simulation for accurate estimation of tidal constituents.
he projection reduces the memory requirements while still accurately
epresenting the time signal for any simulation length. The required
ength of the time-span considered then becomes limited by other
onsiderations. In our previous experiments, a length of two weeks
eads to some over-fitting for that time period (Wang et al., 2021).
n this study, we performed the time-POD calibration experiments
overing the one-month simulation time span. It provides significant
mprovements to the model accuracy and reduce the over-fitting of data
sed in the estimation process.

Furthermore, parameter estimation accuracy is also affected by the
alibration algorithm. The approach of using a lower resolution model
n the estimation is similar to Incremental 4Dvar, and an outer loop
teration can further improve the estimation accuracy by updating the
eference using a new fine resolution simulation with the updated
arameters (Emerick and Reynolds, 2013; Chen and Oliver, 2013). The
ncremental 4D-Var method consists of nested inner-loops and outer-
oops to reduce computational cost for data assimilation. It is applied
uccessfully in the assimilation system at the ECMWF (Courtier et al.,
994; Mahfouf and Rabier, 2000; Trémolet, 2007). In this study, we use
very similar structure. Coarse Incremental Estimation (Wang et al.,

021) uses a coarser grid to represent the model increments between
he initial model and model with updated parameters. The outer loop
ses the high-resolution model with the updated parameters from the
onverged inner-loop to restart the estimation process. It is expected
hat this will result in a better match between the observations and the
ine grid model.

In Section 2, the Global Tide and Surge Model (GTSM) is introduced.
ection 3 describes the parameter estimation scheme, including the
ime-POD application to temporal patterns and the outer loop imple-

entation. Section 4 describes the experiment configuration including
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parameter selection, observations, model and experiments set-up. In
Section 5, POD performance is evaluated by firstly analyzing the ac-
curacy of projected and reconstructed model output and secondly,
comparing the bathymetry estimation results with or without the ap-
plication of MOR. We also perform a parameter estimation experiment
with an extended simulation time of one month. Model validation
for the year 2014 is presented in Section 6. Finally, discussions and
conclusions follow in Section 7.

2. Global tide and surge model

GTSM is a depth-averaged hydrodynamic model that simulates tide
and surges. It plays an important role in the Global Storm Surge
Information System (GLOSSIS) to provide water level and storm surge
forecasts. The model is forced by tide generating forces without any
lateral boundaries. The governing equations of the model are:
𝜕u
𝜕𝑡

+ 1
ℎ
(∇ ⋅ (ℎuu) − u∇ ⋅ (ℎu)) + 𝑓 × u

= −𝑔∇(𝜁 − 𝜁𝐸𝑄 − 𝜁𝑆𝐴𝐿) + ∇ ⋅ (𝜈(∇u + ∇𝑢𝑇 )) + 𝜏
ℎ

𝜕ℎ
𝜕𝑡

+ ∇(ℎu) = 0 (1)

where ℎ is the total water depth, u represents the depth-averaged
horizontal velocity vector, 𝑓 is the Coriolis force, 𝑔 is the gravitational
acceleration, 𝜈 is the horizontally eddy-viscosity, 𝜁 is the water level,
𝜁𝐸𝑄 is the equilibrium tide, 𝜁𝑆𝐴𝐿 refers to the self-attraction and loading
effect (SAL). The term 𝜏 denotes parameterizations of the friction stress.
Most of the global tide energy dissipation comes from the bottom
friction, and we use Chézy quadratic formulation with the coefficient
of 77 m1∕2 s−1 in the model. Furthermore, internal tide friction is
parameterized because there is approximately 1 TW energy dissipation,
about 25–30% of the total, occurring in the deep ocean through internal
wave drag (Maraldi et al., 2011). GTSM can also model surge using
additional wind and air pressure conditions as the model forcing (Pugh
and Woodworth, 2014).

We combined different datasets for the bathymetry. EMODnet
bathymetry with a resolution of about 250 m is implemented as the
input of bathymetry in Europe. General Bathymetric Chart of the Ocean
dataset (GEBCO 2019) with 15 arc-second resolution is used at the rest
of the globe. However, there is still a large uncertainty in bathymetry
even though bathymetry can be measured directly, large areas of the
oceans are unsurveyed and only estimated by satellite altimetry with
a much lower effective resolution of 8.9 km (Weatherall et al., 2015;
Tozer et al., 2019).

An essential characteristic of Delft3D-FM is unstructured grids
(Kernkamp et al., 2011). The scale of tidal components is usually more
prominent in the nearshore than in the deep ocean. High resolution
is required in the coastal region to provide highly accurate model-
ing. Pringle et al. (2021) also reported that the mesh refinement in
shallow waters, where the coast and at steep topography, is important
for the global accuracy of the simulated astronomical tide.

Here, we use GTSM with two different resolutions (GTSM with the
coarse grid and GTSM with the fine grid hereinafter). Table 1 reports
the computation time of the coarse and fine resolution models. As
expected, GTSM with the fine grid has a longer computational time but
more accurate tide forecasts. However, many fine model simulations
needed in the parameter estimation procedure would require weeks or
even months of computational time, which is unbearable.

3. Parameter estimation with model order reduction

3.1. Parameter estimation framework

We design an efficient and low-memory usage parameter estimation
scheme with model order reduction for the high-resolution tide models
to reduce parameter uncertainties and improve forecast accuracy. The
flowchart of this parameter estimation scheme is shown in Fig. 1.
3

Table 1
Computation time of the coarse and fine resolution GTSM models, measured for model
simulation with a time length of 45 days and using 200 cores of Intel E5 processors
on the Dutch National Supercomputer Cartesius. The model simulation time step is 5
min.

Model GTSM with the coarse grid GTSM with the fine grid

Resolution
Deep ocean: 50 km Deep ocean: 25km
Coastal region: 5 km; Coastal Europe: 1.25 km

Other coastal region: 2.5 km

Cells 2 million 4.9 million

Computational 25 min 70 mintime

The basic estimation algorithm applied here is called DUD (Does not
use derivatives) in a generic data-assimilation toolbox OpenDA (Ralston
and Jennrich, 1978; Karri et al., 2013). It optimizes the parameters by
iteratively minimizing the following cost function:

𝐽 (𝑥) = 1
2
(𝑥 − 𝑥𝑏)𝑇𝐵−1(𝑥 − 𝑥𝑏) +

1
2
[𝑌 −𝐻(𝑥)]𝑇𝑅−1[𝑌 −𝐻(𝑥)] (2)

where 𝑌 is the field observation vector including all time steps in
𝑡 ∈ [𝑡1, 𝑡𝑁𝑡

] and all stations (1,… , 𝑁𝑠). 𝑥 is the vector of parameters
to be estimated, with the dimension of 𝑛. 𝐻(𝑥) is the model output
vector matching observation locations for all time steps. 𝑥𝑏 is the initial
parameter vector. 𝐵 and 𝑅 are the background and observation error
covariances, respectively. The dimension of observation 𝑌 and model
output 𝐻(𝑥) in all space points and time steps is as 𝑂(𝑁𝑠 × 𝑁𝑡). The
first term on the right hand of the cost function (Eqs. (2)) is the
background term 𝐽𝑏 constraining the changes to the initial parameters.

he second term is the observation term 𝐽𝑜 representing the difference
etween model output and observations. For the brief introduction of
he DUD algorithm and parameter estimation scheme, we only describe
he observation term of the cost function in the following sections.

Fig. 1 shows the flowchart of the parameter estimation scheme,
onnecting the components DUD, time-POD and outer-loop. DUD is im-
lemented in the inner loop combining with the coarse-to-fine strategy
nd time-POD application. DUD is a Gauss–Newton similar algorithm
ut derivative-free. It started from the model simulation of first guesses
or the parameters 𝑥0 = 𝑥𝑏 and 𝑛 simulations with each parameter per-
urbed as (𝑥1 = 𝑥𝑏+𝛿𝑒1, 𝑥2 = 𝑥𝑏+𝛿𝑒2, 𝑥𝑛 = 𝑥𝑏+𝛿𝑒𝑛). Parameter is updated
or an approximate linear model that fits exactly through the model
utput for [𝑥0, 𝑥1,… , 𝑥𝑛]. DUD iteratively finds the parameters that
inimize the sum of squares between model output and observations.

We propose to improve estimation performance while reducing the
omputational cost and memory requirement based on the original
UD algorithm. They are several methods developed: the coarse-to-fine

trategy, model order reduction in time patterns, and introduction of
uter loop iterations.

In our previous study (Wang et al., 2021), a coarse-to-fine strat-
gy called Coarse Incremental Calibration is proposed to reduce the
omputational cost. It is also applied here using a coarser grid model
o replace the increments between the output from the initial model
nd the model with modified parameters. Terms 𝐻𝑓 (𝑥) and 𝐻𝑐 (𝑥) are
efined as the model output with the fine and coarse grid, respectively.
𝑓 (𝑥) can be approximated with 𝐻𝑓 (𝑥𝑏)+(𝐻𝑐 (𝑥)−𝐻𝑐 (𝑥𝑏)), thus the cost

unction is represented as:

𝑜(𝑥) =
1
2
[𝑌 −𝐻𝑓 (𝑥𝑏)+𝐻𝑐 (𝑥𝑏)−𝐻𝑐 (𝑥)]𝑇𝑅−1[𝑌 −𝐻𝑓 (𝑥𝑏)+𝐻𝑐 (𝑥𝑏)−𝐻𝑐 (𝑥)]

(3)

Therefore, GTSM with the fine grid is only simulated to generate the
initial model output 𝐻𝑓 (𝑥𝑏). Other simulations in the inner iterations
use GTSM with the coarse grid instead, which reduces the computing
time to approximately 36% of the original.

In this research, we consider reducing the dimension of the model
output by MOR. The dimension of model output [𝐻(𝑥 ),𝐻(𝑥 ),… ,
0 1
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Fig. 1. Flowchart of the iterative parameter estimation scheme to connect the components: DUD, time-POD and the outer-loop iteration. New approaches we proposed in this
tudy are in color red.
(𝑥𝑛+1)] and observations 𝑦 is huge, which requires a huge memory,
specially when the model has a long simulation time length. For
xample, if the number of observations 𝑁𝑠 is 𝑂(103), and with the
umber of time steps 𝑁𝑡 is 𝑂(103). Then, the dimension of the model
utput 𝐻(𝑥) and observations 𝑦 is 𝑂(106). If we assume the parameter
imension 𝑛 is in the order of 𝑂(102). The parameter dimension is the
ength of the vector with the parameters estimated. In this paper, we
efine spatial subdomains where a single multiplicative adjustment is
pplied. Each of these subdomains adds an element to the parameter
ector. Thus, the dimension of the model output in the analysis step
s 𝑂(108), such a huge memory usage is unacceptable in practice.
herefore, we apply POD in the time patterns for model output and
bservations to reduce memory usage in the estimation procedure (that
ill be further explained in Section 3.2).

Moreover, we use the DUD process in the inner loop to obtain
he updated parameters at a lower resolution (see Fig. 1). With the
oarse Incremental Calibration approach, high resolution GTSM only
lays a role as the initial output 𝐻𝑓 (𝑥𝑏) in Eqs. (3) while instead by
he coarse grid model 𝐻𝑐 (𝑥) for iterative update. Even though our

previous experiments demonstrate that coarse-grid increments can well
represent the fine-grid increments (Wang et al., 2021), the results after
the estimation can still be significantly affected by the model with the
coarse grid. Therefore, we introduce the outer loop to take the high-
resolution model states into account. The updated parameters obtained
from the previous converged DUD process are used as the new first
guess to update the initial model output. The cost function can be
rewritten as:

𝐽𝑜(𝑥) = 1
2
[𝑌 −𝐻𝑓 (𝑥𝑏𝑘 ) +𝐻𝑐 (𝑥𝑏𝑘 ) −𝐻𝑐 (𝑥)]𝑇

𝑅−1[𝑌 −𝐻𝑓 (𝑥𝑏𝑘 ) +𝐻𝑐 (𝑥𝑏𝑘 ) −𝐻𝑐 (𝑥)] (4)

where 𝑘 is the iteration number of the outer loop, 𝑥𝑏𝑘 is set to be
the optimized parameters 𝑥𝑎𝑘−1 from the previous DUD process. The
estimation process terminates once the cost function has converged.

Compared to the computation-efficient parameter estimation
scheme we proposed in the previous study (Wang et al., 2021), the
estimation scheme in this paper also contributes to memory reduction
with the time-POD algorithm and estimation accuracy improvement
4

by the outer loop iterations. The combination of these methods gives
a computation-efficient and memory-reduced parameter estimation
framework.

The parameter estimation process with time-POD application and
outer loops as shown in Fig. 1 can be summarized as follows:

1. Define first guess parameter set [𝑥0, 𝑥1,… , 𝑥𝑛].
2. Analyze initial model output 𝐻𝑓 (𝑥𝑏),𝐻𝑐 (𝑥𝑏), determine the cor-

responding POD reduced model output 𝐻̂𝑓 (𝑥𝑏), 𝐻̂𝑐 (𝑥𝑏) with the
truncated basis matrix 𝑈𝑁𝑝

.
3. Convert the original observations to corresponding observation

𝑌 based on the truncated projection matrix.
4. Simulate the coarse grid model with the first guess parameter

set, generate the POD reduced model states [𝐻̂𝑐 (𝑥0), 𝐻̂𝑐 (𝑥1),
𝐻̂𝑐 (𝑥2),… , 𝐻̂𝑐 (𝑥𝑛)], and evaluate the cost function.

5. Find the new parameters 𝑥∗ for an approximate linear model that
fits exactly through the model output for [𝑥0, 𝑥1,… , 𝑥𝑛].

6. If the DUD stop criteria are not satisfied, then perform a model
simulation with updated parameters 𝑥∗ and do model order
reduction for model output 𝐻̂𝑐 (𝑥∗), and return to step 5.

7. If model outputs with optimization results do not reach the
outer loop stop criteria, then return to step 1 with the optimized
parameters as a new first guess for the next iteration of the DUD
process.

8. Output: optimal estimation of parameters 𝑥𝑎 in the last outer
loop.

3.2. Proper Orthogonal Decomposition (POD)

In this section, details of the application of POD to reduce model di-
mensions in time patterns are described. The time-POD reduced model
is introduced first. Then, we define the corresponding observation
term and error covariance. Finally, the complete parameter estimation
procedure is summarized.

3.2.1. Time-POD reduced model
POD reduces the model order by identifying several modes with the
most energies from a high-dimension system and uses these modes as a
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lower-dimension subspace approximation. Usually, the discrete POD is
derived with snapshots to find a smaller subspace for states in spatial
patterns. A snapshot is the value of the model state vector at a certain
time. However, the vast memory requirement in our application comes
from the model output 𝐻𝑓 (𝑥),𝐻𝑐 (𝑥) and observation 𝑌 , containing the
data both in space and time patterns in the order of 𝑂(𝑁𝑠𝑁𝑡). As the
simulation time increases, the dimension in time scale 𝑁𝑡 is usually
much larger than that in the spatial scale 𝑁𝑠. Thus, reducing the order
in the time patterns is crucial. In the brief description of model order
reduction below, we use 𝐻(𝑥) to represent the model output without
considering the model resolution in this section.

In Section 3.1, 𝐻(𝑥) is a vector representing output in one model
simulation for all observation locations and time steps. To better ex-
plain the MOR applied to model output of time patterns, we rewrite the
vector 𝐻(𝑥) into a two-dimensional array 𝐻𝑁𝑡 ,𝑁𝑠

(𝑥) = [ℎ1(𝑥), ℎ2(𝑥),… ,
ℎ𝑁𝑠 (𝑥)] ∈ R𝑁𝑡×𝑁𝑠 to distinguish the time and space fields. ℎ𝑖(𝑥) is the
vector of model output for all time steps at the 𝑖th observation location.
Now we want to find a projection matrix 𝐾 ∈ R𝑁𝑡×𝑁𝑡 from R𝑁𝑡 to a
smaller subspace which minimizes the error:

‖𝐻𝑁𝑡 ,𝑁𝑠
(𝑥) −𝐾𝐻𝑁𝑡 ,𝑁𝑠

(𝑥)‖22 = 𝛴𝑁𝑠
𝑖=1‖ℎ

𝑖(𝑥) −𝐾ℎ𝑖(𝑥)‖2 (5)

where an optimal orthonormal projection matrix 𝐾 is given by:

𝐾 = 𝑈𝑁𝑝
𝑈𝑇
𝑁𝑝

(6)

𝑈𝑁𝑝
= [u1,u2,… ,uNp ] ∈ RNt×Np is an orthogonal matrix containing the

𝑁𝑝 eigenvectors of the correlation matrix 𝐻𝑁𝑡 ,𝑁𝑠
𝐻𝑇

𝑁𝑡 ,𝑁𝑠
corresponding

to the 𝑁𝑝 largest eigenvalues, starting from the largest eigenvalue
corresponding to 𝑢1 in decreasing order. The POD modes are the
optimal ordered orthogonal matrix of basis vectors 𝑈𝑁𝑝

in the least
square sense. The truncated Singular Values Decomposition (SVD) is
applied to derive the POD modes. It is the factorization of the matrix
that generalizes the eigen decomposition via an extension of the polar
decomposition:

𝐻𝑁𝑡 ,𝑁𝑠
(𝑥) = 𝑈𝛴𝑉 𝑇 (7)

where, 𝑈 = [u1,u2,… ,uNt ] ∈ RNt×Nt and 𝑉 = [v1, v2,… , vNs ] ∈ RNs×Ns

are the orthogonal matrices, 𝛴 ∈ R𝑁𝑡×𝑁𝑠 is a diagonal matrix with
rank 𝑟 and diagonal values 𝜎1, 𝜎2,… 𝜎𝑟 are the singular values of 𝐻𝑁𝑡 ,𝑁𝑠

.
Therefore, a new matrix 𝐻̂𝑁𝑝 ,𝑁𝑠

can be defined by projecting the model
output onto a smaller subspace using the truncated orthogonal matrices
𝑈𝑁𝑝

, it is:

𝐻̂𝑁𝑝 ,𝑁𝑠
(𝑥) = 𝑈𝑇

𝑁𝑝
𝐻𝑁𝑡 ,𝑁𝑠

(𝑥) ∈ R𝑁𝑝×𝑁𝑠 (8)

We define the truncated orthogonal matrices 𝑈𝑁𝑝
∈ R𝑁𝑡×𝑁𝑝 by

keeping the first 𝑁𝑝 columns of the matrix 𝑈 , which correspond to the
𝑁𝑝 modes with the highest energy of the dynamic system. In general,
𝐻̂𝑁𝑝 ,𝑁𝑠

(𝑥) has a much smaller dimension compared to the model output
𝐻𝑁𝑡 ,𝑁𝑠

(𝑥), while retains the most important features. After the time-
POD application, the two dimensional matrix 𝐻̂𝑁𝑝 ,𝑁𝑠

(𝑥) is reshaped into
the vector 𝐻̂(𝑥) with a dimension of 𝑂(𝑁𝑝𝑁𝑠):

𝐻̂(𝑥) =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

𝑈𝑇
𝑁𝑝

ℎ1(𝑥)
𝑈𝑇
𝑁𝑝

ℎ2(𝑥)
⋮

𝑈𝑇
𝑁𝑝

ℎ𝑁𝑠 (𝑥)

⎤

⎥

⎥

⎥

⎥

⎥

⎦

(9)

𝐻̂(𝑥) is defined as the reduced model output vector used for the
parameter estimation process.

3.2.2. Observation term conversion
In Section 3.2.1, the order of model output has been reduced to

a corresponding model 𝐻̂𝑁𝑝 ,𝑁𝑠
(𝑥) with a set of data identified on

time patterns instead of the real time-series. To match the model
output matrix formula, we denote a two-dimensional array 𝑌 =
𝑁𝑡 ,𝑁𝑠

5

[𝑦1, 𝑦2,… , 𝑦𝑁𝑠 ] ∈ R𝑁𝑡×𝑁𝑠 as the observation term that 𝑦𝑖 is a vector
containing time series in 𝑖th location, we have:

𝑌𝑁𝑝 ,𝑁𝑠
= 𝑈𝑇

𝑁𝑝
𝑌𝑁𝑡 ,𝑁𝑠

(10)

The truncated basis matrix 𝑈𝑁𝑝
used here is from the initial model

since both the model and observations have a strong resemblance to the
tidal constituents in time patterns. The projection and reconstruction
accuracy is further analyzed in Section 5.1.1. The reduced observation
vector 𝑌 is:

𝑌 =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

𝑈𝑇
𝑁𝑝

𝑦1

𝑈𝑇
𝑁𝑝

𝑦2

⋮
𝑈𝑇
𝑁𝑝

𝑦𝑁𝑠

⎤

⎥

⎥

⎥

⎥

⎥

⎦

(11)

The observation error term has to be identified corresponding to the
reduced observation term. We define the statistic of observation error
at 𝑖th location over all time steps as follows:

𝑅𝑖 = 𝐸([𝑦𝑖 − 𝐸(𝑦𝑖)][𝑦𝑖 − 𝐸(𝑦𝑖)]𝑇 ) (12)

where 𝐸(𝑦𝑖) = 𝑦𝑖𝑡 is a vector of the truth at all discrete times at location
𝑖. The POD based observation error covariance 𝑅̂𝑖 is:

𝑅̂𝑖 = 𝐸([𝑦̂𝑖 − 𝑦̂𝑖𝑡][𝑦̂
𝑖 − 𝑦̂𝑖𝑡]

𝑇 )

= 𝐸([𝑈𝑇
𝑁𝑝

𝑦𝑖 − 𝑈𝑇
𝑁𝑝

𝑦𝑖𝑡][𝑈
𝑇
𝑁𝑝

𝑦𝑖 − 𝑈𝑇
𝑁𝑝

𝑦𝑖𝑡]
𝑇 )

= 𝑈𝑇
𝑁𝑝

𝑅𝑖𝑈𝑁𝑝
(13)

In this application, we assume observation error is time invariant.
The covariance matrix 𝑅𝑗 is a diagonal matrix with 𝜎2 as diagonal
values (𝜎 is the observation uncertainty and we set its value as 0.05𝑚
in this application), so 𝑅𝑗 = 𝜎2𝐼(𝑁𝑡). Therefore, after the model order
reduction, the new observation error covariance for location 𝑖 is 𝑅̂𝑗 =
𝜎2𝐼(𝑁𝑝). 𝑅̂ is the diagonal matrix including observation error covariance
at all observation locations. We rewrite the cost function with the order
reduced model output and observation terms as follows:

𝐽𝑜(𝑥) = 1
2
[𝑌 − 𝐻̂𝑓 (𝑥𝑏𝑘 ) + 𝐻̂𝑐 (𝑥𝑏𝑘 ) − 𝐻̂𝑐 (𝑥)]𝑇

𝑅̂−1[𝑌 − 𝐻̂𝑓 (𝑥𝑏𝑘 ) + 𝐻̂𝑐 (𝑥𝑏𝑘 ) − 𝐻̂𝑐 (𝑥)] (14)

4. Experiment configuration

In this section, we describe the experiment configuration, including
the parameter selection, model setup, observations, and the setup of
three experiments.

4.1. Parameters with uncertainties

Bathymetry is known as the parameter with the largest uncertainties
for GTSM, especially in deep oceans, compared to bottom friction and
internal tides drag coefficient (Wang et al., 2021). Constrained by
limited observations, computational sources, and storage memory, it
is very hard to accurately estimate the bathymetry in over 𝑂(106) grid
cells. To reduce the parameter dimension, we partitioned the global
ocean into 110 subdomains based on the study of tide propagation
length and bathymetry sensitivity test results (Wang et al., 2021). A
specified correction factor with uniform values is defined for each sub-
domain. The equation for adjusting the bathymetry in the subdomain
𝑆𝑖, 𝑖 = 1,… , 𝑛 is:

𝐷∗
𝑗 = (1 + [𝑥]𝑖)𝐷𝑗 𝑓𝑜𝑟 𝑗 ∈ 𝑆𝑖 (15)

where 𝐷𝑗 is the bathymetry of the 𝑗th grid in the subdomain 𝑆𝑖 and [𝑥]𝑖
is the 𝑖th element of the parameter vector 𝑥. The initial guess for each
parameter element is zero. In this study, the parameter 𝑥 comprises
the bathymetry correction factors in the 110 subdomains. For instance,
if [𝑥] = 0.05, the bathymetry in region 𝑆 will be increased by 5%.
1 1
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By assuming a constant adjusting correction factor in each subdomain,
the parameter dimension is reduced to an acceptable size. Parameter
uncertainties are defined as 5%.

To ensure a realistic bathymetry estimation, we impose three con-
straints for the experiments. Firstly, using the background term 1

2 (𝑥 −
𝑏)𝑇 𝑏−1(𝑥 − 𝑥𝑏)𝑇 in the cost function as the weak constraint to prevent
he adjusted parameter departs far away from the original values while
nly improving the estimate a little. Secondly, a two-degree transition
rea is applied between neighboring subdomains to avoid the correc-
ion factor jumps between different subdomains. Values for each grid
ell in the transition areas are automatically interpolated by the model,
eading to smoother correction factors around the partition boundary.
hirdly, a hard constraint of 10% is set for all parameters to ensure the
hanges are kept between −10% and 10%.

.2. Model set-up

In this study, GTSM calibration is only based on the tide representa-
ion for two reasons. Firstly, it is not easy to obtain globally distributed
urge observations, and the FES2014 dataset we used only provides
idal components. Secondly, surge is more sensitive to the wind and air
ressure but less to the bathymetry. Wang et al. (2021) demonstrated
t by comparing the surge simulation after the bathymetry estimation
o the initial model with the UHSLC dataset. After the estimation, the
ater level forecast is improved from the higher tide forecast accuracy,
nd the changes of surge simulation are not significant. Thus, we use
he tide representation of GTSM for bathymetry estimation. GTSM
s forced by the tidal potential, with the Doodson number ranging
rom 57.565 to 375.575. We set the minimum threshold for the tidal
pherical harmonic amplitude to 0.03 m, leading to a set of 58 tidal
enerating frequencies. Long-term tide components SA and SSA are
emoved from the tidal frequencies because they are still affected by
on-gravitational influences. Estimation accuracy is strongly related
o the simulation time length used in the estimation procedure. In
rinciple, it has to be long enough, such as a month or even a year,
o capture the essential tide frequencies. However, available computer
emory cannot store the large amount of model output from many

imulations with long simulation time lengths in the iterative opti-
ization algorithm. A previous experiment selects one spring–neap

ycle (14 days), which fits into the memory of 32 Gb on our cluster.
owever, experiment results showed the problem of over-fitting due to

he insufficient simulation time length (Wang et al., 2021).
In the current experiments, we use a simulation time of two weeks,

etween 1 to 14 January 2014, to compare the estimation performance
ith and without the time-POD model reduction. After that, the final
odel estimation covers the simulation of two spring–neap cycles

1 month) with time-POD and outer loop application. Therefore, the
imulation starts from 1 to 31 January 2014 with a two-week spin-up
efore January 1. The time interval is set as 10 min, which results in
465 time steps.

.3. Observation network for calibration and validation

Our parameter estimation uses the tide series derived from the
ES2014 dataset in the deep ocean. Tide gauge data from the Uni-
ersity of Hawaii Sea Level Centre (UHSLC) is applied for the model
alidation (Caldwell et al., 2015).

The FES2014 dataset comes from the FES (Finite Element Solu-
ion) tide model consisting of about 2.9 million nodes (Carrere et al.,
013). Long altimeter time series, tide gauges, improved modeling,
nd data assimilation techniques have provided an accurate solution
or FES2014. FES2014 performs better than GTSM when comparing
ith Deep-Ocean Bottom Pressure Recorder data (Wang et al., 2021;
tammer et al., 2014). And FES2014 has an advantage in deep ocean
alibration because of its ease of obtaining arbitrary time series and
ocations globally. Therefore, the FES2014 dataset is selected as the
6

Table 2
Experiments set-up.

Name Simulation Time Outer POD Modes Data size Data size
timea steps loop size before POD after POD

EX1 1–14 Jan. 2017 No No N/A 3.32 Gb N/A
EX2 1–14 Jan. 2017 No Yes 200 3.32 Gb 0.33 Gb
EX3 1–31 Jan. 4465 Yes Yes 200 7.35 Gb 0.33 Gb

aExperiments are performed in the year of 2014.

observations for model calibration. 1973 time series with 32 tide
constituents (excluding long-term constituents SA and SSA) are de-
rived from the FES2014 dataset for the model calibration. These 1973
locations are almost evenly distributed in the ocean.

The UHSLC dataset is a collection of approximately 500 distributed
tide gauge time series covering different years across the globe. The
specific amount of available data varies over the years. Two levels of
quality control, Fast Delivery (FD) and Research Quality Data (RQD),
are provided in the UHSLC dataset. Tide gauges are somewhat irreg-
ularly distributed, and most of them are in the coastal regions, which
leads the data more suitable for model validation than global model
calibration. We retrieved the 283 tide gauge series from the hourly RQD
in the year 2014. After the tide analysis with tidal analysis software
(TIDEGUI) and visual inspection of the tide and surge representations
against the measured series in the tide analysis procedure, tide repre-
sentations with a set of 93 components from 230 tide gauge stations
are finally used for the model validation.

It is worth noting that long-term tidal constituents SA and SSA are
removed from FES2014 and UHSLC tide representations to ensure the
consistency between observations and model output. Also, even though
some tide gauge data are assimilated in the FES2014 dataset, It is still
reasonable to assume that FES is independent of UHSLC data. On the
one hand, most of the tide gauges are in the coastal regions, while the
1973 time series we derived are for the deep ocean. On the other hand,
UHSLC data in this application is used to evaluate the estimated model
performance in the coastal regions.

4.4. Experiments set-up

Three experiments are set up to investigate the performance of the
time-POD parameter estimation scheme for GTSM, as Table 2 shows.
EX1 is the experiment with a short simulation time of two weeks
without POD implementation and the outer loop. It is very similar to
the experiment in Approach 2 of Wang et al. (2021). The memory
needed for the total model output in this scheme to estimate 110
parameters is approximately 3.5 Gb. EX2 has the same settings as EX1
but with the implementation of POD. It aims to evaluate the influence
on the accuracy by applying POD, the memory use is significantly
reduced when compared to EX1. Finally, the experiment denoted as
EX3 follows the parameter estimation scheme in Fig. 1, covering a 1-
month simulation time length from 1 to 31 January 2014. Without
MOR, the data size of [𝐻𝑐 (𝑥0),𝐻𝑐 (𝑥1),… ,𝐻𝑐 (𝑥𝑛)] and observation was
about 7.35 Gb, and the total memory use was more than 20 Gb for
this experiment. With the proposed POD approach, the memory use is
sharply reduced to 4.5% after the POD application.

5. Numerical experiments and results

To assess the performance of POD, we first evaluate the projection
and reconstruction accuracy of the model output and observations,
followed by a comparison of results between EX1 and EX2. At last, the
estimation results in EX3 are analyzed.
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Fig. 2. RMSE between the initial model output 𝐻(𝑋) and reconstructed model output 𝐻̂(𝑥) for various truncation sizes (unit: m). With the projection basis vectors derived from
(a) initial coarse model; (b) initial fine model; (c) observations.
Fig. 3. Time series of the model output and observation with projection in the observation location (−70.1110,−23.1397). (a) Projection on Mode 1; (b) Projection on Mode 2;
(c) Projection on Mode 3; (d) Projection on different truncation modes.
5.1. POD performance analysis

5.1.1. Reconstruction accuracy
The accuracy of parameter estimation with MOR depends on the

reconstruction accuracy of the model output and observations. The
reconstructed model output and observation terms are in the formula
of 𝑈𝑁𝑝

𝑈𝑇
𝑁𝑝

𝐻𝑁𝑠 ,𝑁𝑡
(𝑥) (the term 𝐾𝐻𝑁𝑠 ,𝑁𝑡

(𝑥) in Eqs. (5)) and 𝑈𝑁𝑝
𝑈𝑇
𝑁𝑝

𝑌 .
The basis matrix 𝑈𝑁𝑝

is obtained by truncated SVD from the initial
model output or observations. Fig. 2 shows the Root Mean Square
Error (RMSE) between the original and the reconstructed model output
(observation) with different number of modes. Time series is from 1 to
31 January 2014.

In general, the RMSE is decreased with the increase of the truncation
size. Basis matrix from observation (Fig. 2c) shows slower downtrends
than others (Fig. 2a, b). One possible reason is the model has more tidal
components that are not included in the observations, there are 32 tidal
constituents in observations while 58 tide potential frequencies are in
7

the model. But that will not affect the estimation results because the
RMSE for reconstructed model and observations without truncation is
less than 5 × 10−4 m. It means the missing components in observation
would lead to at most 5 × 10−4 m water level changes while the obser-
vation error we defined is 0.05 m, which is 100 times larger. Fig. 2a
shows the excellent accuracy of the reconstructed coarse model. The
reconstructed fine model and observations have similar performance
when the truncation size varies. Fig. 2b is opposite to Fig. 2a for the
coarse model. We use the basis matrix from the coarse model with 200
modes for the calibration process because most of the model simulation
in the estimation iteration is on the coarse grid. Reducing the coarse
model output with 200 modes sharply reduces the data size, while the
high accuracy for the coarse model with RMSE of 2.64 × 10−4 m is
attained and the reconstructed observation error is also smaller than
the observation uncertainty.

Tidal analysis can also be used to reduce the data size, but in com-
parison, the time-pattern projection has two advantages. Firstly, tidal
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Fig. 4. (a) Cost function in EX1 and EX2. Relative adjustments of Bathymetry as estimated in EX1 (b) and EX2 (c). Positive values show a deepening.
Table 3
The amplitude of eight major tide components from tide analysis for the time-series
of the original GTSM with fine grid and the projection on mode 1–3 for the arbitrary
location in (cm): (−70.1110,−23.1397).

Components Q1 O1 P1 K1 N2 M2 S2 K2

GTSM with fine grid 7.2 26.06 7.18 21.89 6.34 46.74 33.73 9.58
Projection on mode 1 0.22 1.73 0.77 2.35 8.54 40.92 12.10 3.44
Projection on mode 2 0.23 0.53 0.30 0.90 5.51 26.10 8.05 2.29
Projection on mode 3 4.89 15.33 6.96 21.21 0.80 2.31 1.92 0.54

analysis requires the selection of a set of tidal constituents. These con-
stituents should respect the Rayleigh criterion. The projection method
has only one parameter to which is quite insensitive. For example, time-
series of reconstructed model output and observations for modes 1 to 3
(Fig. 3a–c) in an observation location provide similar waves to the har-
monic, implying the patterns in the projection method work similarly as
the tide analysis does but without the restriction to separating the inde-
pendent tide components. Secondly, the projection method gives almost
identical results to the time-series approach. The reconstructed fine grid
model output with projection on the first three modes (Fig. 3d) is close
to the original data. When more modes (200 modes we selected) are
included, the reconstruction error would become very small. We also
performed a tidal analysis for the time series from the model output for
this location and after projection onto modes 1–3, as shown in Table 3.
The projection on modes 1 and 2 mainly shows large amplitudes for the
semi-diurnal tides (N2, M2, S2, K2). The contributions from N2 and M2
add up to a large part of the N2, M2 signal, while this is a bit less for
S2 and K2. Mode 3 mainly shows diurnal constituents, where the P1
and K1 amplitudes are close to the values for the full signal. The time
projection thus shows some resemblance to tidal analysis.

5.1.2. Experiments with time-POD application
Fig. 4 shows the cost function (Fig. 4a) and optimized bathymetry

correction factors of EX1 (Fig. 4b) and EX2 (Fig. 4c). EX2, estimation
with time-POD, shows a similar behavior of the cost function in each
8

Fig. 5. RMSE difference between the initial model and estimated model in EX2 in the
period from 1 to 14 January 2014, color blue shows the improvement. [unit:m].

iteration as EX1 and nearly the same correction factors. The RMSE for
both experiments decreases from 5.23 cm to 3.49 cm in the calibration
period, while the required memory in EX2 is reduced by a factor of 10.

Fig. 5 illustrates the difference of RMSE at different observation
locations between the initial model and the estimated model in EX2
(i.e., RMSE between the initial model and observations — RMSE be-
tween the estimated model and observations). It reports nearly the
same improvement after the estimation as in EX1 (not shown here).
Therefore, model order reduction is an efficient approach to reduce
memory requirements for parameter estimation without causing any
loss of estimation accuracy.

The purpose of parameter estimation is to improve the GTSM long-
term forecast accuracy. However, the interaction of tidal constituents
varies during different periods. For example, the RMSE between esti-
mated model output and observations is 3.49 cm from 1 to 14 January,
while the RSME in the forecast increases to 4.33 cm for the period from
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Fig. 6. (a) Changes of the cost function values in the three outer loop iterations of EX3; (b) Relative adjustments of the bathymetry as estimated in EX3; Positive values show a
deepening.
15 to 31 January 2014. A short simulation time length would lead to
over-fit the data in the estimation period (Wang et al., 2021). After
assessing model order reduction performance, we selected a longer
simulation time of 1 month and experimented in Section 5.2.

5.2. Parameter estimation results analysis

EX3 covers a simulation time length of 1 month for GTSM to esti-
mate bathymetry. Fig. 6a illustrates the changes in the cost function in
each simulation in the three outer loop iterations. In every outer loop,
the cost functions of the first 111 runs include one initial simulation and
110 independent simulations each corresponding to perturbing one of
the 110 parameters. Parameters are iteratively updated after the first
111 simulations. The simulation experiment was run using 200 cores
for about 12 days, with a total of approximately 57 600 h CPU times.

In the first outer loop (color red in Fig. 6a), the cost function
has a sharp reduction from 7.21 × 106 to 3.17 × 106 and then slowly
educed to 3.00 × 106 at the end of the second outer loop (color blue).
ompared with the first outer loop, the cost function in the second
uter loop only reduces slightly. It looks that the estimation results
re converged to a certain value. In the third out loop, the difference
f cost functions in each simulation is very slight, making the DUD
rocess difficult to continue, leading to a stop after several iterations
ith a value of 2.95 × 106. It is in the same magnitude as that in the

econd outer loop. GTSM parameter estimation is converged in the third
uter loop iteration. Moreover, sensitivity for each parameter can be
bserved from the variability of the cost function for the initial 111
erturbation runs in each outer loop. This is strongly decreased in the
hird outer loop, indicating that the estimated parameters are close to
he minimum. The final relative change to the bathymetry, which is the
orrection factor [𝑥] in Eqs. (15) is shown in Fig. 6b. The value varies
etween −0.1 to 0.1 within the range of hard constraints.
9

Table 4
RMSE between GTSM and FE2014 datasets in difference time periods [cm].

Model Time period Initial EX1 EX3_1a EX3_2a EX3_3a

GTSM with the 1–14 Jan. 6.47 4.19 4.08 4.02 4.06
coarse grid 15–31 Jan. 7.14 5.20 4.53 4.39 4.41

GTSM with the 1–14 Jan. 5.23 3.49 3.67 3.62 3.62
fine grid 15–31 Jan. 5.84 4.33 3.80 3.66 3.66

aEX3_1, EX3_2, and EX3_3 represent the first, second, and third outer loop.

Estimation performance is analyzed by comparing the model output
with the FES2014 dataset. For the comparison of the model perfor-
mance in EX3 and EX1, RMSE of two time periods is summarized in
Table 4. RMSE is used to represent the difference between model output
and observations to access model performance. The bias difference
between model and observations is negligible (not shown here). As
expected, GTSM with the fine grid has better performance than that
with the coarse grid. Comparing the coarse grid GTSM, EX3 works
better than EX1 in all outer loops and time periods. In the fine grid
GTSM, EX1 performs slightly better than EX3 in the period 1 to 14
January but worse in 15 to 31 January 2014. This can be explained
that EX1 estimates with a two-week simulation time (1 to 14 January
2014) resulting in an over-fitting of data in the calibration period. The
RMSE is reduced from 5.23 cm to 3.49 cm in the period 1 to 14 January,
while the reduction in the period 15 to 31 January is clearly less, from
5.84 cm to 4.33 cm in the 15 to 31 January. With a longer simulation
time length of 1 month in EX3, the RMSE of the estimated fine model in
these two periods is close to each other, namely 3.62 cm and 3.66 cm,
implying the overfitting is reduced.

The spatial distribution of RMSE for the fine GTSM in January is

shown in Fig. 7. Fig. 7a is the RMSE between the estimated fine grid



X. Wang, M. Verlaan, M.I. Apecechea et al. Ocean Modelling 173 (2022) 102011

T
o
f
o
t
R

a
o
M
4
i
o
t

o
T
i
i
E
a

O
p
(

Fig. 7. (a) RMSE between estimated fine grid GTSM in EX3 and FES2014 dataset
in January 2014; (b) Difference of RMSE between the initial model and the estimated
model, color blue shows the improvement; (c) Difference of RMSE between model after
estimation in EX1 and EX3, color blue shows EX3 outperforms EX1. [unit: m].

model output in EX3 and FES2014 observations. The differences of
RMSE between the model before and after the estimation are shown
in Fig. 7b. It can be observed that the estimated model has been signif-
icantly improved in most regions. A few areas that are not improved
or a bit worse than the initial model, see the areas with yellow colors
(negative values of RMSE difference) in Fig. 7b. Possibly, not only
bathymetry but also other effects such as the lack of resolution, play
a role here. The regions getting worse only takes up a small part of the
 e

10
Table 5
RSS and RMS of eight major tide components between the fine GTSM and FES2014
dataset in (cm).

RMS for all locations RSS

Components Q1 O1 P1 K1 N2 M2 S2 K2

Initial 0.48 1.12 0.55 1.62 1.01 4.50 2.79 1.76 6.05
EX1 0.44 0.96 0.41 1.18 0.66 2.54 1.91 1.46 3.92
EX3_1 0.46 1.00 0.45 1.31 0.62 2.02 2.00 1.42 3.68
EX3_2 0.46 0.99 0.43 1.25 0.61 1.91 1.90 1.39 3.53
EX3_3 0.46 1.00 0.43 1.25 0.62 1.89 1.89 1.38 3.52

ocean; In addition, estimation by EX3 outperforms EX1 in most ocean
sea, as Fig. 7c shows. Generally, the estimated model significantly
overperforms the initial model.

In summary, the calibrated model in EX3 is in better agreement
with the measurements than EX1. Model order reduction reduces the
memory requirement by a factor of 22 while keeping a better estimation
accuracy. Long simulation time is beneficial for parameter estimation
in GTSM, and the implementation of the outer loop further improves
the tide forecast accuracy.

6. Model validation

To validate the model performance more independently from the
simulation period and data we used in the estimation procedure. We
analyzed the tide components from GTSM and compared them against
the FES2014 dataset in the frequency domain. The tide forecast of
GTSM for the whole year of 2014 is also compared with observations
from the FES2014 and UHSLC datasets.

6.1. Tide analysis comparison against FES2014 dataset for 2014

Model performance is evaluated in the frequency domain. Tide
forecast from GTSM in the year 2014 for 1973 observation locations is
analyzed with TIDEGUI software. We use the Root-mean-square (RMS)
to assess the difference between model output and observations for
major tide components, with the formula:

𝑅𝑀𝑆 =
√

[(𝐴𝑚𝑐𝑜𝑠(𝜔𝑡 − 𝜙𝑚) − 𝐴𝑜𝑐𝑜𝑠(𝜔𝑡 − 𝜙𝑜))]2 (16)

he terms 𝐴𝑚 and 𝐴𝑜 are the amplitudes from model output and
bservations, respectively. 𝜙𝑚, 𝜙𝑜 are terms of phases lag. 𝜔 is the tide
requency. The overbar shows the computation over one full cycle
f the constituent (𝜔𝑡 varying from 0 to 2𝜋) in all locations. De-
ailed results for 8 major tide components are summarized in Table 5.
oot-sum-square (RSS) for these 8 constituents is also analyzed.

It can be observed that RSS and RMS for all 8 major components
re reduced after the estimation in EX1 and three outer loop iterations
f EX3 when comparing with the initial model. After the estimation,
2 is the component that significantly improved in EX3 reduced from

.50 cm to 1.89 cm whereas it is 2.54 cm in EX1. The other 7 components
n EX3 are nearly the same or slightly better than that in EX1. The RSS
ver these eight components in EX3 is sharply reduced from 6.05 cm
o 3.52 cm.

The differences in the amplitude and phase between the model
utput and FES2014 dataset for M2 component are shown in Fig. 8.
he difference in amplitudes and phases compared to FES2014 dataset

s much smaller for the estimated models in EX1 and EX3 than for the
nitial model. EX3 has a better agreement with FES2014 dataset than
X1, especially in the phase domain (Fig. 8e, f), consequently EX3 has
smaller RMS than EX1.

Initial GTSM performs better in deep ocean comparing with Deep-
cean Bottom Pressure Recorder (BPR) observation than most of the
urely hydrodynamic models described in Table 3 of Stammer et al.
2014), but not as accurate as the assimilative tide models (Wang
t al., 2021). In this study, GTSM is significantly improved after our



X. Wang, M. Verlaan, M.I. Apecechea et al. Ocean Modelling 173 (2022) 102011
Fig. 8. Spatial distribution of amplitudes and phase difference of M2 between model and FES2014 dataset. (a) (b) (c): Amplitudes difference for initial GTSM, model estimated
in EX1 and EX3, respectively [unit: m]. (d) (e) (f): Phases difference for initial GTSM, model estimated in EX1 and EX3, respectively [unit: degree].
parameter estimation to bathymetry in the deep ocean. It overperforms
the purely hydrodynamic models, especially in the M2 constituent,
but still not better than the assimilative tide models. This result is
expected because firstly observation locations are limited in the estima-
tion process, and secondly not only bathymetry but other effects such as
resolutions, other parameters like bottom friction would also affect the
model performance. However, compared to other tide models, GTSM
after parameter estimation has the advantage to access the effect of
sea level rise and climate changes because it can include surge simula-
tion when meteorological forcing wind and air pressure additions are
added. Therefore, the high accuracy tide representations also benefit
the complete water level forecast.

6.2. Monthly comparison against FES2014 time series for 2014

GTSM is also validated through long-term tide forecasts, showing
the model performance in different time periods. Model forecast in the
whole year of 2014 is firstly analyzed with the FES2014 dataset. Fig. 9
shows the regional RMSE of the fine GTSM after the estimation in EX1
and EX3 for each month of year 2014. The regional RMSE between
GTSM with the fine grid and FES2014 dataset is shown in Fig. 9a–g.
The global average of RMSE in 1973 locations is shown in Fig. 9h.
11
Compared to the initial model, the RMSE for all the regions is signif-
icantly reduced in EX1 and EX3. RMSE in EX1 is larger than that in EX3
in the year 2014, except for some months in the Indian Ocean. Forecast
results also report that estimation with a longer simulation length
works better than that with a short time window when comparing the
RMSE in EX1 and the first outer loop of EX3. As the number of outer
loop iterations increases, the model performs better throughout 2014.
The 1-year forecast comparison with the FES2014 dataset demonstrates
the estimated model can be used for the high-accuracy long-term
forecast.

One can also observe a seasonal pattern in the RMSE in Fig. 9,
both before and after the calibration. A possible reason is that tide
constituents interact differently for different periods, leading to a large
or small difference between the data and the model for each month.
After calibration, this seasonal pattern is smaller in EX3 than EX1,
indicating long simulation time length can weaken it and result in
a better agreement to model and observations. However, it remains
challenging to verify whether using a more extended time period such
as one year can further improve the model accuracy and eliminate over-
fitting due to the excessive computational demand. But we see no clear
signals of over-fitting problem in EX3, and the 1-month calibration
provides sufficient calibration accuracy.
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Fig. 9. Regional RMSE between GTSM with the fine grid and FES2014 dataset in2014.
.3. Monthly comparison against UHSLC time series for 2014

In the following, the performance of GTSM is assessed using a
ataset that is not used in the estimation stage. Model performance in
he coastal areas is evaluated by comparing with the UHSLC dataset in
014.

Fig. 10 shows the monthly averaged RMSE in 2014 between model
utput and the UHSLC measurement. The RMSE before the estimation
s approximately 12.5–14 cm in each month and it is reduced to about
0–11.5 cm after the estimation in both EX1 and EX3. It indicates the
athymetry estimation for the deep ocean can improve the accuracy
n the nearshore. As expected, the results in EX3 are better than in
X1. The difference between the three outer loops is not significant,
ut the second outer loop is slightly better than the third outer loop.
t can also be observed from the mean RMSE of the whole year of
014 (Fig. 10), the second loop has a value of 10.84 cm smaller
han the third outer loop with 10.94 cm. One possible reason is the
athymetry estimation mainly works on the deep ocean. After three
uter loop iterations, the parameter estimation overfits a bit the deep
ater observation used in the calibration process. Also, some other
ffects, such as bottom friction, play a role in shallow waters, but they
re left out of consideration in this study. Future works can continue
n the parameter estimation for shallow waters.

Fig. 11 shows the spatial distribution of RMSE between the initial
ine model and UHSLC dataset in the year of 2014 (Fig. 11a) and the
12
RMSE difference between the model before and after estimation in EX3
(Fig. 11b). Results in EX1 reported similar distribution as EX3 but with
a slightly higher RMSE (not shown here). Most of the tide gauges are
located in coastal areas with larger RMSE than deep oceans. After the
global calibration, model performance near the coast is improved even
though the calibration mainly focuses on the deep water.

To further have a closer look at the tide representation in one
location, the time series of station Wellington Harbor in New Zealand
is used as an example. Fig. 12a shows the tide representation from
the UHSLC dataset, the model output of the initial, EX1, and EX3.
The difference between model output and observation is depicted in
Fig. 12b. The RMSE for the initial model is 15.25 cm, and after the
estimation in EX1, it is decreased by approximately 44.2% to 8.51 cm.
EX3, with the RMSE reduction of approximately 59.21%, is marginally
better than in EX1.

The model validation for the whole year of 2014 shows excellent
agreement with the FES2014 and UHSLC datasets in frequency and time
domains after applying the memory-efficient estimation. It illustrates
that GTSM with the adjusted bathymetry can provide high accuracy
long-term tide forecast.

7. Summary and conclusion

This study presented a memory-efficient parameter estimation ap-

proach for the high-resolution global tide model over a long time
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Fig. 10. RMSE between GTSM with the fine grid and UHSLC dataset in 2014.
Fig. 11. (a): RMSE between initial fine GTSM and UHSLC dataset in year 2014; (b):
RMSE difference between initial model and estimated model in EX3, color blue shows
improvement [unit:m].

length. To resolve the memory constraint of the long period model
simulation, time-POD model order reduction is developed to project the
model output time patterns onto a smaller subspace. To further improve
the model estimation accuracy with affordable computational cost, we
implemented inner-outer loop iterations, similar to Incremental 4D-
var, using an iterative parameter estimation algorithm called DUD in
the inner loop with the lower-resolution model simulation. The outer
loop uses optimized parameters from the previous inner DUD process
13
as a new reference run with the initial high-resolution model. This
parameter estimation scheme is implemented for the Global Tide and
Surge Model (GTSM) to correct bathymetry and substantially improve
the model performance.

Our previous investigation showed that the accuracy of the cali-
brated model would probably benefit from a calibration period longer
than the two weeks (one spring–neap cycle) used there, but the huge
memory required was limiting an extension in practice (Wang et al.,
2021). Here, we use time-POD model order reduction to project the
GTSM output onto a limited number of time patterns. This projection
reduces the memory usage by more than an order of magnitude in our
experiments, while our experiments for GTSM show that parameter
estimation with MOR achieves the same model accuracy as without
MOR. This approach has the advantage of keeping the reduced model
output size small when extending the simulation time length.

Finally, a parameter estimation experiment for GTSM with the
implementation of MOR and inner-outer loop iterations is performed.
It covers a simulation time of 1 month while memory demand is
reduced by a factor of 22 due to model order reduction for time fields.
Experiment results show that the ocean tide is better represented in
the calibration period. The cost function is converged within three
outer loop iterations in this study. Model validation from the fre-
quency domains illustrates the M2 component is significantly better
estimated with the set-up of 1-month simulation length and the outer
loop implementation. Model tide forecast in the whole year of 2014
is compared with the FES2014 and UHSLC datasets. It demonstrates
that a long simulation period in the estimation procedure improves the
performance for long-term tide forecasting. The outer loop iterations
contribute to further improvement of the model forecast but can lead
to a bit of overfitting to the data in the third outer loop.

In summary, parameter estimation leads to significant performance
improvements for GTSM. The memory requirements are significantly
reduced, which allowed us to extend the time span used for calibra-
tion. This resulted in a more accurate reproduction of tides in GTSM.
Bathymetry calibration contributes more to the deep ocean but also
benefits a bit for shallow waters. Moreover, the time-POD parameter
estimation is a general technique that can be widely used in many
global or regional numerical models to estimate different parameters.
Compared to harmonic analysis method, model simulation time length
in time-POD estimation is not limited by the Rayleigh criterion. We
have presented a case study of bathymetry estimation in a global tide
and surge model. Even when only tide is simulated in the GTSM, the
efficient estimation also benefits the complete water level forecasts
including the tide and surge. In addition, this parameter estimation
scheme can also be used to calibrate different parameters simulta-
neously (e.g., bathymetry, internal tide friction and bottom friction
combined), in particular, to estimate the bottom friction in shallow

water with more tide gauge data.
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Fig. 12. (a): Tide representation for station Wellington Harbor in year 2014; (b): Difference between different GTSM models with the fine grid and observation. Wellington Harbor
is a location with coordinate of (−41.28,174.78) in the New Zealand.
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