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A B S T R A C T

During railways operations, unplanned events might occur which can result in rail traffic being heavily
impacted. The paper proposes a passenger-centred resilience assessment for disruption scenarios which consist
of multiple simultaneous disruptions. It combines train traffic operations, passenger flows and network
restoration. To evaluate resilience, an optimization-based approach has been developed for solving the new
infrastructure restoration and transport management (IRTM) problem. Additionally, this approach develops
mitigation plans for the best infrastructure restoration and traffic recovery and it captures the time-dependent
transport network performance during disruptions. The approach is general with respect to types of disruptions,
and can be applied for evaluation against short disruptions (1–2 h) as well as more substantial ones (multiple
days or weeks). The performance of the proposed approach has been demonstrated on a Dutch railway network.
Furthermore, the resilience of the system is assessed against the critical infrastructure disruption scenarios in
the network. This optimization-based approach shall enable decision makers to quantify accurately impacts of
multiple disruptions by considering the created inconveniences to passengers in the railway operation due to
these disruptions.
1. Introduction

In many countries, including the Netherlands, railway plays a major
role in people’s daily mobility. However, during railways operations,
unplanned events, i.e. disruptions, might occur which can result in
traffic being impacted, and as such can cause significant implications
on train operations as well to passengers ability to travel. In particular,
more severe impacts are typically experienced when multiple simulta-
neous disruptions are spread widely in the network. A day with severe
disruptions is referred as to a Black day, it can happen due to adverse
weather, e.g. a storm,1 or a serious failure in the network, e.g. a broken
catenary wire.2

The growth in number of trains and number of passengers pro-
gresses faster than constructing new railway infrastructure, entailing
denser operations in the railway network (NS, 2019). It can also be
seen that the number of disruptions increased as well.3 Disruptions
can lead to partial or complete track blockages of the network. In the
Netherlands, on average in 2019, 16 disruptions per day occur and
the average duration of a disruption in the network is two and a half

∗ Corresponding author.
E-mail address: n.besinovic@tudelft.nl (N. Bešinović).

1 https://nltimes.nl/2018/01/18/code-orange-flights-scrapped-trains-delayed-traffic-jammed
2 https://nltimes.nl/2019/04/09/randstad-train-traffic-disrupted-broken-overhead-line
3 www.rijdendetreinen.nl/en/statistics

hours. Thus, simultaneous multiple disruptions may frequently occur.
Since they represent a grand challenge for railway operations, operators
should be particularly aware of the impacts of future disruptions, able
to quantify them, and most importantly prepare the response strategies.

It is vital to have clear strategies to contain and mitigate disrup-
tions, and then work to restore normal service as quickly as possible.
Decision-support could improve the potential outcome of train traffic
planning by presenting viable options given the current disruption con-
text (Schipper and Gerrits, 2018). During incidents there are a number
of re-planning activities to keep the train service running around the
affected area and then to bring the affected area back into service
after the incident has closed. Currently, support for re-planning is often
limited, reactive and dependent on the dispatchers’ skills (Golightly
et al., 2013). When dealing with multiple disruptions in particular, the
available restoration equipment and/or teams may be limited and then
their management and coordination may further define the duration of
the overall disruptions. However, these elements (train services, infras-
tructure restoration) are often addressed independently. When things
vailable online 20 April 2022
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Fig. 1. Resilience of railway system.
go wrong, however, the inter-relation between these elements plays
an important role and thus, with close linkages between (seemingly)
independent roles becoming apparent.

Resilience of railway transport system has been originally intro-
duced as the ability to absorb disruptions, and to rapidly recover from
perturbations (Adjetey-Bahun et al., 2016). Recently, Bešinović (2020)
extended it to the present form to incorporate performance in normal
conditions and state the individual phases of resilience. Resilience
of railway transport systems is defined as the ability of a railway
system to provide effective services in normal conditions, as well as
to resist, absorb, accommodate and recover quickly from disruptions
(Bešinović, 2020). Fig. 1 depicts the stages of the system resilience,
so called the resilience curve. This system performance presentation
is also referred as a bathtub model (Ghaemi et al., 2017). In theory,
the system is expected to return to 100%. In practice, depending on a
disruption type and/or severity, the performance could reach less than
100% within a considered period, e.g. a day.

This paper presents a new approach for assessing resilience of rail-
way networks taking into account traffic management and infrastruc-
ture restoration and it illustrates a scenario-specific approach, i.e. for
given disruption scenarios. Railway system combines multiple subsys-
tems including infrastructure, rolling stock, passengers and restoration
teams. The paper introduces an infrastructure restoration and traffic
management (IRTM) problem and proposes a new optimization-based
approach for optimal recovery from multiple disruptions in a railway
network from the passengers perspective. The aim is to jointly de-
termine the best sequence for restoring disrupted elements, generate
traffic rescheduling during disruptions and minimize total impacts
on passengers such as rerouting and denied boardings. To do so, a
heuristic framework has been developed that combines a mixed integer
linear program (MILP) for disruption management and enumeration
of possible restoration sequences. Essentially, the presented approach
models explicitly response and recovery phases in Fig. 1, with response
starting right after disruption occurrence, and thus, survivability is
not modelled explicitly, as the system deteriorates instantaneously to
the minimum level with the occurrence of disruptions. The scope of
the research is estimating resilience against disruptions that commonly
occur on a regular basis, daily/weekly, and dispatchers need to address
them frequently; and, it considers a single restoration team, so the
links are visited sequentially. In particular, resilience is assessed against
critical (i.e. worst-case) disruption scenarios to determine the expected
worst possible performance of the system. The experimental results in
the Dutch railway network show the capability to estimate efficiently
2

the system resilience and find the corresponding optimal recovery plans
including restoration sequences and traffic management.

The current paper exhibits the following main contributions:

• Models a railway transport system with multiple network in-
terdependencies including infrastructure, trains, passengers, and
restoration activities.

• Determines resilience for railway network after simultaneous
multiple disruptions by combining infrastructure restoration and
transport management.

• Exploits resilience metrics that accounts for passenger-related and
train-related costs during disruptions.

• Provides the resilience optimal sequence of restoration activities.
• Demonstrates the proposed approach on a real-life cases in the

Dutch railway network.

The remainder of the paper is as follows. Section 2 presents the
existing literature on resilience in railway networks and states the
scientific gaps. Section 3 introduces the problem formulation of IRTM,
and Section 4 gives mathematical modelling and the solution approach.
Section 5 shows the results and Section 6 gives the concluding re-
marks. Finally, Appendix presents a detailed summary of the possible
restoration scenarios from the example disruption scenario (presented
in Section 5.2).

2. Literature review

In this section, an overview of the current literature is shown.
First, Section 2.1 presents the state-of-the-art on optimization approach
on traffic management. Second, Section 2.2 gives the state-of-the-art
on restoration of infrastructure. Third, the gaps in current research
are identified together with the proposed idea of our research. For
a detailed review of resilience in railway transport systems, we refer
to Bešinović (2020).

2.1. Dealing with disruptions: Transport management perspective

Most of disruption-related research has been done in which opti-
mization approaches were used to provide input to decision-makers
on how to better recover from disrupted networks for a given disrup-
tion scenario. The main focuses of disruption-related research from
transport perspective are train rescheduling (e.g. Meng and Zhou
(2011), Zhan et al. (2015),), determining critical links (e.g. Gedik
et al. (2014)) and recently passenger rerouting (e.g. Zhu and Goverde
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(2019)). We refer to Cacchiani et al. (2014) for an overview of real-time
railway rescheduling problems as well as the solutions.

Meng and Zhou (2011) proposed a stochastic programming ap-
proach to incorporate different probabilistic scenario in the time hori-
zon in order to minimize the expected additional delay under differ-
ent forecast operational conditions. Their model was able to provide
the order of trains to proceed after the disruption with the last de-
lay. Narayanaswami and Rangaraj (2013) described the problem of
rescheduling trains due a disruption on a single-track railway line.
The authors developed a mixed integer linear program (MILP) model
to minimize the weighted delay of all trains at their destination. The
model does not allow trains to be cancelled, and it does not consider
the capacities of the stations. Zhan et al. (2015) provided a MILP model
that considers a single disruption in the high-speed train railway that
led to total blockage of the network. The trains that are blocked due
to the disruption does not leave their stations, and the order in which
the remaining trains have to enter the network, after the disruption is
finished is determined.

Veelenturf et al. (2017) proposed a heuristic approach for a partially
integrated rescheduling model for both timetable and rolling stock.
They considered the passenger perspective on scenarios in which large
disruptions with partially blockage occurred in the network and aimed
on minimizing delays and cancellation due to lack of rolling stock
and using additional stops to the timetable services as to improve
the overall passengers experience. Zhu et al. (2018) proposed two
approaches when dealing with multiple disruptions. The first one is the
sequential approach, in which single-disruption rescheduling model is
used to solve each of the disruptions in a sequential order. The second
one is the combined approach, in which a multiple-disruption model is
used to handle each extra disruption with all ongoing disruptions being
considered.

Zhu and Goverde (2019) proposed a Mixed Integer Linear Program-
ming (MILP) model to handle timetable rescheduling in the railway
system in case of a complete blockage. The model aims at mini-
mizing passengers’ delays by considering re-timing, reordering, can-
celling, flexible stopping (i.e. adding or removing stops) and flexible
short turning as dispatch decisions. Zhu and Goverde (2021) devel-
oped two approaches for rescheduling the timetable in a dynamic
environment: the sequential approach and the combined approach.
Adjetey-Bahun et al. (2016) proposed a simulation based model to
quantify the resilience of mass railway transport systems under disrup-
tion by measuring passenger delay and passenger load. They considered
four interrelated subsystems: transportation, power, organization, and
telecommunication.

Alternatively, research on contingency planning aimed at creat-
ing predetermined adjusted timetables for a given disruption sce-
nario (e.g. Van Aken et al. (2017)). These contingency plans would
typically speed up tackling the disruptions once they occur in real-
time. Van Aken et al. (2017) proposed a Mixed Integer Linear Pro-
gramming (MILP) model to solve Train Timetable Adjustment Problems
(TTAP) in case of multiple possessions occurring in the Dutch Railway
network. The goal is to minimize the deviation from the original
timetable.

Zhang and Ng (2022) developed a model to formulate the cascading
failure based on the disaster spreading theory and network theory to
investigate robustness of the urban rail transit network. Tang et al.
(2021) assessed resilience focusing on passenger flows after multiple
random or malicious disruptions, and considered disrupting platforms
at stations. Their work focused on recovery phase, and proposed two
heuristic approaches. Xu and Chopra (2022) focused on resilience anal-
ysis based on spatial–temporal flow patterns from a passenger-centric
perspective using network theory approach. They addressed random
and targeted disruptions based on node importance. Tang et al. (2021)
3

and Xu and Chopra (2022) considered network theory approaches
and only passenger flows, while not determining optimal train service
adjustments nor an optimal maintenance sequence.

For network-wide approaches for railway resilience, the current
research is limited. Gedik et al. (2014) proposed a two-stage Mixed
Integer Programming (MIP) to maximize the total disruption in the
network by finding the most critical combination of disruptions, i.e. to
evaluate vulnerability of the network. Then it looks for the optimal
rerouting of the freight trains in the network by using a discrete dy-
namic network flow problem. The model aims at minimizing costs and
delays on the disrupted network and considers the capacity constraints
and congestion of the network. Babick (2009) proposed a modified
Multi-Commodity-Flow (MCF) aiming at minimizing shipping costs
(and penalties for non-delivery) in a freight transport network. He
developed a tri-level framework to model multiple disruptions in the
Western U.S railroad network in case of mutual attacks on various
links in the network and defence reactions of a fictitious attacker and
defender of the network. Bababeik et al. (2018) proposed a heuristic
approach for increasing the resilience level of a critical rail network
by applying the strategy of location and allocation of emergency relief
trains. Szymula and Bešinović (2020) proposed a new Railway Network
Vulnerability Model (RNVM) as to find a combination of links which
cause the worst consequences for passengers and trains in the Dutch
railway network. They used column generation and row generation
with a MILP to model the passengers’ flow and infrastructure constraint
as to minimize passengers travel cost. The dispatch modes considered
in the paper are rerouting, short-turning and cancellation.

2.2. Dealing with disruptions: Infrastructure restoration perspective

To increase resilience of the network, it is important to investigate
and optimize the strategies for infrastructure restoration as they may
have a significant implications on the overall system performance.
However, in railway context, a limited work has been performed.
Zhang et al. (2018) proposed a framework based on complex net-
work theory to recover from multiple disruptions. They considered
infrastructure network (modelled as an undirected graph) and eval-
uated based on metrics connectivity of stations and links for each
disrupted/recovery state. While doing so, neither train services nor
passengers were considered.

Janić (2018) proposed analytical models for assessing the resilience
of a given rail network using the figures-of-merit, and evaluated ex-post
impacts of the large-scale disruptive event—the Great East Earthquake
in 2011 and of the recovering the high-speed railway Tohoku line.
Recently, Büchel et al. (2020) and Knoester (2021) proposed data-
driven approaches for an ex-post resilience assessment of railway net-
works, using historical traffic realization data, for given disruption in
Switzerland and the Netherlands, respectively. In addition, Knoester
(2021) analysed a large heterogeneous set of single disruptions, and
determined representative resilience curves dependent on disruption
type (e.g. switch/signal/track failure, vehicle breakdown and colli-
sion). Yin et al. (2022) analysed historical realized traffic data and
focused on train services. To evaluate resilience, they proposed a hybrid
knowledge-based and data-driven Bayesian network.

Majority of research lies in maintenance planning on tactical level
to determine optimal scheduling for infrastructure improvements ac-
tivities. While doing so, typically, assets life-cycle has been in the
main focus. Furuya and Madanat (2013) presented a decision-making
framework that focuses on designing optimal maintenance policies of
railway infrastructures, while minimizing costs and applying clustering
of activities where possible. The relevant cost savings are generated if
two or more adjacent facilities are maintained simultaneously. Fecarotti
and Andrews (2017) developed intervention programs for an entire
network by selecting the intervention strategy based on the conditions
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9)
of assets combining Petri-Net simulations and knapsack-based MIP
model.

Pargar (2015) used an integer linear program to determine the op-
timal time point for executing interventions on different track compo-
nents considering dependencies between different components through
component and location specific setup costs, and between different
track sections through a system dependent setup cost. Burkhalter and
Adey (2018) proposed a model for determining optimal intervention
programs, i.e. optimal planned closures of infrastructure sections for
its maintenance. They approximated impacts on train traffic of a single
infrastructure closure, where the cost represents the total increased
train travel time per unit time due to disrupted conditions. It focuses
on a detailed line including track sections and interlocking, and thus
its application is limited to short railway lines. While doing so, opti-
mal train rescheduling and passenger rerouting were not considered.
Bressi et al. (2021) proposed a probabilistic railway track degradation
models using the theory of Markov chains. Then, they formulated a
multi-objective optimization problem is formulated and solved using a
Genetic Algorithm.

More broadly, restoration strategies and approaches on (interde-
pendent) critical networks have been used to improve resilience of
the system by finding optimal sequence of restoring elements (e.g. Al-
moghathawi et al., 2019), scheduling restoration tasks (e.g. Nurre
et al., 2012), determining the best subset of links to recover (e.g. Fang
et al., 2016), assigning and routing single and multiple restoration
teams (e.g. Morshedlou et al., 2018; Iloglu and Albert, 2018; Li et al., 201
and integrated restoration planning and crew routing (e.g. Morshedlou
et al. 2021). Commonly, the resilience-based impacts are modelled
at the level of (interdependent) infrastructure network and they are
based on the ability to provide paths/flows in the network. However,
operational services were not considered explicitly on top of such
infrastructure networks. Examples of such services could be service
schedule-based operations (e.g. trains, buses) or customers (e.g. pas-
sengers of freight) were not considered explicitly. We refer to Çelik
(2016), Liu and Song (2020) Sharkey et al. (2021) for an overview of
the literature on network restoration and recovery infrastructure.

2.3. Gaps

Table 1 summarizes the reviewed papers and highlights the con-
tributions of the current paper. It shows the focus and considered
elements in the railway-focused papers including consideration of re-
silience assessment type (network-wide/scenario-specific), number of
disruptions (single/multiple), infrastructure restoration, train traffic
rescheduling, passenger demand, and type of the model proposed.

When dealing with disruptions, gaps can be identified. Disruptions
have been tackled from two exclusive perspectives, either transport
management or infrastructure management.

• In traffic management, multiple disruptions have been tackled
only recently (e.g. Veelenturf et al., 2017, Van Aken et al., 2017;
Szymula and Bešinović, 2020; Zhu and Goverde, 2021). While
doing so, a given disruption scenario assumes both start and end
time are known and all disruptions resolve at the same time.
However, none of the papers considered the recovery phase based
on determining the sequence of blockages to be recovered.

• In infrastructure restoration, most of the restoration approaches
typically considered only the costs and benefits of executing pre-
ventive maintenance of infrastructure components, i.e. planned
maintenance (e.g. Fecarotti and Andrews, 2017, Burkhalter and
Adey, 2018, Bressi et al., 2021), while dealing with disruptions
has not been tackled. Also, these infrastructure restoration ap-
proaches commonly do not consider impacts to the train services
4

as well as passengers.
• Current network theory-based railway resilience assessment ap-
proaches consider random failures and passengers flows only
(e.g. Xu and Chopra, 2022; Tang et al., 2021, while they do not
model critical disruption scenarios, optimal train service adjust-
ments nor an optimal maintenance sequence.

• The existing data-driven resilience assessment approaches (e.g.
Büchel et al., 2020; Knoester, 2021; Yin et al., 2022) provide
a valuable insight into performance during a specific disruption
scenario. However, these cannot be used to evaluate various
infrastructure recovery alternatives for each disruption scenario,
nor suggest optimal decisions towards most resilient operations.

• Papathanasiou and Adey (2020) stressed the importance of quan-
tifying effects on rail service when comparing intervention strate-
gies and determining the optimal ones and highlighted the need
for further research in these topics. Similarly, Liu and Song
(2020) stressed the need for addressing demand-driven resilience
assessment of critical infrastructures.

To the best of our knowledge, the problem of jointly optimizing the
routing of restoration teams (i.e. sequencing the restoration of links),
the rescheduling of train services and the rerouting of passenger flows
has not been appropriately studied for disrupted railway networks.

3. Problem definition

The paper proposes a passenger-centred resilience assessment for
disruption scenarios which consist of multiple infrastructure disrup-
tions. It combines infrastructure elements, train services and passen-
gers. Time-dependent transport network performance during disrup-
tions is captured. The approach determines resilience of the system
(i.e. response and recovery strategy) including optimal infrastructure
restoration sequence, i.e. routing the restoration team, optimal traffic
rescheduling and passenger routing during the disrupted period; and
the objective is to minimize the passenger and train costs due to rerout-
ing and cancellations. Railway transport resilience can be described
as the loss of transported passengers and operated train services in a
network. Finally, we quantify the resilience curve as shown in Fig. 1.

To model network resilience, we combine four levels of networks
as shown in Fig. 2. The first level refers to the infrastructure network
which includes the disrupted links. The second level presents the train
service network, the third level presents the passenger flows throughout
the network and the fourth level is road network used by the restoration
team to visit the disrupted links.

We propose to perform resilience assessment against the critical
disruption scenarios in the network. A disruption scenario, includ-
ing single or a number of multiple disruptions, which has the most
severe impacts on passengers in the network for the given number
of simultaneously disrupted links is referred as critical (Szymula and
Bešinović, 2020). For example, we can have the critical scenarios with
1, 2 or 3 disruptions. Such scenarios may also be referred as to worst-
case or extreme. This way, one can understand the lowest possible
performance and thus, the worst expected impacts on the system.

3.1. Notation

Infrastructure Network. The physical railway infrastructure network
is modelled as a graph 𝐺𝐼 = (𝑁,𝐴). Set of nodes 𝑁 represents the
stations and the set of undirected arcs 𝐴 represents the links between
two stations. To represent the infrastructure restrictions in the network,
parameter ℎ𝑡,𝑚𝑖𝑗 is defined as a minimum headway time on arc (𝑖, 𝑗) ∈ 𝐴
between two successive trains 𝑡, 𝑚 ∈ 𝑇 . Parameter 𝑚𝑖𝑗 defines whether

an arc (𝑖, 𝑗) is disrupted (𝑚𝑖𝑗 = 1) or not (𝑚𝑖𝑗 = 0). The set of all
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Table 1
Summary of the reviewed papers on railway system resilience under disruptions.

Paper Assessment Disruptions Infrastructure
restoration

Train
traffic

Passenger
flows

Model

Meng and Zhou [7] scenario single – + – stochastic program
Narayanaswami and Rangaraj
[12]

scenario single – + – MILP

Veelenturf et al. [13] scenario single – + – MILP, heuristic
Zhu et al. [14] scenario multiple – + – MILP, sequential
Zhan et al. [8] scenario single – + – MILP
Van Aken et al. [16] scenario multiple – + – MIP
Gedik et al. [9] network-wide multiple – + – MIP
Babick [20] network-wide multiple – + – MIP
Bababeik et al. [21] network-wide multiple – + – heuristics
Szymula and Bešinović [22] network-wide multiple – + + MIP
Zhu and Goverde [10] scenario single – + + MILP
Zhu and Goverde [15] scenario multiple – + – MILP-based, rolling-horizon
Adjetey-Bahun et al. [4] scenario double – + + simulation-based
Zhang et al. [23] scenario multiple + – – complex network model
Zhang and Ng [17] scenario multiple – – – network theory
Tang et al. [18] scenario multiple + – + network theory, heuristic
Xu and Chopra [19] scenario multiple + – + network theory
Janić [24] scenario multiple + + – analytic, ex-post
Büchel et al. [25] scenario single – + – analytic, ex-post
Knoester [26] scenario single/multiple – + – analytic, ex-post
Yin et al. [27] scenario single + + – knowledge based, Bayesian network, ex-post
Furuya and Madanat [28] scenario multiple + – – two-stage optimization
Fecarotti and Andrews [29] scenario multiple + – – Petri-nets, MIP
Pargar [30] scenario multiple + – – ILP
Burkhalter and Adey [31] scenario multiple + +- – MIP
Bressi et al. [32] scenario multiple + – – Markov chain, Genetic Algorithm
This paper scenario/network-wide multiple + + + MIP-based approach
r
d
f
p
a
d
p

disrupted arcs in the network is defined as 𝐴′ ⊂ 𝐴 and is given as input
of the problem, and only complete closures are considered.

Train Service Network. Set of trains 𝑇 includes all trains running
in the infrastructure network 𝐺𝐼 . For train 𝑡 ∈ 𝑇 , subsets 𝐴𝑡 and 𝑁 𝑡

represent the route that each of the trains is originally scheduled route.
A route of the train 𝑡 ∈ 𝑇 contains the origin 𝑁(𝑂𝑡) and destination
𝑁(𝐷𝑡) nodes, which are connected via traversed arcs and nodes in 𝐴𝑡

and 𝑁 𝑡, respectively. An arc-based formulation is used to model trains
in the network. The binary decision variable 𝑥𝑡𝑖𝑗 represents the flow of
each train 𝑡 ∈ 𝑇 on arc (𝑖, 𝑗) ∈ 𝐴. Thus, 𝑥𝑡𝑖𝑗 = 1 if the train is using
the corresponding arc, and 𝑥𝑡𝑖𝑗 = 0 otherwise. In other words, the train
route of a train 𝑡 ∈ 𝑇 is defined as the set of arcs (𝑖, 𝑗) ∈ 𝐴 with 𝑥𝑡𝑖𝑗 = 1.

For some train types it is more important to operate between their
origin and destination, e.g. freight trains, while the others is more
important to provide services on scheduled routes. Therefore, the set of
trains 𝑇 consists of two disjoint subsets representing the trains that can
be rerouted 𝑇𝑅𝑅 ⊂ 𝑇 and the trains that can be short-turned 𝑇 𝑆𝑇 ⊂ 𝑇
and run on scheduled routes. Set 𝑇𝑅𝑅 is composed of international and
freight trains and the 𝑇 𝑆𝑇 of intercity and local trains. Correspondingly,
the decision variables 𝑥𝑡𝑖𝑗 are modelled on the complete network (𝑖, 𝑗) ∈
𝐴 for trains in 𝑇𝑅𝑅, to allow for rerouting in the network. While, for
trains in 𝑇 𝑆𝑇 , 𝑥𝑡𝑖𝑗 are modelled only for (𝑖, 𝑗) ∈ 𝐴𝑡.

For routing and short-turning, the binary decision variables 𝑜𝑡𝑖 and
𝑑𝑡𝑖 are used to model the actual origins and destinations of a train
𝑡 ∈ 𝑇 . If a train 𝑡 originates (terminates) in node 𝑖 ∈ 𝑁 𝑡, 𝑜𝑡𝑖 (𝑑𝑡𝑖 ) is
1, otherwise is 0. In particular, for all trains in 𝑇 , the scheduled origins
and destinations (from the scheduled timetable) are fixed to 1. For
trains in 𝑇 𝑆𝑇 , these decision variables are used in 𝑁 𝑡 to ensure that
the train origin and destination are only in nodes of the original route.
And for trains in 𝑇𝑅𝑅, all intermediate nodes are fixed to 0, to prevent
short-turning of these trains.

A scheduled timetable 𝑇𝑇 is given to ensure the feasibility of trains
operation. The timetable 𝑇𝑇 provides the scheduled departure (and
passing through) times 𝑇 𝑡

𝐷,𝑖 and arrival times 𝑇 𝑡
𝐴,𝑖 of train 𝑡 ∈ 𝑇 at

node 𝑖 ∈ 𝑁 . The dwell time of train 𝑡 ∈ 𝑇 at station 𝑖 ∈ 𝑁 is
represented as 𝑡𝑡. Additionally, parameter 𝜏𝑡 represents the minimum
5

𝑖 𝑖𝑗
running time of train 𝑡 ∈ 𝑇 between nodes 𝑖 and 𝑗, and is computed
taking into account train characteristics like max speed, train type and
engine characteristics. The decision variables 𝑇 𝑡

𝐷,𝑖
and 𝑇 𝑡

𝐴,𝑖
represent

the retimed departure and arrival time of train 𝑡 ∈ 𝑇 in node 𝑖 ∈ 𝑁
respectively. The disrupted timetable is referred as 𝐷𝑇 consisting of
𝑇 𝑡
𝐷,𝑖

and 𝑇 𝑡
𝐴,𝑖

(or cancellations) for all trains 𝑇 .

Passenger Network. The passenger demand in the railway network
is represented by the Origin–Destination (OD) matrix 𝐾, where 𝑘
epresents a single OD pair. Parameter 𝑑𝑘 represents the passenger
emand (i.e. number of passengers) for the flow 𝑘. A path-based
ormulation approach is used to model passenger flows. A passenger
ath 𝑝𝑘 is defined as a sequence of nodes 𝑛 ∈ 𝑁 between the origin
nd destination of the passenger flow 𝑘 ∈ 𝐾. Set of paths 𝑝 ∈ 𝑃 𝑘 is
efined in the network for each 𝑘. The determination of alternative
aths in 𝑃 𝑘 allows for passenger detours from the shortest path, taking

into account the train capacity. To calculate the service capacity in train
𝑡 ∈ 𝑇 , the parameter 𝑠𝑡 defines the number of seats. To model the actual
passenger flow in the network, the decision variable 𝑓𝑘

𝑝 represents the
demand share of the total demand of path 𝑝 ∈ 𝑃 𝑘 of the OD pair 𝑘. The
shortest path algorithm is applied when routing the passenger flow,
this is done in order to model a realistic response from the railway
operators. Normally, operators aim at ensuring that the passengers flow
that are influenced by the disruption can be rerouted within the shortest
path available, considering the operational and capacity constraints.

Restoration network. The restoration team uses road network to
reach disrupted links. Instead of modelling the road network explicitly,
we introduce a restoration network 𝐺𝑅 = (𝐷,𝐴𝑅). Set 𝐷 presents
the disrupted network components, and is referred as to a disruption
scenario. Let us denote a single disruption component as 𝑑𝑖, where
𝑑𝑖 ∈ 𝐷. The number of components in the disruption scenario is
|𝐷|. A restoration scenario 𝑅 is defined as an ordered sequence of
disruptions in 𝐷. For example, for a disruption scenario consisting of
three disruptions 𝐷 = {𝑑1, 𝑑2, 𝑑3}, a possible restoration scenario can
be 𝑅 = 𝑑3 → 𝑑1 → 𝑑2, meaning that 𝑑3 is restored first, followed by 𝑑1
and finally 𝑑 . These components can be either nodes or arcs. In our
2
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Fig. 2. Overall multi-level network view of the problem.
case, only links are considered to be disrupted. In essence, the nodes
𝐷 in restoration network 𝐺𝑅 correspond to links 𝐴′ in infrastructure
network 𝐺𝐼 , where each node 𝑑𝑖 ∈ 𝐷 is mapped to the specific
arc (𝑖, 𝑗) ∈ 𝐴′. To provide an exact location of 𝑑𝑖 on the disrupted
link (𝑖, 𝑗), it is assumed that the disruption is located in the middle
of the corresponding disrupted railway link. Set of links 𝐴𝑅 between
disrupted nodes represent road connections between any two disrupted
components in 𝐷, i.e. the shortest paths in the original road network.

4. Methodology

To assess resilience of the railway network under multiple disrup-
tions, we develop an optimization-based approach that combines a
disruption management model (DMM) for determining optimal traffic
6

management strategies for a given fixed set of disruptions, the enu-
meration procedure of possible routing sequences of the restoration
team, and a computation of the overall costs and impacts on railway
transport. We refer to this problem as infrastructure restoration
and transport management (IRTM) problem. The resilience-based
impacts include total (remaining) number of passengers transported
and number of train services altered, e.g. rerouting, partial or complete
cancellations. The DMM is modelled as a mixed integer program and
computes a steady-state adjusted (response) timetable for a single phase
during the fixed disruptions.

Thus, the DMM is solved multiple times for each subset of dis-
rupted links, representing a sequential restoration of links, and the
incumbent results are combined in the total impact for each restoration
sequence. While doing so, the DMM captures the interdependencies



Reliability Engineering and System Safety 224 (2022) 108538N. Bešinović et al.

w
r
s
a
a
s
o
𝑖
p
r
s
j
o
s
N
c
m
l
a

4

o

t

c
t
s
c
g
t
c
a

−

𝑜

between the multiple disruptions in the network within each phase. The
corresponding resilience curve is characterized by multiple response
phases until the network is recovered, i.e. each phase for a fixed
subset of disrupted links. Note that traffic transitions between any
two disrupted phases, i.e. periods with fixed number of disruptions,
are not considered. Therefore, the outcome can be considered as an
approximation of the expected impacts, and thus it could be referred as
to resilience ‘‘stairway’’, instead of ‘‘curve’’. The resilience cost resCost
of the system is computed as:

𝑟𝑒𝑠𝐶𝑜𝑠𝑡 =
|𝐷|−1
∑

𝑖=0

𝐹0 − 𝐹 (𝑅𝑖)
𝐹0

⋅ (𝑡𝑖+1 − 𝑡𝑖), (1)

here 𝐹0 represents the performance of the undisrupted system, 𝑅𝑖
epresents a subset of (remaining) disrupted links within a disruption
cenario 𝐷 for the 𝑖th link being restored, 𝑅0 is equal to a case with
ll links 𝐷 being disrupted. Then, 𝐹 (𝑅𝑖) is the performance incurred at
single disrupted phase and is obtained by solving DMM for a fixed

et of disrupted links. Finally, the impact is multiplied by the duration
f the phase (𝑡𝑖+1 − 𝑡𝑖), from the end of phase 𝑖 to the end of phase
+ 1. The performance 𝐹(𝑅𝑖) can be quantified in number of trans-
orted passengers, running trains or passenger-minutes. The resCost
epresents the area above the resilience curve and is calculated as the
um of the unmet performances over the independent periods, i.e. ad-
usted response timetables. The resCost can be quantified as percentage
f e.g. unsatisfied demand (non-transported passengers), not-provided
upply (cancelled trains) or extra incurred travel times(pax-minutes).
ote that such normalized 𝑟𝑒𝑠𝐶𝑜𝑠𝑡 is preferable in order to allow for
omparisons with different railway networks. Section 4.1 gives the
odelling assumptions, Section 4.2 presents the mathematical formu-

ation of DMM, and Section 4.3 defines the algorithm for solving IRTM
nd computing 𝑟𝑒𝑠𝐶𝑜𝑠𝑡.

.1. Assumptions

There are several assumptions and considerations for the proposed
ptimization-based approach for resilience assessment:

• Considered disruptions are complete infrastructure closures of
open tracks only, i.e. links. Disrupted links could be either com-
pletely disrupted or fully operated after its restoration.

• For restoring the network, exactly one restoration team is avail-
able, and therefore the links need to be fixed sequentially.

• Restoration durations for disrupted links are fixed, where all
disrupted links are assumed to have the same restoration duration
of one time unit, i.e. hour, for each disrupted link.

• Travel times for restoration team between two locations is as-
sumed equal, and thus w.l.o.g. it is not explicitly considered as
part of the resCost.4

• A train can short-turn at any station, i.e. enough station capacity
is available.

• Trains are short-turned only if they are directly affected by a
disruption,

• Passengers are routed along the shortest paths within the net-
work.

• Passenger demand is assumed equal for the complete disrupted
period.

• Transport capacity for each train is fixed.

4 Note that the equal travel times do not impact the optimal sequence of
he solution, they can only contribute to the total cost.
7

4.2. Disruption management for fixed disruptions

The DMM model for determining optimal disruption management
strategies for trains and passengers for a fixed set of disruptions is intro-
duced. The DMM formulation combines arc-based and path-based for-
mulations to model network infrastructure, train services and passenger
flows. First, the train services and the underlying infrastructure are
closely related and highly interdependent; therefore, they are modelled
together using an arc-based formulation where trains are modelled as
flows in an infrastructure network. Such arc-based formulation enables
easy implementation of short-turning and rerouting in the railway
network. Second, the passenger flows depend on the resulting provided
capacities (i.e. trains running in the network); thus, they are modelled
using a path-based formulation. This formulation can be solved more
efficiently, when expecting a large number of alternative passenger
paths for real-life problem instances. A similar modelling approach was
taken by e.g. Szymula and Bešinović (2020).

The DMM model contains three sets of constraints including (1)
train routing and cancelling, (2) train rescheduling and (3) passenger
routing. The goal of the DMM model is to minimize the inconveniences
in railway operations due to the simultaneous disruptions. More for-
mally, the objective of the DMM is to maximize transported passengers
over the shortest paths, and minimize their total time spending in the
network, as well as to minimize train cancellations, train rerouting,
and train delays, i.e. deviations from the original timetable, as given
in Eq. (2). To do so, the specific costs are defined. The travel cost
𝑐𝑘𝑝 accounts for the travel times over traversed arcs of the path 𝑝 for
the OD pair 𝑘, and is calculated using averaged travel cost over all
passenger trains running on each arc. In this paper, only the travel
time is considered, while waiting and transfer times are neglected. The
term 1∕𝑐𝑘𝑝 is used to favour using the shortest paths. The rescheduling
ost 𝑐𝑡𝑑𝑒𝑙𝑎𝑦 is applied for the trains that deviate from the original
ime for each arrival event. To avoid double counting of delays at a
ingle station then only delays at arrival events are considered. The
ancellation cost 𝑐𝑡𝑐𝑎𝑛𝑐𝑒𝑙 is applied to penalize train cancellations. The
eneralized rerouting cost 𝐶 𝑖,𝑗,𝑡

𝑥 is defined using the train-related travel
imes per arc 𝜏𝑡𝑖𝑗 and the corresponding cost per time unit 𝑐𝑡𝑟, and is
omputed as 𝐶 𝑖,𝑗,𝑡

𝑥 = 𝑐𝑡𝑟 ⋅ 𝜏
𝑡
𝑖𝑗 . Finally, to keep as many running services

s possible, no operation cost regarding short-turning is applied.
The mathematical formulation of the DMM model is given as:

max
∑

𝑘∈𝐾

∑

𝑝∈𝑃 𝑘

1∕𝑐𝑘𝑝 ⋅ 𝑑𝑘 ⋅ 𝑓
𝑘
𝑝 −

∑

𝑡∈𝑇𝑅𝑅

∑

(𝑖,𝑗)∈𝐴
𝑐𝑡𝑐𝑎𝑛𝑐𝑒𝑙 ⋅ 𝑥

𝑡
𝑖𝑗

∑

𝑡∈𝑇𝑅𝑅

∑

(𝑖,𝑗)∈𝐴
𝐶 𝑖,𝑗,𝑡
𝑥 ⋅ 𝑥𝑡𝑖𝑗 −

∑

𝑡∈𝑇

∑

𝑖∈𝑁
𝑐𝑡𝑑𝑒𝑙𝑎𝑦 ⋅ (𝑇

𝑡
𝐴,𝑖

− 𝑇 𝑡
𝐴,𝑖)

(2)

such that

∑

𝑗∈𝑁
𝑥𝑡𝑖𝑗 −

∑

𝑗∈𝑁
𝑥𝑡𝑗𝑖 =

⎧

⎪

⎨

⎪

⎩

−𝑜𝑡𝑖, if node i is a starting node
𝑑𝑡𝑖 , if node i is an ending node
0, otherwise

∀𝑡 ∈ 𝑇 , 𝑖 ∈ 𝑁 𝑡

(3)
∑

𝑖∈𝑁 𝑡
𝑜𝑡𝑖 =

∑

𝑖∈𝑁 𝑡
𝑑𝑡𝑖 ∀𝑡 ∈ 𝑇 (4)

𝑡
𝑖 = 1 ∀𝑡 ∈ 𝑇 , 𝑖 = 𝑁(𝑂𝑡) (5)

𝑑𝑡𝑖 = 1 ∀𝑡 ∈ 𝑇 , 𝑖 = 𝑁(𝐷𝑡) (6)

𝑜𝑡𝑖 = 0 ∀𝑡 ∈ 𝑇𝑅𝑅, 𝑖 ≠ 𝑁(𝑂𝑡), 𝑁(𝐷𝑡) (7)

𝑑𝑡𝑖 = 0 ∀𝑡 ∈ 𝑇𝑅𝑅, 𝑖 ≠ 𝑁(𝑂𝑡), 𝑁(𝐷𝑡) (8)

𝑜𝑡𝑗 ≥ 𝑚𝑖𝑗 ∀𝑡 ∈ 𝑇 𝑆𝑇 , 𝑖 ∈ 𝑁 𝑡, (𝑖, 𝑗) ∈ 𝐴𝑡 (9)

𝑑𝑡𝑖 ≥ 𝑚𝑖𝑗 ∀𝑡 ∈ 𝑇 𝑆𝑇 , 𝑗 ∈ 𝑁 𝑡, (𝑖, 𝑗) ∈ 𝐴𝑡 (10)
∑

𝑜𝑡𝑖 ≤
∑

𝑚𝑖𝑗 + 1 ∀𝑡 ∈ 𝑇𝑅𝑅 ∪ 𝑇 𝑆𝑇 (11)

𝑖∈𝑁 𝑡 (𝑖,𝑗)∈𝐴𝑡
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∑

𝑖∈𝑁 𝑡
𝑑𝑡𝑗 ≤

∑

(𝑖,𝑗)∈𝐴𝑡
𝑚𝑖𝑗 + 1 ∀𝑡 ∈ 𝑇𝑅𝑅 ∪ 𝑇 𝑆𝑇 (12)

𝑡
𝐷,𝑖

+ 𝜏𝑡𝑖𝑗 ≤ 𝑇 𝑡
𝐴,𝑗

+𝑀(1 − 𝑥𝑡𝑖𝑗 ) ∀𝑡 ∈ 𝑇𝑅𝑅, (𝑖, 𝑗) ∈ 𝐴 (13)

𝑇 𝑡
𝐷,𝑖

+ 𝜏𝑡𝑖𝑗𝑥
𝑡
𝑖𝑗 ≤ 𝑇 𝑡

𝐴,𝑗
∀𝑡 ∈ 𝑇 𝑆𝑇 , (𝑖, 𝑗) ∈ 𝐴𝑡 (14)

𝑇 𝑡
𝐷,𝑖

≥
∑

𝑗∈𝑁
𝑇 𝑡
𝐷,𝑖𝑥

𝑡
𝑖𝑗 ∀𝑡 ∈ 𝑇 , 𝑖 ∈ 𝑁 𝑡 (15)

𝑇 𝑡
𝐷,𝑖

− 𝑇 𝑡
𝐴,𝑖

≥ 𝑡𝑡𝑖 −𝑀(1 − 𝑥𝑡𝑖𝑗 ) ∀𝑡 ∈ 𝑇𝑅𝑅, (𝑖, 𝑗) ∈ 𝐴 (16)

𝑇 𝑡
𝐷,𝑖

− 𝑇 𝑡
𝐴,𝑖

≥ 𝑡𝑡𝑖𝑥
𝑡
𝑖𝑗 ∀𝑡 ∈ 𝑇 𝑆𝑇 , (𝑖, 𝑗) ∈ 𝐴 (17)

𝑇 𝑡
𝐷,𝑖

≥ 𝑇 𝑚
𝐷,𝑖

+ ℎ𝑡,𝑚𝑖,𝑗 −𝑀(1 − 𝑥𝑡𝑖𝑗 ) −𝑀(1 − 𝑥𝑚𝑖𝑗 ) ∀𝑡 ∈ 𝑇 , 𝑚 ∈ 𝑇 , 𝑖 ∈ 𝑁 𝑡, 𝑚 ≠ 𝑡

(18)
𝑡
𝐴,𝑖

− 𝑇 𝑡
𝐷,𝑖

≥ 0 ∀𝑡 ∈ 𝑇 , 𝑖 ∈ 𝑁 𝑡 (19)
∑

𝑝∈𝑃 𝑘

𝛿𝑝𝑖𝑗𝑑𝑘𝑓
𝑘
𝑝 ≤

∑

𝑡∈𝑇
𝑠𝑡𝑥𝑡𝑖𝑗 ∀(𝑖, 𝑗) ∈ 𝐴 (20)

∑

𝑝∈𝑃 𝑘

𝑓𝑘
𝑝 ≤ 1 ∀𝑘 ∈ 𝐾 (21)

𝑥𝑡𝑖𝑗 , 𝑜
𝑡
𝑖, 𝑑

𝑡
𝑖 ∈ {0, 1} ∀𝑡 ∈ 𝑇 , 𝑛 ∈ 𝑁 𝑡 (22)

𝑓𝑘
𝑝 = [0, 1] ∀𝑘 ∈ 𝐾, 𝑝 ∈ 𝑃 𝑘 (23)

Train routing. Constraint (3) ensures the flow continuity and that the
trains are only allowed to start or end at origin and destination nodes
𝑜𝑡𝑖 and 𝑑𝑡𝑖 , respectively. Constraint (4) guarantees that the number of
origins and destinations on each train route is the same. Constraints
(5) and (6) ensure that the original scheduled origins and destinations
at the terminals of the trains are always kept as sources/sinks for the
train flows in order to maintain the original train services as in the
undisrupted case. Constraints (7) and (8) guarantee that rerouted trains
are not being short-turned and it is routed from its origin to destination.
Constraints (9) and (10) link the short-turn location selection to a
disrupted link. If a link is disrupted, the trains originally using this link
are forced to short-turn at the station right next to the disrupted link,
and thus ‘‘new’’ origin and destination are introduced. These constraints
deals with short-turning due to disrupted links in the original train
route only. Constraints (11) and (12) ensure that originally scheduled
trains are only short-turning according to the number of disrupted links
at the original route, in order to prevent unnecessary short-turning,
e.g. on an undisrupted part of the network. Additionally, it allows
the existence of at least one origin and destination to represent the
undisrupted state.

Train rescheduling. Constraints (13) and (14) ensure the minimal run-
ning times between two stations for rerouting and short-turning trains
in case of train operations on link (𝑖, 𝑗). Constraint (15) guarantees that
the rescheduled departure time cannot be earlier than the one originally
planned. Constraint (16) relates to the dwell time for rerouting, and
similarly, constraint (17) guarantees the dwell time for short-turned
trains. Both constraint (16) and (17) only need to hold if there are trains
running. Constraint (18) ensures the minimal headway times in the case
of both involved trains are operating. Constraint (19) guarantees the
non-negativity of all time instances.

Passenger routing. Constraint (20) limits the cumulative passenger
flows at each arc. Here, the parameter 𝛿𝑝𝑖𝑗 is used to determine whether
the path 𝑝 ∈ 𝑃 𝑘 of passenger flow 𝑘 ∈ 𝐾 traverses the arc (𝑖, 𝑗).
Constraint (21) restricts the passenger flow shares for each OD pair k
to be at most as large as the overall demand of that pair. Lastly, con-
straint (22) sets the range of the train-related decision variables of the
problem, and constraint (23) restricts the range of the passenger-related
8

decision variables. s
4.3. Solution approach

We introduce an optimization-based approach for resilience assess-
ment by jointly restoring links, managing train traffic and routing
passengers in the network. Algorithm 1 gives the pseudocode for assess-
ing resilience of a railway network based on the IRTM. The algorithm
takes the railway network 𝐺𝐼 , original timetable 𝑇𝑇 , OD demand
matrix 𝐾 and disruption scenario 𝐷. Note that the duration for restoring
each link and travelling between two links are assumed equal, and
thus, time is not explicitly required in the algorithm. The outcome is
constituted of resilience cost 𝑟𝑒𝑠𝐶𝑜𝑠𝑡, the optimal restoration sequence
𝑅∗, and the disrupted timetable 𝐷𝑇 ∗, i.e. represents a set of timetable
variants for each disrupted phase.
Algorithm 1: Algorithm for railway resilience assessment
1 function Resilience assessment (𝐺𝐼 , 𝑇 𝑇 ,𝐾,𝐷);
Input : infrastructure 𝐺𝐼 , timetable 𝑇𝑇 , passenger OD matrix

𝐾, set of disruptions 𝐷,
Output: optimal sequence 𝑅∗, disrupted timetable 𝐷𝑇 ,

resilience cost 𝑟𝑒𝑠𝐶𝑜𝑠𝑡∗

2 Initialize 𝑟𝑒𝑠𝐶𝑜𝑠𝑡 = 0, 𝐷𝑇 = 0
3 Compute 𝐹0 ←DMM(0)
4 Generate all restoration scenarios R

5 Compute 𝐹 (𝐷) ←DMM(𝐷)
6 for 𝑠 = 1 to |R| do
7 𝐷𝑠 = 𝑅𝑠

8 set 𝑟𝑒𝑠𝐶𝑜𝑠𝑡(𝑅𝑠) =
𝐹0−𝐹 (𝐷)

𝐹0
, 𝐷𝑇 (𝑅𝑠) = 𝐷𝑇 (𝐷)

9 while 𝐷𝑠 ≠ ∅ do
10 𝐷𝑠 = 𝐷𝑠 ⧵𝐷𝑠{1}
11 Compute 𝐹 (𝐷𝑠) ←DMM(𝐷𝑠)
12 Update 𝑟𝑒𝑠𝐶𝑜𝑠𝑡(𝑅𝑠) = 𝑟𝑒𝑠𝐶𝑜𝑠𝑡(𝑅𝑠) +

𝐹0−𝐹 (𝐷𝑠)
𝐹0

,
𝐷𝑇 (𝑅𝑠) = 𝐷𝑇 (𝑅𝑠) +𝐷𝑇 (𝐷𝑠)

13 end
14 end
15 Optimal resilience cost: 𝑟𝑒𝑠𝐶𝑜𝑠𝑡∗ =

min{𝑟𝑒𝑠𝐶𝑜𝑠𝑡(𝑅1), ..., 𝑟𝑒𝑠𝐶𝑜𝑠𝑡(𝑅
|R|)}

16 Optimal restoration sequence:
𝑅∗ = {𝑅𝑠|𝑟𝑒𝑠𝐶𝑜𝑠𝑡(𝑅𝑠) = 𝑟𝑒𝑠𝐶𝑜𝑠𝑡∗, 𝑠 = 1, ..., |R|}

17 Optimal disrupted timetable: 𝐷𝑇 ∗ = 𝐷𝑇 (𝑅∗)

The algorithm starts with initializing 𝑟𝑒𝑠𝐶𝑜𝑠𝑡 and 𝐷𝑇 , and comput-
ng the system performance for undisrupted scenario 𝐹0 by running
MM with no disruptions, which essentially finds the optimal rout-

ng for passengers. In step 4, all restoration scenarios are generated,
.e. sequences, R, where 𝑅 ∈ R. The number of possible scenarios
R| is equal to the number of all combinations of disruptions in 𝐷.
he 𝑠th restoration scenario is denoted 𝑅𝑠, and the optimal scenario is
enoted 𝑅∗. Then, the DMM is solved once for all disrupted links in 𝐷
step 5). The output performance of the DMM for the single phase is
(𝐷). Note that this first disrupted phase is equal for all scenarios in
. For each restoration scenario, a new auxiliary set 𝐷𝑠 consisting of

he remaining (non-restored) disruptions is introduced (step 7). Also, an
nitial resilience cost for the 𝑠th scenario 𝑅𝑠 is set to (𝐹0−𝐹 (𝐷))∕𝐹0 and
he corresponding disrupted timetable DT for this phase is saved (step
). Then iteratively, the first disruption in sequence 𝐷𝑠 is removed,
enoted 𝐷𝑠{1}, which represents this link being restored (step 10). The
MM is resolved for the remaining disruptions in 𝐷𝑠 (step 11), and

he 𝑟𝑒𝑠𝐶𝑜𝑠𝑡(𝑅𝑠) (𝐷𝑇 (𝑅𝑠)) is updated with the cost (disrupted timetable)
f the new reduced 𝐷𝑠 (step 12). In essence, the 𝐷𝑇 (𝐷𝑠), representing
timetable for this new disrupted period, is added (‘‘glued’’) to the

xisting 𝐷𝑇 (𝑅𝑠). The sequence of steps 10–12 is repeated until all dis-
uptions are restored and the corresponding partial costs are computed
nd therefore also the total resilience cost and disrupted timetable for
equence 𝑅 is obtained. The number of iterations of the while-loop is
𝑠
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equal |𝐷| − 1. That is due to the case that all recovery scenarios have
qual cost in the first period after a disruption happened, i.e. when the
umber of actual disruptions equal |𝐷|. Therefore, the DMM is solved
nly once for all links in 𝐷.

In step 15, the resilience of the system 𝑟𝑒𝑠𝐶𝑜𝑠𝑡∗ is determined as
he minimal value of 𝑟𝑒𝑠𝐶𝑜𝑠𝑡 among the previously computed resilience
osts over all scenarios in R. Such 𝑟𝑒𝑠𝐶𝑜𝑠𝑡∗ represents the maximal

remaining system performance. Also, the corresponding restoration
sequence 𝑅∗ and the disrupted timetable 𝐷𝑇 ∗ are taken as final, in steps
16 and 17, respectively .

For solving larger real-life instances by the DMM, some computa-
tion challenges may arise. First, the model may theoretically have an
extreme number of possible travelling path alternatives 𝑃𝑘 for each
air 𝑘. Considering them all in the model at once may render the
roblem impossible to solve (e.g. Gentile et al., 2016). However, many
f such paths may not be used in practice, since they are long detours.
econd, a problem could be a great number of headway constraints to
atisfy infrastructure dependencies to guarantee operational feasibility
f computed solutions. However, as we start with an existing timetable
hat satisfies all headway constraints already, when adjusting train
ervices due to disrupted critical links, only a limited number of extra
eadway constraints may be considered additionally. To solve the
MM efficiently, we use a heuristic approach proposed by Szymula
nd Bešinović (2020) which combines (1) a column generation for
ntroducing useful alternative passenger paths and (2) row generation
or introducing the headway constraints to train routes that are in
onflict.

The adopted enumeration approach of all possible restoration se-
uences may theoretically lead to an excessive amount of required
omputations of the DMM. However, in practice, this approach remains
o be acceptable for a small number of simultaneous disruptions in

disruption scenario. For example, the number of simultaneous dis-
uptions in the Dutch railway network typically remains under five
isruptions, while in urban railway networks, e.g. Copenhagen metro,
t rarely reaches three simultaneous disruptions.

. Experimental results

The resilience assessment IRTM approach is demonstrated on a
utch passenger railway network. First, we show the working of the
roposed approach on an exemplary case study for a given realistic dis-
uption scenario in the eastern part of the Dutch network. Second, we
nalyse railway resilience against the critical disruption scenarios in the
omplete Dutch network, and also, recognize the change (deterioration)
n system resilience with the number of disrupted links. Section 5.1
ives the experimental setup, Section 5.2 performs a detailed specific
nalysis for an exemplary case study, and Section 5.3 presents a more
eneral analysis - a network resilience assessment against different
umber of disruptions.

.1. Setup

Fig. 3 shows the Dutch passenger railway network used in the
xperiments. The red circle highlights the eastern part for the first
xperiment, while the complete network is used in the second one. The
nfrastructure network consists of more than 500 (848) infrastructure
rcs and 250 (398) stations in which approximately 330 (507) trains
perate per hour for the first (second) experiment.

The traffic data is the General Transit Feed Specification (GTFS)
ata of the operating timetable from a working day in 2019 and
ncludes the operated lines, routes and the scheduled arrival and de-
arture times. The passenger demand per origin and destination (OD)
airs is based on real demand data from the Dutch railway network,
nd only the passenger flows with demands higher than 100 passengers
9

z

per hour are considered. A train capacity is set to 500 seats for example
case study and 1000 seats for network resilience assessment. The model
and the solution approach are implemented in Matlab and solved using
CPLEX version 12.9.0.

For the restoration process in all experiments, it is assumed that the
repair time of any disrupted link is equal to 60 min. Such disruptions
could relate to e.g. fixing a broken switch, removing a failed train, or
clearing a fallen tree. The model is directly applicable to disruptions
lasting multiple hours/days, and it would require only multiplying
the obtained costs with the duration (time needed) to restore a link.
Regarding train operations, intercity and local trains operate on their
planned routes, while the international trains can be also rerouted.

In the example case study (experiment 1), the disruption scenario
consists of three link disruptions: Echt-Roermond, Arnhem Zuid-Elst
and Utrecht Lunetten-Utrecht Vaartsche Rijn. These links are cho-
sen because of their importance in the overall performance of the
Dutch railway network. Disrupting these multiple locations simulta-
neously is expected to cause a higher level of severity to railway
operations. This disruption scenario resembles a Black day, similar
to e.g. 10 December 2017.5 To better understand the size of the
network, we report characteristic distances between the main stations
in the eastern part of the Netherlands. The distance between Utrecht
Centraal and Eindhoven Centraal is approximately 76 km, Anrhem
Centraal and Nijmegen is 18 km and Nijmegen and Roermond is
84 km. Additionally, Utrecht-Nijmegen is 57 km, Utrecht-Zwolle is
81 km, Zwolle-Groningen is 85 km, and Groningen-Leeuwarden 51 km.
This information helped us understanding the dimension of the area
impacted by these disruptions.

In the network-wide resilience assessment (experiment 2), to gen-
erate the critical scenarios for the given number of disruptions, we
used the Railway Network Vulnerability Model (RNVM) developed
in Szymula and Bešinović (2020). In particular, scenarios with 1 to 5
disruptions are considered. We do not consider more than 5 disrup-
tions, as more simultaneously occurring disruptions are rare to happen.
Table 2 gives an overview of the critical disruptions.

In the experiments, we (1) find the most resilient restoration sce-
nario and traffic management for the given disruption scenarios in-
cluding resilience costs the number of transported passengers, their
travel costs and number of impacted train services, and (2) draw the
corresponding resilience curves. Also, we uncover the added value of
using a passenger-centred metric for resilience assessment (compared
to train-centred ones). To do so, we report performance in the number
of transported passengers and define the relation between transported
passengers and the running trains. In order to have a benchmark
on transport performance in undisrupted network, i.e. the number of
passengers that can be transported in the network, the DMM model is
run without any disrupted links, and thus represents 100% of network
performance. This resulted to 𝐹0 = 57,912 passengers for the example
case study, and 𝐹0 = 333, 855 passengers for the network-wide resilience
assessment.

5.2. Example case study

In total, six restoration scenarios are generated presenting all possi-
ble sequences of combining the three given disruptions (see Table 3).
For each restoration scenario, Algorithm 1 is run to assess resilience.

Table 4 presents network performance for each scenario in terms of
the total number of transported passengers, the total number of discon-
nected passengers, the total number of affected train (partially/complete
cancelled or rerouted), the objective function value, computed by DMM

5 https://nltimes.nl/2017/12/11/multiple-train-traffic-disruptions-trains-
aandam

https://nltimes.nl/2017/12/11/multiple-train-traffic-disruptions-trains-zaandam
https://nltimes.nl/2017/12/11/multiple-train-traffic-disruptions-trains-zaandam
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Fig. 3. Complete case study network (left) and the zoomed part of the network with highlighted disruptions for the exemplary experiment (right).
Table 2
The critical disruption scenarios.

Critical disruption scenarios

1 disruption 2 disruptions 3 disruptions 4 disruptions 5 disruptions

Sittard-Susteren Sittard-Susteren Sittard-Susteren Sittard-Susteren Utrecht Centraal-Utrecht Vaartsche Rijn
Cuijk-Mook Molenhoek Nijmegen Lent-Nijmegen Rotterdam Centraal-Rotterdam Blaak Sittard-Susteren

Nijmegen Goffert-Nijmegen Gouda-Gouda Goverwelle Rotterdam Centraal-Rotterdam Blaak
Amsterdam RAI-Duivendrecht Weesp-Almere Poort

Hoevlaken-Barneveld Noord
Table 3
All possible combinations for the restorations with three disrupted links.

First arc restored Second arc restored Third arc restored

Scenario 1 Echt - Roermond Elst - Arnhem Zuid Utrecht Lunetten - Utrecht Vaartsche Rijn
Scenario 2 Echt - Roermond Utrecht Lunetten - Utrecht Vaartsche Rijn Elst - Arnhem Zuid
Scenario 3 Elst - Arnhem Zuid Echt - Roermond Utrecht Lunetten - Utrecht Vaartsche Rijn
Scenario 4 Elst - Arnhem Zuid Utrecht Lunetten - Utrecht Vaartsche Rijn Echt - Roermond
Scenario 5 Utrecht Lunetten - Utrecht Vaartsche Rijn Elst - Arnhem Zuid Echt - Roermond
Scenario 6 Utrecht Lunetten - Utrecht Vaartsche Rijn Echt - Roermond Elst - Arnhem Zuid
(2)–(23), and the resilience cost 𝑟𝑒𝑠𝐶𝑜𝑠𝑡(𝑅𝑠), computed using Eq. (1)).
These values present summations over the disrupted phases, from a
disruption start until the last disruption was fixed. The table highlights
that Scenario 5 is the best solution as it leads to the highest number of
passengers transported and the lowest number of affected trains. Also,
the highest value on the objective function is in line with the goal of
the problem, as it helps to minimize the inconveniences in the network.
In this scenario, the first step was to assign the restoration of the
disruption between Utrecht Lunetten and Utrecht Vaartsche Rijn. This
would make sense since many passengers (i.e. OD pairs) originate/end
at station Utrecht. This is then followed by the link between Elst and
Arnhem Zuid and Lastly Echt-Roermond. Finally, as the last link to be
restored is Echt-Roermond, which is more at a periphery of the network
and lesser number of passengers traverse this link.

Fig. 4 shows the resilience curve, from disruption occurrence to
recovery, based on the number of transported passengers for best
recovery scenario - Scenario 5. The performance is given as the ratio
of transported passengers during disruption, compared to the nominal
conditions (i.e. 100%) and given in %. The time instance (state) 0
represents the state before the disruptions occur. Then, in the following
10
three states (hours) the three disrupted links are restored sequentially,
one per each state. In the fourth state, all train services and disruptions
are restored. Here, 100% represents normal operations and equals
57,912 transported passengers. When all three links are closed (state
1), the percentage of transported passengers drops to about 79.7% and
then gradually increases as links are being fixed. In the third state, with
one remaining disruptions, only 1.8% of passengers were not able to
travel.

Table 5 presents the detailed results from the optimal restoration
and train recovery plan (Scenario 5). In Appendix, the detailed results
for all remaining scenarios are shown. Each row reports the disrupted
states with the corresponding disrupted links. It includes the total cost
of the objective function, the total number of transported passengers
among the three-hour restoration and recovery process, the total num-
ber of disconnected passengers and the total number of affected train
lines. It shows that the number of disconnected passenger when all 3
links (state 1) are disrupted is as much as 11,730 passengers, while
it drops to only 1,058 passengers for the last remaining disrupted
link (state 3). It can also be seen that no trains were rerouted (only
international trains could be rerouted), and no trains were additionally
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Table 4
Comparison of the different restoration scenarios. The best scenario is highlighted - Scenario 5.

Number of transported
passengers

Number of disconnected
passengers

Number of
affected trains

Objective
function

resCost

Scenario 1 146,576 27,160 118 217,408 46.9
Scenario 2 150,144 23,592 107 219,946 40.7
Scenario 3 149,644 24,092 107 224,016 41.6
Scenario 4 154,351 19,385 91 228,501 33.5
Scenario 5 156,954 16,782 86 230,863 29.0
Scenario 6 155,815 17,921 91 228,916 30.9
Table 5
Detailed results for Scenario 5.

Disrupted
state

Disrupted
links

Objective
function

Transported
passengers

Disconnected
passengers

Rerouted
trains

Cancelled
trains

Short-turned
trains

Duration
[h]

resCost [-]

1 Lunetten - Vaartsche Rijn
Arnhem Zuid - Elst
Echt - Roermond

68,894 46,182 11,730 0 0 48 1 20.3

2 Arnhem Zuid - Elst
Echt - Roermond 78,901 53,918 3,994 0 0 27 1 6.9

3 Echt - Roermond 83,068 56,854 1,058 0 0 11 1 1.8

Total 230,863 156,954 16,782 0 0 86 3 29.0
Fig. 4. Resilience curve for the best restoration scenario - Scenario 5.

cancelled during disruptions. Looking at the running train services, it
can be seen that for the first state as many as 48 trains needed to be
short-turned. The first restored link Utrecht Lunetten-Vaartsche Rijn
by itself is responsible for 21 short-turned trains in the network. The
disruption of this link led to 7,7336 disconnected passengers (i.e. equal
to the difference between disrupted states 1 and 2).

At state 2, the number of short-turned trains nearly halved; it went
to 27. The blockage of the second link Arnhem Zuid - Elst contributes to
16 trains having to be short-turned. By restoring this link the number of
short-turned trains decreases to only 11 and the number of passengers
increased to 56,854 in state 3. It is interesting to observe that, in other
restoration scenarios in which this link Arnhem Zuid-Elst is the first
link to be fixed (i.e. scenarios 3 and 4), the amount of new passengers
that are enabled to travel again is higher than in scenario 5 (5,113 in
scenario 3 and 4 and only 2,936 in scenario 5). This can be explained
by the fact that, after the restoration of Utrecht Lunetten - Utrecht
Vaartsche Rijn, some of the passengers that were disconnected because
of the disruption between Elst and Arnhem Zuid were reassigned to
other alternative routes in order to reach their destination. Finally,
for the third link Echt-Roermond, even though this corridor is the
main connection between the eastern and the southern part of the
network, it is responsible for only 11 of the 48 trains being short-turned
in this experiment and it contributed to 1,058 passengers not being
transported.
11
Fig. 5. Relation between transported passengers and running trains - Scenario 5.

We now investigate the relation between train-centred and
passenger-centred impacts of resilience assessment. Fig. 5 visualizes the
relation between transported passengers and number of running trains
during the disrupted period. Each point represent one state during a
disruption. The diagonal represents an equal impact on passengers and
trains respectively. Points above the diagonal indicate a heavier impact
on trains, while points below indicate a heavier impact on passengers.
For example, the point 1 (79.7;85) represents the first state with all
three disruptions. The state 0 (4) represents the system before (after)
the disruptions. It can be seen that the relation between affected trains
and passengers is not linear. In fact, when more disruptions are present
a more significant impact is observed on passengers; fewer passengers
are able to travel and do not have rerouting alternatives. Instead, for
limited disruptions (states 2 and 3), passengers tend to have the alterna-
tive routes to choose from, and thus more possibilities to perform their
journeys. Therefore the impact on passengers is lower. It can be seen
that the number of affected trains (due to infrastructure restoration)
may have non-linear implications on the transported passenger flows,
and thus tend to lead to inaccurate estimation of the system resilience.

Regarding possible influences of inter-station distances, disrupting
a long link may lead to an excessive passengers detour, particularly
for passenger demand that originates/ends near such disruptions. Thus,
their alternative routes may not be attractive, due to significantly
increased travel time, and the passengers could decide not to travel. An
example of such link would be between Leeuwarden and Groningen in
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Table 6
Results overview of the resilience assessment for 5 critical scenarios.

Scenario Disruption
duration [h]

Number of transported
passengers

Number of disconnected
passengers

Number of affected
trains

Objective
function

resCost [-]

1 disruption 1 326,809 20,869 11 4,943,958.71 2.1
2 disruptions 2 659,143 41,707 19 10,289,111.13 2.6
3 disruptions 3 963,951 79,349 63 10,401,488.17 11.3
4 disruptions 4 1,225,224 146,782 281 17,576,081.85 33.0
5 disruptions 5 1,416,779 164,118 357 20,182,691.81 75.6
Fig. 6. Resilience costs for the 5 critical scenarios.

the northern part of the country (see Fig. 3). Additionally, to have such
long link critical from the passenger perspective, it also has to serve a
high volume of passengers in normal conditions. Thus, the criticality
of links depends on complex relations between distances, passenger
demand and alternative passenger routing options.

5.3. Resilience assessment against the critical disruption scenarios

This section presents the results of the resilience assessment for the
critical disruption scenarios with 1 up to 5 disrupted links computed
using the IRTM approach. Table 6 gives the assessment overview show-
ing the duration of disruptions, number of transported/disconnected
passengers, number of affected trains (short-turned and cancelled),
objective function and resilience cost 𝑟𝑒𝑠𝐶𝑜𝑠𝑡 due to the disruptions.
It expectedly demonstrates the increasing number of disconnected pas-
sengers and affected trains when increasing the number of disruptions
in scenarios. Similarly, the OF increases as well. Note that the number
of transported passengers increases, with longer periods of disruption,
however, it changes with a less than a linear rate, suggesting that
scenarios with more disruptions create significantly higher impacts.
Looking at 𝑟𝑒𝑠𝐶𝑜𝑠𝑡, scenarios with 1 and 2 disruptions lead to only
minor implications to the network, i.e. having 𝑟𝑒𝑠𝐶𝑜𝑠𝑡 of 2.1 and 2.6,
respectively. Instead 𝑟𝑒𝑠𝐶𝑜𝑠𝑡 rise sharply for 3, 4 and 5 disruptions,
increasing 3 times from 3 to 4 disruptions, and then again 2.3 times
from 4 to 5 disruptions. Fig. 6 visualizes the resilience costs resCost
for the 5 critical scenarios. It clearly shows the exponential impact of
disruptions to the railway network. And, any other disruption scenario
with the same number of disruptions is expected to have lower 𝑟𝑒𝑠𝐶𝑜𝑠𝑡
that the selected ones.

Fig. 7 shows resilience curves for the 5 critical scenarios for the
corresponding optimal recovery strategies. Each curve shows a gradual
increase in performance, measured as transported passengers, with
restoration of each link. Typically, more significant improvements are
12
Fig. 7. Resilience curves for the 5 critical scenarios.

seen after restoring the first links, while they reduce at the later
stages. Most strikingly, for 5 disruptions, in the first period (when all
disruptions are active), the network performance drops to as low as
44% of the normal. Luckily, it springs back to 89% after recovering the
first disruption. For scenarios with up to 3 disruptions, the impact is
limited to above 95% (Note that this is the performance on the network
level, while in Section 5.2 the eastern part of the railway network
was considered. Thus, the values between the two experiments are not
directly comparable since different networks were used.).

Fig. 8 depicts relations between transported passengers and running
trains for 5 critical scenarios (for optimal restoration sequences). It
clearly shows the discrepancy represented in a non-linear relation
between the two metrics. Moreover, it does not show a recognizable
trend over different disruption scenarios. On one hand, for some dis-
ruption scenarios, train-related resilience measure tend to generate an
underestimation (a higher impact on passengers than on trains) of
disruptions effects over all phases, e.g. scenario with 3 disruptions.
On the other hand, scenarios with 2 and 4 disruptions show the
overestimation of train-related measure over all phases. However, for
5 disruption scenario, the it is an overestimate in phases with no more
than four disruptions and underestimate when all links are broken.
Most notably, in the last case, it shows that passengers are significantly
more impacted than trains, leaving only 44% of transported passengers
vs 77% of running trains of the total numbers in the undisrupted
phase. These results highlight the relevance of using passengers-related
metrics for evaluating resilience of railway transport systems in order
to obtain more accurate and more relevant performance estimates.

6. Conclusions

The paper presented a new optimization-based approach for quan-
tifying resilience of railway networks while integrating infrastructure
restoration, traffic management and passenger management. The sys-
tem resilience was measured based on the (remaining) ability to trans-
port passengers during the disruptions. The model is able to find
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Fig. 8. Relation between transported passengers and running trains for 5 critical
scenarios.

the most resilient restoration strategies for a given disruption sce-
nario consisting of multiple link disruptions. The approach combines
an optimization model for disruption management (DMM) to jointly
reschedule train services and reroute passenger flows in the network
and an enumerative procedure to evaluate various restoration scenar-
ios, which are combined into an integrated Infrastructure Restoration
and Transport Management (IRTM) framework.

The experiments showed high potential for assessing resilience of
the Dutch railway network. At the same time, the proposed IRTM
approach identifies jointly the optimal link restoration sequence the
corresponding train timetable, and passenger flows in the network. The
resilience curves were generated showing the system performance dur-
ing disruption. In addition, it demonstrated the added value of using a
passenger-centred metrics for assessing resilience over the train-centred
one for obtaining more accurate estimates of the disruption impacts.
For the exemplary scenario with 3 disruptions, we observed that the
optimal restoration sequence leads to 𝑟𝑒𝑠𝐶𝑜𝑠𝑡 of 29, which is 38%
better than the worst case (scenario 1 with 𝑟𝑒𝑠𝐶𝑜𝑠𝑡 of 46.9), showing
a great importance of choosing the best sequence. For network-wide
resilience assessment of the national railway network, we observe that
significant impacts on system performance may be expected for the
critical disruption with 5 disruptions already, i.e. maximum drop in
performance of 56%.

The presented IRTM approach is applicable to a wide range of
railway-specific problems. The model is readily applicable to passenger-
centred railway networks that have a single restoration team available,
such as metro and urban networks. In addition, it is also applicable
larger networks in some special cases, for example, when resolving
disruptions requires a highly specialized equipment available in limited
quantities, e.g. a crane to move a derailed train. The model can also
be used for assessing a wide range of scenario-specific disruptions. For
example, it could be applied to evaluate impacts of longer disruptions
caused by e.g. floodings, landslides, or catenary wire breakdown, as
well as track renewal works, that may last for multiple days/weeks.
Also, it can be used for determining the optimal sequence of main-
tenance closures to minimize impacts on operations over the longer
period. Finally, also be used for a more passenger-centred classification
of black days, which are currently defined based on train punctuality
and the number of failures in the network. This optimization-based
approach enables decision makers to decide the sequence in which
the disrupted links should be fixed in case of simultaneous multiple
disruptions in the railway network, in order to minimize the resulting
passenger inconveniences in the railway operation.
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Some limitations of the current research are present. First, no exact
transition phases are modelled, instead multiple steady-state traffic
timetables are used to assess resilience of the system. Therefore, the
quantified costs tend to represent an approximation of the exact im-
pacts. Second, the proposed approach assumed a single restoration
team, while a railway operator could have more teams available which
would allow restoring multiple links simultaneously and thus lead to
faster recovery of the system. And, there may be one or more depots
for keeping restoration teams. Third, the approach uses an enumeration
of all sequences for restoration, and this may lead to excessive compu-
tation time of the DMM model. Such approach may be appropriate for
a relatively small number of disrupted links in the disruption scenario.
However, for bigger networks with more simultaneous disruptions, it
may not be suitable. Fourth, this research considered equal demand
over the complete disruption, while in reality the demand may change
during the day and thus have some impact the overall resilience.
Finally, it does not consider explicitly travelling time between two dis-
rupted links. By adding these, it may be expected that a disruption may
last longer. However, such travel times would not impact the sequence
of the restored links, but mostly the duration of each disrupted state.

Several directions for future work can be recognized. First, the
current (scenario-specific) resilience analysis approach can be extended
towards simultaneously determining the most critical combination of
disruptions and the corresponding resilience of the network. Second,
the mathematical model could further incorporate more features of
restoration teams including travel times between disrupted links, avail-
ability of multiple teams, and their location in the network. Third, for
more severe scenarios including many diverse disruptions in large rail-
way networks, more efficient solution algorithms and models shall be
investigated. Fourth, it would be beneficial to compare the performance
of the model against the real-life behaviour of the system including
train scheduling, passenger routing and restoration team scheduling.
Finally, one could further learn from practical rules, regulations and
constraints and incorporate them into resilience assessment. These
would provide added values both towards modelling real-life more
accurately, and also highlight possible bottlenecks (e.g. suboptimal
dispatching actions) in the current practices. Such future resilience
assessment model can be used for evaluating impacts and develop
mitigation plans for various types of disruptions ranging from adverse
weather, earthquakes, and also malicious attacks. As such, it will
represent a solid support tool to decision makers in railway systems.
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Appendix. Detailed results of all restoration scenarios

This appendix presents a detailed summary of the other five possible
scenarios of the restoration process of from the disruption scenario, see
Tables 7–11. An overview of these results obtained is in Table 1. A
table, is given for each of the scenarios, showing the costs referred
to the objective function, the number of passengers transported, the
number of disconnected passengers, and the number of affected train
lines. These values are added up in a final row with the total costs, this
row represents how the network performed under the three hours in
which it was affected by the disruptions.
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Table 7
Results for scenario 1.

State Disrupted
links

Objective
function

Transported
passengers

Disconnected
passengers

Rerouted
trains

Cancelled
trains

Short-turned
trains

Duration
[h]

resCost

1 Echt - Roermond
Elst - Arnhem Zuid
Lunetten - Vaartsche Rijn

68,894 46,182 11,730 0 0 48 1 20.3

2 Elst - Arnhem Zuid
Lunetten - Vaartsche Rijn 69,931 48,247 9,665 0 0 43 1 16.7

3 Lunetten - Vaartsche Rijn 78,583 52,147 5,765 0 0 27 1 10.0

Total 217,408 146,576 27,160 0 0 118 3 46.9
Table 8
Results for scenario 2.

State Disrupted
links

Objective
function

Transported
passengers

Disconnected
passengers

Rerouted
trains

Cancelled
trains

Short-turned
trains

Duration
[h]

resCost

1 Echt - Roermond
Lunetten - Vaartsche Rijn
Elst - Arnhem Zuid

68,894 46,182 11,730 0 0 48 1 20.3

2 Lunetten - Vaartsche Rijn
Elst - Arnhem Zuid 69,931 48,247 9,665 0 0 43 1 16.7

3 Elst - Arnhem Zuid 81,121 55,715 2,197 0 0 16 1 3.8

Total 219,946 150,144 23,592 0 0 107 3 40.7
Table 9
Results for scenario 3.

State Disrupted
links

Objective
function

Transported
passengers

Disconnected
passengers

Rerouted
trains

Cancelled
trains

Short-turned
trains

Duration
[h]

resCost

1 Elst - Arnhem Zuid
Echt - Roermond
Lunetten - Vaartsche Rijn

68,894 46,182 11,730 0 0 48 1 20.3

2 Echt - Roermond
Lunetten - Vaartsche Rijn 76,539 51,315 6,597 0 0 32 1 11.4

3 Lunetten - Vaartsche Rijn 78,583 52,147 5,765 0 0 27 1 10.0

Total 224,016 149,644 24,092 0 0 107 3 41.6
Table 10
Results for scenario 4.

State Disrupted
links

Objective
function

Transported
passengers

Disconnected
passengers

Rerouted
trains

Cancelled
trains

Short-turned
trains

Duration
[h]

resCost

1 Elst - Arnhem Zuid
Lunetten - Vaartsche Rijn
Echt - Roermond

68,894 46,182 11,730 0 0 48 1 20.3

2 Lunetten - Vaartsche Rijn
Echt - Roermond 76,539 51,315 6,597 0 0 32 1 11.4

3 Echt - Roermond 83,068 56,854 1,058 0 0 11 1 1.8

Total 228,501 154,351 19,385 0 0 91 3 33.5
Table 11
Results for restoration scenario 6.

State Disrupted
links

Objective
function

Transported
passengers

Disconnected
passengers

Rerouted
trains

Cancelled
trains

Short-turned
trains

Duration
[h]

resCost

1 Lunetten - Vaartsche Rijn
Echt - Roermond
Elst - Arnhem Zuid

68,894 46,182 11,730 0 0 48 1 20.3

2 Echt - Roermond
Elst - Arnhem Zuid 78,901 53,918 3,994 0 0 27 1 6.9

3 Elst - Arnhem Zuid 81,121 55,715 2,197 0 0 16 1 3.8

Total 228,916 155,815 17,921 0 0 91 3 30.9
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