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ABSTRACT
The structural evaluation of existing pavements forms the basis for formu-
lating cost-effective maintenance and rehabilitation strategies. A promis-
ing tool for pavement structural evaluation at network level is the Traffic
Speed Deflectometer (TSD) test. However, the application of the TSD test
is hindered by the lack of a robust and efficient parameter identification
technique. To solve this problem, a theoretical model for the TSD test is
first formulated. Then, a minimisation algorithm which works best with
the theoretical TSD model for parameter identification is selected. Finally,
the performance of this combination in processing field TSD measure-
ments is studied. The results show that themodified Levenberg-Marquardt
algorithm using all the 9 detection points is most suitable to be combined
with the theoretical TSD model for parameter identification, which gives a
promising parameter identification technique for TSD tests of pavements.
The presented work contributes to the development of technologies for
pavement structural evaluation.
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1. Introduction

The development of roadway networks improves the convenience of life, while the inevitable deterio-
ration of existing pavements reduces the comfort and safety of users. In order tomaintain and recover
the service performance of pavements, proper maintenance and rehabilitation activities are needed.
The desiredmaintenance and rehabilitation strategies should be cost-effective enough to ensure that
appropriate treatments are applied on necessary pavement sections at the right time. The formulation
of these strategies depends on the structural performance of existing pavements, which can be evalu-
ated by structural analysis if corresponding structural parameters are known. The important structural
parameters for pavement structural analysis are layer moduli and layer thicknesses, which can be ele-
gantly predicted by a so-called parameter identification technique based on non-destructive testing
results of pavements. The desired parameter identification technique should be not only numeri-
cally robust to obtain accurate results, but also computationally efficient to be suitable for practical
application (Al-Khoury et al., 2001a; Al-Khoury et al., 2001b; Lee et al., 2019). The most important
component of a parameter identification technique is a theoretical model which can predict the
response of pavements caused by certain loads. On the basis of the theoretical model, an iterative,
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statistical, or genetic technique can be developed to identify parameters of pavements by analysing
corresponding response (Lee et al., 2017; Nielsen, 2019; Sun et al., 2020a).

Non-destructive testingmethods are widely used for pavement structural evaluation because they
are time-saving and structure-friendly (Maser, 2003). The most commonly used non-destructive test-
ingmethod in the field of pavement engineering is the FallingWeightDeflectometer (FWD) test,which
measures the time-dependent pavement response caused by an impact load (Kutay et al., 2011). The
FWD test of pavements can be properly simulated by a theoretical model considering wave propaga-
tion, which can be further combined with a nonlinear minimisation algorithm to achieve parameter
identification based on FWD measurements. However, the low mobility of the FWD test makes it not
that suitable for pavement structural evaluation at network level (Sun et al., 2020b). To solve this issue,
some non-destructive testing methods with high mobility have been developed, such as the Traffic
Speed Deflectometer (TSD) test.

The TSD device has a similar appearance to a truck trailer and it can measure the slopes of vertical
deflection at a set of points along the midline of the right rear wheel pair on the pavement surface
at normal driving speeds. Because of this feature, the TSD test is very suitable for network-level pave-
ment structural evaluation. Some studies had investigated the methods of using TSD measurements
for pavement structural evaluation. For example,Nasimifar et al. (2019) developedapractical approach
to compute the effective structural number (SNeff) of in-service flexible pavements from TSDmeasure-
ments; the computedSNeff canbeused for network-level pavement structural evaluation. Katicha et al.
(2014) used a wavelet-transform denoising technique to obtain TSD deflection slope measurements
without noises, the use of which gives improved pavement structural evaluation. Zihan et al. (2019)
investigated the relationship between surface indices (e.g. the random cracking index, the rough-
ness index, the rutting index, etc.) and in-service pavement structural conditions predicted from traffic
speed deflection devices to assess the feasibility of identifying structurally damaged sections by only
using surface indices or their declining rates.

However, the number of studies on the application of TSDmeasurements for identifying structural
parameters of pavements is very limited. For example,Nasimifar et al. (2017)proposeda technique that
can identify the elastic and viscoelastic layermoduli of asphalt pavements fromTSDmeasurements via
a trial-and-error process; this technique uses a software called 3D-Move as the computational kernel.
Furthermore, Liu et al. (2018) developed a parameter identification technique by combining a semi-
analytical finite element model with the Artificial Neural Network (ANN) algorithm; this technique can
identify the elastic layermoduli of asphalt pavements by analysing corresponding TSDmeasurements.
In addition, Wu et al. (2020) formulated a parameter identification technique based on a 2.5D finite
elementmodel and the constrained extended Kalman filter (CEKF) to determine the elastic layermod-
uli of pavements by analysing the response caused by moving loads. However, these techniques are
still not good enough to be used for network-level pavement structural evaluation. To address this
issue, a robust and efficient parameter identification technique for TSD tests of pavements will be
developed in this study by combining a novel theoretical TSD model and an appropriate minimisa-
tion algorithm. The work presented in this paper contributes to the development of technologies for
pavement structural evaluation.

2. A theoretical model for the TSD test

In this section, a theoretical model for the TSD test of pavements is formulated. Based on this model,
the characteristics and parameter sensitivity of the response of pavements caused by the TSD loading
are investigated.

2.1. Model formulation and solution scheme

As shown in Figure 1, the TSD test of pavements is theoretically modelled by a layered system sub-
jected to surface moving loads. Each layer of the layered system is a well-defined continuum and all
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Figure 1. Schematic representation of the TSD test of pavements.

the layers are fully bonded. In practice, the TSD device alwaysmeasures the response of points around
the load, so it is convenient to introduce both a stationary Cartesian coordinate system (OXYZ) and
a moving Cartesian coordinate system (oxyz). The stationary coordinate system is stationary and its
origin is located in the centre of the initial loading area of the right rear wheel pair of the TSD device,
while the moving coordinate system is moving with the load and its origin is located in the centre of
the moving loading area of the right rear wheel pair. These two coordinate systems are coincident
when the time t is zero. The load is assumed to be moving in the positive X-direction with a constant
speed c, which results in the following coordinate relationships (Sun et al., 2022):

x = X − ct, y = Y , z = Z (1)

Moreover, the partial derivatives in the two coordinate systems have the following relationships for
nonnegative integer n:

∂nX = ∂nx , ∂nY = ∂ny , ∂nZ = ∂nz (2)

∂nt |OXYZ = (∂t − c∂x)
n|oxyz (3)

where ∂nX means the n-th order derivative with respect to X, the subscripts ‘OXYZ’ and ‘oxyz’ mean that
corresponding quantities are expressed in the stationary coordinate system and the moving coor-
dinate system, respectively. In addition, the following Fourier transform pair is used in this study to
transform quantities in the space–time domain to their counterparts in the wavenumber-frequency
domain:

q̃(kx , ky , z,ω) =
∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
q(x, y, z, t)ei(kxx+kyy−ωt)dxdydt (4)

q(x, y, z, t) = 1

(2π)3

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
q̃(kx , ky , z,ω)e−i(kxx+kyy−ωt)dkxdkydω (5)

in which i is the imaginary unit satisfying i2 = −1, kx is the wavenumber in the x-direction, ky is
the wavenumber in the y-direction, ω is the angular frequency, q(x, y, z, t) is an arbitrary quantity in
the space–time domain, and q̃(kx , ky , z,ω) is the counterpart of this quantity in the wavenumber-
frequency domain.
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Figure 2. The SEM-based procedure to calculate the response fields.

In the absence of body forces, the motion of a continuum is governed by the following Navier’s
equation in the stationary coordinate system (OXYZ):

(λ + μ)∇0∇0 · U + μ∇2
0U = ρ ∂2t U (6)

where∇0 = [ ∂X ∂Y ∂Z ]T is the Del operator,∇2
0 = ∂2X + ∂2Y + ∂2Z is the Laplacian operator,U(X , Y , Z, t) is

the displacement vector, ρ is the density, λ andμ are the Lamé constants defined by Young’smodulus
E and Poisson’s ratio ν.

This governingequation is first transformed to themovingcoordinate systembasedon the relation-
ships between the two coordinate systems, then a procedure based on the Spectral Element Method
(SEM) is followed to calculate the response fields in the space–time domain related to the moving
coordinate system. In this procedure, a layer spectral element and a semi-infinite spectral element
are developed to respectively simulate a layer and a half-space, and the combinations of these two
elements can simulate different pavement structures. It should be noted that the pavement layers
are considered to be perfectly bonded in the formulation of the theoretical TSD model, while further
modifications are needed to consider more realistic interface conditions. The SEM-based procedure is
shown in Figure 2, which can be described as follows:

(1) The governing equation in the moving coordinate system is transformed from the space–time
domain to the wavenumber-frequency domain via the forward Fourier transform;

(2) Theelement equilibriumequationsof a layer spectral element anda semi-infinite spectral element
are formulated, and they are further assembled to obtain the system equilibrium equation;

(3) The boundary conditions are applied to the system equilibrium equation to calculate the nodal
displacements of the system, which are further used to calculate the response fields of a certain
element;

(4) These response fields are transformed from the wavenumber-frequency domain to the
space–time domain via the inverse Fourier transform.
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The detailed implementation and validation of this SEM-based procedure can be found in a previ-
ous paper by authors (Sun et al., 2019). In the SEM, one element is sufficient to represent a whole layer
or half-space because of the exact description of mass distribution, which feature reduces the size of
the system of dynamic equations. Consequently, the computational efficiency of the theoretical TSD
model is improved, which is the main advantage of the SEM-based procedure.

In this study, it is assumed that each layer of pavements consists of elastic materials that exhibit
the so-called hysteretic damping, which physicallymeans that the energy loss in a certainmotion only
depends on its path. This damping effect can be numerically simulated by replacing the Young’smod-
ulus Ewitha complexYoung’smodulus Ẽ(kx ,ω)defined in thewavenumber-frequencydomain related
to the moving coordinate system:

Ẽ(kx ,ω) = E[1 + 2iξsgn(ω + ckx)] (7)

in which ξ is the damping ratio and sgn(·) is the signum function.
In order to simulate the loads applied by the TSD device, the loading configuration shown in

Figure 3 is used in this study. Compared to previous work by authors (Sun et al., 2019; Sun et al., 2022),
the loads applied by four wheel pairs are considered in this paper, which is important to obtain accu-
rate pavement response because of the possible superposition effect of different loads. In addition,
it is assumed that each wheel pair applies a constant force which is evenly distributed over two con-
stant rectangular areas. In the moving coordinate system, the loading area is fixed. Hence, the load
applied by the TSD device can be expressed as follows:

pz(x, y, t) = h0(x, y)p(t) (8)

where pz(x, y, t) is the TSD loading function acting in the positive z-direction with dimension of
force/area, h0(x, y) is the spatial distribution function of the load without dimension, and p(t) is the
loading history function of the load with dimension of force/area. To well represent the TSD loading
configuration, the spatial distribution function can be expressed as follows:

h0(x, y) = h1(x)h2(y) (9)

in which h1(x) and h2(y) have the following definitions:

h1 (x) = H (x0 − |x|) + c1H (x0 − |x − lx|)

h2 (y) =
[
H

(
y0
2

−
∣∣∣∣y + y0 + d

2

∣∣∣∣
)

+ H

(
y0
2

−
∣∣∣∣y − y0 + d

2

∣∣∣∣
)]

+ c2

[
H

(
y0
2

−
∣∣∣∣y + ly + y0 + d

2

∣∣∣∣
)

+ H

(
y0
2

−
∣∣∣∣y + ly − y0 + d

2

∣∣∣∣
)]

where H(·) is the Heaviside step function, 2x0 is the length of one rectangular loading area in x-
direction, y0 is the length of one rectangular loading area in y-direction, d is the distance between
two rectangular loading areas of one wheel pair, lx is the distance between two loading axles, ly is
the length of the loading axle, c1 and c2 are two coefficients related to the distribution of the load. In
addition, the wheel pairs of the TSD device apply constant forces on constant areas, which makes the
loading history function constant, i.e. p(t) = p0.

After substituting the expressions of h0(x, y) and p(t) into Equation (8), the counterpart of the TSD
loading function is obtained by applying the forward Fourier transform:

p̃z(kx , ky ,ω) = 	

h1(kx)
	

h2(ky)p̂(ω) (10)
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Figure 3. Loading configuration of the TSD device.

with the following definitions of
	

h1(kx),
	

h2(ky), and p̂(ω):

	

h1 (kx) =
⎧⎨
⎩

2
kx

sin (kxx0)
(
1 + c1eikxlx

)
, kx �= 0

2x0 (1 + c1) , kx = 0

	

h2
(
ky

) =
⎧⎨
⎩

2
ky

{
sin

[
ky (2y0 + d)

2

]
− sin

(
kyd

2

)} (
1 + c2e−ikyly

)
, ky �= 0

2y0 (1 + c2) , ky = 0

p̂ (ω) = 2πp0δ (ω)

in which δ(·) is the Dirac delta function.

2.2. Characteristics ofmodel response

In this part, the characteristics of the pavement surface response caused by the whole TSD loading
are investigated. According to the actual loading conditions in TSD tests, the following parameters are
used to simulate the load applied by the TSD device:

• The speed of the movement c = 13.9m/s(50km/h);
• The magnitude of the load p0 = 707kPa;
• The parameters of the loading area c1 = 0.6, c2 = 1.0, lx = 8.15m,

ly = 1.82 m, d = 0.15 m, x0 = 0.06316 m, and y0 = 0.27432 m.

Furthermore, it is assumed that the surface response is limited in a 400m×400m space window, the
centre of which is located at the origin of the moving coordinate system. In addition, the structural
parameters of the considered pavement are shown in Table 1.

For the considered pavement subjected to thewhole TSD loading, themodelled vertical deflection
curve and corresponding slope curve along the x-axis observed on the surface as shown in Figure 4
are obtained. These results are comparedwith those of a purely elastic pavement, which has the same
structural parameters as the considered pavement except that all the damping ratios are zeros. The
results show that, for the purely elastic pavement, the vertical deflection curve is not totally symmetric
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Table 1. Structural parameters of the considered pavement.

E ξ ν ρ h

Layers MPa – – kg/m3 m

Surface 3000 0.05 0.3 2400 0.1
Base 500 0.05 0.3 2000 0.3
Subgrade 60 0.05 0.3 1600 Infinite

Note: E is the Young’s modulus, ξ is the damping ratio, ν is the Poisson’s ratio, ρ is the
density, and h is the thickness.

Figure 4. Comparison between the modelled response of different pavements caused by the whole TSD loading: (a) vertical
deflection curve, (b) slope curve of vertical deflection.

because of the influence of the wheel pairs on the front axle and the maximum deflection appears
almost at the coordinate origin; specifically, the vertical displacement of a point in front of the coor-
dinate origin is larger than that of its symmetry point. For the pavement with hysteretic damping, the
vertical deflection curve is also asymmetric and the maximum deflection appears slightly behind the
coordinate origin; specifically, in the vicinity of the right rear wheel pair, the vertical displacement of
a point in front of the coordinate origin is smaller than that of its symmetry point. Compared with
the case of the purely elastic pavement, the vertical deflection curve of the pavement with hysteretic
damping increases more slowly behind the load and decreases more quickly in front of the load with
increasing x in the vicinity of the right rear wheel pair, which can also be found from the slope curves.
It should be highlighted that the differences between the pavements with and without damping will
bemore significant if the values of the damping ratios are larger. Hence, including the damping effect
is important to formulate an accurate theoretical model for the TSD test.

To have an insight into the surface deflection basin caused by the whole TSD loading, the contour
curves of surface vertical deflection for the pavementswith andwithout damping as shown in Figure 5
are obtained. The results indicate that the response at the points around the right rear wheel pair is
significantly affected by the other wheel pair on the same axle, while it is slightly affected by thewheel
pairs on the front axle. In addition, compared with the case of the purely elastic pavement, the TSD
loading has a longer influence distance behind the device and a shorter influence distance in front of
the device for the case of the pavement with hysteretic damping.

2.3. Parameter sensitivity ofmodel response

In this part, the sensitivity of the model response to different structural parameters is investigated
based on single factor analysis to have an insight into the possibility and accuracy of identifying
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Figure 5. Contour curves of surface vertical deflection of different pavements caused by the whole TSD loading: (a) without
damping, (b) with damping.

these parameters. The actual measuring conditions of TSD tests indicate that the model response
of interest should be the slope curve of vertical deflection along the x-axis observed on a pavement
surface caused by the whole TSD loading. The pavement structural parameters shown in Table 1 are
considered as a reference, and the variation of a certain parameter is 50% of its reference value. The
response of the reference pavement structure caused by thewhole TSD loading is shown in solid lines.
In addition, the subscripts ‘1’, ‘2’, and ‘3’ in legends refer to the surface layer, base layer, and subgrade,
respectively. For the convenience of description, the degree of sensitivity of the slope curve to differ-
ent parameters is qualitatively divided into five levels: hardly sensitive, slightly sensitive, moderately
sensitive, relatively sensitive, and highly sensitive.

2.3.1. Sensitivity to Young’s modulus
The slope curves of pavements with different Young’s moduli of the surface layer, base layer, and
subgrade are shown in Figure 6(a–c), respectively. The results show that the slope curve is relatively
sensitive to the Young’s modulus of the surface layer, while it is highly sensitive to the Young’s moduli
of the base layer and subgrade.

2.3.2. Sensitivity to damping ratio
The slope curves of pavements with different damping ratios of the surface layer, base layer, and sub-
grade are shown in Figure 6(d–f), respectively. The results show that the slope curve is hardly sensitive
to the damping ratio of the surface layer, while it is slightly sensitive to the damping ratios of the
base layer and subgrade. It should be noted that the damping ratio can vary from 0 to 0.3 for differ-
ent materials (Nielsen, 2019), and the slope curve could change more if the damping ratio has larger
variations.

2.3.3. Sensitivity to Poisson’s ratio
The slope curves of pavements with different Poisson’s ratios of the surface layer, base layer, and sub-
grade are shown in Figure 6(g–i), respectively. The results show that the slope curve is slightly sensitive
to thePoisson’s ratios of the surface layer and subgrade,while it ismoderately sensitive to thePoisson’s
ratio of the base layer.

2.3.4. Sensitivity to density
The slope curves of pavements with different densities of the surface layer, base layer, and subgrade
are shown in Figure 6(j–l), respectively. The results show that the slope curve is hardly sensitive to all
the densities.
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Figure 6. Sensitivity of the slope curve of vertical deflection to structural parameters: (a) Young’s modulus of surface layer, (b)
Young’s modulus of base layer, (c) Young’s modulus of subgrade, (d) Damping ratio of surface layer, (e) Damping ratio of base layer,
(f ) Damping ratio of subgrade, (g) Poisson’s ratio of surface layer, (h) Poisson’s ratio of base layer, (i) Poisson’s ratio of subgrade, (j)
Density of surface layer, (k) Density of base layer, (l) Density of subgrade, (m) Thickness of surface layer, (n) Thickness of base layer.
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Figure 6. Continued.

2.3.5. Sensitivity to thickness
The slope curves of pavementswith different thicknesses of the surface layer and base layer are shown
in Figure 6(m,n), respectively. The results show that the slope curve is highly sensitive to these two
thicknesses.

3. Potential minimisation algorithms

The response of a structure is determined by loading conditions and structural parameters. Theoret-
ically, if the response and loading conditions are known, it should be possible to identify structural
parameters. This process needs a so-called parameter identification technique, which can be the com-
bination of a theoretical model and a proper minimisation algorithm. A set of most likely parameters
can be found by minimising the difference between the modelled and measured response. Actually,
there aremanyminimisationalgorithmswhich canbeused to solvemulti-dimensional nonlinear equa-
tions, but a general one suitable to copewith a wide range of problems is still not available. In order to
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find a minimisation algorithm which works best with the formulated theoretical model for parameter
identification, three potential minimisation algorithms are considered, i.e. the factored secant update
algorithm, the modified Levenberg-Marquardt algorithm, and the modified Powell hybrid algorithm.
The detailed description about these three algorithms is shown below.

3.1. Factored secant update algorithm

The factored secant update algorithm can be used to solve an unconstrained system of nonlinear
simultaneous equations in a manner similar to that of the Newton’s method but by using a finite-
difference approximation to the Jacobian. This algorithm solves a system of equations described as
follows:

f(a) = 0, with f : RM → RM and a ∈ RM (11)

where f(a) is the function of interest, a is a vector that contains all the unknown parameters, andM is
the total number of unknown parameters. In this case, the number of unknown parameters equals to
the number of equations.

For a certain point an, a double dogleg method is used to approximately solve the following
minimisation problem to obtain a direction vector sn at this point:

min
s n∈RM

||f(an) + J(an) · sn||2, subject to ||sn||2 ≤ δn (12)

in which ||·||2 is the Euclidean norm, f(an) is the function value evaluated at this point, J(an) is the
approximate Jacobian evaluated at this point, and δn is the trust region which limits the size of sn.

Then, the function value at the next point an+1 = an + sn is evaluated to see whether this point
should be accepted. If the point an+1 is rejected, the algorithm solves equation (12) again with a
reduced trust region δn to obtain another direction vector sn. This procedure is repeated until an
accepted point an+1 is found.

If the point an+1 satisfies the stopping criterion, the algorithm will terminate. Otherwise, the
algorithm continues from the point an+1 with corresponding trust region δn+1 and approximate Jaco-
bian J(an+1). The approximate Jacobian J(an+1) is calculated by the following Broyden’s formula
(Broyden, 1970 ):

J(an+1) = J(an) + [f(an+1) − f(an) − J(an) · sn] · sTn
sTn · sn (13)

This procedure is repeated until finding a point which satisfies the stopping criterion. Formore details,
see the Chapter 8 in Dennis and Schnabel (1983).

3.2. Modified Levenberg-Marquardt algorithm

Themodified Levenberg-Marquardt algorithm can be used to solve an unconstrained nonlinear least-
squares problem by using a finite-difference approximation to the Jacobian. This algorithm combines
the steepest descentmethod and the Newton’s method. The steepest descentmethod is used to seek
an estimate which is sufficiently close to the minimum point. Then, the Newton’s method is used to
refine the results until matching the stopping criterion. The nonlinear least-squares problem to be
solved by this algorithm can be stated as follows:

min
a∈RN

[
1
2
fT(a) · f(a)

]
= min

a∈RN

[
1
2

M∑
m=1

f2m(a)

]
, with f : RN → RM (14)

where a is a vector that contains all the unknown parameters, f(a) is the function of interest, fm(a) is
the m-th component of the function of interest, N is the total number of unknown parameters, and
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M is the total number of components of the function of interest. In addition, the relationship M ≥ N
holds as this algorithm is suitable for solving determined/over-determined problems.

For a certain point an, the Levenberg-Marquardt algorithmmodifies the Gauss–Newton algorithm
by introducing a nonnegative scalar μn called the Levenberg-Marquardt parameter:

[JT(an) · J(an) + μnI] · sn = −JT(an) · f(an) (15)

in which I is the identity matrix of order N, f(an) is the function value evaluated at this point, J(an)

is the approximate Jacobian evaluated at this point, and sn is the direction vector defined by sn =
an+1 − an with an+1 being the next point.

By combining equation (15) and the definition of the direction vector sn, the next point an+1 is
determined as follows:

an+1 = an − [JT(an) · J(an) + μnI]−1 · JT(an) · f(an) (16)

If the point an+1 satisfies the stopping criterion, itmeans that the algorithmhas attained theminimum
successfully. Otherwise, the Levenberg-Marquardt parameter and approximate Jacobian correspond-
ing to the point an+1 are submitted to equation (16) to determine the next point. This procedure is
repeated until finding a point which satisfies the stopping criterion. For more details, see Levenberg
(1944), Marquardt (1963), or the Chapter 10 in Dennis and Schnabel (1983).

3.3. Modified Powell hybrid algorithm

The modified Powell hybrid algorithm can be used to solve an unconstrained system of nonlinear
simultaneous equations by using a finite-difference approximation to the Jacobian. The Powell hybrid
algorithm requires that the number of unknown parameters should be equal to the number of equa-
tions. In addition, this algorithm determines the direction vector by using either the quasi-Newton
method or the steepest descent method according to a step size criterion. For a certain point an (a
vector that contains all the unknown parameters), this algorithm first calculates the direction vector
sn by using the quasi-Newton method:

sn = −J−1(an) · f(an) so that ||sn||2 ≤ Δn (17)

where ||·||2 is the Euclidean norm, f(an) is the function value evaluated at this point, J(an) is the
approximate Jacobian evaluated at this point, and Δn is the step size parameter.

If the criterion ||sn||2 ≤ Δn is satisfied, the calculated direction vectorwill be accepted and the next
point will be determined via equation an+1 = an + sn. If this criterion fails, a second criterion will be
tested:

αn||rn||2 ≥ Δn (18)

with the following definitions of αn and rn:

αn =

∥∥∥JT (
an

) · f (an)∥∥∥22∥∥∥J (
an

) · JT (
an

) · f (an)∥∥∥22
rn = −JT

(
an

) · f (an)
If this criterion is satisfied, the direction vectorwill be calculated by using the steepest descentmethod
via equation sn = (Δn/||rn||2)rn. If the second criterion still fails, the direction vector is determined
by using a hybrid between the quasi-Newton method and the steepest descent method via equation
sn = βnf(an) + (1 − βn)αnrn, where βn is chosen such that ||sn||2 = Δn. This procedure is repeated
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until finding a point which satisfies the stopping criterion. For more details, see Scales (1985) or Moré
et al. (1980).

These three minimisation algorithms are combined with the formulated theoretical model for the
TSD test to achieve parameter identification based on TSDmeasurements. For the specific case of the
TSD test, the function of interest for the minimisation process can be defined as follows:

fm(a) =
∣∣∣∣∣ s

modelled(xm, ym; a)

smeasured(xm, ym)
− 1

∣∣∣∣∣ (19)

in which fm(a) is them-th component of the function of interest f(a), a is a vector that consists of all
theparameters tobe identified, smodelled(xm, ym; a) and smeasured(xm, ym) are respectively themodelled
and measured slopes of vertical deflection at detection point (xm, ym). It can be concluded that the
smaller the value of the m-th component of the function of interest, the better the match between
the modelled and measured slopes of vertical deflection at the m-th detection point. Therefore, the
objective of the minimisation process is to minimise all components of the function of interest, the
number of which equals to the number of detection points. In addition, the description of different
minimisation algorithms indicates that the number of unknown parameters should be no more than
the number of detection points. In practice, the TSD device can only measure the slopes of vertical
deflection of about 9 points. Hence, some pavement parameters should be fixed tomake the problem
solvable.

4. Performance of different minimisation algorithms

In this section, the performance of different minimisation algorithms for parameter identification is
evaluated in terms of the convergence stability and convergence rate. The convergence stability refers
to the ability of an algorithm to converge to the desiredminimum regardless of starting points (Scales,
1985). The convergence rate refers to the performance of an algorithm at each iteration and the total
number of iterations needed for convergence.

The results of the parameter sensitivity analysis suggest that the Young’s moduli and thicknesses
of pavement layers are the parameters suitable for identification. However, preliminary investigation
shows that the minimisation algorithms could give different combinations of Young’s modulus and
thickness for a given set of TSDmeasurements. This phenomenon is understandable because the influ-
ence caused by the change of Young’s modulus can be offset by the change of thickness. According
to the plate theory, the Young’s modulus E and thickness h of a certain pavement layer mainly affect
the response via the bending stiffness D = Eh3/[12(1 − ν2)], where ν is the Poisson’s ratio. Hence,
many combinations of E and h which give the same value of Eh3 can correspond to similar pave-
ment response (Nielsen, 2019). In order to increase the chance to obtain unique solutions, the Young’s
moduli of pavement layers are chosen to be the only parameters to be identified in this study.

In what follows, some case studies are conducted to evaluate the performance of different minimi-
sation algorithms for parameter identification by processing synthetic TSD measurements. It should
be highlighted that all the presented case studies are conducted on a midrange laptop with a quad-
core i7-7700HQ CPU. For a certain minimisation algorithm, the performance of the computer used
can affect the computational time, but it does not affect the number of iterations needed to con-
verge. Hence, the number of iterations is an important parameter for characterising the performance
of minimisation algorithms.

4.1. Parameter identification of a typical pavement

A pavement with structural parameters shown in Table 1 is considered as a typical pavement, and the
modelledvertical deflection slopesof threepoints (x = −0.269, 0.163, and0.362m) along the x-axis on
the pavement surface caused by thewhole TSD loading are taken as the synthetic TSDmeasurements.
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Table 2. Cases with different initial guesses for the
typical pavement.

E1 E2 E3

Cases MPa MPa MPa

1 3500 600 70
2 2500 400 50
3 2500 600 70
4 3500 400 70
5 3500 600 50
6 2500 400 70
7 2500 600 50
8 3500 400 50

These synthetic measurements are analysed by parameter identification techniques using different
minimisation algorithms todetermine theYoung’smoduli of pavement layers, the true values ofwhich
are E1 = 3000MPa, E2 = 500MPa, and E3 = 60MPa.

The function of interest for theminimisation process depends nonlinearly on the unknown param-
eter vector. Hence, for different initial guesses, the proposed technique could give different parameter
vectors corresponding to different minima. In addition, the convergence rate relates to the com-
putational efficiency of the proposed technique. Hence, it is meaningful to investigate both the
convergence stability and convergence rate of the proposed technique. Preliminary investigation
shows that good initial guesses of unknown parameters are important to the parameter identification
process. Therefore, some auxiliary tools could be used to find a good set of initial guesses. In order to
conduct a comprehensive study on the convergence stability and convergence rate of the proposed
technique, eight cases with different initial guesses shown in Table 2 are considered. These cases are
generated by considering that each parameter has two initial guesses, and the variation of the initial
guesses is about 15% of the corresponding true value. This principle is consistently used to generate
cases with different initial guesses.

The quality of the results of the parameter identification can be evaluated by the error between the
identified values and true values, which can be quantified by a dimensionless quantity εp defined as
follows:

εp =
√√√√ 1

N

N∑
n=1

(
aidentifiedn

atruen
− 1

)2

(20)

where aidentifiedn is the n-th component of the identified parameter vector aidentified, atruen is the n-th
component of the true parameter vector atrue, andN is the total number of the parameters to be iden-
tified. It can be concluded that aminimisation algorithm converges to the true parameter values if the
quantity εp of the identified parameter values is small. For all the cases with different initial guesses
considered by aminimisation algorithm, the percentage of cases that converge to the true parameter
values is used to evaluate the convergence stability of the algorithm; the average number of iterations
needed to converge is used to evaluate the convergence rate of the algorithm. The results obtained
by different minimisation algorithms are presented below.

4.1.1. Factored secant update algorithm
The results obtained by the factored secant update algorithm for the typical pavement are shown
in Table 3. The results show that all the cases converge to the true parameter values, hence the fac-
tored secant update algorithmhas good convergence stability to identify the parameters of the typical
pavement if a good set of initial guesses is provided. In addition, the average number of iterations in
the parameter identification process is about 68 (each iteration takes about 2min), which indicates
that the convergence rate of this algorithm is not that high when compared to the other algorithms.
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Table 3. Results obtained by the factored secant update algorithm for the typical pavement.

E1 E2 E3 εp Iterations

Cases MPa MPa MPa – –

1 3000.000 500.000 60.000 1.4E-08 82
2 3000.000 500.000 60.000 4.6E-10 47
3 3000.000 500.000 60.000 9.2E-09 88
4 3000.065 500.019 59.994 6.6E-05 80
5 3000.000 500.000 60.000 4.9E-10 48
6 3000.000 500.000 60.000 5.3E-10 67
7 3000.000 500.000 60.000 1.8E-09 50
8 3000.019 500.000 60.000 3.9E-06 80

Table 4. Results obtained by the modified Levenberg-Marquardt algorithm for the typical pavement (3
detection points).

E1 E2 E3 εp Iterations

Cases MPa MPa MPa – –

1 2999.995 500.000 60.000 1.0E-06 17
2 3000.236 499.986 60.002 5.1E-05 17
3 2999.914 500.005 59.999 1.9E-05 17
4 2999.988 500.001 60.000 2.7E-06 17
5 2999.997 500.000 60.000 5.7E-07 17
6 3000.016 499.999 60.000 3.6E-06 17
7 3000.009 499.999 60.000 2.1E-06 17
8 3000.043 499.997 60.000 9.6E-06 17

Hence, the corresponding parameter identification technique is not that computationally efficient to
deal with TSD measurements obtained from network-level testing.

4.1.2. Modified Levenberg-Marquardt algorithm
If the vertical deflection slopes of only the three detection points are used for parameter identifica-
tion, the results obtained by the modified Levenberg-Marquardt algorithm for the typical pavement
are shown in Table 4. The results indicate that all the cases converge to the true parameter values,
hence the modified Levenberg-Marquardt algorithm has good convergence stability to identify the
parameters of the typical pavement if a good set of initial guesses is provided. In addition, the average
number of iterations in the parameter identification process is 17 (each iteration takes about 2min),
which indicates that this algorithm has high convergence rate. Hence, the corresponding parameter
identification technique has high computational efficiency to deal with TSD measurements obtained
from network-level testing.

In addition, themodified Levenberg-Marquardt algorithm has the ability to solve over-determined
systems. Hence, in order to make full use of the TSD measurements, the vertical deflection slopes
of all the nine detection points (x = −0.366, −0.269, −0.167, 0.163, 0.260, 0.362, 0.662, 0.964, and
1.559m) along the x-axis on the pavement surface are used for parameter identification. With using
nine detection points, the results obtained by the modified Levenberg-Marquardt algorithm for the
typical pavement are shown in Table 5. It canbe seen that all the cases also converge to the trueparam-
eter values after about 17 iterations (each iteration takes about 2min). There is no obvious difference
between using three detection points and using nine detection points for identifying layer moduli of
the typical pavement.

4.1.3. Modified Powell hybrid algorithm
The results obtained by the modified Powell hybrid algorithm for the typical pavement are shown in
Table 6. The results show that all the cases converge to the true parameter values, hence themodified
Powell hybrid algorithm also has good convergence stability to identify the parameters of the typical
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Table 5. Results obtained by the modified Levenberg-Marquardt algorithm for the typical pavement (9
detection points).

E1 E2 E3 εp Iterations

Cases MPa MPa MPa – –

1 3000.000 500.000 60.000 1.2E-08 17
2 3000.000 500.000 60.000 1.8E-08 17
3 3000.000 500.000 60.000 6.3E-08 17
4 3000.000 500.000 60.000 1.1E-07 17
5 2999.784 500.015 59.998 4.9E-05 13
6 3000.000 500.000 60.000 2.4E-09 17
7 2999.999 500.000 60.000 1.3E-07 17
8 3000.001 500.000 60.000 2.6E-07 17

Table 6. Results obtained by the modified Powell hybrid algorithm for the typical pavement.

E1 E2 E3 εp Iterations

Cases MPa MPa MPa – –

1 3000.000 500.000 60.000 5.7E-08 28
2 3000.026 499.957 60.003 5.8E-05 13
3 2995.012 500.590 59.932 1.3E-03 28
4 3000.012 499.999 60.000 2.5E-06 26
5 3000.301 499.655 60.028 4.8E-04 21
6 3000.008 500.000 59.998 1.9E-05 19
7 2999.994 500.001 60.000 1.9E-06 22
8 2999.868 500.001 59.999 2.8E-05 20

Table 7. Structural parameters of the pavement with rigid base.

E ξ ν ρ h

Layers MPa – – kg/m3 m

Surface 3000 0.05 0.3 2400 0.1
Base 5000 0.05 0.3 2000 0.3
Subgrade 60 0.05 0.3 1600 Infinite

Note: E is the Young’s modulus, ξ is the damping ratio, ν is the Poisson’s ratio, ρ is the density,
and h is the thickness.

pavement if a good set of initial guesses is provided. In addition, the average number of iterations in
the parameter identification process is about 22 (each iteration takes about 2min), which indicates
that the convergence rate of this algorithm is relatively high. Hence, the corresponding parameter
identification technique has relatively high computational efficiency to deal with TSD measurements
obtained from network-level testing.

4.2. Parameter identification of a pavement with rigid base

In this part, the performance of different minimisation algorithms in identifying parameters of a pave-
ment with rigid base is investigated. The reason for considering this type of pavement is that using a
stiff base layer is necessary in engineering practice if the subgrade is composed of a kind of weak soil.
In addition, parameter identification techniques may exhibit numerical instability when dealing with
the response of this type of pavement (Al-Khoury, 2002). The structural parameters of the considered
pavement are shown in Table 7, which implies that the Young’s modulus of the base layer is relatively
high. For this pavement, the modelled vertical deflection slopes of three points (x = −0.269, 0.163,
and 0.362m) along the x-axis on the pavement surface caused by the whole TSD loading are taken
as the synthetic TSD measurements. These synthetic measurements are analysed by the proposed
technique to identify the Young’s moduli of pavement layers.
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Table 8. Cases with different initial guesses for the
pavement with rigid base.

E1 E2 E3

Cases MPa MPa MPa

1 3500 6000 70
2 2500 4000 50
3 2500 6000 70
4 3500 4000 70
5 3500 6000 50
6 2500 4000 70
7 2500 6000 50
8 3500 4000 50

Table 9. Results obtained by the factored secant update algorithm for the pavement with rigid base.

E1 E2 E3 εp Iterations

Cases MPa MPa MPa – –

1 3000.000 5000.000 60.000 4.2E-08 77
2 3000.000 5000.000 60.000 2.4E-08 71
3 3000.000 5000.000 60.000 1.5E-08 157
4 3000.000 5000.000 60.000 8.1E-08 87
5 3000.000 5000.000 60.000 8.5E-08 131
6 3000.005 4999.998 60.000 1.7E-06 152
7 3000.000 5000.000 60.000 3.8E-08 214
8 2996.198 5000.496 60.038 8.2E-04 244

In order to investigate the convergence stability and convergence rate of different minimisation
algorithms to identify parameters of the pavement with rigid base, eight cases with different initial
guesses shown in Table 8 are considered. The results obtained by different minimisation algorithms
are presented below.

4.2.1. Factored secant update algorithm
The results obtained by the factored secant update algorithm for the pavement with rigid base are
shown in Table 9. It can be seen that all the cases converge to the true parameter values, hence the
factored secant update algorithm has good convergence stability to identify the parameters of the
pavement with rigid base if a good set of initial guesses is provided. In addition, the average number
of iterations is about 142, which indicates that the convergence rate of this algorithm is not that high
either for the case of a pavement with rigid base.

4.2.2. Modified Levenberg-Marquardt algorithm
If the vertical deflection slopes of only the three detection points are used for parameter identifica-
tion, the results obtainedby themodified Levenberg-Marquardt algorithm for thepavementwith rigid
base are shown in Table 10. It can be seen that only cases 5 and 7 converge to the true parameter val-
ues, while the other cases converge to combinations of other parameter values which correspond to
other local minima. Hence, the convergence stability of themodified Levenberg-Marquardt algorithm
to identify the parameters of the pavement with rigid base is not that good when considering three
detection points, although the convergence rate of this algorithm is relatively high (the average
number of iterations is about 30).

In addition, the performance of the modified Levenberg-Marquardt algorithm with considering all
the nine detection points is also investigated.When themodelled vertical deflection slopes of the nine
detectionpoints (x = −0.366,−0.269,−0.167, 0.163, 0.260, 0.362, 0.662, 0.964, and 1.559m) along the
x-axis on the pavement surface are used for parameter identification, the results shown in Table 11 are
obtained. It can be seen that all the cases converge to the true parameter values, hence the modi-
fied Levenberg-Marquardt algorithm has good convergence stability to identify the parameters of the
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Table 10. Results obtained by the modified Levenberg-Marquardt algorithm for the pavement with rigid
base (3 detection points).

E1 E2 E3 εp Iterations

Cases MPa MPa MPa – –

1 4064.404 4887.350 50.207 2.3E-01 24
2 1636.563 5106.498 80.687 3.3E-01 26
3 3789.190 4912.795 52.510 1.7E-01 32
4 3895.932 4905.666 51.533 1.9E-01 28
5 2993.480 5000.625 60.074 1.4E-03 32
6 1636.414 5106.503 80.690 3.3E-01 29
7 2995.834 5000.400 60.047 9.2E-04 37
8 3660.327 4931.686 53.463 1.4E-01 35

Table 11. Results obtained by the modified Levenberg-Marquardt algorithm for the pavement with rigid
base (9 detection points).

E1 E2 E3 εp Iterations

Cases MPa MPa MPa – –

1 2999.986 5000.002 60.000 3.7E-06 17
2 2999.984 5000.008 60.000 3.2E-06 17
3 2999.998 5000.002 60.000 4.1E-07 17
4 2999.998 5000.002 60.000 5.0E-07 17
5 3000.013 4999.998 60.000 2.8E-06 21
6 2999.959 5000.021 60.000 8.3E-06 17
7 3000.055 5000.004 59.999 1.3E-05 17
8 2999.980 5000.016 60.000 4.3E-06 17

Table 12. Results obtained by the modified Powell hybrid algorithm for the pavement with rigid base.

E1 E2 E3 εp Iterations

Cases MPa MPa MPa – –

1 2999.998 5000.000 60.000 4.5E-07 83
2 1636.452 5106.502 80.689 3.3E-01 39
3 2999.712 5000.026 60.003 6.1E-05 53
4 2999.940 5000.006 60.001 1.3E-05 91
5 2999.992 5000.001 60.000 1.7E-06 73
6 3000.198 4999.981 59.998 4.4E-05 52
7 3004.719 4999.547 59.946 1.0E-03 56
8 3000.464 4999.959 59.995 1.0E-04 94

pavement with rigid base when considering all the nine detection points. In addition, the average
number of iterations is about 18, which indicates that the convergence rate of this algorithm is also
high when considering all the nine detection points.

4.2.3. Modified Powell hybrid algorithm
The results obtained by the modified Powell hybrid algorithm for the pavement with rigid base are
shown in Table 12. It can be seen that most cases converge to the true parameter values except case
2, which converges to a combination of other parameter values corresponding to a local minimum.
Hence, the convergence stability of themodified Powell hybrid algorithm to identify the parameters of
the pavement with rigid base is relatively good. In addition, the average number of iterations needed
to converge is about 68, which indicates that the convergence rate of this algorithm is not that high
when analysing the response of the pavement with rigid base.

It is worth noting that case 2 can converge to true parameter values if the initial guesses
have less variations. For example, if the initial guesses in case 2 are chosen to be E1 = 2500MPa,
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Table 13. Performance of different minimisation algorithms for parameter identification.

Typical pavement Pavement with rigid base

Algorithms Accuracy Iterations Accuracy Iterations

Secant 100% 68 100% 142
LM-3 100% 17 25% 30
LM-9 100% 17 100% 18
Powell 100% 22 87.5% 68

E2 = 4500MPa, and E3 = 50MPa, the following parameter values are identified after 73 iterations:
E1 = 3000.001MPa, E2 = 5000.000MPa, and E3 = 60.000MPa. These identified parameter values are
very close to the true parameter values.

4.3. Performance comparison

On the basis of the results presented above, the performance of different minimisation algorithms for
parameter identification is summarised in Table 13. In this table, ‘Secant’ represents the factored secant
update algorithm, ‘LM-3’ represents the modified Levenberg-Marquardt algorithm using 3 detec-
tion points, ‘LM-9’ represents the modified Levenberg-Marquardt algorithm using all the 9 detection
points, and ‘Powell’ represents the modified Powell hybrid algorithm. This table shows that analysing
the response of the pavement with rigid base generally has lower accuracy and needsmore iterations
to converge than analysing the response of the typical pavement. Compared with other algorithms,
the LM-9 has the highest overall performance for parameter identification, it takes about 35min
to conduct an accurate parameter identification on a laptop with average performance. Hence, in
what follows, the modified Levenberg-Marquardt algorithm using all the 9 detection points will be
combined with the theoretical model to achieve parameter identification.

5. Performance in processing field TSDmeasurements

In practice, the TSD measurements will contain a certain degree of error introduced by the measur-
ing system or external environment. Hence, it is important to investigate the performance of the
developed technique in processing field data. The field TSD measurements used in this section are
derived from the measurements at a location 5.17 km on a road section near Copenhagen, as pre-
sented in the literature by Nielsen (2019). In the parameter identification process, the whole TSD
loading is represented by the following parameters:

• The speed of the movement c = 22.2m/s(80km/h);
• The magnitude of the load p0 = 707kPa;
• The parameters of the loading area c1 = 0.6, c2 = 1.0, lx = 8.15m,

ly = 1.82 m, d = 0.15 m, x0 = 0.06316 m, and y0 = 0.27432 m.

In addition, the dimension of the space window is 400m×400m. In what follows, the combination
of the theoretical model and the modified Levenberg-Marquardt algorithm using all the 9 detection
points (LM-9) is used to process field TSD measurements for parameter identification.

5.1. Performance in identifying layermoduli

In this part, the performance of the developed technique in identifying layer moduli of pavements
based on field TSD measurements is investigated. The other structural parameters of pavements are
assumed to have values shown in Table 14.
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Table 14. The values of other structural parameters.

ξ ν ρ h

Layers – – kg/m3 m

Surface 0.25 0.3 2400 0.1
Base 0.15 0.3 2000 0.3
Subgrade 0.10 0.3 1600 Infinite

Note: ξ is the damping ratio, ν is the Poisson’s ratio, ρ is the density, and h is
the thickness.

Table 15. Initial guesses and identified values of layer moduli.

Initial guesses (MPa) Identified values (MPa) Iterations

Cases E1 E2 E3 E1 E2 E3 –

1 700 20 10 3517.2 123.4 56.9 29
2 1000 100 10 3518.1 123.3 56.9 29
3 5000 500 50 3517.0 123.4 56.9 26
4 6000 200 50 3516.0 123.4 56.9 22
5 6000 200 100 3505.6 123.7 56.9 26

In the process of parameter identification, 5 cases with different initial guesses shown in Table 15
are considered. The identified values of layer moduli and number of iterations needed for conver-
gence are also shown in Table 15. It can be seen that the identified values of layer moduli are almost
identical for different cases, which confirms the good convergence stability of this technique. Further-
more, the comparison between case 4 and case 5 shows that a larger deviation between the initial
guess and the right solution results in more iterations to converge. In general, more iterations are
needed to converge and/or less accurate parameter values are obtained if the initial guess has a larger
deviation from the right solution. It should be highlighted that the technique used can converge to
an incorrect solution if the initial guess is not that good. For example, if the initial guess is chosen
to be: E1 = 100MPa, E2 = 100MPa, and E3 = 10MPa, the following parameter values are identified
after 25 iterations: E1 = 98.0MPa, E2 = 272.3MPa, and E3 = 59.9MPa. Hence, a good set of initial
guesses is important for the parameter identification technique to converge to the right solution. In
addition, the average number of iterations for the considered cases is about 26 (each iteration takes
about 2min), which indicates that this technique has relatively high convergence rate to process field
TSD measurements.

To check the validity of the identifiedparameter values, themodelled vertical deflection slope curve
corresponding to the parameter values identified in case 4 is compared with the measurements, as
shown in Figure 7. The good match between the modelled and measured data confirms the validity
of the identified parameter values. Hence, the combination of the theoretical model and the LM-9 can
be used to identify layer moduli of pavements on the basis of field TSD measurements.

However, due to the nature ofmultiple solutions in the parameter identification of layered systems,
the identified layer moduli are only reliable when the other parameters (especially the layer thick-
nesses) are reliable. For example, when the thickness of the surface layer in Table 14 is assumed to be
0.2m and all the other parameters remain unchanged, the layer moduli shown in Table 16 are iden-
tified for cases with different initial guesses. It can be seen that this technique stably converges to
the same solution for the identification of layer moduli. Furthermore, compared with the identified
layer moduli when assuming h1 to be 0.1m, the identified E1 is significantly smaller and the identified
E2 is relatively smaller when assuming h1 to be 0.2m. Hence, to ensure the validity of the identified
parameters, the parameters which are not intended to be identified should be close to reality, espe-
cially the parameters that have significant influence on the response (such as the layer thicknesses).
To accurately determine the layer thicknesses of pavements, the Ground Penetrating Radar (GPR) is
recommended to be used.
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Figure 7. Comparison between modelled and measured data.

Table 16. Results of parameter identification when the thickness of the surface layer is assumed to be 0.2m.

Initial guesses (MPa) Identified values (MPa) Iterations

Cases E1 E2 E3 E1 E2 E3 –

1 100 10 10 612.1 85.9 58.0 29
2 1000 100 100 612.0 85.9 58.0 22
3 3000 200 50 612.0 85.9 58.0 22
4 6000 200 50 612.1 85.9 58.0 35
5 5000 500 500 612.1 85.9 58.0 45

Table 17. Cases with different initial guesses for the identification of layer moduli and damping ratios.

E1 E2 E3 ξ 1 ξ 2 ξ 3

Cases MPa MPa MPa – – –

1 700 20 10 0.05 0.05 0.05
2 1000 100 10 0.10 0.10 0.10
3 5000 500 50 0.15 0.15 0.15
4 6000 200 50 0.20 0.20 0.20
5 6000 200 100 0.25 0.25 0.25

5.2. Performance in identifying layermoduli and damping ratios

In this part, the performance of the developed technique in identifying layer moduli and damping
ratios of pavements based on field TSDmeasurements is investigated. The other structural parameters
of pavements are maintained to be the same as those shown in Table 14. In the parameter identifica-
tionprocess, 5 caseswithdifferent initial guesses shown in Table 17 are considered. The corresponding
identified parameter values are shown in Table 18. It can be seen that all the cases converge to almost
the same solution,which confirms thegoodconvergence stability of thedeveloped technique. In addi-
tion, the average number of iterations for convergence is about 54 (each iteration takes about 2min),
which indicates that the identification of layer moduli and damping ratios at the same time is not that
computationally efficient.

6. Conclusions and recommendations

Thispaper formulates a theoreticalmodel for theTraffic SpeedDeflectometer (TSD) test, basedonwhich
the characteristics and parameter sensitivity of the pavement response caused by the whole TSD
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Table 18. Results of the identification of layer moduli and damping ratios.

E1 E2 E3 ξ 1 ξ 2 ξ 3 Iterations

Cases MPa MPa MPa – – – –

1 3176.5 123.4 56.4 0.307 0.169 0.087 57
2 3219.4 122.6 56.4 0.301 0.172 0.085 50
3 3176.2 123.4 56.4 0.307 0.169 0.087 60
4 3194.6 123.0 56.4 0.304 0.171 0.086 37
5 3228.5 122.4 56.4 0.298 0.173 0.084 65

loading are investigated. Furthermore, this theoretical model is combined with different minimisa-
tion algorithms for the purpose of parameter identification. Theminimisation algorithmwith the best
performance is selected after comparison, and its performance in processing field TSDmeasurements
is investigated. According to the results and discussions presented above, the following conclusions
can be drawn:

• The developed theoretical model for the TSD test can accurately capture the effect of hysteretic
damping on the response of pavements caused bymoving loads, which is important to ensure the
accuracy of the parameter identification based on TSDmeasurements.

• After comparison, the modified Levenberg-Marquardt algorithm using all the 9 detection points
(LM-9) is suggested to be combined with the theoretical TSD model for the purpose of parameter
identification.

• On a laptop with average performance, the proposed technique needs about 50min to accurately
identify layer moduli of pavements based on TSD measurements, so it is a promising parameter
identification technique for the TSD test of pavements.

In futurework, theperformanceof theproposedparameter identification technique in dealingwith
a large number of field TSD measurements is recommended to be investigated.
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