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A B S T R A C T

Estimating the state thermal storage devices is key to use them efficiently to reduce the uncertainty of
renewable sources. Although stratified storage tanks are one of the most efficient and cost-effective storage
systems, they lack accurate state estimation methods. In this paper, we propose a general methodology for
estimating the state of thermally stratified storage tanks of different topologies and capacity. The method is
based on a simple moving horizon estimation technique and a 1-D smooth model that can integrate buoyancy
effects into a smooth equation. The novelty of the proposed approach is that it is the first state estimation
approach that considers both buoyancy and mixing effects. This distinction is paramount to an adequate
estimation of the temperature distribution in the storage tank which can then be used for different aims,
namely as a basis for model predictive controls. Besides the novel state estimation approach, the paper has
three more contributions: (i) it shows how a model for seasonal storage devices can be further extended to
smaller stratified tanks with different topologies; (ii) it modifies such a model so that the model equations
can be integrated into a single dynamical equation; (iii) it proposes the most complete case study to date
for modeling and estimating temperature distribution inside small stratified storage tanks. The analysis of the
proposed approach is done in several stages. First, to validate the applicability of the model to small tanks and
multiple topologies, we perform a model identification and parameter estimation for three different stratified
tanks. Second, we test the accuracy of the proposed state estimation approach in those three stratified tanks
employing the estimated parameters in the first experimental study and the models also previously defined.
Finally, to further validate the models, we perform a simulation for each of the three tanks and we compare
the accuracy of the simulation against real data. As we show, both the state estimation approach and the
model are satisfactorily accurate as they display average mean errors below 2 ◦C.
1. Introduction

The increasing share of renewables in the energy system has put a
lot of attention on technologies and methods which can help minimiz-
ing the impact of renewables intermittency and balance the differences
between generation and demand [1–5]. According to [5], the mitiga-
tion of the impact of renewables intermittency and uncertainty can be
done through:

• aggregation of supply, demand, and reserves using transmission
interconnections;
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• storage technologies, both thermal and electrical;
• flexible generation and conversion;
• energy demand flexibility; and
• other demand-side mechanisms.

To optimize the use of thermal energy storage technologies, like
sensible heat storage water tanks, and to adequately design suitable
control strategies, namely when to charge and discharge the tanks, state
estimation, in case of inexistence of enough temperature sensors or in
case of failure of any of them, is crucial. State estimation, as defined in
vailable online 14 April 2022
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the context of this paper, is an indicator giving information about the
temperature distribution of the water inside the thermal storage units in
face of certain conditions which might change over time. This indicator
can then be used in different applications, namely at the industrial and
residential sectors. Under this scenario, the temperature distribution
estimated could be used in combination with minimum and maximum
temperature thresholds to calculate the state of charge (SoC) of a tank.
The SoC would thus be defined in this perspective as the ratio of the
energy content of the water compliant to the requirements set by the
users, versus the reference energy content of a fully charged tank.

In this paper, we present a new state calculation methodology based
on the 1-dimensional (1-D) model originally proposed in [6], which
was the first 1-D model to consider mixing and buoyancy dynamics
using a smooth and continuous function. This model however was only
validated against one tank topology and thus in a limited case study,
which makes it unclear whether it works in tanks with other topologies
and capacity or not. Besides the state estimation methodology, we
also extend the work of [6] by integrating the different components
of the model into a single dynamical equation making it easier to
deploy under different contexts. This is needed as the original model
approximated buoyancy differently depending on the type of charging
and discharging used. To further improve upon the work of [6], we
also extend and validate the model so that it can be applied to regular
stratified storage tanks. This is important as the original model was
conceived in the context of large seasonal storage systems where strat-
ification effects are well-defined and only validated against a seasonal
storage tank.

This paper is structured as follows. Section 2 focuses on the related
work. The motivation and contributions of this work are presented in
Section 3. The dynamical model is explained in Section 4 as well as
the dynamics inside the tanks and the aggregation into a single model,
including the corresponding formulas. The state estimation model is
depicted in Section 5. Section 6 presents the case studies and gives
more information on the tanks and implementation of the proposed
approach. Results are discussed in Section 7 and the accuracy of the
state estimation is assessed against sets of data collected during real
experiments. Section 7 includes therefore three different phases: fitting
phase during which parameters are estimated, state estimation during
which temperature distribution is calculated and cross validation dur-
ing which a different set of conditions is used to validate the model.
Conclusions are finally drawn in Section 8.

2. Related work

The development of models that can estimate temperature inside
stratified storage tanks has been the focus of several works. Han
et al. [3], Njoku et al. [7] and Baeten et al. [8] provide an overview
of the different types of models for stratified storage tanks, including
1-, 2- and 3-D approaches. In the context of this work, we focus on
1-D models as they are the most suitable option for optimization,
e.g. temperature stratification and state of charge estimation, control
processes, and long-term simulations of the behavior of thermal storage
tanks, mainly due to the ability to simulate and give results in a short
time span, which is key for optimization in almost real-time.

2.1. Overview

1-D models are vastly used in the literature and typically divide
storage tanks into N layers and then model each layer with a partial
differential equation (PDE) based on the heat transfer equation. Each
layer is characterized by its temperature which is influenced by the
input flow and corresponding temperature or by external input heat.

One of the drawbacks pointed out to most of the 1-D models is their
inability to adequately reproduce situations where the stratification-by-
cooling phenomenon, i.e. buoyancy, due to physical movement of water
in two dimensions occurs. In particular, most of the existing models
2

cannot deal with inversion when a layer is at a lower temperature
than the layer immediately below [9–12]. In order to capture this
phenomenon and adequately mix the given layers, some 1-D models
implement extra computational artifices so that, at each time step,
the distribution of temperatures is analyzed and, in case of colder
layers above warmer layers, the mixing or interchange of the layers
is done in a post-processing step [6,8]. Such artifices make the mod-
els non-smooth and their application in optimization problems very
limited.

2-D models allow examining the outline of the mixing process [13]
but are more complex computationally and thus not a first choice
for control and optimization processes or long-term simulations of the
behavior of thermal energy storage tanks.

3-D computational fluid dynamics (CFD) models are more accurate
since they allow replicating as much as possible the dynamics happen-
ing inside the tank with the minimum level of simplifications [14,15].
They have however the same limitation as 2-D models: computa-
tional effort is quite high, narrowing their application in control and
optimization problems.

In the background of 2 and 3-D models, as in 1-D models, dif-
ferential equations are usually used. All three types of models al-
low predicting water temperature distribution inside storage tanks.
Some specificities of each model are further presented in the following
subsections.

2.2. 1-D models

This subsection intends to give an overview of models typically used
to calculate the temperature distribution inside thermal storage tanks
briefly presenting the main characteristics and drawbacks.

Baeten et al. [8] presented a 1-D model which is distinguishable
from the typical 1-D models since it incorporates buoyancy and mixing
due to direct charging and direct discharging. Missing model parame-
ters were derived from CFD simulations and correlated with the suitable
non-dimensional parameters and the model was validated using inde-
pendent sets of charging and discharging. Although the authors state
that the proposed model can be used in valid over a range of storage
tank sizes and topologies, it is a non-smooth model due to the use of
min and max functions which has limitations concerning its application
in optimization problems.

De Césaro Oliveski et al. [13] performed a comparison between a
1-D model and a 2-D model. The 1-D model has some computational
artifices to deal with temperature inversion and the 2-D model in
cylindrical coordinates uses the finite volume method for which a tur-
bulence model was added in mixed convection regime. The comparison
of both models showed that both approaches give reliable results but
also showed that the 1-D model does not produce so good results when
thermal losses increase due to natural cooling and when the differences
increase with time. Nevertheless, authors concluded that for long-term
simulations, the 1-D model is faster and results are satisfactory. If
more detailed information is needed and the understanding of thermal
phenomena happening in the inside of the stratified storage tanks is
one of the objectives, then 2-D models are more suitable.

Nelson et al. [9] and Spur et al. [10] did a comparison between the
simplified 1-D model and CFD simulations and concluded that the 1-D
model performs well for charging at low flow and constant temperature
and flow, even without applying modifications for inflow mixing. Nel-
son et al. [9] focused on a tank with direct charging and discharging
and can be used both for hot and chilled water while [10] validated
their model in a residential storage tank with an heat exchanger
(indirect charging).

Neupauer and Kupiec [16] based their work on a mathematical
model for the heat transfer which considers heat losses to the envi-
ronment through the walls, bottom and top of the stratified storage
tank. The model was validated experimentally using different model

parameters for different initial temperatures and assessed the changes
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over time. The considered storage tank was placed vertically and had
the typical cylindrical shape. Temperatures were assumed to be uniform
within the same layer. Their results show that simulated temperature
profiles shift towards lower temperatures with time, that the changes
in the upper part of the tank occur faster than at the bottom part and
that small discrepancies occur in the middle of the tank in the initial
stage of cooling down.

A model based on 1-D transient heat balance equations was pre-
sented in [17] and was used to calculate the temperature distribution
of the water inside a pressurized storage tank with indirect charge and
indirect discharge. The tank had two heat exchangers with variable
flow rates. The considered model includes the effect caused by these
variable flow rates and, besides giving information about the tempera-
ture stratification inside the tank, it also computes the temperature of
heat transfer fluids inside the heat exchangers and tests the impact of
changing the vertical length and location of the heat exchangers on the
water stored inside the tank.

Kreuzinger et al. [18] used two different approaches to estimate
the spatial temperature in a stratified domestic hot water storage
tank with indirect charging. The selected approaches were distributed
parameter observer and Unscented Kalman Filter (UKF). They are based
on a ‘‘finite state automaton interacting with an underlying thermal
heat conduction–convection system described by a quasi-linear’’ PDE.
Their comparison was done based on applicability, convergence be-
havior and number of function evaluations. The distributed parameter
observer required the determination of appropriate interpolation func-
tions between the temperature sensors and the adequate choice of the
correction gain, which could be based on a physical interpretation, so
that convergence was assured. The UKF is robust against an inadequate
choice of the tuning parameters but convergence speed might be a
bit low depending on the estimator. Both the approaches are able
to estimate the temperature along the vertical axis of the tank but
the distributed parameter observer outperforms the UKF in terms of
number of necessary calculations and cost of computation.

More recently, Lago et al. [6] proposed the first 1-D model that
overcame the limitations of existing models as it integrated, for the first
time, the mixing and buoyancy effects using a smooth and continuous
function and avoiding numerical artifices. They showed that the model
was not only accurate, but had low computational requirements and
could be efficiently integrated in optimization and control problems.
Despite the novelty, the study had several limitations: (i) it was only
proposed in the context of seasonal storage systems where stratifi-
cation is a well-behaved effect, (ii) it was not validated for direct
charge/discharge where the flow of water can cause bad-behaved
buoyancy effects and (iii) it approximated buoyancy with different
terms depending on the type of charging and discharging used. It
can be therefore argued that this validation used an easier topology
because of limited mixing and buoyancy effects. Topologies with direct
charging which cause the destruction of any existent stratification still
need however to be validated and thus the necessity of extending and
validating the proposed model.

2.3. Other models

It is important to note that although 1-D models based on PDE
are the most common choice to calculate temperature distribution
inside stratified storage tanks, other approaches can also be used, as
the already mentioned 2-D and 3-D models. Besides those models,
other approaches have been used, namely: artificial neural networks
(ANN) [19] and Markov Chain models [20], among others.

[19] relied on an ANN scheme for modeling layer temperatures
inside a storage tank based on measured data, namely on solar radi-
ation, ambient temperature, mass flow rate of collector loop, loading
and temperature of the layers in previous time steps. The proposed
approach avoids therefore the use of differential equations. The model
3

therein proposed was composed of two parts describing the loading
periods and the periods in-between. This approach does not allow
however variations in the temperature of the inlet temperature of
discharge water. The need of pre-existing data for training the ANN
model is pointed out as a disadvantage by some authors.

Mathieu & Callaway [20] use Markov Chain models for describing
temperature evolution of populations of TCLs and a discrete time
difference equation to model individual behavior.

3. Motivation and contribution

Estimating the temperature distribution of water inside storage
devices is paramount to efficiently use them to reduce the intermittent
nature of renewable sources and also to make this type of resource
manageable in terms of optimization and control contributing to energy
flexibility from a demand side perspective [21]. In the context of
stratified tanks, using 1-D models is arguably the most accurate and
efficient technique to estimate the temperature distribution: (i) unlike
black box models like ANNs, they are highly accurate as they have
no risk of modeling spurious effect due to a lack of data, i.e. they
consider the actual thermal behavior of the tank; (ii) unlike 2-D and
3-D models, they are very efficient as they require low computational
requirements. Thus, temperature distribution estimation via 1-D models
is crucial to include stratified thermal energy storage tanks in control
and optimization problems and optimize their economic profits [22,
23].

Despite their importance and wide application, the existing 1-D
models in the literature typically have several drawbacks being the
main problem that most of them are non-smooth and thus too slow
for real-time application. While the model proposed by [6] is a smooth
model, it has several drawbacks which prevents it from being directly
used with other types of tanks, namely:

1. It was proposed in the context of large seasonal storage systems
where stratification in the tank behaves nearly perfect. This
means that the large volume of storage water inside the tank
is kept stratified which makes buoyancy effects easier to model.

2. Its validation was done only using indirect charge and discharge.
This means that, due to the tank topology, there is no flow
entering and leaving the tank, contributing again for a better
defined stratification. Therefore, it is unclear whether the pro-
posed model would work for direct charge/discharge, which can
cause the destruction of any existent stratification, as already
argued. Such validation is important because, although indirect
charge/discharge can easily maintain stratification, it is also less
efficient due to the indirect transfer of heat.

3. The approximation used in the model to integrate buoyancy
effects differs depending on the type of charging and discharging
used.

Besides these issues, an additional problem with existing models
is that they are often not tested in the context of state estimation
(arguably their most important requirement), and even when tested in
that context, only a single tank topology is typically considered, i.e.
either direct charge/discharge or indirect charge/discharge. As a result,
it is not clear how well they generalize to other tank topologies and
tank sizes.

In this paper, we try to address these issues via four contributions:

1. We extend the 1-D model of [6] so that the model is given by a
single dynamical equation independently of the type of topology
used.

2. the temperature distribution estimation methodology for strati-
fied storage tanks proposed considers both buoyancy and mixing
effects.

3. We validate the mentioned model in regular tanks to show that
the model can also be applied for small-sized tanks and not just
for large seasonal storage systems where stratification is easily

kept.
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4. We show that the model can be also efficiently used for di-
rect charge/discharge topologies where the water flow destroys
stratification and introduces unpredictable buoyancy effects. The
proposed temperature distribution estimation methodology is
validated therefore against multiple tank topologies to overcome
the limitation of the original study [6] where stratification was
easily kept as no flow entered/left the tank.

5. We build and propose the most complete case study for modeling
and estimating the temperature distribution in stratified storage
tanks: the case study is based on three different tanks comprising
multiple topologies:

(a) tanks with direct charging and discharging
(b) tanks with indirect charging and direct discharging
(c) tanks with different tank placements, i.e. horizontal as

well as vertical tanks.

. Dynamical model

To derive the 1-D model, it is assumed that stratified heat storage
anks can be divided into 𝑁 layers. In addition, it is assumed that
ach layer 𝑖 is characterized by a state 𝑇𝑖 representing the temperature

of the layer. This state can be controlled by (i) the input flow �̇�𝑖
nd its temperature 𝑇 in

𝑖 or (ii) by the external input heat �̇�𝑖 in the
ayer. According to [6], defining by 𝛼, 𝜌, and 𝑐p the fluid diffusivity,
ensity, and specific heat, by 𝐴𝑖, 𝑃𝑖, and 𝛥𝑧𝑖 the cross-sectional area,
erimeter, and thickness of layer 𝑖, by 𝑘𝑖 the thermal conductance
f the isolation wall of layer 𝑖, and by 𝑇∞ the ambient temperature
ground temperature if the vessel is underground), the evolution of the
emperature of layer 𝑖 can be defined by the following PDE:

𝜕𝑇𝑖
𝜕𝑡

= 𝛼
𝜕2𝑇𝑖
𝜕𝑧2

+
𝑃𝑖𝑘𝑖

(

𝑇∞ − 𝑇𝑖
)

𝜌𝑐𝑝𝐴𝑖
+

�̇�𝑖
𝜌𝑐𝑝𝐴𝑖Δ𝑧𝑖

+
�̇�𝑖

(

𝑇 in
𝑖 − 𝑇𝑖

)

𝜌𝐴𝑖Δ𝑧𝑖
(1)

If this PDE is discretized and integrated in time using a forward
Euler scheme we can obtain a discretized equation that describes the
evolution of the temperature 𝑇𝑖 at layer 𝑖:

𝑇𝑘+1,𝑖 = 𝑇𝑘,𝑖 +
(

𝛼
𝑇𝑘,𝑖+1 + 𝑇𝑘,𝑖−1 − 2𝑇𝑘,𝑖

Δ𝑧2𝑖
+ 𝛽𝑖

(

𝑇∞ − 𝑇𝑖
)

+
𝜆𝑖
𝛥𝑧𝑖

̇𝑄𝑘,𝑖 +
𝜙
𝛥𝑧𝑖

̇𝑚𝑘,𝑖
(

𝑇 in
𝑘,𝑖 − 𝑇𝑘,𝑖

))

𝛥𝑡 (2)

where:

𝛽𝑖 =
𝑃𝑖𝑘𝑖
𝜌𝑐𝑝𝐴𝑖

, 𝜆𝑖 =
1

𝜌𝑐𝑝𝐴𝑖
, 𝜙 = 1

𝜌𝐴𝑖
, (3)

and where 𝑇𝑘,𝑖 is the temperature of layer 𝑖 at time step 𝑘, �̇�𝑘,𝑖, �̇�𝑘,𝑖,
and 𝑇 in

𝑘,𝑖 the control inputs of layer 𝑖 at time step 𝑘, 𝛥𝑡 the length of the
ime step, and 𝛥𝑧𝑖 is the thickness of layer 𝑖. For the sake of completion,
he different terms, parameters, and variables of the heat storage tank
odel are listed in Table 1.

.1. Buoyancy effects

Buoyancy effects occur when, given two consecutive layers, the
pper layer is at a lower temperature when compared against the layer
mmediately below. In this situation, the lower temperature layer sinks
hile the layer with higher temperature raises and mixing of the layers
ccurs. This is also linked to gravity and density difference, since cold
ater which has a higher density will sink while warmer water with

ower density causes the water to move up [3,13].
In traditional 1-D models, the temperature of all layers is checked

y means of a computational artifice to detect buoyancy effects. If
uoyancy is detected, the temperature of the layers is mixed following
simple average rule. This leads to models that are non-smooth and

ontinuous. In the model considered in this paper, this issue is solved
ith different mathematical approximations. The end result is a smooth
nd continuous model. Here we provide the main idea behind these
athematical approximations; for further details, we refer to [6].
4

4.2. Slow and fast buoyancy effects

Slow buoyancy effects are linked to processes which occur naturally,
namely inversion of water due to heat losses: as the top layer has
usually a large contact area with the atmosphere, it loses more heat
than other layers, its temperature decreases faster, and inversion due
to buoyancy occurs. The effects caused by slow buoyancy can be
modeled [6] by:

𝑇𝑘+1,𝑖 = 𝑇𝑘,𝑖 +
(

𝛼
𝑇𝑘,𝑖+1 + 𝑇𝑘,𝑖−1 − 2𝑇𝑘,𝑖

Δ𝑧2𝑖
+ 𝛽𝑖

(

𝑇∞ − 𝑇𝑘,𝑖
)

+
𝜆𝑖
Δ𝑧𝑖

�̇�𝑘,𝑖 +
𝜙
Δ𝑧𝑖

�̇�𝑘,𝑖
(

𝑇 in
𝑘,𝑖 − 𝑇𝑘,𝑖

))

Δ𝑡

+ 𝜃𝑖,𝑖−1
1
𝜇

log
(

𝑒0 + 𝑒𝜇(𝑇𝑘,𝑖−1−𝑇𝑘,𝑖)
)

(4)

− 𝜃𝑖,𝑖+1
1
𝜇

log
(

𝑒0 + 𝑒𝜇(𝑇𝑘,𝑖−𝑇𝑘,𝑖+1)
)

,

here:

𝑖,𝑖−1 =
𝐴𝑖−1 𝛥𝑧𝑖−1

𝐴𝑖 𝛥𝑧𝑖 + 𝐴𝑖−1 𝛥𝑧𝑖−1
∈ [0, 1]. (5)

Fast buoyancy effects are associated with charging and discharging.
According to [6], to include fast buoyancy effects in the heat storage
tank model, we first need to consider whether the heat storage tank is
based on direct or indirect operation.

In the case of direct charging/discharging, the model looks as
follows:

𝑇𝑘+1,𝑖 = 𝑇𝑘,𝑖 +
(

𝛼
𝑇𝑘,𝑖+1 + 𝑇𝑘,𝑖−1 − 2𝑇𝑘,𝑖

Δ𝑧2𝑖
+ 𝛽𝑖

(

𝑇∞ − 𝑇𝑘,𝑖
)

+
𝜆𝑖
Δ𝑧𝑖

�̇�𝑘,𝑖 +
𝜙
Δ𝑧𝑖

�̇�′
𝑘,𝑖

)

Δ𝑡

+ 𝜃𝑖,𝑖−1
1
𝜇

log
(

𝑒0 + 𝑒𝜇(𝑇𝑘,𝑖−1−𝑇𝑘,𝑖)
)

(6)

− 𝜃𝑖,𝑖+1
1
𝜇

log
(

𝑒0 + 𝑒𝜇(𝑇𝑘,𝑖−𝑇𝑘,𝑖+1)
)

,

here the expression for �̇�′
𝑘,𝑖 depends on whether the tank is being

harged or discharged:

̇ ′𝑘,𝑖 =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

𝑖
∑

𝑙=0

�̇�𝑘,𝑙

(

𝑇 in
𝑘,𝑙 − 𝑇𝑘,𝑖

)

𝑆(𝑇 in
𝑘,𝑙 − 𝑇𝑘,𝑖)

𝑁
∑

𝑗=𝑙
𝑆(𝑇 in

𝑘,𝑙 − 𝑇𝑘,𝑗 )

, if charging,

𝑁
∑

𝑙=𝑖

�̇�𝑘,𝑙

(

𝑇𝑘,𝑖 − 𝑇 in
𝑘,𝑙

)

𝑆(𝑇𝑘,𝑖 − 𝑇 in
𝑘,𝑙)

𝑙
∑

𝑗=0
𝑆(𝑇𝑘,𝑗 − 𝑇 in

𝑘,𝑙)

, if discharging.

(7)

In the expression above, 𝑆
(

𝑇1 − 𝑇2
)

represents the logistic function
and approximates the step function:

𝑆
(

𝑇1 − 𝑇2
)

= 1
1 + 𝑒−𝜇(𝑇1−𝑇2)

, (8)

where 𝜇 is a scaling parameter that indicates how sharp the logistic
unction is, i.e. the larger the 𝜇 the closer the logistic function is to the
tep function.

Similarly, in the case of indirect charging/discharging, the model
an be derived as follows:

𝑘+1,𝑖 = 𝑇𝑘,𝑖 +
(

𝛼
𝑇𝑘,𝑖+1 + 𝑇𝑘,𝑖−1 − 2𝑇𝑘,𝑖

Δ𝑧2𝑖
+ 𝛽𝑖

(

𝑇∞ − 𝑇𝑘,𝑖
)

+
𝜆𝑖
Δ𝑧𝑖

�̇�′
𝑘,𝑖 +

𝜙
Δ𝑧𝑖

�̇�𝑘,𝑖
(

𝑇 in
𝑘,𝑖 − 𝑇𝑘,𝑖

))

Δ𝑡

+ 𝜃𝑖,𝑖−1
1 log

(

𝑒0 + 𝑒𝜇(𝑇𝑘,𝑖−1−𝑇𝑘,𝑖)
)

(9)

𝜇
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Table 1
Parameters and variables of the heat storage tank model.

Parameter Description

𝑇𝑖 [K] Temperature of layer 𝑖
𝛼 [m2/s] Fluid diffusivity
𝜌 [kg/m3] Fluid density
𝑐𝑝 [J/(kg K)] Specific heat
𝐴𝑖 [m2] Cross-sectional area of layer 𝑖
𝑃𝑖 [m] Perimeter
Δ𝑧𝑖 [m] Thickness of layer i (assumed to be the same for all the layers)
𝑘𝑖 [W/(m2 K)] Thermal conductance of the isolation wall of layer 𝑖
𝑇∞ [K] Ambient temperature
�̇�𝑖 [J] Indirect (dis)chargingb – input heat
�̇�𝑖 [kg/s] Direct (dis)charginga – input mass flow
𝑇 in
𝑖 [K] Temperature of water flowing into layer 𝑖. It refers to both the water from the inlet pipe if the layer 𝑖 is connected to the inlet pipe and the water from

layer 𝑖 − 1/𝑖 + 1 if the tank is being discharged/charged.
𝜆 [m K/J] Coefficient of the input heat
𝛽𝑖 [1/s] Coefficient of heat losses of layer 𝑖.

aDirect charging means that there is hot water entering at the top of the tank and colder water leaving at the bottom. Direct discharging means that hot water is leaving the tank
at the top and cold water is entering the tank at the bottom.
bIndirect charging means that the tank receives heat by means of a heat exchanger. In the indirect discharging the tank releases heat also through a heat exchanger.
− 𝜃𝑖,𝑖+1
1
𝜇

log
(

𝑒0 + 𝑒𝜇(𝑇𝑘,𝑖−𝑇𝑘,𝑖+1)
)

,

here again the new expression for the input heat flow �̇�′
𝑘,𝑖 also

depends on whether the tank is being charged or discharged:

�̇�′
𝑘,𝑖 =

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

𝑖
∑

𝑙=0

�̇�𝑘,𝑙 ⋅
𝑆(𝑇𝑘,𝑙 − 𝑇𝑘,𝑖)
𝑁
∑

𝑗=𝑙
𝑆(𝑇𝑘,𝑙 − 𝑇𝑘,𝑗 )

, if charging,

𝑁
∑

𝑙=𝑖

�̇�𝑘,𝑙 ⋅
𝑆(𝑇𝑘,𝑙 − 𝑇𝑘,𝑖)
𝑖

∑

𝑗=0
𝑆(𝑇𝑘,𝑙 − 𝑇𝑘,𝑗 )

, if discharging.

(10)

The two types of buoyancy effects can be included in the model
according to the single model presented in 4.3, for both indirect and
direct charging/discharging.

4.3. Single model

In this paper, we argue that the different expressions for describing
buoyancy can be integrated into a single equation. In particular, from
a mathematical perspective, integrating all five effects, i.e. slow buoy-
ancy, direct charging, direct discharging, indirect charging and indirect
discharging, into a single equation poses no problem. The resulting
model would be:

𝑇𝑘+1,𝑖 = 𝐹𝑖(𝐓𝑘, �̇�𝑘, �̇�𝑘, 𝛥𝑘,𝝋,𝐓in
𝑘 ) (11)

= 𝑇𝑘,𝑖 +

(

𝛼
𝑇𝑘,𝑖+1 + 𝑇𝑘,𝑖−1 − 2𝑇𝑘,𝑖

Δ𝑧2𝑖
+ 𝛽𝑖

(

𝑇∞ − 𝑇𝑘,𝑖
)

+
𝜙
Δ𝑧𝑖

𝑖
∑

𝑙=0

�̇�𝑘,𝑙

(

𝑇 in
𝑘,𝑙 − 𝑇𝑘,𝑖

)

𝑆(𝑇 in
𝑘,𝑙 − 𝑇𝑘,𝑖)

𝑁
∑

𝑗=𝑙
𝑆(𝑇 in

𝑘,𝑙 − 𝑇𝑘,𝑗 )

+
𝜙
Δ𝑧𝑖

𝑁
∑

𝑙=𝑖

�̇�𝑘,𝑙

(

𝑇𝑘,𝑖 − 𝑇 in
𝑘,𝑙

)

𝑆(𝑇𝑘,𝑖 − 𝑇 in
𝑘,𝑙)

𝑙
∑

𝑗=0
𝑆(𝑇𝑘,𝑗 − 𝑇 in

𝑘,𝑙)

+
𝑖

∑

𝑙=0

𝜆𝑖 �̇�𝑘,𝑙
Δ𝑧𝑖

𝑆(𝑇𝑘,𝑙 − 𝑇𝑘,𝑖)
𝑁
∑

𝑆(𝑇𝑘,𝑙 − 𝑇𝑘,𝑗 )
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𝑗=𝑙
+
𝑁
∑

𝑙=𝑖

𝜆𝑖 �̇�𝑘,𝑙
Δ𝑧𝑖

𝑆(𝑇𝑘,𝑙 − 𝑇𝑘,𝑖)
𝑖

∑

𝑗=0
𝑆(𝑇𝑘,𝑙 − 𝑇𝑘,𝑗 )

)

Δ𝑡

+ 𝜃𝑖,𝑖−1
1
𝜇

log
(

𝑒0 + 𝑒𝜇(𝑇𝑘,𝑖−1−𝑇𝑘,𝑖)
)

− 𝜃𝑖,𝑖+1
1
𝜇

log
(

𝑒0 + 𝑒𝜇(𝑇𝑘,𝑖−𝑇𝑘,𝑖+1)
)

where 𝐓𝑘 is the vector of temperatures at time step 𝑘, �̇�𝑘 the vector of
indirect heat at time step 𝑘, �̇�𝑘 the vector of input flows at time step
𝑘, 𝐓in

𝑘 the vector of input temperatures at time step 𝑘, and 𝝋 the vector
of parameters defining the model.

5. State estimation

Assuming that the 1-D model for the tank is available, the proposed
methodology for state estimation is based on a simple moving horizon
estimation (MHE) [24]. In detail, to estimate the state of the tank at the
current time step 𝑡0, i.e. 𝑇0, we solve an optimization problem consid-
ering the last 𝑛m measurements up to time step 𝑡0 that maximizes the
likelihood of observing these measurements, i.e. we apply maximum
likelihood estimation in a receding horizon manner.

Assuming independent and identically distributed Gaussian noise in
the sensor measurements, the optimization problem that is estimated at
every time step is defined as:

minimize
T𝑡0−𝑛m ,…,T0

∑

𝑗∈𝜓
‖�̄�𝑗 − 𝐓𝑗‖22 (12a)

subject to

𝑇𝑘+1,𝑖 =𝐹𝑖(𝐓𝑘, �̇�𝑘, �̇�𝑘, 𝛥𝑘,𝝋,𝐓in
𝑘 ) (12b)

for 𝑘 = 𝑡0 − 𝑛m,… ,−1, for 𝑖 = 1,… , 𝑁

where 𝜓 is the set of time indices when temperature measurements are
available and 𝐓𝑘 is the vector of temperature measurement at time step
𝑘.

In this formulations, two assumptions are made: (i) the parameters
𝝋 of the model are known and (ii) the inputs of the model are error
free. If the first assumption does not hold, one could first estimate the
parameters of the model following a similar approach [6]. If the inputs
of the model have measurement errors, one could integrate them in the
MHE approach by considering a second term in the objective function

penalizing the inputs w.r.t. the measured inputs.
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6. Case study

Besides proposing the state estimation approach, a second aim of
this paper is to validate the smooth and continuous model in two
scenarios: (i) multiple tank topologies with a focus on direct charge
and discharge, and (ii) small-sized tanks where stratification is easily
destroyed and buoyancy effects are not well-behaved. In this section,
we describe the systems used for validating this model and testing
the state estimation approach as well as the methodology used for the
validation.

6.1. Description of the tanks

We consider two different case studies:

• A small industrial site where an interior and construction com-
pany burns waste wood to heat their offices, workshop and paint-
ing room and then uses the remaining heat to produce electricity
in an ORC (Organic Rankine Cycle) [25]. Then, the excess heat
from the ORC is stored for later use in two vertically placed
stratified water storage tanks, which respectively have a capacity
of 20 and 50 m3.

• A residential house where two thermal storage tanks sized 12 m3

each are installed [26]. These tanks, horizontally placed under-
ground, can store surplus energy generated by solar collectors
during summer to be used during winter for heating purposes.
There is also a domestic hot water tank sized 0.4 m3 which is
also used to store energy in the form of heat. However, this tank
differs from the others as it is indirectly charged and it is much
smaller.

Based on these two case studies, we consider three different tanks:

1. The 50 m3 tank from the first case study. This tank, referred
henceforth as Tank A, employs a direct charging and discharging
topology. The tank is depicted in Fig. 1.

2. One of the two 12 m3 tanks from the second case study. This
tank, referred henceforth as Tank B, also employs a direct charg-
ing and discharging topology. The tank is depicted in Fig. 2.

3. The 0.4 m3, i.e. 400 l, tank from the second case study. This tank,
referred henceforth as Tank C, also employs an indirect charging
with direct discharging topology. The tank is depicted in Fig. 3.

6.1.1. Tank topologies
By including these three tanks in the case study, we ensure that the

model and the SoC approach are tested and evaluated in a range of
different sizes and tank topologies. In particular, depending on the type
of charging, the tanks used in the case studies can be divided into two
groups:

1. Tanks with direct charging and discharging (Tanks A and B).
2. Tanks with indirect charging and direct discharging (Tank C).

6.1.2. Tank placements
Besides having different topology, the tanks also have different

placements to ensure that the model and SoC approach are tested in
multiple conditions. In detail, two of the tanks are placed in a vertical
position and in a room (Tank A and C) and the third one (Tank B) is
located in a horizontal position and underground (Fig. 2).

By having these different placements we ensure that the case study
includes the different variations encountered in real-life conditions: dif-
ferent orientation of the tank and different surrounding environment.

6.1.3. Sensors and heat exchangers location
For each of the three tanks, Figs. 1 to 3 depict the location of the

sensors, the inlet and outlet pipes, and the coils in each tank.
6

Fig. 1. Simplified representation of the Tank A, i.e. the 50 m3 stratified thermal energy
storage tank with direct charging and direct discharging.

Fig. 2. Simplified representation of the Tank B, i.e. the 12 m3 stratified thermal energy
storage tank with direct charging and direct discharging.

Fig. 3. Simplified representation of the Tank C, i.e. the 400 liters stratified thermal
energy storage tank with indirect charging and direct discharging.

6.2. Data

The data used was collected during monitored tests of the EU funded
H2020-STORY project [27]. For each tank, these data was divided
between a training dataset used to estimate the parameters of the
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Fig. 4. Input controls, i.e. input flow �̇� and input temperature 𝑇in, for tank A in the training and test datasets. The training dataset is consist of data from two different dates: a
first subset with 4 h of data on the 24/10/2017 and a second subset with 7 h of data on the 28/10/2017. The test dataset comprises 30 h of data from 29/10/2017–30/10/2017.
Fig. 5. Input controls, i.e. input flow �̇� and input temperature 𝑇in, for tank B in the training and test datasets.
model and test the SoC approach, and a testing dataset to evaluate the
estimated model using an open-loop simulation.

The timestep, length, tank state, and the period of the data differed
between the tanks. In particular, although we collected a large amount
of data comprising multiple different tank states, we selected different
states for each tank to ensure that the SoC approach was tested in
multiple conditions; in particular, we considered the three different
tank states: charging, discharging and idle.

For tank A the timestep from the measurements was 6 min both for
the training and test sets and was collected at the end of October 2017.
Both training and test datasets comprised charging and discharging
states. The training dataset comprised two subsets: one comprising 4 h
of data and a second one comprising 7 h of data; the test set comprised
30 h of data. The input controls for both training and test datasets are
7

showed in Fig. 4.
For tank B the timestep was 10 min and was collected during
May 2018. Both training and test datasets oscillate between idle and
indirect discharging states. The training dataset began in an idle state
and was followed by a discharging state; the test dataset displayed the
opposite behavior. The inputs of both the training and test datasets are
illustrated in Fig. 5.

For tank C the timestep was one minute and the data was collected
in September 2017. Both training and test sets included simultaneously
direct discharging and indirect charging. The input controls for the test
set are displayed in Fig. 6.

6.3. Parameter estimation

To evaluate and validate the model in all conditions, i.e. small-sized

tanks and direct charging and discharging, we perform a parameter
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Fig. 6. Input controls, i.e. input flow �̇� and input temperature 𝑇in for direct charging and output heat �̇� for indirect discharging, for tank C in the training and test datasets.
stimation task for each of the tanks. Then, based on the estimated
arameters, we test the SoC approach. In this section, we describe the
ethodology for parameter estimation. In detail, as in [6], we identify

he following parameters to be estimated:

• 𝛼: fluid diffusivity;
• 𝛽𝑖: coefficient of heat losses of the inner layers;
• 𝛽1: coefficient of heat losses of the bottom layer;
• 𝛽𝑁 : coefficient of heat losses of the top layer;
• 𝜆: coefficient of the input heat;
• 𝜙: coefficient of the input flow.

Then, given a set of 𝑛m+1 temperature measurements {𝐓0,… ,𝐓𝑛m}
distributed in time, the parameter estimation problem is defined as
follows:

minimize
𝜑,T0 ,…,T𝑛

∑

𝑗∈𝜓
‖�̄�𝑗 − 𝐓𝑗‖22 (13a)

subject to
𝑇𝑘+1,𝑖= 𝐹𝑖(𝐓𝑘, �̇�𝑘, �̇�𝑘, 𝛥𝑘,𝝋,𝐓in

𝑘 ) for 𝑘 = 0,… , 𝑛 − 1
for 𝑖 = 1,… , 𝑁,

(13b)

It is important to note that in the above formulation we made two
assumptions:

1. The time discretization for the parameter estimation might dif-
ferent from the time discretization where measurements avail-
able. To that end, we introduce the set 𝜓 as the set of time
indices when temperature measurements are available. In addi-
tion, we also distinguish between the number 𝑛m of measure-
8

ments and the number 𝑛 of optimization variables.
2. As with the SoC approach, we assume that the inputs of the
model {�̇�1,… , �̇�𝑛m}, {�̇�1,… , �̇�𝑛m}, and {�̇�in

1 ,… , �̇�in
𝑛m
} are avail-

able and error free. If the inputs of the model have measurement
errors, one could integrate them in the optimization problem by
considering a second term in the objective function penalizing
the optimized inputs w.r.t. the measured inputs.

6.4. State estimation

To evaluate the SoC approach, we simply solve the optimization
problem defined by (12a) using the training datset. In addition, to
ensure that the SoC approach is tested in multiple conditions, we
consider different the three different tank states: charging, discharging
and idle.

For the sake of simplicity, we evaluate the SoC approach at a single
time point, i.e. we perform a single iteration of the MHE technique.
This first iteration using MHE shows that the model can be used for
state estimation as long as a full set of temperature measurements is
available.

6.5. Layer discretization

The three tanks considered were divided into a number of layers.
The choice of the number of layers was tuned by experiment which
showed that better results were achieved when a larger number of
layers was considered for larger tanks. Taking that into account, the
tanks were divided into the following number of layers:

• tank A – 15 layers (Fig. 7(a));
• tank B – 10 layers (Fig. 7(b));

• tank C – 7 layers (Fig. 8).
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Fig. 7. Representation of Tank A and B. Layers, sensors location (green symbol *), pipes represented by red symbol + and blue symbol +. The direction of the water flow according
to the operation mode is represented by the arrows. The definition of inlet and outlet pipes is thus dependent on the mode. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)
6.6. Evaluation metrics

For the validation of the model, we compare the temperature ob-
tained through the use of the model in each timestep and height and
the values observed. Based on those values the SoC model is evaluated
in terms of the following errors:

• Average root mean square error (RMSE);
• Mean absolute error (MAE);
• Maximum absolute error (MaxAE).

The reasoning for evaluating three different errors is having a more
ealistic assessment of the accuracy of the methodology and not being
iased by evaluating individual errors.

.7. Software

Both the parameter estimation and the state estimation are modeled
n Python using the mathematical modeling ramework CasADi [28]
nd solved using the interior point solver IPOPT [29]. The model
as implemented using the discrete continuous dynamics described in
q. (11), i.e. discretizing the PDE using Euler and including buoyancy.
or the optimization, these dynamics were modeled using a multiple
hooting approach [30]; this created a NLP with continuous dynamics
hat could be solved using a derivative-based optimization method like
POPT.

. Results and analysis

In this section, we present the obtained results. For the sake of
implicity, we divide this section in four parts. First, we present the
esults from the parameter estimation stage, during which full sets of
easured data from completed experiments were used for fitting the
odel to data. Second, we present the results of the estimation. Third,
e present the results of validating the model in a test dataset via

imulation. Finally, we conclude the section with a brief discussion and
9

nalysis.
Fig. 8. Tank C — layers, sensors location (green symbol*), outlet pipe (red symbol +).
Coil location represented in the picture by the black dotted line — it directly affects
layers 0 to 3.

7.1. Parameter estimation

The estimated parameters are summarized in Table 2 and compared
against the initial guess. From this table and analyzing the estimated
parameters some unexpected values emerge, namely the 0 value for
parameters 𝛽𝑖 – coefficient of heat losses for the inner layers – for tanks
B and C, 𝛽𝑁 – coefficient of heat losses for the top layer – for tank
B and 𝜆 – coefficient of the input heat – for Tank C. These 0 values,
showing that non-physical solutions are found, are not expected since in
reality there are heat losses for all the layers of the tanks. Although very
strange, these results can be due (i) to the fact that we are solving a non-
convex optimization problem and the obtained parameters are just local
optimal, (ii) the impossibility of reliably estimating with this model all
parameters from the set of measurements used, (iii) existent correlation
between data and parameters or even (iv) over-parametrization of the
model. Practical measures to solve this drawback are left for future re-
search and include several options, namely, reduction of the parameter
space and regularization using reference values [31].
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Table 2
Estimated parameters.

Parameter Initial guess Estimated parameters

Tank A Tank B Tank C Tank A Tank B Tank C

𝛼 2.19E−06 2.19E−06 2.19E−06 1.36E−07 1.36E−07 1.36E−07
𝛽1 2.87E−06 4.30E−06 8.52E−06 3.19E−06 7.49E−06 1.44E−04
𝛽𝑖 8.99E−07 1.22E−06 4.70E−06 4.45E−07 0 0
𝛽𝑁 2.87E−06 4.30E−06 8.52E−06 6.12E−07 0 3.24E−06
𝜆 – – 7.21E−07 – – 0
𝜙 1.10E−04 2.03E−04 3.00E−03 1.29E−04 1.66E−04 3.10E−03
Fig. 9. Temperature evolution inside the tank A for the state estimation for different depths. The solid line represents the real measurements and the dotted lines the results from
estimation. The left and right graphs respectively represent the temperature evolution for the first and second training subsets.
e
w

m

Table 3
State estimation errors.

RMSE MAE MaxAE

Tank A 1.47 1.08 5.31
Tank B 2.58 1.56 12.78
Tank C 2.95 1.9 15.56

7.2. State estimation

A summary of the results of the temperature distribution estimation
is listed in Table 3 in terms of the RMSE, MAE, and MaxAE metrics.

Moreover, for tank A, the results of the temperature evolution is
represented in Fig. 9. Although the maximum absolute error is 5.31 ◦C,
the MAE is 1.08 ◦C, which is very acceptable. In particular, an average
error below 1–2 ◦C is a very reasonable error for a 1-D model [6].

For tank B, the temperature evolution is illustrated in Fig. 10(a).
The maximum absolute error has a value of 12.78 ◦C and occurs for
he depth of 2.13 m which is located somewhere between sensors 1
nd 2 and 17.5 cm above the inlet pipe. However, the average error is
till low with a value of 1.56 ◦C. Considering that tank B is horizontal
nd has 1/3 of the volume of tank A, i.e. it has worse stratification
roperties than Tank A, the error is also reasonable.

For tank C, the temperature evolution is depicted in Fig. 10(b).
he maximum absolute error is 15.6 ◦C but the average error is only
.9 ◦C. Considering the extremely low volume of Tank C, i.e. 0.4 m3,
he average error for the last tank is also reasonable.

.3. Model validation

To further validate that the model works not only for large seasonal
torage systems with indirect charge/discharge, we simulate the esti-
ated models for the three tanks in a test dataset. The results of the
10

imulation are briefly summarized in Table 4.
Table 4
Simulation estimation errors.

RMSE MAE MaxAE

Tank A 1.67 1.38 9.77
Tank B 3.73 3.36 17.13
Tank C 4.8 2.97 15.79

For tank A, the simulation results are represented in Fig. 11. The
maximum absolute error, as expected, is much higher than for the state
estimation achieving a 9.8 ◦C maximum error. However, the average
is still low at 1.38 ◦C. Such a small error seems to indicate that the
stimated model is correct and that, as a result, the 1-D model also
orks for small tanks with direct charging and discharge.

For tank B, the simulation results are illustrated in Fig. 12. The
aximum error was even higher than for tank A achieving 17,13 ◦C.

This error appears on the top layer on the 7th May at 11:50 pm, which
corresponds to a time when the idle mode was already in place for more
than 24 h. As the simulated temperature is much lower than the real
temperature, it is likely that this effect is due to the coefficient of heat
loses being larger than reality; that would partially explain the fact that
the estimated heat losses parameters of the middle layers (see Table 2)
are 0 as they would have to do so to balance the large heat loses of
the top layer. Although the simulated model does display a large error
for the top layer, the error for the other layers is rather small, which
again shows that even for a small tank, i.e. 12 m3, the model works
reasonably good.

Finally, for tank C, the simulation results are depicted in Fig. 13.
It is important to note that, in comparison with the training dataset,
the flow is higher and the amount of energy transferred is much lower
(Fig. 6(b)). Since the flow is much higher and the energy transferred
lower, the temperatures decrease much faster than during state estima-

◦
tion. Although the maximum error is 15.8 C, the average error is below
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Fig. 10. Temperature evolution inside the tank B for the state estimation for different depths. The solid line represents the real measurements and the dotted lines the results
rom estimation.
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Fig. 11. Temperature evolution inside the tank A when simulating the test set. The
solid line represents the real measurements and the dotted lines the results from
simulation.

Fig. 12. Temperature evolution inside the tank B when simulating the test set. The
solid line represents the real measurements and the dotted lines the results from
simulation.
11

t

Fig. 13. Temperature evolution inside the tank C when simulating the test set. The
solid line represents the real measurements and the dotted lines the results from
simulation.

3 ◦C and the simulation appears to mimic quite good the temperature
evolution. Considering the fact that tank C is really small, i.e. 0.4 m3,
hese results further validate the validity of the model when small tanks
ith direct topologies are considered.

.4. Discussion and analysis

Based on the results of temperature distribution estimation, it can be
oncluded that the proposed approach can be accurately used for state
stimation. For all three tanks considering different sizes, topologies
nd placements, the average errors are always below 2 ◦C, which
ndicates that the model can accurately estimate the temperature dis-
ribution inside the tank.

Although some of the errors were high (>5 ◦C), they do not occur
n all layers at the same point in time. So, if there is not an absolute
eed of very high accuracy when calculating temperature for each
ayer, in every single moment in time, then it is safe to assume that
he presented approach performs reasonably well for different types of

anks, topologies, and sizes.
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When it comes to the model itself, similar results can be observed
when simulating the estimated models. Hence, the obtained results do
indicate that the 1-D smooth and continuous model can also be applied
to small tanks with direct charge/discharge where stratification effects
are not as well-behaved; thus, the model is not limited to large seasonal
tanks with indirect topologies.

If we compare the accuracy of the results presented in this section
with the one displayed in [6], our accuracy results are slightly worse.
However, as indicated multiple times through the paper, [6] only con-
sidered a large seasonal storage system with slower dynamics and with
indirect charging. Such a system has simplified stratification dynamics
effects as it avoids the thermal stratification destruction caused by
direct charging. As a result, it is anyway expected to display lower
average and maximum errors.

In short, taking all of this into account, it can be concluded that
the proposed approach performs well and that the 1-D smooth and
continuous model is not limited to large seasonal tanks with indirect
topologies.

8. Conclusion

State estimation for stratified thermal energy storage play an im-
portant role to maximize the integration of renewables. Particularly,
reliable estimation of the temperature evolution inside a storage tank
is key for optimal energy storage, maximizing self-consumption, and in
turn for optimal management of renewable energy production.

With that motivation, in this paper we proposed the first state
estimation method for stratified thermal tanks that includes buoyancy
and mixing effects. As these two dynamical behaviors dominate the
dynamics of stratified tanks [6], the proposed method provides a state-
of-the-art state estimation method for this type of storage systems.
Besides this novel approach, we also improved the field of stratified
storage tanks with two further contributions: first, we showed that
the state-of-the-art 1-D smooth and continuous model for seasonal
stratified storage tanks with indirect charge/discharge [6] can also be
extended to small stratified tanks and to different topologies. Second,
we proposed the most complete case study to date for modeling and
estimating the temperature in stratified storage tanks.

To validate the proposed approach and the model extension, we
considered real data from three different stratified storage tanks. First,
we performed a model/parameter estimation for each one of the mod-
els. Then, we validated the estimated models using out-of-sample data
and comparing the performance of the simulated models against the
real data. Third, with the estimated models, we validated the SoC state
estimation approach. For the sake of simplicity, this validation was lim-
ited to the case where the full set of temperatures was available (note
that the observability and the possibility to reconstruct states when only
a reduced set of temperature measurements is available still needs to
be tested case by case). Finally, as both the state estimation approach
and the simulation of the model displayed average mean errors below
2 ◦C, we could conclude that both model and state estimation approach
are highly accurate.

In future work, we will focus on using this approach to cases where
only a reduced set of temperature measurements is available. The aim
of that work will be to study the observability and the possibility
of reconstructing missing states with partial information. Additional
studies regarding the estimator’s convergence for a wider operating
range and for long-term operation will also be conducted.
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