
 
 

Delft University of Technology

Sentinel-1 SAR Backscatter Response to Agricultural Drought in The Netherlands

Shorachi, Maurice ; Kumar, V.; Steele-Dunne, S.C.

DOI
10.3390/rs14102435
Publication date
2022
Document Version
Final published version
Published in
Remote Sensing

Citation (APA)
Shorachi, M., Kumar, V., & Steele-Dunne, S. C. (2022). Sentinel-1 SAR Backscatter Response to
Agricultural Drought in The Netherlands. Remote Sensing, 14(10), Article 2435.
https://doi.org/10.3390/rs14102435

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.3390/rs14102435
https://doi.org/10.3390/rs14102435


Citation: Shorachi, M.; Kumar, V.;

Steele-Dunne, S.C. Sentinel-1 SAR

Backscatter Response to Agricultural

Drought in The Netherlands. Remote

Sens. 2022, 14, 2435. https://doi.org/

10.3390/rs14102435

Academic Editors: Luca Brocca,

Massimiliano Pasqui and Ramona

Magno

Received: 11 April 2022

Accepted: 17 May 2022

Published: 19 May 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

remote sensing  

Article

Sentinel-1 SAR Backscatter Response to Agricultural Drought
in The Netherlands
Maurice Shorachi 1, Vineet Kumar 2,* and Susan C. Steele-Dunne 2

1 Department of Water Management, Delft University of Technology, Stevinweg 1,
2628 CN Delft, The Netherlands; mshorachi@gmail.com

2 Department of Geoscience and Remote Sensing, Delft University of Technology, Stevinweg 1,
2628 CN Delft, The Netherlands; s.c.steele-dunne@tudelft.nl

* Correspondence: v.kumar-1@tudelft.nl

Abstract: Drought is a major natural hazard that impacts agriculture, the environment, and socio-
economic conditions. In 2018 and 2019, Europe experienced a severe drought due to below average
precipitation and high temperatures. Drought stress affects the moisture content and structure of
agricultural crops and can result in lower yields. Synthetic Aperture Radar (SAR) observations are
sensitive to the dielectric and geometric characteristics of crops and underlying soils. This study uses
data from ESA’s Sentinel-1 SAR satellite to investigate the influence of drought stress on major arable
crops of the Netherlands, its regional variability and the impact of water management decisions on
crop development. Sentinel-1 VV, VH and VH/VV backscatter data are used to quantify the variability
in the spatio-temporal dynamics of agricultural crop parcels in response to drought. Results show
that VV and VH backscatter values are 1 to 2 dB lower for crop parcels during the 2018 drought
compared to values in 2017. In addition, the growth season indicated by the cross-ratio (CR, VH/VV)
for maize and onion is shorter during the drought year. Differences due to irrigation restrictions are
observed in backscatter response from maize parcels. Lower CR values in 2019 indicate the impact of
drought on the start of the growing season. Results demonstrate that Sentinel-1 can detect changes in
the seasonal cycle of arable crops in response to agricultural drought.

Keywords: agriculture; crops; cross-ratio; drought; Sentinel-1; Synthetic Aperture Radar; irrigation

1. Introduction

The threat to global food security is expected to increase as a result of climate change
and the rising world population [1,2]. Monitoring agricultural crops to predict yield,
predict change in water use efficiency and detect the impact of extreme weather events
is vital for ensuring long-term food security. Drought is an abiotic stress that arises from
a soil moisture deficit when the availability of precipitation does not meet evaporative
demand, and can lead to a reduction in crop yields [3–5]. A reduction in crop yield can
be caused by the shorter life-cycle of the crops, and/or the adaptation of the stomatal
control and reduction of leaf area in order to cope with drought stress [6]. Future climate
change is expected to increase the frequency of severe meteorological [7–9] and agricultural
droughts [4,10]. Large-scale, continuous monitoring is essential to detect, monitor and
mitigate the effects of drought on agricultural production.

Drought indices from meteorological station-based weather information are effective for
drought assessment [11–13]. However, the global distribution of meteorological stations is
highly variable in space and time, limiting their potential use for drought monitoring [14–16].
Remote sensing satellite observations provide continuous, global coverage and can provide
insight into droughts at a range of resolutions [17–19]. Many studies have used spectral
indices from the visible to near infra-red part of the spectrum (e.g., [20–24]). However, their
reliability is limited by cloud cover. Microwave remote sensing offers continuous coverage
without being hindered by atmospheric conditions.
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Synthetic Aperture Radar (SAR) data have been widely used in vegetation monitoring
studies due to microwave sensitivity to dielectric and geometric changes during crop
development [25,26]. However, the use of several previous and existing SAR missions
viz. RADARSAT-1/2, ALOS-1/2 and TerraSAR-X was limited due to spatial coverage and
coarse temporal resolution. With the launch of the Sentinel-1 SAR constellation [27], it is
possible to have 12 days (6 days in Europe) of temporal resolution data across the globe
and high temporal resolution over the Europe (<2 days depending on the latitude) by
combining different acquisitions in interferometric wide (IW) swath mode. Additionally,
Sentinel-1 SAR archive and real-time data accessibility in cloud computing servers, such as
Google Earth Engine (GEE), allows for large scale monitoring without the constraints of
data handling and processing [28].

The potential of Sentinel-1 SAR data have been shown in many studies for crop growth
monitoring [29–31], phenology tracking [32] and biophysical parameter estimation [33].
The high temporal resolution, the fact that acquisitions are unaffected by cloud cover,
and the sensitivity of backscatter to vegetation water content and geometry means that
Sentinel-1 offers unique potential to capture the drought response of crops. However,
limited research has been conducted to understand the potential of Sentinel-1 SAR signal
response to the agricultural drought events [34,35].

Two consecutive drought summers occurred across central Europe in 2018 and 2019 [36–39].
Hari et al. [9] found that the consecutive droughts of 2018–2019 were the most severe in the
last 250 years. These droughts had a severe impact in the Netherlands [40–42], resulting in
a significant drop in yield for most crops [43]. The long term average precipitation during
the summer growing season (April to September) is 438 mm. However, in 2018 this was just
304 mm [40]. The drought in 2018 caused a peak in agricultural water usage in the Netherlands
and a lowering of the groundwater table, particularly in the southeast [42]. Water deficit
influences crop water content and structure. Droughts have an adverse effect on the overall
yield, which is caused by a reduction in leaf area, adaptation of the stomatal control and the
shorter life-cycle of the crops to cope with the water deficit [6]. Since the SAR response depends
on the geometrical and dielectric properties, it is expected that the water deficit caused by the
drought will be observable in the SAR response.

Here, we compare the seasonal cycle of Sentinel-1 SAR observables across the Netherlands
from several crops during drought-affected years to those of a normal year. Differences in the
Sentinel-1 observables will be discussed with respect to rainfall, soil moisture and regional crop
yield estimates during the drought-affected and normal years. We also examine the influence of
Sentinel-1 viewing geometry and acquisition time. We investigate whether spatial variability in
the drought response due to crop and soil type, irrigation water availability can be detected in
the SAR observalbes (VV, VH backscatter and VH/VV ratio).

2. Data and Methods
2.1. Study Area

This study is focused on the impact of the 2018 and 2019 droughts in the Netherlands.
The study areas, shown in Figure 1, were selected to account for different soil types,
irrigation practices and the spatial distribution of drought in the Netherlands during 2018
and 2019, as well as the availability of in situ information. The general study area comprises
three areas indicated in blue. Three factors were considered in the definition of the areas of
interest. First, the yield data are available at province level. Second, water management
decisions are made by water boards. These are regional governing bodies responsible for
the management of surface water in the environment. Their boundaries do not coincide
with province boundaries. Third, we need to consider the location of areas of interest
within the swaths of the Sentinel-1 relative orbits. In Figure 1, the Vechstromen-Noord area
consists of the northern part of the Vechstromen water board, which includes parts of the
Drenthe and Overijssel provinces. Vechtstromen-Noord is observed in Sentinel-1 relative
orbits (ROs) 37, 139, 88 and 15. Scheldestromen consists of the part of the Scheldestromen
water board that falls within the Zeeland province. Common crop parcels within RO 37,
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110, 88 and 161 swaths were selected from Scheldestromen. Finally, the Flevopolder is
an island of reclaimed land, and is part of the Zuiderzeeland water board. It is an area
characterized by highly productive, intensive agriculture and has featured in many SAR
studies [29,44,45].

Figure 1. The location of three areas of interest (blue) in province map of the Netherlands.
Vechtstromen-Noord, Flevopolder and Scheldestromen areas are part of the Vechtstromen, Zuiderzee-
land and Scheldestromen water boards. The inset shows the municipalities within the Vechtstromen
water board used to study the effect of irrigation practices.

The difference in soil texture and water management among the areas is expected to
lead to a variation in drought response. The clay content of soil in Flevopolder is relatively
high. In contrast, the soil in Vechtstromen-Noord has a high sand content. Crops in Zeeland
(including the Scheldestromen area) suffered yield loss due the lack of precipitation and
the ban on the open water irrigation.

To investigate the potential influence of water management (e.g., irrigation avail-
ability), we compared data from four municipalities of the Vechtstromen waterboard,
highlighted in red in the inset of Figure 1. In Coevorden and Hardenberg, irrigation is only
available from groundwater during droughts. In contrast, farmers in Tubbergen and Hof
van Twente have access to both surface (open) water and groundwater for irrigation during
the drought period [46].

2.2. Crop, Soil Moisture and Meteorological Data

In the Netherlands, the Basisregistratie Gewaspercelen (BRP), containing parcel-level crop
information, is publicly available via the Publieke Dienstverlening Op de Kaart (PDOK) [47]
web server and is updated annually. The BRP database contains the boundary geometry of
agricultural parcels along with the name of the cultivated crop, as well as the geometry and
area of the parcel. Major summer crops, namely silage maize, potatoes (for consumption),
sugar beets, summer barley and onions are considered in this study. The number of parcels
for each crop type in the three study areas is presented in Table 1. For the comparison
between the municipalities with and without access to surface water, only maize and potato
parcels were considered because the differences in the number of crop parcels between the
municipalities are too large to ensure a fair and reliable comparison.
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Table 1. Number of crop parcels per study area in 2019.

Crop Vechtstromen Noord Scheldestromen Flevopolder

Silage Maize 4084 1394 300
Sugar Beet 817 2413 660

Potato 541 2722 882
Onion 71 879 767

Annual crop yield information is openly available via Statistics Netherlands (https:
//opendata.cbs.nl/#/CBS/en/dataset/7100eng/table, accessed on 22 May 2020) [43].
Here, we used the normalized yield (i.e., the total gross yield per harvested hectare,
1000 Kg/Ha) to compare results in the study areas. The normalized gross yield and
inter-annual yield differences per province are expressed in 1000 kg/ha for studied crops.
Figure 2 shows the normalized gross yield for 2017 per province and inter-annual yield
deviation between drought and “normal” years, i.e., 2018–2017 and 2019–2017, respec-
tively. Since the Vechtstromen-Noord study area is located in two provinces, the yield was
interpreted by taking the average over Drenthe and Overijssel province data.

VanderSat’s daily volumetric surface soil moisture (SM) product (V1.0) is used in
this study [48]. The SM products are available at 100 × 100 m resolution on a daily basis
from the combined use of Advanced Microwave Scanning Radiometer (AMSR)-2 and Soil
Moisture Active Passive (SMAP) microwave satellite sensors retrieved using the Land
Parameter Retrieval Model (LPRM) [49–51] . In this study, spatially aggregated volumetric
SM data at municipality level were used. The surface soil moisture of the Coevorden, Goes
and Zeewolde municipality areas were used for the Vechtstromen-Noord, Scheldestromen
and Flevopolder study areas, respectively. Surface soil moisture data from Coevorden,
Hardenberg, Tubbergen and Hof van Twente municipalities were used observe the impact
of water management decisions. Data discontinuity was observed in the SM products in
mid-2019 due to a gap in the SMAP data record.

Meteorological data were acquired from the Royal Netherlands Meteorological In-
stitute (KNMI). KNMI provide daily precipitation data, measured at 48 weather stations
throughout the Netherlands. The daily precipitation data acquired by the weather stations in
Hoogeveen, Vlissingen and Lelystad were used for the Vechtstromen-Noord, Scheldestromen
and Flevopolder study areas, respectively. Data from the Hoogeveen and Twente weather sta-
tions were used in the Vechtstromen-Noord area in the analysis related to
water management.

https://opendata.cbs.nl/#/CBS/en/dataset/7100eng/table
https://opendata.cbs.nl/#/CBS/en/dataset/7100eng/table
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Figure 2. Normalized gross yield and inter-annual yield differences per province expressed in
1000 kg/ha for (a) maize, (b) onion, (c) potato, and (d) sugar beet. The left column shows the
normalized gross yield for 2017 per province. The middle and right column shows the difference in
yield between drought and “normal” years, i.e., 2018–2017 and 2019–2017, respectively. The black
polygons indicate the three study areas.

2.3. Sentinel-1 SAR Data

Sentinel-1 SAR GRD data products in interferometric wide (IW) swath mode, available
through GEE cloud based services, are used in this study. The Sentinel-1 SAR system
consists of two satellites, S1A and S1B, which operate in the C-band (5.45 GHz) with a
revisit time of 6 days together. With the combination of different viewing geometries (or
relative orbits (RO)) in ascending and descending passes for data acquisition, it is possible
to have Sentinel-1 data with a temporal resolution of less than 2 days across Europe. Most of
the Netherlands is covered by six different ROs, namely 37, 110, 139, 15, 88 and 161 (Table 2).
The swaths of the descending and ascending orbits are shown in Figure 3, respectively.
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Table 2. Sentinel-1 orbits characteristic for the study areas.

Relative Orbit Pass Type UTC θVechtstromen−Noord θScheldestromen θFlevopolder

15 asc 17:16 33.8◦–36.3◦ - -
37 des 05:49 34.7◦–36.1◦ 44.4◦–45.1◦ 39.5◦–41.6◦
88 asc 17:25 42.4◦–44.0◦ 30.1◦–31.1◦ 36.3◦–39.5◦

110 des 05:58 - 35.7◦–41.0◦ 30.4◦–33.7◦
139 des 05:41 42.5◦–44.4◦ - -
161 asc 17:33 - 36.4◦–40.2◦ -

Figure 3. Sentinel-1 descending (left) and ascending (right) passes and relative orbits covering
the Netherlands.

Figure 3 shows that Vechtstromen-Noord is covered by RO 37, 88, 15 and 139. Schelde-
stromen is covered by RO 161, 110 and parts of 37 and 88. Data acquired from orbit 37 and
88 are used for the analysis of parcels in Scheldestromen since both orbits still cover most
of the parcels in that area. Flevopolder is covered by RO 37, 88, 110 and partly covered
by RO 15 and 161. Hence, orbits 15 and 161 were not used in the Flevopolder crop parcel
analysis. Only data between 1st March and 30th October were considered for each year.

In this study, parcel-level spatially-averaged Sentinel-1 VV and VH backscatter (σ0) and
cross-ratio (VH/VV) values were obtained from the Agricultural SandboxNL database [52,53].
This database was generated from GEE-hosted Sentinel-1 SAR GRD products. GEE-hosted
Sentinel-1 data are already corrected for basic SAR pre-processing steps, namely (1) Metadata
update with restituted orbit file, (2) Border noise removal after 2018 onward, (3) Thermal noise
removal between the sub-swaths, and (4) Radiometric calibration and Terrain correction [28].
The crop parcel-level boundaries in Agricultural SandboxNL were obtained from the annual
BRP data [47]. It consists of parcel boundaries, main cultivated crop type information and
attributes such as unique OBJECTID and parcel geometry. Parcel-level backscatter values
(VV, VH and CR) in the Agricultural SandboxNL database can be queried by crop types,
administrative boundaries (province, municipality or user-defined), Sentinel-1 acquisition
dates and ROs. Table 3 summarizes the various input datasets, their sources and scales used
in this study.
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Table 3. Summary of input data used, it’s scale and sources.

Data Data Usage in this Study Scale Source(s)

BRP (Crop Parcel Base
Register)

To attribute parcel-level
crop type information and

extract Sentinel-1
backscatter values

Parcel-level PDOK [47]

Crop yield
To support intra-annual

drought observation in time
series of Sentinel-1 data

Aggregated at province
scale CBS [43]

Soil type Information on soil types of
the study areas 1:50,000 Steur, 1966 [54]; Hartemink

et al., 2013 [55]

Soil moisture

To infer inter-annual
variation surface soil

moisture over the study
areas

Aggregated at municipality
scale VanderSat (Planet) [48]

Precipitation
To infer inter-annual

cumulative precipitation
over the study areas

Weather stations within the
vicinity of study areas KNMI [56]

Sentinel-1 SAR

To understand drought
impact on VH, VV and

VH/VV (CR) SAR
backscatter data over the

study areas

Extracted at parcel level
further aggregated over the
no. of crop parcels in study

areas

Agricultural
SandboxNL [52]

2.4. Analysis

Sentinel-1 data for the “normal” year of 2017 were compared to the drought years of 2018
and 2019 to characterize the drought impacts on SAR signals. The VV, VH and CR values were
averaged at parcel-level and aggregated per crop type over the studied regions in different
relative orbits of the Sentinel-1. The inter-annual comparisons were made by observing the
differences in VV, VH backscatter and CR values for 2018 and 2019 compared to 2017. The
differences in resulting observations were supported by soil moisture, precipitation, yield,
and any openly available ground information during the drought. This comparison will be
presented for the Vechtstromen-Noord area because the highest drought impact in 2018 was
reported in the north eastern part of the Netherlands [57]. Spatially averaged parcel-level VV,
VH and CR values for maize and onion will be presented and discussed. Similar results for
potato and sugar beet are provided in supplementary materials. The influence of viewing
geometry is considered by comparing data from four relative orbits allowing for differences
in incidence angle and between ascending/descending passes.

Figure 2 showed that there were spatial variations in the impact of the droughts on
crop yield. This is due to differences in hydrometeorological conditions, soil types and
water management decisions during the drought periods. Data from the three study areas
were compared to determine if these regional variations in yield correspond to discernible
regional differences in the VV, VH and CR values of Sentinel-1 data during the season.
Results are presented for maize and onion (potato and sugar beet are in supplementary
materials). To ensure that the results are not influenced by differences in viewing geometry,
the relative orbits were chosen to minimize the difference in incidence angle.

Finally, data from four municipalities were compared to investigate whether the
impact of water use restrictions on the crop development are discernible in the Sentinel-1
data. The spatially-averaged parcel level VV, VH and CR values aggregated per crop type
from Coevorden and Hardenberg were contrasted with those in the Tubbergen and Hof
van Twente municipalities. Recall that the the first two only have access to groundwater
during the droughts, while the last two also have access to surface water. Results will be
presented for maize and potato parcels because the number of parcels are comparable.

3. Results
3.1. Influence of Drought on the Seasonal Cycle of Sentinel-1 SAR Data over Agricultural Crops

Spatially-averaged, parcel-level Sentinel-1 data during the 2018 and 2019 drought
years were compared to data in a “normal” year (2017).
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3.1.1. Maize

Figure 4 shows the time series of Sentinel-1 VV, VH backscatter and cross-ratio (CR,
VH/VV) from maize parcels in Vechtstromen-Noord. Maize is typically planted between mid-
April and the first week of May, with emergence occuring in mid-May. Silage maize usually
ripens in the field and is harvested between mid-September and mid-October [29,58]. Before
crop emergence, soil surface roughness and moisture dominate the backscatter response in
VV and VH polarizations. Backscatter variations during this period are caused by the rainfall
events apparent in the bottom two rows. After emergence, VV and VH backscatter increase
rapidly due to soil-vegetation interaction and volume scattering as the crop grows.

Figure 4m shows that the soil moisture in 2018 (~0.07 m3/m3) was much lower than
that in 2017 (~0.20 m3/m3) between day 175 and day 220. During this period, the VV and VH
backscatter values in 2018 are ~2 dB lower than the values of 2017. Precipitation around day
220 draws the backscatter values closer to those observed in 2017. Note, however, that the 2018
values decrease more rapidly from DOY 250. The backscatter, but particularly the CR, suggest
that the growing season of 2018 was ~30 days shorter than that of 2017. This can be explained
by the earlier ripening and harvesting of maize due the dry conditions [59]. The shorter 2018
season also led to a significant drop in yield of 9.1 % compared to 2017 (Figure 2a).

Low soil moisture occurred during the tasseling and flowering phase, which is the
most drought sensitive stage according to Kurt Thelen [60]. This is due to a lack of
synchronization between silking and shedding of the pollen during pollination. The pollen
grains may not remain viable and silking might be delayed. If maize crops have tasselled
and shed their pollen while blisters have not appeared yet, the crop will be barren [60].

Figure 4. Sentinel-1 descending (RO: 37 and 139) and ascending (RO: 15 and 88) backscatter profiles of
VV (a–d), VH (e–h) and VH/VV (i–l) for maize parcels in Vechtstromen-Noord for the years 2017,
2018 and 2019. The title of the columns states whether the data are from a descending (Dsc) or
ascending (Asc) overpass, the RO number, the overpass time in UTC and centre incidence angle
to the study area. The shaded areas indicate the standard deviation calculated across all parcels.
Spatially averaged soil moisture data (m) from the Coevorden municipality and cumulative precipitation
(n) from Hoogeveen weather station. Vertical green lines indicate crop sowing and harvesting periods.
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CR values in DOY 130–180 are 1 dB lower in 2019 than in 2017 and 2018. This is likely
because the groundwater table and the root zone soil moisture in 2019 had not recovered yet
from the drought in 2018, especially in the eastern part of the Netherlands [57].

Furthermore, no large cumulative precipitation increases are observed from DOY 70–105.
Thus, it can be assumed that the maize crops were planted and germinated in relatively
dry soil. Water stress during the vegetative phase typically reduces leaf and plant size
Anami et al. [61]. This would explain the lower VH backscatter and CR values compared
to other years. Furthermore, the CR ratio was lower than in 2017 throughout the season.
The lower normalized yield (5.9%) for 2019 compared to 2017 infers the lower CR values
during the maize growth cycle. The yield reduction is due to anomalies at key moments. The
resultant changes to the timing and length of growing season should be considered along
with backscatter values to find potential indicators of reduced yield.

Comparing the columns of Figure 4, it is clear that the features discussed above are
discernible in all four ROs. The effect of incidence angle is visible in VV and VH backscatter
at the crop emergence. The difference in VV backscatter is larger than in VH backscatter,
resulting in in a high CR for larger incidence angles.

3.1.2. Onion

Onion is a bulb vegetable typically planted at the end of March and harvested in
September [62]. The period between planting and emergence is relatively long for onions.
Soil surface roughness and moisture conditions dominate the backscatter contribution
during this period. Figure 5 shows that VH backscatter and CR values increase during the
leaf development phase (after DOY 140). Similar observations were reported in previous
studies [63,64]. VH backscatter and CR decrease as the leaves bend and dry out during the
ripening phase of onions. However, VV backscatter keeps increasing due to the increased
sensitivity to soil moisture.

The inter-annual differences in the SAR observables were negligible before the onset
of drought stress in 2018. The drought period coincides with the stem elongation and bulb
development phases of onions. In 2018, all SAR observables started to decrease around
DOY 210. CR values in Figure 5i–l show that the 2018 onion growing season was ~10
days shorter than the 2017 season. This is likely because the onions ripened faster and
entered senescence earlier. Onions that experience drought stress from the start of the bulb
formation stage have a reduced final bulb weight [65] and thus lower crop yield. This
decrease is seen in the normalized gross yield data, shown in Figure 2b. The 2018 onion
yield is 6.8% lower than the 2017 yield.

Figure 5i–l shows that the 2019 CR values are ~1 dB lower during the emergence and leaf
compared to other years. Combined with limited precipitation for a short period in the early
season, this led to onion crops being planted into a relatively dry soil and thus a decreased
above ground biomass overall compared to other years. The 2019 CR values become similar
to the 2017 CR values during ripening and harvest. When comparing the onion yield of 2019
with 2017, the yield was slightly (2.75%) increased (Figure 2b. Hence, the lower CR values
before ripening did not translate into a lower yield for onion crops in 2019.

The influence of the satellite overpass time can also be found in the Sentinel-1 backscat-
ter from onion parcels in Figure 5. After VV and especially VH backscatter become relatively
stable around DOY 160, VV and VH backscatter rapidly increase in the ascending orbits
(Figure 5c,d) around DOY 200. The descending orbits (Figure 5a,b) showed no change
around DOY 200 in 2017. In 2018, a small increase was observed only in descending orbit 37.
A small increase in VV and VH backscatter is observed around DOY 200 in 2019. However,
the rapid backscatter increases observed around DOY 200 in the ascending orbits are not
observed in the CR. This suggests that the observations are possibly caused by soil moisture
and soil-vegetation interaction.
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Figure 5. Sentinel-1 descending (RO: 37 and 139) and ascending (RO: 15 and 88) backscatter of VV
(a–d), VH (e–h) and VH/VV (i–l) for onion parcels in Vechtstromen-Noord for the years 2017, 2018
and 2019. The title of the columns states whether the data are from a descending (Dsc) or ascending
(Asc) overpass, the RO number, the overpass time in UTC and centre incidence angle to the study
area. The shaded areas indicate the standard deviation calculated across all parcels. Vertical green
lines indicate crop sowing and harvesting periods.

3.2. Regional Variability in the Drought Response Observed Using Sentinel-1
3.2.1. Maize

Figure 6 shows the Sentinel-1 backscatter from maize parcels in the three different
study areas. The VH backscatter and CR for 2018 drops rapidly after the DOY 220 in
Vechtstromen-Noord and Scheldestromen compared to the Flevopolder region. When
focusing on the CR differences after stabilization, it is noticeable that the 2019 values in
Vechtstromen-Noord (Figure 6g) are extremely low compared to the 2017 and 2018 values.
In Scheldestromen (Figure 6h), and to a lesser extent in Flevopolder (Figure 6i), the 2019 CR
is mostly similar to 2018. A likely cause is the soil type in Vechtstromen-Noord, which is
dominated by sand. In Scheldestromen and Flevopolder, the soil has a higher clay content.

Furthermore, it can be observed that lack of precipitation events from DOY 70 to 110
leads to the largest drop in surface soil moisture in Vechtstromen-Noord. Surface soil moisture
levels during planting were lower in Vechtstromen-Noord than in other study areas. Early
dry periods for maize crops can lead to an increase in largest root diameter and a decrease
in leaf elongation [2]. This results in a decrease in VH and thus CR values. In addition, the
cumulative precipitation shows a dry period in the mid-season for Vechtstromen-Noord. This
period is shorter for Scheldestromen and non-existent for Flevopolder, which could explain
the decreased CR values in 2019. Another distinct difference between the study areas is the
rapid CR decrease due to harvest at the end of the cropping season. Compared to 2017, the
CR in 2018 starts decreasing approximately 40, 25, and 10 days earlier in Vechtstromen-Noord,
Scheldestromen and Flevopolder, respectively. This is consistent with the normalized gross
yield that reduced by 9.1%, 5.4% and 6% compared to the 2017 values (Figure 2a).

For 2019, the CR decreases rapidly approximately 15 and 10 days earlier than in 2017 in
Vechtstromen-Noord and Scheldestromen, respectively. In Flevopolder, no early decline is
observed for the 2019 CR. The influence of incidence angle on CR values during emergence,
can also be observed here, especially in 2019. During emergence, Vechtstromen-Noord has
the highest CR values in all years followed by Flevopolder. Scheldestromen shows the low-
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est values during emergence. This follows the the incidence angles which are approximately
43°, 38° and 41° for Vechtstromen-Noord, Scheldestromen and Flevopolder, respectively.

Figure 6. Averaged backscatter profiles of VV (a–c), VH (d–f) and VH/VV (g–i) for maize parcels
in Vechtstromen-Noord (left), Scheldestromen (middle) and Flevopolder (right) for the years 2017,
2018 and 2019. The title of the columns states the number of maize parcels in each area. The shaded
areas indicate the standard deviation calculated across all parcels. Spatially averaged soil moisture
(j–l) from Coevorden, Goes and Zeewolde municipalities and cumulative precipitation (m–o) from
Hoogeveen, Vlissingen and Lelystad weather stations, respectively, for each area. Vertical green lines
indicate crop sowing and harvesting periods.

3.2.2. Onion

Figure 7 shows the Sentinel-1 backscatter from onion parcels in the three different
study areas. Onion is a bulb crop and its yield is directly associated with water intake [66],
hence drought impacts and regional variabilities are more pronounced in onion compared
to other crops. The effect of the 2018 drought are clearly visible in the VH backscatter
and CR values for all the studied regions. The early drop in CR values is indicative of
the early maturity of onions in 2018. However, among all the studied regions, onion
VH backscatter and CR values are lower in Scheldestromen compared to Vechtstromen-
Noord and Flevopolder. CR decreases earlier in 2018 in Scheldestromen compared to other
areas. Yield data also suggest that the onion crop was hit hardest during the 2018 drought
in Scheldestromen.
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The normalized gross yield dropped by 6.81%, 27.1% and 17.66% compared to the
2017 drought in Vechtstromen-Noord, Scheldestromen and the Flevopolder, respectively
(Figure 2b). Scheldestromen may have been impacted the heaviest due to the lack of
available fresh water for irrigation because of the increased salt intrusion in the drought
period [67].

Figure 7h shows that the rate of CR decrease is faster in 2018 compared to other areas,
and the harvest period is earlier than in other areas. Furthermore, the 2019 CR data clearly
display that the root zone soil moisture in Vechtstromen-Noord had not been restored
yet [57]. The values during and after planting until DOY 190 are extremely low compared
to 2017 and 2018. This is not observed for Scheldestromen since it is situated below sea
level and the soil mostly consists of clay. Therefore, the 2019 CR does not show signs of
drought early in the season for most crops. In addition, for 2019, CR values are slightly
lower in Scheldestromen, while in Vechtstromen-Noord and Flevopolder they are close to
the 2017 CR values. These changes are also evident in cumulative rainfall and surface soil
moisture plots. After DOY 220, 2019 rainfall is similar to 2018 rainfall for Scheldestromen,
whereas in other two areas these are higher than 2018. There is a reduction in onion
yield in these two areas as well. However, the observations show that this does not affect
the backscatter.

Figure 7. Averaged backscatter profiles of VV (a–c), VH (d–f) and VH/VV (g–i) for onion parcels in
Vechtstromen-Noord (left), Scheldestromen (middle) and Flevopolder (right) for the years 2017, 2018
and 2019. The title of the columns states the number of maize parcels in each area. The shaded areas
indicate the standard deviation calculated across all parcels. Vertical green lines indicate crop sowing
and harvesting periods.

3.3. Observing the Impact of Water Management Decisions
3.3.1. Maize

The 2018 VH/VV ratio of north (Hardenberg and Coevorden) and south (Tubbergen
and Hof van Tewnte) municipalities in Vechtstromen starts deviating from 2017 after
DOY 230 (Figure 8). It seems that the crop season was shorter for both north and south
municipalities and harvesting occurred earlier in 2018. However, the CR in the Tubbergen
and Hof van Tewnte municipalities decreases earlier and faster at the end of the season
than the CR in the Hardenberg and Coevorden municipalities. A possible explanation is
that a higher number of maize parcels in the south municipalities were impacted heavily by
the drought due to the ban on open water irrigation, which resulted in an earlier ripening
and senescence and thus an early harvest.
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Figure 8. The 2017, 2018 and 2019 time series of Sentinel-1 SAR data (VV (a–c), VH (d–f) and VH/VV
(g–i)) from maize parcels in the Coevorden, Hardenberg, Tubbergen and Hof van Twente municipali-
ties. The shaded areas indicate the standard deviation calculated across all parcels. Spatially averaged
soil moisture (j–l) for each municipality and cumulative precipitation (m–o) from Hoogeveen and
Twente weather stations. Vertical green lines indicate crop sowing and harvesting periods.

Furthermore, after DOY 230, the standard deviation of CR in the south municipalities
is significantly higher than the north municipalities. This could be because farmers in
the south municipalities were only allowed to irrigate from groundwater. Not all farmers
are willing to irrigate silage maize with groundwater due to the cost. This may lead to
an increase in the backscatter variation across the parcels. In addition, the VH and VV
backscatter is significantly lower in the south municipalities during the harvest period
around DOY 260.

Coevorden and Hardenberg have very similar CR signatures. The same can be con-
cluded for Tubbergen and Hof van Twente. This can also be seen in Figure 9 where CR
values of maize parcels are mapped. The top-left map, which shows the CR ratio on DOY
230, shows regional variability between the north and the south municipalities. This differ-
ence increases with each subsequent SAR acquisition shown in Figure 9, i.e., DOY 236, 242
and 248.

In 2019, the differences between the north and south municipalities are negligible until
harvest, especially in CR. The CR in the south municipalities starts to decrease around DOY
260, while in the north municipalities, the CR starts to decrease around DOY 275. A high
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deviation of CR is also visible in the early growth phase (before DOY 150) of maize in all
the municipalities for 2019 compared to other years.

Figure 9. CR values (dB) of maize parcels in the Coevorden, Hardenberg, Tubbergen and Hof van
Twente municipalities for the year 2018.

3.3.2. Potato

Potatoes are typically planted between the end of April and the beginning of May, and
harvesting starts in September. Potato parcels are easily recognizable due to the deep ridge
planting. As a result, the backscatter variation in potato prior emergence is larger due to
the deep ridges compared to other crops [68]. Figure 10 shows that in 2017, the backscatter
from potato parcels of all the four municipalities is similar. However, the VH backscatter
and CR response of potato parcels in 2018 start to diverge around DOY 210 for Tubbergen
and Hof van Twente municipalities. Interestingly, CR values are relatively higher for Hof
van Twente and lower for Tubbergen than the other two north municipalities (Figure 10h).
These differences can be attributed to water management decisions taken in individual
areas as cumulative precipitation (Figure 8n) and surface soil moisture (Figure 8k) are
comparable among municipalities. The difference in VV, VH and CR values among north
and south municipalities is relatively low compared to maize. This is because potato has a
higher economic value and is likely to be irrigated with groundwater. Although average
CR differences are not high, the standard deviation differences are relatively high between
the north and south municipalities. A possible cause is the relatively low number of parcels
in Tubbergen, especially in Hof van Twente. The backscatter differences between the north
and south municipalities in 2019 are similar but smaller than in 2018.
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Figure 10. The 2017, 2018 and 2019 time series of Sentinel-1 SAR data (VV (a–c), VH (d–f) and
VH/VV (g–i)) from potato parcels in the Coevorden, Hardenberg, Tubbergen and Hof van Twente
municipalities. The shaded areas indicate the standard deviation calculated across all parcels. Vertical
green lines indicate crop sowing and harvesting periods.

4. Discussion

The interannual variability in the VV, VH backscatter and CR values indicates that
SAR signals are sensitive to the drought stress for agricultural crops. However, these
changes vary depending on the crop and soil types, water management practices followed
in the studied regions. The lower VV and VH backscatter during drought may be caused
by dry soil, reduction of VWC and changes in leaf geometry. Furthermore, it was observed
that the seasonal cycle of CR for maize and onion was shorter in 2018. However, CR trends
for sugar beet and potato did not show a significant difference in 2018 compared to 2017.
A possible reason for this is an almost similar drop in VH and VV polarization values in
2018 for sugar beet and potato. Additionally, CR values are relatively lower during the
vegetative stages in 2019 compared to 2017 and 2018 for all the crop types.

Regional variability occurs due to many factors, including soil type, hydrometeorolog-
ical conditions and irrigation policies. Generally, drought responses were most extreme in
the Vechtstromen-Noord study area. This is to be expected since this area is most vulnerable
to droughts due to its sandy soil. However, onion crops in 2018 were impacted the most
in the Scheldestromen area according to yield data (Figure 2). This clearly translated into
lower VH backscatter and CR ratio values during and after the drought period.

Among the three SAR observables, CR was found to be a potential candidate to
investigate the change of crop growth status due to agricultural drought in 2018 for vertical
crops.The utility of CR for identifying key crop growth stages have been discussed in
previous studies [31,69,70].

5. Conclusions

To date, there have been few studies focusing on the use of SAR to monitor the effects
of drought on crops. Here, we investigated the influence of inter-annual variability in
the Sentinel-1 SAR signals over different crops due to the drought in 2018 and 2019 in
the Netherlands. The inter-annual variation shows that VH and VV values are lower in
the drought period compared to the normal year. The seasonal cycle for CR is found
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to be shorter for drought years for both maize and onion. This is caused by faster crop
development and thus an earlier harvest due to drier environmental conditions in 2018.

Overall, the influence of the incidence angle on the drought-induced inter-annual variabil-
ity of Sentinel-1 backscatter time series is found to be limited. On the other hand, the overpass
time significantly influences drought-induced inter-annual variability. During drought peri-
ods, the drop in VV and VH backscatter was larger in descending orbits (05:45 UTC).

Water management decisions play a crucial role during agricultural drought events.
It is observed that for potato crop parcels where open irrigation is allowed, the spatial-
temporal variations are similar in all municipalities. Whereas, for maize, a clear difference
is observed in CR between the municipalities where irrigation is allowed and those where
it is not.

The outcomes of this study revealed the spatial and seasonal variability of SAR
signals during the drought years for different crops in the Netherlands where agricultural
practices are intensive and regulated. Future research should be extended to understand
the responses of different crop types in different agro-climatic regions such as drylands.
The sensitivity of the SAR signals also suggests that apart from the backscatter response,
other SAR derived observables, interferometric coherence and retrieved bio-geophysical
parameters could also be sensitive to the agricultural drought. The use of longer wavelength
SAR data may provide a better insight into underlying soil moisture conditions during the
drought events. In addition, the synergistic use of optical satellite derived information and
SAR observables could combine the sensitivity to spectral characteristics and vegetation
water content of the crop canopy affected by the drought.

The research findings demonstrate the Sentinel-1 SAR data contains useful information
for water boards, irrigation planners and crop-information services. These data should
be included to improve preparedness for future water stress events. They can contribute
to decision-making regarding crop parcel water requirements and resource allocation
depending on the spatial severity of the drought and economic viability of the crops grown
in that area. In the longer-term, monitoring of inter-annual variability in the start and
duration of the growing season using SAR data could be included in yield prediction and
real-time crop monitoring.

Limitations

• Although Sentinel-1 SAR ensures data availability through the crop growing sea-
son, it is not without limitations. Results presented here show the potential value
of parcel-level Sentinel-1 backscatter. However, data need to be integrated or syn-
ergistically used with high-resolution optical satellite observations to understand
within parcel heterogeneity.

• This study also suggests that Sentinel-1 observation geometry (incidence angle and
overpass time) influences the backscatter response from different crop types which is
relevant for the interpretation of SAR signals. This warrants attention when data from
multiple orbits are combined to create a dense time series for near-real monitoring of
the crops.

• Previous studies have reported the saturation of C-band SAR signal response to high
biomass crops during the peak vegetative stage [71–73]. This could be a potential
limitation of using C-band SAR data for seasonal drought observations. However,
using a longer wavelength (L-band), SAR data partially overcomes penetration depth
limitations. Planned future SAR missions such as NISAR, BIOMASS, ROSE-L will
operate at a longer wavelength compared to C-band Sentinel-1 SAR.
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