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We determine the energy splitting of the conduction-band valleys in two-dimensional electrons
confined in silicon metal oxide semiconductor Hall-bar transistors. These silicon metal oxide semi-
conductor Hall bars are made by advanced semiconductor manufacturing on 300 mm silicon wafers and
support a two-dimensional electron gas of high quality with a maximum mobility of 17.6 × 103 cm2=Vs
and minimum percolation density of 3.45 × 1010 cm−2. Because of the low disorder, we observe beatings
in the Shubnikov–de Haas oscillations that arise from the energy splitting of the two low-lying
conduction band valleys. From the analysis of the oscillations beating patterns up to T ¼ 1.7 K, we
estimate a maximum valley splitting of ΔEVS ¼ 8.2 meV at a density of 6.8 × 1012 cm−2. Furthermore,
the valley splitting increases with density at a rate consistent with theoretical predictions for a near-ideal
semiconductor-oxide interface.

DOI: 10.1103/PhysRevLett.128.176603

Electron spin qubits in silicon quantum dots are a
compelling candidate for quantum processors because they
have long coherence time [1–6], can operate quantum logic
above one Kelvin [7,8], thereby providing scope for
integration of classical control electronics [9], and leverage
advanced semiconductor manufacturing [10]. To accelerate
the device fabrication or measurement cycle towards larger
quantum processors, it is crucial to characterize with high
throughput the key electrical properties of the material,
such as mobility, percolation density, and valley splitting
energy. While mobility and percolation density are well-
established metrics to qualify disorder in materials hosting
spin qubits [11,12], measurements of valley splitting
energy in silicon remains challenging. Quantum confine-
ment across a (001) interface removes the sixfold degen-
eracy of the conduction-band valleys in Si [Fig. 1(a)]
[13,14]. A twofold degenerate ground state is formed from
the two out-of-plane valleys that present the heavy longi-
tudinal effective mass of Si oriented along the quantization
axis. The remaining twofold valley degeneracy is further
lifted by the presence of a sharp confinement potential
[15,16] and valley splitting quantifies the relevant energy
separation.
Valley splitting is measured in quantum dot (QD) devices

or in Hall bars field effect transistors. In a typical QD
measurement, the single-particle energy level splitting is
obtained by monitoring the increase in spin relaxation at
the hot-spot [17,18]. These measurements are critical for
developing functional qubits and give important insights on
the small-scale variation of valley splitting at the device
level. Alternatively, measurements in Hall bars probe the
energy splitting of the two low-lying conduction-band

valleys in 2DEGs. Because of the different confinement
experienced by electrons, Hall bar measurements are not a
direct probe of valley splitting in qubits, but are still a useful
quick turn monitor for high-throughput characterization
and materials optimization. However, the evaluation of
valley splitting in Hall bars relies on activation energy
measurements in the quantum Hall effect (QHE) regime
[16]. Because of the large magnetic field needed to over-
come the Landau level broadening, enhancement of energy
gaps is observed [19], making a direct comparison to
the single-particle energy levels of QDs challenging.
Furthermore, the complex electrostatics of quantum Hall
edge states must be taken into account to correctly interpret
the measurements [20].
In this Letter we determine valley splitting in silicon by

analyzing the quantum interference properties of 2DEGs
measured in magnetotransport. These measurements are
performed in low-disorder silicon metal oxide semicon-
ductor (Si-MOS) Hall bars. At a density greater than
3.7 × 1012 cm−2, the large vertical electric field increases
valley splitting above the disorder-induced single-particle
energy level broadening, thereby making visible the subtle
interference effects due to quantum transport through the
two energy-split valleys.
The Si-MOS Hall bars are fully optically patterned,

feature a composite SiO2=high-κ thin dielectric and are
made in a 300 mm wafer process line using the quantum
dot process flow described in Refs. [10,21]. The width of
the Hall bars is 6 μm and the interval between voltage
terminals is 30 μm. Magnetotransport characterization
was performed at T ¼ 1.7 K and at T ¼ 65 mK in refrig-
erators equipped with cryomultiplexers [12] using standard
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four-probe low-frequency techniques with excitation
source-drain bias of 1 mV. A positive bias applied to the
gate (Vg) induces a 2DEG at the semiconductor-oxide
interface.
Figure 1(b) shows the mobility-density curves at

T ¼ 1.7 K for seven devices A–G across the same wafer.
The mobility increases as a function of density, due to the
increased screening of scattering from impurities, until a
peak is observed (μmax). At higher density, surface rough-
ness scattering at the semiconductor-oxide interface
dominates and the mobility decreases [11]. The uniform
mobility measured across devices at high density points to a

semiconductor-oxide interface with uniform properties
across the wafer. Peak mobility and percolation density
characterize disorder in the system at high and low
density, respectively [11,22]. Device A (dark blue) and
B (blue) show very high peak mobility (μmax ¼ 17.6
and 17.4 × 103 cm2=Vs, respectively) at low density
(nH ¼ 5.75 and 4.96 × 1011 cm−2, respectively). The inset
in Fig. 1(b) shows a box plot of the peak mobility across the
devices, with an average peak mobility μmax ¼ ð12.9�
3.4Þ × 103 cm2=Vs. The percolation density np is extracted
from a percolation fit [23] of the density-dependent
conductivity σxx ∼ ðnH − npÞp [Fig. 1(c)], device A,
with p ¼ 1.31 fixed for a 2D system [23,24]. The inset
in Fig. 1(c) shows a box plot of the obtained np for
all devices. We obtain a very low minimum np of
ð3.5� 0.4Þ × 1010 cm−2 with an average value of
ð8.7� 4.0Þ × 1010 cm−2. Overall, the maximum mobility
in these Hall bars matches the highest values reported for
Si-MOS devices with sub 10 nm oxide thickness from
Ref. [25]. Most importantly, we set the benchmark for
percolation density, which is the significant metric for
disorder since quantum dot qubits operate in the low-
density regime [25,26].
We now proceed to evaluate valley splitting from the

quantum interference properties of magnetotransport.
We focus on three devices (A, B, and C), with various
degrees of disorder characterized by μmax in the range of
12.5 to 17.6 × 103 cm2=Vs and np in the range of 6.5 to
11 × 1010 cm−2. Figure 2(a) shows a typical magneto-
resistivity curve from device B measured at 65 mK and
at a density near peak mobility. The longitudinal resistivity
ρxx shows Shubnikov–de Haas oscillations (SdH) and
Zeeman splitting at magnetic field B > 0.6 and 3.5 T,
respectively. At higher magnetic field the oscillation
minimum goes to zero, confirming high-quality quan-
tum transport [27]. Figure 2(b) shows the SdH oscil-
lations amplitude Δρxx measured at T ¼ 1.7 K as a
function of 1=B and at increasing density. At lower
densities (dark blue curve), the oscillations are periodic
in 1=B and their amplitude increases following an
exponential envelope, a clear indication of conduction
through a single channel. As the 2DEG density
increases (blue to orange curves), the oscillation fre-
quency increases and a beating pattern is developed at a
relatively low field (∼2 T). The beating pattern features
a full modulation of the oscillations amplitude at 1.7 K
and reveals nodes with a position shifting toward higher
magnetic fields B as Vg increases. This interference
pattern is a signature of two parallel channels with
similar high mobility contributing to transport. We
attribute the origin of these channels to the two low-
lying conducting band valleys in Si, since the valley
splitting energy should dominate at low fields over
cyclotron and Zeeman energy [28,29].
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FIG. 1. (a) Schematic of the constant-energy ellipsoids for the
Si conduction bands in momentum space (left cartoon) and
constant energy ellipses obtained by two-dimensional (2D)
projection for the (001) Si surface (right cartoon). Lower energy
subbands are shown in blue. Long and short axis of the ellipsoids
correspond to the longitudinal (ml ¼ 0.92m0) and transverse
(mt ¼ 0.19m0) effective mass for electrons in Si, respectively.
States from the out-of-plane valleys have the heaviest effective
mass (ml) along the quantization axis and form a double-
degenerate ground state in two dimensions (concentric ellipses),
further split in energy by the sharp confinement potential.
(b) Mobility μ as a function of density nH from Hall bar devices
across a wafer at T ¼ 1.7 K. Circles colored in black, blue, green,
light green, yellow, orange, and dark orange correspond to
measurement from devices A–G, respectively. The inset shows
the maximum mobility μmax from all the devices and average
value � standard deviation (red). (c) Conductivity σxx as a
function of nH from device (dark blue circles) with fit to
percolation theory in the low density regime (red line). The
inset shows the percolation density np from all the devices and
average value � standard deviation (red).
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To quantify the population of the two valleys, we show in
Fig. 2(c) the normalized fast Fourier transform (FFT)
spectra amplitude of the oscillations as a function of Vg

and oscillations frequency f. For Vg ≤ 4.6 V we observe
a single peak in the FFT spectra, pointing to a similar

population of the two valleys (n1 ∼ n2) within the exper-
imental resolution of the FFT. Because valley splitting
grows with the valley population difference Δn ¼ n1 − n2
[16,28,30,31],

ΔEVS ¼ 2ϵFΔn=n ð1Þ

where n is the total density, ϵF ¼ πℏ2n=m� is the Fermi
energy for spin-degenerate states and m� is the effective
mass in silicon, this is the regime characterized by a valley
spitting smaller than the disorder-induced Landau level
broadening ΔEVS ≤ Γ implying that beatings are not
resolved in the SdH oscillations. Effectively, we measure
transport through a single channel whose total density, and
hence peak frequency, increases linearly with Vg. For Vg ≥
4.6 V we start to observe two distinct peaks at frequencies
f1 and f2 because the increasing valley splitting overcomes
the Landau level broadening. Correspondingly, two high
mobility channels emerge in transport and beatings appear
in the SdH oscillations [Fig. 2(b)]. We exclude intersub-
band resonant scattering [32,33] and treat these two
channels independently since f1 ∼ f2 in our measurements
and we do not observe features associated to periodicity
f1 − f2. The frequency separation between peaks
jðf1 − f2Þj, and hence jðΔnÞj, grows with Vg, signaling
an increasing valley splitting with electric field, in agree-
ment with theoretical expectations [28,29,34]. Figure 2(d)
shows the Vg-dependent carrier density in the two valleys
n1 and n2 determined by the quantum Hall density vs peak
frequency relationship n1;2 ¼ gzgvf1;2ðe=hÞ, where e and h
are the electron charge and the Planck’s constant, gz ¼ 2
and gv ¼ 1 are Zeeman and valley degeneracy [35]. The
total density determined by the FFT analysis of the SdH
oscillations n1 þ n2 (black) matches the Hall density nH
(red) obtained at low fields, confirming the validity of the
two-band model for transport.
To extract valley splitting we use the following pro-

cedure. We identify the SdH oscillations showing clear
beatings and fit the curves building upon the models
reported in Refs. [28,30] that describe the quantum
oscillations at low or intermediate magnetic fields with
Lifshitz-Kosevich formulas [36]. The normalized oscilla-
tory part of the magnetoresistance Δρxx=ρ0 is modeled as

Δρxx
ρ0

¼ ACðτqÞ
�
cos

�
β

B
n1 − π

�
þ cos

�
β

B
n2 − π

��
; ð2Þ

where A is an amplitude prefactor that includes the spin
degeneracy, Cðτq) a term depending on the single particle
relaxation time τq, as detailed below, and β ¼ πh=e a
constant term. We use three fitting parameters. The first two
fitting parameters are A and τq, that enter Eq. (2) via the
temperature dependent term

FIG. 2. (a) Longitudinal resistivity ρxx for device B as a function
of magnetic field B at a Hall density nH ¼ 9.3 × 1011 cm−2 and
mobility μ ¼ 16.1 × 103 cm2=Vs at T ¼ 65 mK. (b) Oscillation
amplitude Δρxx ¼ ρxx − ρ0, where ρ0 is the low field resistivity,
as a function of the inverse perpendicular magnetic field 1=B for
device B after smoothing and polynomial background subtraction
at T ¼ 1.7 K. Different curves correspond to different and increas-
ing accumulation gates Vg (dark blue to orange, respectively):
Vg ¼ 2.6, 3.6, 5,1, 5.5, 6.5, and 6.9 V corresponding to nH ¼ 1.7,
2.8, 4.5, 5.0, 6.1, and 6.5 × 1012 cm−2. The curves are offset for
clarity. (c) The normalized fast Fourier transform spectra amplitude
of the oscillations for device (B) as a function of accumulation gate
Vg and oscillation frequency f at T ¼ 1.7 K. Amplitude color
scale: 0.3 to 1. To obtain the FFTwe use the rawΔρxx data with no
background subtraction. Smoothing and interpolation are per-
formed by using a Savitzky-Golay Matlab smoothing routine to
obtain a 1=B equally spaced signal to feed into the FFT. (d) Com-
parison of densities from Hall effect and FFT analysis of the SdH
oscillations as a function of accumulation gateVg.n1 (green) andn2
(blue) are the singlevalley densities fromFFTandn1 þ n2 (black) is
the resultant total density. nH is the Hall density (red circles).
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CðτqÞ ¼ e−
π

ωcτq ·
2π2kBT=ℏωc

sinhð2π2kBT=ℏωcÞ
cos

�
πg�m�

2m0

�
; ð3Þ

where we assume a spin susceptibility g�m�=m0 ¼ 0.38 in
silicon and τq equal for the two valleys to minimize the
number of fitting parameters, ωc is the cyclotron frequency,
kB and ℏ are the Boltzmann and Planck constants. The
third fitting parameter is the valley population difference
Δn that enters Eq. (2) via the two valleys population n1 ¼
ðnþ ΔnÞ=2 and n2 ¼ ðn − ΔnÞ=2, where n is the total
density of the two valleys from Fig. 2(d). While A and C in
Eq. (2) capture the overall shape of the curve, Δn
influences the periodicity of the SdH oscillations and the
interference patterns and is the key parameter to determine
valley splitting via Eq. (1) [37].
Figure 3(a) shows, as an example of the fitting pro-

cedure, the experimental data Δρxx=ρ0 (black) from
device B as a function of 1=B, measured at high density
(n ¼ 6.75 × 1012 cm−2) and at 1.7 K. Beating nodes are
observed at ∼0.23 T−1 (∼4.45 T) and at ∼0.38 T−1

(∼2.63 T) and the fitted curve (red) matches well the

experimental data. The fitted valley population difference
Δn ¼ 3.2 × 1011 cm−2 corresponds to a valley splitting
energy ΔEVS ¼ 8.2 meV. To improve on the temperature
broadening of the oscillations, and better resolve the beatings,
the sample is also cooled down to 65 mK. Figure 3(b) shows
the experimental data (black) and the corresponding
fitting (blue) at a lower density (n ¼ 3.93 × 1012 cm−2).
The beatings nodes are better resolved and from the fitting
parameter Δn ¼ 1.64 × 1011 cm−2 we obtain ΔEVS ¼
4.1 meV, respectively [38]. Figure 3(c) summarizes the
results of our fitting procedure and shows the valley splitting
for Si-MOS devices A (circles), B (squares), andC (asterisks)
estimated at T ¼ 1.7 K (red) and 65 mK (blue) as a function
of density in the range of 3.7 to 6.8 × 1012 cm2. We compare
our results with the experimental results (magenta diamonds,
from Ref. [20]) and effective mass calculations (black line,
from Ref. [34]) for valleys splitting in 2DEGs obtained in
Si/SiGe heterostructures. Note that in the Si/SiGe hetero-
structures in Ref. [20] valley splitting was estimated by
activation measurements in the quantum Hall regime. In
Si-MOS, we observe large valley splitting energies that
increase in the range of 3.7 to 8.2 meV near linearly with
density, regardless of the device location on the wafer and
temperature. This in agreement with the observation of a
uniform mobility at high density across devices pointing to a
uniform semiconductor-dielectric interface across the wafer.
Crucially, we see that the valley splitting density depend-

ence in Si-MOS extends to the high density regime the same
trend that was observed in Si/SiGe at low density [20]. This
trend is compatible [39] with the predicted density-depen-
dent valley splitting calculated for a disorder-free Si/SiGe
quantum well top interface [34]. From this observation we
arrive at the following learning: The electron density, and
hence the vertical electric field is the key parameter
determining the measured valley splitting of 2DEGs in
silicon in these wafers, regardless of the interface providing
quantum confinement (Si/oxide in Si-MOS or Si/SiGe). We
speculate that this apparent universal dependence of valley
splitting upon density, and hence electric field, emerges in
Hall bar measurements for the following two reasons. First,
in a 2DEG the electric field is accurately determined as it
connects directly to the measured density. Second, macro-
scopic Hall bar measurements average out the locally
varying atomic-scale features at the confining interface that
influence valley splitting variations in quantum dots.
In conclusion, we measured the density-dependent valley

splitting in Si-MOS Hall-bar transistors made by advanced
semiconductor manufacturing. Low disorder in these Hall
bars allow to estimatevalley splitting by analyzing the beating
patterns arising from the two energy split valleys in magneto-
transport. Comparing the data with previous theory and
experimental work for 2DEGs in Si, we highlight the critical
role of vertical electric field in determining valley splitting.

Data sets supporting the findings of this study are
available [40].

FIG. 3. Device B oscillations amplitude normalized to the low-
field magnetoresistance Δρxx=ρxx;0 as a function of inverse
perpendicular field 1=B after smoothing and polynomial back-
ground subtraction (black) and their fittings (red and blue) at a
temperature of (a) T ¼ 1.7 K and (b) 65 mK. (c) Valley splitting
ΔEVS as a function of density n at a temperature of T ¼ 1.7 K
(red) and 65 mK (blue) from devices A (circles), B (squares) and
C (asterisks). The black line is the theoretical density dependence
of valley splitting ΔEVS ∼ 1.14 × n where ΔEVS and n are in
meV and 1012 cm−2 units calculated in Ref. [34]. Magenta
diamonds are experimental valley splitting values from Si/SiGe
heterostructure-FET from Ref. [20].
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