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Abstract—Ideally, secure user sessions should start and end
with authentication and de-authentication phases, respectively.
While the user must pass the former to start a secure session, the
latter’s importance is often ignored or underestimated. Dangling
or unattended sessions expose users to well-known Lunchtime
Attacks. To mitigate this threat, the research community focused
on automated de-authentication systems. Unfortunately, no single
approach offers security, privacy, and usability. For instance,
although facial recognition-based methods might be a good fit
for security and usability, they violate user privacy by constantly
recording the user and the surrounding environment.

In this work, we propose BLUFADE, a fast, secure, and
transparent de-authentication system that takes advantage of
blurred faces to preserve user privacy. We obfuscate a webcam
with a physical blur layer and use deep learning algorithms
to perform face detection continuously. To assess BLUFADE’s
practicality, we collected two datasets formed by 30 recruited
subjects (users) and thousands of physically blurred celebrity
photos. The former was used to train and evaluate the de-
authentication system performances, the latter to assess the
privacy and to increase variance in training data. We show that
our approach outperforms state-of-the-art methods in detecting
blurred faces, achieving up to 95% accuracy. Furthermore, we
demonstrate that BLUFADE effectively de-authenticates users up
to 100% accuracy in under 3 seconds, while satisfying security,
privacy, and usability requirements.

Index Terms—De-authentication, Lunchtime Attacks, Privacy,
Usability, Deep Learning, Blurred Face Detection

I. INTRODUCTION

To begin using any modern computing device (e.g., desktop,
workstation, laptop, tablet, or smartphone), the user must be
authenticated. During the authentication process, the user is
typically asked to demonstrate possession or knowledge of
one or more of: (1) a secret, such as a password or PIN, (2)
a biometric, such as a face or fingerprint, and (3) a device,
such as a secure dongle or smartphone. Massive investments
were made over the years to create and support secure means
of user authentication.

At a later time, when the user ends (or abandons) its current
session on a logged-in device, so-called de-authentication
must ideally take place. However, in contrast with authenti-
cation, de-authentication received substantially less attention
since lack thereof is not perceived as necessary as lack of
(or insufficient) authentication. This is unfortunate since an

unattended active secure session triggers the very real danger
of Lunchtime Attacks [15]. Such attacks can occur whenever
an adversary gains physical access to the active session of
another user who carelessly stepped away and left the logged-
in device unattended.

This motivates the need for secure, privacy-preserving, and
usable de-authentication techniques. However, prior results
do not satisfy all these three requirements. For instance, the
popular means of de-authentication via inactivity timeouts
can be considered somewhat1 privacy-preserving. However, if
timeouts are too long, it offers poor security as the lunchtime
attack time window grows. Whereas, if timeouts are too short,
usability suffers since the user might need to re-authenticate
needlessly [40]. Other methods continuously authenticate the
user, and de-authentication occurs once the user’s identity can
no longer be verified. Common techniques rely on detecting
physical presence of the user [8], [30], [31].

We believe that continuous face recognition is a promising
means of de-authentication. It tracks and identifies previously
authenticated user’s face as long as it is visible from the
webcam; once the user’s face disappears from view (for a
specific time interval), de-authentication occurs. This general
approach offers several benefits. First, it is easy to implement
and does not require extra equipment since most modern
general-purpose computing devices are equipped with video
cameras. Second, it is secure because current face detection
algorithms are fast and highly accurate [33], making it resistant
to Lunchtime Attacks. Third, it keeps the user authenticated and
logged in, even if keyboard or mouse activity stops, as long
as the user’s face remains within line-of-sight of the webcam.
This is in contrast with methods based on inactivity intervals,
keystroke dynamics [2] or gaze–tracking [15], where users
have to interact with the system continuously or frequently.

However, face recognition in de-authentication is hampered
by significant privacy concerns. First, most users would not
want to be video-recorded continuously. Even if the rules
explicitly state that recordings are not stored anywhere, users
might (rightfully) not trust such promises and refrain from

1Timeouts are not very privacy-preserving since they monitor user’s typing
and/or mouse activity.
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(or attempt to circumvent) using such a method. Second, an
attacker who gains access to the webcam or recordings could
exploit this information for malicious purposes. Blackmailing
a user recorded during private moments is just one of many
possible threats.

Nonetheless, most modern devices are equipped with user-
facing cameras, and despite the manufacturers’ assurances
that cameras only operate in tandem with some user-visible
indicator (e.g., an LED light in, or next to, the camera), many
users find the constant presence of the camera unnerving. In
fact, on some computers with integrated cameras, it is possible
to surreptitiously turn on the camera and record without
triggering the obligatory indicator [5].

Due to privacy and safety concerns, many cautious users
have been applying physical barriers (e.g., placing tape) on
their webcams [29]. This practice was publicly supported by
the ex-FBI director James Comey [18], and some manufactur-
ers now deliver laptops with built-in sliders to cover webcams.

Motivated by the above discussion, we propose BLUFADE, a
de-authentication system based on continuous face detection
that provides user privacy, security, and usability. We apply
a physical blurring material on the webcam that obfuscates
users’ facial traits, making them unrecognizable. Then, after
demonstrating that state-of-the-art face detection models per-
form very poorly on blurred images, we implemented a deep
neural network for this specific task. We tested our system
with 30 subjects in different scenarios and activities, reaching
over 95% detection accuracy.
Contributions:

• A novel secure, usable, and privacy preserving de-
authentication method based on blurred face detection;

• Its evaluation via extensive experiments, demonstrating
that it outperforms state-of-the-art algorithms on blurred
face detection tasks;

• Publicly released two datasets of physically blurred faces:
the first one consists of 20k images of celebrities and
backgrounds, blurred with two different materials, and the
second contains 1, 080 enrollment images and 600 videos
of 30 subjects interacting with a laptop (both blurred).

Organization: Section II overviews related work. Next, Sec-
tion III describes the model, followed by Section IV and
Section V which discuss the material evaluation and selection,
respectively. Then, Section VI describes our experiments.
Results are reported and discussed in Section VII, and Sec-
tion VIII concludes the paper.

II. RELATED WORK

Related work stems from several areas, including de-
authentication as well as face recognition and detection.

A. De-Authentication

In contrast with authentication techniques, which are ex-
tensively studied in the literature and are widely used in
everyday life, there are no standard or broadly adopted user
de-authentication methods. This reflects the fact that users are
forced to authenticate at the beginning of a login session,

while de-authentication is almost never mandatory. Locking
the screen or logging out during a short break (e.g., coffee,
bathroom, hallway chat, lunch) is widely perceived as being
tedious or unnecessary (i.e., 25% of the users leave their
computers unlocked when stepping away from their desk [7]).
However, as mentioned earlier, failure to de-authenticate opens
the door for lunchtime attacks, which are pretty common, as
noted by Marques et al. [32]. Thus, the research community
tried to come up with secure, usable, and privacy-preserving
techniques for automatic user de-authentication.

The simplest de-authentication method is to log out the
user after a fixed keyboard/mouse inactivity period. However,
choosing the duration of this period is not trivial [40]. Recent
techniques rely on Continuous Authentication (CAuth): the
user is continuously monitored and authenticated while inter-
acting with the system, and de-authentication happens once
these interactions stop. CAuth usually relies on some form(s)
of biometrics usually based on recognition of: face [30],
[38], voice [34], motion [13], [39], keystroke and/or mouse
dynamics [3], and even video-game playing style [9]. For an
extensive list of these techniques, we refer to [1], [19].

Of the above, keystroke dynamics is popular and seemingly
non-intrusive while requiring no special equipment, whereas
others need a camera and/or a microphone, which must be
turned on. Keystroke dynamics utilize the user’s unique typing
style (reflected in a profile created at enrollment time) for au-
thentication. While easy to deploy, this approach is not secure
since an attacker can reproduce the user’s typing style [42].
Carrying around a unique token that communicates with the
workstation is another option [11]. However, its prominent
drawback is the requirement to always carry and protect this
token. A similar approach is explored in ZEBRA [31]: the user
is continuously authenticated using a personal bracelet as long
as wrist movements and the computer actions match. Unfortu-
nately, [20] showed that Zebra is insecure. More complex and
exotic systems, e.g., based on gaze–tracking [15] and pulse–
response [37] have been proposed. Since they require pricey
specialized equipment, thus their applicability is quite limited.

All aforementioned techniques have a major common draw-
back: a user can be authenticated only when interacting
with the device. Consider the following frequent everyday
activities that involve no interaction (no keyboard, mouse, or
touchscreen actions) while the user remains physically present:

• Reading something on-screen or printed
• Watching a video/movie
• Listening to music or podcast
• Making a phone-call
• Taking a seated nap
• Having an in-person conversation with someone

Any of such activity, once it exceeds the inactivity threshold,
would cause automatic de-authentication, resulting in extra
user burden or even DoS. To overcome this issue, several
methods have been proposed. FADEWICH [8] instruments
an office with position sensors to detect whether the users are
sitting at their desks. Assentication [22] detects user presence
through pressure sensors in the chair cushion. Whereas, [10]
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instruments a chair with BLE beacons to detect whether the
user is currently sitting. Facial recognition can be used for
CAuth by continuously monitoring faces that appear in front
of the camera, while being user-transparent [12], [35], [38].
In this paper, we focus on detection – rather than recognition
– of faces, since most facial features would not be visible
for privacy reasons. Since the user is already logged in, it is
enough to trace the presence (detection) of their face.

B. Face Detection and Recognition

Face detection and face recognition are distinct Computer
Vision tasks thoroughly studied in recent years. We consider
face recognition a subclass of face detection, since the algo-
rithms first start by detecting a face and then use its features
to compare to a set of known faces to recognize the person.
In early stages, face recognition was done by automatically
extracting distinctive facial features, e.g., eyes, mouth, or nose.
These features were used to transform the face into a vector,
and using statistical pattern recognition techniques, faces were
matched [6], [23]. With the rise of deep learning, especially
Convolutional Neural Networks (CNN), computers reached
(and surpassed) human performance in such tasks [36]. Deep-
learning-based face recognition techniques can be divided into:
(1) ones using single CNN [16], [24], (2) multi CNNs [28],
and (3) variants of CNN [48]. For a comprehensive list of face
recognition methods, refer to [17], [21].

Similar to face recognition, early face detection methods
were based on developing discriminative hand-crafted features
from faces and building robust learning algorithms [45], [50].
Nowadays, with the evolution of CNNs, detecting frontal faces
is considered a solved task [33]. More efforts took place
to detect faces under challenging conditions, such as partial
faces [47] or faces captured by depth sensors [4]. Recently,
TinaFace [52], by considering face detection as a particular
object detection task, outperformed state-of-the-art methods
on the set of most challenging face detection dataset WIDER
FACE [46]. We refer to [49] for a complete treatment of
this topic. Finally, [51] tested state-of-the-art face detection
models on low-quality images with different levels of blurring,
noise, and contrast, showing that both hand-crafted and deep-
learning-based face detectors perform poorly on such images.

III. MODEL OVERVIEW

We now describe our system model and its real-world
application scenarios.

A. System Model

The core idea is to use a webcam (built-in or external) to
detect the user’s face continuously. At the beginning of the
session, the user authenticates by any canonical method, e.g.,
passwords or fingerprint recognition. Then, BLUFADE collects
images at regular intervals from the webcam, keeping the user
authenticated as long as a face is detected. Once the detection
fails and a grace period passes, the user is automatically
logged out. To preserve user privacy, the webcam view is
physically blurred by a somewhat-transparent tape or a similar

means. Thus, users can be sure that the images received by the
webcam are already altered and cannot be used to recognize
them. We note that BLUFADE’s goal is to detect, and not to
recognize, faces since the tape should blur the image enough
to obscure facial traits.

Besides privacy, BLUFADE offers the usual benefits of face
detection de-authentication mechanisms. First, is completely
transparent for the user, since it does not interfere with normal
user behavior, and prevents Lunch Time Attacks. Furthermore,
it only requires a simple strip of tape as additional equipment,
and allows the user to remain inactive without being de-
authenticated, as long as they remain in the camera’s view.
The main implementation challenges are: (i) selecting an
appropriate material that obscures users’ facial traits, while
still allowing face detection by automated algorithms, and (ii)
developing an algorithm to detect faces from blurred images.
(i) is analyzed in Section V, and (ii) in Section VI.

B. Application Scenario

We start by distinguishing between shared and personal
computers. We assume that the latter is always used by the
same person; thus, the detection system can be tailored to
their blurred face. The phase of training the software to
recognize a face is called enrollment. In shared computer
settings, the system is used by multiple users and should detect
all of them. Thus, the enrollment is complicated and should
be done to every new user, which is clearly not applicable.
The second distinction concerns the place where the system
is used. A computer can be stationary or portable, which
defines the scene its webcam sees when no users are present
(i.e., the “background”). If stationary, the background is fixed;
otherwise, it will vary depending on the place. Based on that,
we identify four scenarios:

• Scenario 1 - Same person and fixed background: repre-
sents workstations or desktops, located in an office/home
and is always used by the same person. Enrollment is
possible;

• Scenario 2 - Different people and fixed background:
represents shared workstations in fixed places (e.g., of-
fices). Enrollment is not applicable;

• Scenario 3 - Same person and variable background:
represents personal computers, e.g., laptops or tablets,
that owners can bring anywhere. Enrollment is possible;

• Scenario 4 - Different people and variable back-
ground: represents shared computers that are either
portable and/or have variable backgrounds, e.g., public
ATMs or wheeled workstations. Enrollment is not appli-
cable.

IV. MATERIAL EVALUATION

One of the critical design elements for BLUFADE is how to
choose the appropriate blurring material. In this section, we
discuss the criteria for this selection (Section IV-A), and the
experimental settings to determine the best candidates in terms
of suitability for face detection (Section IV-B).
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(a) None (b) Chair (c) Antirefl

(d) Ruvid (e) RuvidX2 (f) Scotch

Fig. 1: Effectiveness of blurring materials considered at a distance of 30 cm.

A. Selection Criteria

The ideal blurring material should satisfy three require-
ments: (i) blur enough to prevent face recognition, (ii) not
blur too much to enable face detection, (iii) be inexpensive
and readily available. Based on these requirements, we identify
five possibilities2:

• Chair - Polimark Poliver Battisedia 280854. Semi-
transparent rigid plastic material that is commonly used
on floors to prevent chairs from scratching them;

• Antirefl - Polimark Poliver PL01322. Anti-reflective ob-
fuscating film, commonly used on windows to block vis-
ibility from the outside but letting light to pass through;

• Ruvid - Ruvid Transparent Paper. Transparent rough
paper used as book covers;

• RuvidX2 - Double Ruvid Transparent Paper. Double layer
of the previous item;

• Scotch - Magic Tape Scotch 3M. Common semi-
transparent white adhesive tape;

B. Experimental Settings & Best Candidates

To find the best blurring material, we evaluated the quality
of blurred images produced by a webcam when various mate-
rials were applied. To this extent, we used a mannequin called
Dolores3 as a fixed subject of our photos. For each material,
we positioned Dolores in front of the webcam at several
distances (from 30 cm to 90 cm, with 10 cm steps), simulating
realistic usage scenarios. We used a white background in a
light-controlled environment. At each distance, we took five
snapshots, and used three samples of each material. Then, we
assessed image quality (i.e., sharpness) using the algorithm
presented in [14], and averaged the results. Figure 1 shows
pictures of Dolores taken with different blurring materials,

2Chair: https://bit.ly/3i9Vjm8, Antirefl: https://bit.ly/3CN14xS, Ruvid:
https://bit.ly/3m3KZ0i, Scotch: https://bit.ly/3zMUOV8.

3The name was chosen from an analog situation from the TV series
Umbrella Academy.

while Figure 2 shows the quality of images for all materials
and steps. A lower Niqe value indicates the image has an
higher sharpness. The plot shows that all blurring materials
significantly lower image quality and that the distance from
the webcam does not meaningfully influence the Niqe value.
Ideally, the lower the image quality, the more challenging
the face recognition by automatic systems. Thus, we selected
two materials yielding highest quality images (Chair and
Antirefl), which from visual inspection (examples are visible
on Figure 1) could preserve users’ privacy. The following
section provides more evidence on their privacy features and
discusses material selection.

30 40 50 60 70 80 90
Distance (cm)
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Fig. 2: Averaged quality of images for each material and steps. Lower Niqe
values are associated to sharper images.

V. MATERIAL SELECTION

To select the best material among the two candidates
from the previous section, we need to evaluate their privacy-
preserving characteristics. To this extent, we first collected a
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(a) Antirefl (b) Chair (c) None

Fig. 3: Angelina Jolie with different blur filters.

dataset of blurred pictures of celebrities (Section V-A), and we
conducted a survey asking the participants to recognize some
of them (Section V-B). Last, we report the results and final
decision (Section V-C).

A. Celebrities Dataset

To the best of our knowledge, there are no physically blurred
faces datasets publicly available. Furthermore, to carry on our
experiments, we need images of both blurred backgrounds
and faces with the materials we selected in Section IV-B.
To create such a dataset, we exploit the CelebA dataset [27]
and the SUN dataset [44]. In particular, we randomly selected
5000 images from CelebA (faces) and 5000 images from SUN
(backgrounds). Then, applying the Chair and Antirefl filters
to a laptop webcam, we recorded a slideshow of the 10K
images displayed on a tablet. Finally, we picked a frame in
correspondence of each image from the recording, creating
two new datasets of 10K blurred images each. The dataset
is available at the following link: https://spritz.math.unipd.it/
projects/BLUFADE/

B. Celebrities Privacy Survey

We conducted an online survey asking participants to rec-
ognize celebrities from blurred images to test whether the
blur level was enough to protect users’ privacy. In particular,
we selected ten images of well-known celebrities in a neutral
context, and we asked participants to guess their names. For
each image, first, we presented the Antirefl version, then the
Chair version, and last the original image (i.e., from the less
sharp image to the most). The participants were asked to
provide a name at each step, without the possibility to go
back and change the name after seeing a less blurred image.
If the name provided at the last step was correct (we also
accepted names with spelling errors), we could assume the
participant knew the celebrity, and thus we checked at which
blur stage the participant recognized them. If the participant
did not know the celebrity, we discarded that sample. Figure 3
shows an example of a celebrity blurred with the two filters
and the original photo.

C. Survey Results and Material Decision

We collected answers from 70 participants (Age range: 22-
45, 64.3% Male, 35.7% Female). 391 images were recognized
correctly with no blur, 273 with Chair blur, and only 5 with
Antirefl. In other words, participants recognized a celebrity

they knew only in 1.28% of the cases through the Antirefl
filter, and in 69.8% of the cases through Chair. Thus, we
demonstrated that Antirefl successfully protects users’ privacy,
and we decided to use it for the rest of the experiments.

VI. EXPERIMENTS

We now present the experiments we conducted to evaluate
BLUFADE. In Section VI-A, we illustrate the data we collected
for the experiments. Section VI-B evaluates the face detection
state of the art models on our data. Last, we propose our model
in Section VI-C.

A. Data Collection

To conduct our experiments, we collected data from 30
people, 13 females and 17 males, aged 22-43. According to the
scenarios presented in Section III-B, we first asked participants
to follow an enrollment procedure, and then we recorded
them while performing common everyday actions. In detail,
the enrollment procedure consisted in taking snapshots of the
user in 9 different positions: in front of the webcam at close
distance (i.e., less than 30 cm), mid-range distance (between
30 and 70 cm), and far (more than 70 cm); at mid-range
translated to left and right (i.e., the face should be completely
contained in the left or right half of the webcam view); at
mid-range rotating the head by looking up, down, left, and
right. Then we recorded users for 10 seconds while reading an
email, writing sentences, looking at their phones, talking with
a colleague, and leaving the workstation. Users repeated these
steps on four different backgrounds bn ∈ B, n = {1, 2, 3, 4}
of increasing difficulty: a white wall (b1 - easy), a white
wall with a closet and a poster (b2 - medium–easy), a white
wall with a blue door (b3 - medium–hard), a white wall with
a written blackboard and a window (b4 - hard). They are
shown in Figure 4. We used a Logitech C922 Pro Stream
Webcam (30 Frames Per Second) with Antirefl blur for the
recordings. This dataset is available at the following link:
https://spritz.math.unipd.it/projects/BLUFADE/

B. State of the Art Face Detection Algorithms

The performance of BLUFADE highly depends on the face
detection algorithm behind it. Before implementing our neural
network, we tested the state-of-the-art face detection systems
on both our celebrities and enrollment blurred images. To
this extent, we extracted 240 random celebrities and 240
random enrollment images and tested with Google Cloud
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(a) b1, easy (b) b2, medium-easy

(c) b3, medium-hard (d) b4, hard

Fig. 4: The four different backgrounds used in the experiments (left original, right blurred with Antirefl).

Vision4, Amazon Rekognition5, Azure Cognitive Services with
detection_01 and detection_03 models6, and TinaFace [52].
Results are reported in Table I, and they show how any of the
state-of-the-art models were not suitable for our task, given
the high level of blur of our images. Even Azure v3, explicitly
designed for blurred faces, with 72.08% of accuracy, was not
good enough for BLUFADE.

TABLE I: Comparison between accuracy of state-of-the-art face detection
models on blurred samples from Celebrities and People datasets

Google Amazon Azure v1 Azure v3 TinaFace

Celebrities 1.67% 43.75% 0.04% 45.83% 13.75%
People 3.33% 26.25% 0.00% 72.08% 18.75%

C. Proposed Model

The poor performances of state-of-the-art methods in de-
tecting blurred faces suggest that a new approach is needed
for this task. Since the high level of blur removes facial
traits, we decided to shape our problem as an object de-
tection task, as also suggested by Zhu et al. [52]. Rather
than binary classification (i.e., face vs. no face), we opted
for object detection also to possibly track the person, or
detect two or more people in the same image for security
purposes. For instance, if a person is logged in and using
the computer and another user walks behind the first user,
the system should detect which person is keeping the session
alive; otherwise, it might wrongly de-authenticate the user.
Furthermore, [43], [51] demonstrated that CNNs do not cope
well with blurred images, but fine-tuning them can help to
improve the performances in object detection significantly.
From these considerations, we decided to fine-tune the state-
of-the-art object detection model RetinaNet [25], which uses

4https://cloud.google.com/vision/docs/detecting-faces
5https://docs.aws.amazon.com/rekognition/latest/dg/faces.html
6https://docs.microsoft.com/en-us/azure/cognitive-services/face/face-api-

how-to-topics/specify-detection-model

ResNet and Feature Pyramid Network as back-bone for fea-
ture extraction. We followed an official procedure released
by TensorFlow [41]. In particular, our fine-tuning procedure
follows these steps: starting from ResNet pre-trained using the
COCO dataset [26], we replace the classification head with a
new randomly initialized classification head able to classify a
single class (i.e., face), and we finally fine-tune the network
using 150 batches of 32 samples each, with SGD optimizer
(learning rate = 0.01, momentum = 0.9).

1) Four Scenarios: To represent the four scenarios from
Section III-B, we used the enrollment snapshots and the
activity videos to create different training and test sets. In
general, enrollment images are used in the training set, while
activity videos are used for testing. For each scenario, we test
person by person and background by background, creating
every time a training set that respects the requirements of the
scenario to fine-tune the neural network. We remind that every
person p of our dataset of people P has taken 9 enrollment
snapshots for each background b of the 4 backgrounds B
analyzed (from easy to hard). We refer to the 9 enrollment
images of a person p in a background b as ep,b. In more details,
we use a leave-one-out procedure, testing at each iteration the
activity videos of a person p ∈ P in a background b ∈ B, and
setting the training (fine-tuning) set as specified in Table II. In
the table, we give formal and informal explanations on how we
constructed the training set to understand the scenarios easily.

2) Regular People vs. Celebrities: To introduce more vari-
ance in the training set, we also run some experiments using
the celebrities dataset. The first set of experiments was run
using only people’s snapshots as a training set. Then, we
repeated the experiments adding in the training set 1, 080
celebrities’ faces, and the last repetition was done fine-tuning
the network using celebrities only. This way, we could see
how the variance in the training set affects performance of
network detection. The case of celebrities only was possible
just in the fourth scenario, since it was impossible to have
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TABLE II: Training set composition according to specific application scenario. P and B are sets of participants and backgrounds, respectively.

Scenario Formal Training Set Explanation

1) Same person and
fixed background

with p, b fixed, i ∈ P, j ∈ B,
⋃

∀i6=p
∀j 6=b

ei,j ∪ ep,b All enrollment snapshots of people different from p in back-
grounds different from b + enrollment of p in background b

2) Different people and
fixed background

with p, b fixed, i ∈ P, j ∈ B,
⋃

∀i6=p
∀j

ei,j All enrollment snapshots of people different from p

3) Same person and
variable background

with p, b fixed, i ∈ P, j, k ∈ B,
⋃

∀i6=p
∀j 6=b

ei,j ∪ ep,k| k 6= j All enrollment snapshots of people different from p in two
backgrounds (j, k) different from b + enrollment of p in the
remaining background different from b, j, k

4) Different people and
variable background

with p, b fixed, i ∈ P, j ∈ B,
⋃

∀i6=p
∀j 6=b

ei,j All enrollment snapshots of people different from p in back-
grounds different from b

their enrollment or more celebrities in the same background.
3) Confidence Threshold: RetinaNet returns the objects

it detects along with their confidence scores. Based on a
threshold, usually 0.80, the object is detected or ignored. Since
our data is highly blurred and strongly differs from usual data,
we had to find a proper threshold for the task. We used the
more general celebrities in this case since it has thousands of
faces and thousands of backgrounds without faces. Using the
celebrities instead of the people dataset to find the threshold,
we would have limited the possibility of overfitting. Thus, we
fine-tuned the network with the same 1080 celebrities we used
to augment the people training set, and we tested the network
on the remaining celebrities and backgrounds of our dataset.
Then, we tried different thresholds ranging in [0.100,0.125
0.150, . . . , 0.900], selecting the one which gave the best
accuracy (i.e., threshold = 0.425). We used this threshold for
the rest of the experiments.

VII. RESULTS AND DISCUSSION

We now present the results of our experiments. Sec-
tion VII-A shows the performance of the face detection task.
In Section VII-B, we evaluate the performance of BLUFADE in
de-authenticating people. Last, we discuss current limitation
of our system in Section VII-C.

A. Face Detection

Table III reports the balanced accuracy of face detection
on the frames of the activity videos divided by scenarios,
backgrounds, training datasets, and tasks (T1 = read email, T2
= write sentence, T3 = look phone, T4 = talk with colleague,
T5 = leave workstation). As expected, we reach the best
performance on the easiest background b1, with around 98%
accuracy on every scenario using the people scenario, 97%
also using the celebrities, and 94% in the celebrities only case.
Among the tasks, T1, T2, T3 scores the best, probably because
are composed of frontal frames of the people. In T4, people
were talking with a colleague on their left or right, showing
the webcam their face profile. This has probably lead to some
mistakes. Finally, T5 shows some errors during the transition
period in which the user is leaving. In fact, we considered the
user had completely left only when the face was not more
visible, and the network struggled a bit with partial faces or
with just the body. However, when the user was fully present
or absent, the network worked just fine as in the other tasks.
In Section VII-B, we better analyze this task to implement the
de-authentication system.

Looking at the scenarios, surprisingly, those without enroll-
ment (i.e., Scenarios 2,4) show slightly better performances
than the others. This could be explained by the lacking of
real unique traits in the enrollment images. Having a wider
variance in the training set helps the network in detecting

TABLE III: Balanced accuracy of face detection of frames of activity videos divided by scenarios, backgrounds, training datasets, and tasks (T1=read
email, T2=write sentence, T3=look at phone, T4=talk with colleague, T5=leave workstation).

Scenario 1 Scenario 2 Scenario 3 Scenario 4
Training Task b1 b2 b3 b4 Avg b1 b2 b3 b4 Avg b1 b2 b3 b4 Avg b1 b2 b3 b4 Avg

People

T1 1.00 0.99 0.95 0.86 0.95 1.00 0.99 0.95 0.91 0.96 0.99 0.99 0.93 0.80 0.93 0.99 0.98 0.93 0.82 0.93
T2 1.00 0.99 0.95 0.87 0.95 1.00 0.99 0.95 0.94 0.97 0.99 0.99 0.94 0.80 0.93 1.00 0.99 0.93 0.83 0.94
T3 0.99 0.99 0.90 0.84 0.93 1.00 0.99 0.92 0.93 0.96 0.99 0.99 0.89 0.78 0.91 0.99 0.98 0.88 0.79 0.91
T4 0.98 0.94 0.88 0.80 0.90 0.98 0.96 0.90 0.93 0.94 0.98 0.95 0.87 0.73 0.88 0.99 0.94 0.86 0.72 0.88
T5 0.94 0.94 0.91 0.77 0.89 0.94 0.94 0.92 0.79 0.89 0.91 0.90 0.88 0.68 0.84 0.94 0.93 0.90 0.75 0.88
Overall 0.98 0.97 0.92 0.83 0.92 0.98 0.98 0.93 0.90 0.95 0.97 0.97 0.90 0.76 0.90 0.98 0.97 0.90 0.78 0.91

People
&

Celeb

T1 0.99 0.98 0.94 0.74 0.91 0.99 0.99 0.96 0.90 0.96 0.99 0.99 0.93 0.72 0.91 0.99 0.99 0.94 0.78 0.93
T2 0.99 0.98 0.95 0.80 0.93 0.99 0.99 0.96 0.93 0.97 0.99 0.99 0.94 0.80 0.93 0.99 0.98 0.96 0.83 0.94
T3 0.99 0.98 0.87 0.72 0.89 0.99 0.99 0.90 0.88 0.94 0.99 0.98 0.84 0.68 0.87 0.99 0.98 0.87 0.74 0.90
T4 0.94 0.89 0.84 0.62 0.82 0.95 0.91 0.84 0.82 0.88 0.94 0.90 0.79 0.61 0.81 0.95 0.90 0.82 0.66 0.84
T5 0.93 0.92 0.90 0.74 0.87 0.94 0.92 0.91 0.78 0.89 0.94 0.92 0.88 0.73 0.87 0.93 0.91 0.89 0.73 0.87
Overall 0.97 0.95 0.90 0.72 0.89 0.97 0.96 0.91 0.86 0.93 0.97 0.96 0.88 0.71 0.88 0.97 0.95 0.90 0.75 0.89

Celeb

T1 - - - - - - - - - - - - - - - 0.99 0.95 0.91 0.65 0.87
T2 - - - - - - - - - - - - - - - 0.99 0.97 0.93 0.73 0.91
T3 - - - - - - - - - - - - - - - 0.96 0.94 0.76 0.57 0.81
T4 - - - - - - - - - - - - - - - 0.84 0.79 0.73 0.52 0.72
T5 - - - - - - - - - - - - - - - 0.92 0.88 0.88 0.70 0.84
Overall - - - - - - - - - - - - - - - 0.94 0.91 0.84 0.63 0.83

2022 IEEE International Conference on Pervasive Computing and Communications (PerCom)

203Authorized licensed use limited to: TU Delft Library. Downloaded on May 23,2022 at 12:03:08 UTC from IEEE Xplore.  Restrictions apply. 



people in different tasks. In fact, the great differences are
again in T4, T5, thus a more general network can help in such
difficult tasks. Finally, better performances are achieved when
the training set is formed by people only. This is understand-
able since the training and test set are more similar. Adding
the celebrities lowers the performances, but not significantly.
We lose around 2% in each scenario, but still achieve 90%
accuracy, which is a good result. We believe that adding more
variance in the training set as in this case could help on a real-
world situation with a lot of different people and backgrounds.
Finally, using only celebrities to fine-tune the network leads to
the worst accuracy, but still the average is above 80%, which
is remarkable since training and test set are very different.
Comparing our results with the one state of the art models
(Table I), we clearly outperform them. Against Azure v3,
specifically built to detect blur faces, we score around 35%
and 20% more on celebrities and people respectively.

B. BLUFADE Performance

Face detection is the heart of BLUFADE. By detecting the
user’s face frame by frame, we are able to understand when

they leave and de-authenticate them accordingly. Even with
results above 90%, which are generally good in the computer
vision area, we still need an improvement to provide users
a reliable de-authentication system. In fact, de-authenticate
them every time the neural network fails the prediction is not
desirable, and can negatively impact the users’ experience. To
improve BLUFADE, we can consider two crucial aspects: i) the
neural network commits sparse, not sequential mistakes, and
ii) the de-authentication has not to be instantaneous. In fact, the
literature identifies a “grace period” in which the user might
be still logged in even though they already left. Obviously, this
period must be short enough to not allow lunchtime attacks,
and is based on the fact that users, in that period, can notice if
someone is trying to steal their active session. A good grace
period is below six seconds [8].

Following these considerations, BLUFADE performs face
detection and evaluates the results using a sliding window of
aggregates frames. The de-authentication occurs once the face
is no detect for N consecutive frames. N can be 1, which
means that at the first frame the face is not detected, BLUFADE
de-authenticates the user, or higher. In our experiments, we
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(a) Scenario 1: Same person and fixed background
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(b) Scenario 2: Different people and fixed background
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(c) Scenario 3: Same person and variable background
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(d) Scenario 4: Different people and variable background

Fig. 5: Average logout accuracy (bars) and average grace period (dots) for different aggregation frames and application scenarios.
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tested different values of N , to a maximum of 90, which means
3 seconds (the webcam recorded at 30 FPS). Figure 5 shows
the logout accuracy (i.e., the times BLUFADE correctly logs
out a user) per different level of N (aggregation frames) and
the corresponding grace period needed to log-out the user.
The four graphs represent the four scenarios, and each bar
in the plot represents a background accuracy, while the dots
indicates the grace period. These graphs refer to the exper-
iments using the people dataset only, which achieved better
scores than using People and Celebrities or Celebrities only.
We discuss these two cases later in this section. In general,
the de-authentication accuracy trends reflect the underlying
face detection system. For all the application scenarios, the
accuracy increases as the aggregation does. Considering an
aggregation frame equal to one, BLUFADE would wrongly de-
authenticate users too frequently (i.e., over 60% on average
in all the scenarios and backgrounds), making our system not
usable. On the other hand, considering an higher number of
aggregation frames (i.e., 90 frames) the logout accuracy rate
increases up to 100% for Scenario 1 (Figure 5a) and scenario
2 (Figure 5b) in b1 and b2, keeping the grace period under 5
seconds. Scenario 3 (Figure 5c) shows the lowest performance
of BLUFADE, with an accuracy below 80% even with 90
aggregation frames in b4. However, the other backgrounds
show very high scores with a grace period under five seconds.

Considering all scenarios together, the difficulty of the back-
grounds highly impacts the performances. More difficult is the
background, less the accuracy. Starting from 30 aggregation
frames, b1 reaches 100% of accuracy in all the scenarios,
keeping the grace period below 3 seconds. b2 shows similar
performance, reaching 100% of accuracy in less than 4 seconds
in all the scenarios when the aggregation frames is equal to
60. b3 shows more than 95% accuracy with 90 aggregated
frames in about five seconds, while b4 struggles a bit especially
in the third scenario. These data reveals that BLUFADE can
work incredibly well when the background is an empty wall
or with simple decorations, like in a common work office, and
struggles a bit with challenging backgrounds. However, when
the background is fixed, BLUFADE always performs above 90%.

Figure 6 compares the averaged BLUFADE performances in
all the scenarios and background, with respect to the different
training sets we used to fine-tune the network (i.e., People,
People & Celebrities, Celebrities only). The plot clearly shows
how adding more variance to the training set does not help in
the task. This is understandable since when using People only,
the training and test set are more similar, which is preferable.
In this case, BLUFADE achieves 96% accuracy in less than 4
seconds. On the other hand, when fine-tuning the network only
using Celebrities, the training and test set are very different.
Still, BLUFADE achieve almost 90% accuracy in less than 5
seconds, which is remarkable.

C. Limitations

Though BLUFADE achieves good performance, it has some
limitations. First, our participants set include few ethnicity, and
subjects were tested in just four backgrounds. We added more
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Fig. 6: Logout accuracy (bars) and grace period (dots) for different
aggregation frames and training sets. The accuracy and grace periods are
averaged on all the background and scenarios.

variance using the celebrities dataset, and the good results
suggest BLUFADE would work even with different people. Still,
more evaluations need to be conducted. Nonetheless, the four
scenarios give us a good idea of how BLUFADE would work in
the real world. Second, participants performed their tasks for
ten seconds each. Clearly, longer use of BLUFADE needs to be
evaluated. Finally, our evaluation focused on frames containing
one person. Since RetinaNet can detect multiple objects in a
single image, we assume it can also cope with multiple faces.
This needs to be assessed.

VIII. CONCLUSIONS & FUTURE WORK

In this work, we presented BLUFADE, a de-authentication
system based on blurred face detection deep learning al-
gorithm. We conducted extensive experiments to select the
physical blurring material for BLUFADE, to remove facial traits,
ensuring privacy, while allowing face detection by deep learn-
ing algorithms. Users’ privacy was evaluated through an online
survey, demonstrating that a simple anti reflex tape applied
to the webcam is sufficient to make a face unrecognizable.
By continually detecting the users’ blurred faces, BLUFADE

automatically de-authenticates them with very high accuracy,
i.e., up to 100% in under 3 seconds on simple backgrounds,
or 96% within 4 seconds considering also difficult ones. We
tested BLUFADE in four scenarios that represent most of the
real-world systems, ranging from laptops to ATMs, with 30
people conducting five different tasks. Our face detection
neural network outperforms both commercial and literature
state of the art algorithms, demonstrating that fine-tuning can
help in the detection of highly blurred objects and faces.

As future work, we plan to better assess the security of the
system, testing whether is possible to reconstruct facial traits
from physical blurry images. Another possible direction to
expand our work is to implement a tracking system instead of
performing face detection frame by frame. This way, a higher
security level could be achieved without hurting usability.
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