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SUMMARY

OVER the last two decades, we have witnessed a tremendous evolution of wireless
communication systems. For example, the data rates in mobile wireless systems

have increased from a few tens of kilobits per second to 10 gigabits per second between
the first and last, i.e., fifth generation (5G). The main enablers for this growth are sig-
nal processing and radio frequency (RF) hardware innovations, which led to more effi-
cient modulation and coding schemes and high-performance RF transceivers. Follow-
ing these trends, future wireless systems such as 6G and WiFi-7 aim for even higher data
rates, requiring higher frequency ranges, wider bandwidths, and massive antenna ar-
rays. These developments pave the way toward joint communication and sensing RF
systems with very high range, Doppler, and angular resolutions. In particular, favor-
able signal and RF transceiver properties such as large bandwidth will enable precise
RF localization in rich scattering environments such as indoor or urban canyons where
multipath effects severely impair the performance of traditional localization systems
like GNSS (Global Navigation Satellite Systems). At the same time, the wide range of
emerging applications in areas of autonomous navigation, assisted living, and Internet-
of-Things require precise localization, often to cm-level degree accuracy. Therefore, it is
evident that new localization approaches and signal processing algorithms that can ex-
ploit signal and transceiver properties of emerging wireless systems are needed to solve
the problem of precise localization in multipath environments and lead the way to novel
applications.

The goal of this thesis is to design signal processing algorithms and protocols that
will enable precise ranging in multipath environments while using practical single-
antenna RF transceivers. In the first part of this thesis, we introduce a multiband channel
model to describe multipath channel measurements collected over multiple separate
frequency bands using narrowband and wideband RF transceivers. This model shows
that multiband channel measurements have multiple shift-invariance property and that
by increasing the frequency aperture of the multiband measurements, we can improve
the resolution of multipath time-delay estimation. We use this property of the measure-
ments to develop high-resolution time-delay estimation algorithms based on subspace
estimation. To illustrate the performance of these algorithms, we perform extensive nu-
merical experiments which demonstrate that the proposed algorithms are statistically
efficient and that multiband time-delay estimation enables precise ranging in multipath
environments.

However, the aforementioned results also show that the proposed algorithms are
sensitive to errors introduced by hardware impairments of RF transceivers and imper-
fect calibration. In the second part of the thesis, we focus on the problem of joint RF
transceiver calibration and high-resolution time-delay estimation. For example, in prac-
tical scenarios, the frequency response of RF transceivers might not be known nor cali-
brated, and performing time-delay estimation without calibrating these effects will lead

1
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2 SUMMARY

to biased estimates. We show that the problem of joint RF transceiver calibration and
time-delay estimation can be formulated as a particular case of covariance matching,
which after reformulation, can be solved using a simple group Lasso algorithm. Like-
wise, due to imperfections of oscillators used in RF transceivers, the mobile and anchor
nodes are usually not frequency synchronized. This frequency offset severely deterio-
rates the performance of multiband ranging methods. To solve this issue, we design a
two-way protocol for collecting multiband channel measurements and a weighted least
squares-based algorithm that enable joint clock synchronization and ranging.

Finally, in the last part of the thesis, we validate our modeling assumptions and illus-
trate the performance of the multiband time-delay estimation algorithms by considering
practical scenarios of localization in future WiFi-7 networks. For these experiments, we
use real indoor multipath channel measurements collected in a hospital and a univer-
sity building environment. The results of the experiments show that using multiband
channel measurements with a total bandwidth of 320 MHz, the absolute ranging error is
smaller than 4 cm in 80% of the cases. Likewise, using the same scenario setup and three
anchors to localize the mobile node, it is observed that the positioning error is below 24
cm in 95% of the cases. These results show that by using the advanced signal processing
techniques to design estimation algorithms and channel measurement protocols that
can exploit the properties and degrees of freedom offered by future wireless systems and
RF transceivers, decimeter-level accurate positioning is achievable.

The signal processing models presented in this thesis are common to the wide area of
array signal processing applications, such as radar and ultrasound imaging. Therefore,
the results presented in this thesis impact these application areas as well.



SAMENVATTING

DE afgelopen twee decennia zijn we getuige geweest van een enorme evolutie van
draadloze communicatiesystemen. Zo zijn de datasnelheden in mobiele draadloze

systemen gestegen van enkele tientallen kilobits per seconde tot 10 gigabits per seconde
tussen de eerste en de laatste, d.w.z. vijfde generatie (5G). De belangrijkste aanjagers
van deze groei zijn signaalverwerking en radiofrequentie (RF) hardware innovaties, die
hebben geleid tot efficiëntere modulatie- en coderingstechnieken en RF zendontvan-
gers met hoge prestaties. In het verlengde van deze trends streven toekomstige draad-
loze systemen zoals 6G en WiFi-7 naar nog hogere datasnelheden, waarvoor hogere fre-
quentiebereiken, hoge bandbreedtes en massale antenne-arrays nodig zijn. Deze ont-
wikkelingen effenen de weg naar gezamenlijke RF-systemen voor communicatie en de-
tectie met zeer afstands-, Doppler- en hoekresolutie. Met name gunstige signaal- en
RF-zendontvangereigenschappen zoals een grote bandbreedte zullen nauwkeurige RF-
lokalisatie mogelijk maken in omgevingen met veel verstrooiing, zoals binnenshuis of in
stedelijke gebieden, waar multipad-effecten de prestaties van traditionele lokalisatiesys-
temen en GNSS ernstig aantasten. Tegelijkertijd vereisen de vele opkomende toepassin-
gen op het gebied van autonome navigatie, begeleid wonen en het internet-van-dingen
nauwkeurige lokalisatie, vaak tot op cm-niveau. Daarom is het duidelijk dat nieuwe lo-
kalisatiebenaderingen en signaalverwerkingsalgoritmen die de signaal- en zendontvan-
gereigenschappen van opkomende draadloze systemen kunnen benutten, nodig zijn om
het probleem van precieze lokalisatie in multipad-omgevingen te verlichten en de weg
te bereiden voor nieuwe toepassingen.

In dit proefschrift is het ons doel om signaalverwerkingsalgoritmen en protocollen te
ontwerpen die nauwkeurige afstandsmetingen in multipad omgevingen mogelijk ma-
ken terwijl realistische RF zendontvangers met één antenne worden gebruikt. In het
bijzonder introduceren we in het eerste deel van dit proefschrift een multiband kanaal-
model om multipad kanaalmetingen te beschrijven die zijn verzameld over meerdere
afzonderlijke frequentiebanden met gebruikmaking van smalbandige en breedbandige
RF zendontvangers. Dit model laat zien dat multibandkanaalmetingen een meervoudige
verschuivingsinvariantie-eigenschap hebben en dat we, door de frequentie-opening van
de multibandmetingen te vergroten, de resolutie van de multipad tijdvertragingsschat-
ting kunnen verbeteren. Wij gebruiken deze eigenschap van de metingen om hoge-
resolutie tijd-vertraging schattingsalgoritmen te ontwikkelen gebaseerd op subspace
schatting. Om de prestaties van deze algoritmen te illustreren, voeren we uitgebreide
numerieke experimenten uit die aantonen dat de voorgestelde algoritmen statistisch ef-
ficiënt zijn en dat multiband tijdvertragingsschatting nauwkeurige ranging in multipad
omgevingen mogelijk maakt.

De bovengenoemde resultaten tonen echter ook aan dat de voorgestelde algoritmen
gevoelig zijn voor fouten die worden geïntroduceerd door hardwarematige beperkingen
van RF-zendontvanger en onvolmaakte kalibratie. In het tweede deel van het proef-
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schrift richten we ons op het probleem van gezamenlijke RF-zendontvangerkalibratie
en tijdvertragingsschatting met hoge resolutie. In praktische scenario’s kan het bijvoor-
beeld voorkomen dat de frequentierespons van RF-zendontvangers niet bekend of geka-
libreerd is, en dat het uitvoeren van tijdvertragingsschattingen, zonder voor deze effec-
ten te kalibreren, zal leiden tot vertekende schattingen. Wij tonen aan dat het probleem
van gezamenlijke RF zendontvangerkalibratie en tijdvertragingsschatting kan worden
geformuleerd als een bijzonder geval van covariantiematching, dat na herformulering
kan worden opgelost met behulp van een eenvoudig groeps-Lasso algoritme. Als gevolg
van onvolkomenheden in de oscillatoren die in RF-zendontvangers worden gebruikt,
zijn de mobiele en ankerknooppunten gewoonlijk niet frequentiesynchroon. Dit fre-
quentieverschil verslechtert de prestaties van multiband afstandsmethodes aanzienlijk.
Om dit probleem op te lossen, ontwerpen we een twee-weg protocol voor het verza-
melen van multiband kanaalmetingen en een gewogen kleinste kwadraten-gebaseerd
algoritme dat gezamenlijke kloksynchronisatie en afstandsmetingen mogelijk maakt.

Tenslotte, in het laatste deel van het proefschrift, valideren we onze modelveronder-
stellingen en illustreren we de prestaties van de multiband tijdvertragingsschattingsal-
goritmen door praktische scenario’s van lokalisatie in toekomstige WiFi-7 netwerken te
beschouwen. Voor deze experimenten gebruiken we echte inpandige multipad-kanaal
metingen verzameld in een ziekenhuis en een universiteitsgebouw. De resultaten van de
experimenten tonen aan dat bij gebruik van een enkele snapshot multiband kanaalme-
ting met een totale bandbreedte van 320 MHz, de absolute afstandsfout kleiner is dan
4 cm in 80% van de gevallen. Evenzo, gebruikmakend van dezelfde scenario-opstelling
en drie ankers om het mobiele knooppunt te lokaliseren, wordt waargenomen dat de
positioneringsfout kleiner is dan 24 cm in 95% van de gevallen. Deze resultaten to-
nen aan dat door gebruik te maken van geavanceerde signaalverwerkingstechnieken
om schattingsalgoritmen en kanaalprotocollen te ontwerpen die gebruik kunnen ma-
ken van de eigenschappen en vrijheidsgraden van toekomstige draadloze systemen en
RF-transceivers, nauwkeurige plaatsbepaling op decimeterniveau haalbaar is.

De signaalverwerkingsmodellen die in dit proefschrift worden gepresenteerd zijn al-
gemeen voor het brede gebied van array signaalverwerkingstoepassingen, zoals radar
en ultrasone beeldvorming. Daarom hebben de resultaten die in dit proefschrift worden
gepresenteerd ook gevolgen voor deze toepassingsgebieden.
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INTRODUCTION

”Fix your course to a star and you can navigate
through any storm.”

— Leonardo da Vinci

5



1

6 1. INTRODUCTION

HUMANS possess a powerful sensing system that lets us observe physical phenom-
ena around us and make meaning from these observations. As I am writing these

pages, I am using: ears to listen to sound, i.e., music, coming from headphones, eyes to
see what I am typing on the screen of the laptop, sense of touch to feel the keys on the
keyboard, and at the same time, I feel thermal energy dissipating from the laptop using
temperature receptors on my hands. In essence, all of what we sense around us are dif-
ferent forms of energy generated from various sources in our environment. This energy
stimulates our sensing and nervous system, and then these stimuli are processed by the
brain, which infers meaning.

Over the centuries, we have mastered physics and mathematics and developed a
powerful signal processing framework that allows us to describe the physical phenom-
ena around us using equations and functions, i.e., mathematical models. The energy
that is emitted by various sources we have described by mechanical and electromag-
netic waves. For example, we have described sound as mechanical waves created by
vibrations of an object (e.g., the loudspeakers of our phone or the motor of a car passing
next to us) with frequencies from 20 Hz to 20 kHz. These waves stimulate our hearing
system, and finally, their stimuli are processed by our brain, which infers meaning from
them. This ability is often existential and allows us to sense our environment, react on
time, and protect our lives. For example, by using our hearing system, we can detect an
approaching car while cycling, allowing us to maneuver and prevent colliding with it.

Like sound, we have described the propagation of light and heat radiated from our
environment as electromagnetic waves. These signals cover a large range of frequencies,
i.e., spectrum, most of which we can not sense directly. However, over the years, we
mastered how to use them for many useful applications that improve our quality of life
and are inevitable parts of our modern society. We invented advanced sensing systems
composed of devices that can produce these waves and sensors that can acquire them.
In particular, electromagnetic waves that cover frequencies from 3 kHz to 3 THz, known
as radio frequency (RF) waves, are widely used in wireless communications and radar
applications.

For example, we use RF waves to exchange Netflix video between our phone and
a WiFi router. However, to extract useful information from collected observations of
RF waves, i.e., signals, first, their propagation is described using an appropriate signal
model. Then, signal processing is used to develop clever algorithms that process ac-
quired signals and infer valuable information from them, such as extracting Netflix video
from the radio signals.

In this thesis, we use signal processing to model the propagation of the radio fre-
quency (RF) signals between objects with known locations and the object with unknown
location to develop algorithms that can determine its location from the exchanged sig-
nals. The objects with the known location we will refer to as anchors and the objects
with the unknown locations we call mobile nodes. The RF signal sent from an anchor
to the mobile node also reflects from surrounding objects creating its replicas that arrive
with different powers, time-delays, and angles at the mobile node, similar to echos of our
voice that we hear after shouting in a tunnel or a cave. We refer to the signal that prop-
agates directly between an anchor and mobile node as the direct or line-of-sight (LOS)
path, while its reflected replicas are called multipaths. This propagation is described in
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signal processing using a mathematical model known as the multipath channel model,
where characteristics of the paths (e.g., power, time-delays, and angles) are called path
parameters. The location of the mobile node is encoded in the parameters of the LOS
path, while multipaths encode locations of surrounding reflectors and obfuscate the es-
timation of the LOS parameters. Therefore, estimation of location is challenging in en-
vironments where there is a lot of multipath, such as inside our house, in an airport,
or in a big city. Unfortunately, these environments are typically the ones where precise
localization is needed the most.

This thesis aims to derive algorithms for high-resolution estimation of the channel
parameters and calibration of RF transceivers, and demonstrate the application of these
results in practical localization scenarios. We limit ourselves to the estimation of time-
delay parameters as it provides an opportunity for high-accuracy localization with sim-
ple single antenna RF transceivers. However, the methods introduced in this thesis are
general and can be applied to other problems where multipath channels arise (such as
radar or ultrasound imaging).

In this chapter, we briefly go through the history of radio localization and illustrate
the motivation for precise localization with few examples of emerging applications. We
then formulate the problem of multipath channel estimation for localization and elabo-
rate on the main questions that are answered in this thesis. We then provide the scope of
research performed in this thesis and the outline of the thesis. Finally, we conclude with
our research contributions within fields of signal processing and wireless communica-
tions.

1.1. BRIEF HISTORY OF RADIO LOCALIZATION

Localization refers to the process of determining the location of a targeted object in
space. This problem has a long history, and it originates from the science of naviga-
tion. Navigation is the science that deals with the problems of determining the location
and course of an object (e.g., ship, airplane, etc.) and guiding it to a specific destina-
tion. The word navigation is derived from the Latin words navis ("ship") and agere ("to
drive"). It is first mentioned in the records left by the Minoan civilization that arose on
the island of Crete, flourishing from 3000 to 1100 before the Christian era (BCE). Minoan
sailors used celestial objects to navigate trading ships on the Mediterranean sea with-
out any special instruments. Since then, many specialized maps, techniques, and in-
struments have been developed to support more precise localization, such as the astro-
labe, chronometer, sextant, and magnetic compass. However, these techniques strongly
depend on the availability of reliable astronomical and meteorological clues when per-
forming navigation. This has motivated the development of navigation systems based
on radio frequency (RF) signals, which are resilient to atmospheric effects and can pro-
vide ubiquitous localization in any weather conditions, including rain, snow, and fog.

The first radio navigation systems appeared in the early 1900s when the German
companies Telefunken and Lorenz started developing a navigation system called "Funk-
baken" based on RF beacon signals [1]. Later, in 1928, a low-frequency four-course radio
range was introduced as an airplane navigation system. However, these systems had lim-
ited coverage and were not globally accessible. The launch of the first satellite, Sputnik
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Figure 1.1: The historical evolution of radio navigation systems. (Images courtesy of
www.insidegnss.com)

I, by the Soviet Union in 1957 has inspired the development of global navigation satellite
systems (GNSSs). In 1958, the United States (US) started developing Transit (or NAVSAT),
the first global satellite-based navigation system. This system required a constellation of
five satellites to provide global coverage, and during its operation, at least ten satellites
were kept in orbit to ensure reliable localization. However, only one satellite was visi-
ble from the earth at any moment, meaning that this system could not offer continuous
localization. A user needed to wait for 35 to 100 minutes to update location estimates
depending on the latitude of its location. The first navigation system with global and
continuously present coverage was a terrestrial-based system called Omega [2], devel-
oped in 1971 by the United States and six-partner nations. This system was based on a
network of 8 fixed terrestrial base stations transmitting very-low-frequency (VLF) radio
beacons that were used for two-dimensional (2-D) localization of objects. Omega had an
average root-mean-square (RMS) localization accuracy of 2 to 4 km and was shut down
in 1997 in favor of the Global Positioning System (GPS).

The development of GPS started in the 1960s as a joint project of the US Navy and
US AirForce, and initially the project was named Navigation System with Timing and
Ranging (NAVSTAR) [3]. The first GPS satellite was launched in 1978, and the system
became operational in 1995. At first, the GPS constellation consisted of 24 satellites in
medium earth orbit. This was extended to 27 satellites in 2011.

GPS was first aimed for military purposes, and it was first used during the Persian
Gulf war in 1990. Following the Korean Airlines disaster in 1983, the US government an-
nounced that GPS will be available for civilian applications [4]. Since then, GPS evolved
far beyond its military origin and became the prevalent localization, navigation, and tim-
ing technology. The success of GPS in military and civilian applications has driven the
development of other GNSSs such as the Russian GLONASS (first launched in 1982), the
Chinese BeiDou (2000), and the European Galileo (2011). Thanks to their global cover-
age, high accuracy, and lack of need for infrastructure for the user on earth, today GNSSs
are used as a crucial tool for navigation and timing in many vital industries [5] such as
transportation and logistics (fleet management and route navigation) [6], civil engineer-
ing (surveying and monitoring of infrastructure) [7] and location-aware and location-
based services (Google Maps, Uber, etc.) [8]. These applications have become an in-
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evitable part of our modern society, and they have improved the quality of our daily life
[9]. However, emerging applications demand even more precise localization and often
in scenarios where GNSSs perform poorly, such as in indoor or urban environments. In
what follows, we discuss these applications and their localization requirements.

1.2. WHY GNSS LOCALIZATION IS NOT GOOD ENOUGH?
Localization using GNSS is based on time-delay estimation of radio signal propagation
between a number of satellites and the GNSS receiver of the mobile node that is to
be localized. The GNSS satellites transmit simultaneously and synchronously direct-
sequence spread-spectrum (DS-SS) signals where each satellite uses its unique Pseudo-
Random Noise (PRN) code for signal spreading [10]. The DS-SS signals enable imple-
mentation of a Code Division Multiple Access (CDMA) scheme where orthogonality of
the PRN codes is used to distinguish signals coming from different satellites and avoid
interference. These signals arrive at the GNSS receiver with unknown time-delays and
frequency Doppler shifts. The time-delays encode distances (ranges) between the satel-
lites and the receiver, while Doppler frequency shifts encode relative speed difference
between satellites and the receiver. After sampling the received signal, the GNSS receiver
does a parallel search for maximum correlations between locally generated PRN codes
and the received signals to estimate the time-delays by finding the peaks of these correla-
tions. The ranges between the satellites and the GNSS receiver then directly follow from
the estimated time-delays using the fact that radio signals in air and vacuum propagate
with the speed of light c = 3 · 108 m/s. The estimated ranges are then used to localize
the receiver, and we refer to this method as code-based GNSS localization. Likewise,
the speed of the receiver is estimated from the frequency offset of the received signal
introduced by the Doppler effect [11]. After the initial estimation of time-delays and fre-
quency offsets, these parameters are tracked using a delay locked loop (DLL) and phase
locked loop (PLL), respectively, to ensure continuous localization. The GNSS-based lo-
calization works well in outdoor scenarios with a clear view between the receiver and the
satellites. However, RF signals are highly reflective, and the signal sent from a satellite
gets reflected by objects close to the GNSS receiver. These signal reflections are called
multipath components (MPCs), which get superimposed on the original signal at the
GNSS receiver. This physical propagation phenomenon is called the multipath effect,
and mathematically, it is described by multipath channel models. The multipath effect
severely impairs the performance of GNSS localization in challenging propagation sce-
narios such as indoor, urban canyons, or tunnels. Furthermore, in these scenarios, GNSS
localization is often unavailable due to the high attenuation and blockage of GNSS sig-
nals. These signals are also not secure and robust against cyber manipulations. There-
fore, the reliability and performance of localization using GNSS are often reduced due to
the following main limitations of GNSS signals [12]:

• They have narrow bandwidth and are extremely weak when observed on
earth [13]. Considering that the resolution of time-delay estimation using the
correlation-based method is inversely proportional to the bandwidth of the GNSS
signals, the achievable resolution is poor. This limitation makes accurate and reli-
able localization using these signals almost impossible in challenging propagation



1

10 1. INTRODUCTION

environments defined by multipath effects.

• Due to their low power, when received on earth, they are not robust to intentional
jamming or unexpected interference from terrestrial radio technologies (e.g., com-
munications or radar systems) [14].

• The civilian GNSS signals are not encrypted, making them easily spoofable and
vulnerable to cyber-attacks [15].

Correlation-based GNSS time-delay estimation has limited resolution, which results
in a ranging accuracy of a few meters on average. This accuracy does not meet local-
ization requirements for many critical applications. Methods for time-delay estimation
based on carrier phase measurements of GNSS signals are proposed to further improve
ranging accuracy in [16]. The carrier phase of the GNSS signal at the receiver changes
in proportion to the time-delay between the receiver and the satellite that sent a signal.
Therefore, the carrier phases of the received GNSS signals encode the delays between
the satellites and the receiver. In theory, ranging using carrier phase measurements en-
ables sub-centimeter level accuracy. Unfortunately, these measurements are ambiguous
because the total integer number of 2π cycles of the carrier phase between a satellite and
the receiver is unknown [17]. Several algorithms have been proposed to solve this prob-
lem and resolve the unknown integer ambiguity [18, 19]. These algorithms are used in
carrier-based GNSS localization methods such as Real-Time Kinematic (RTK) and Pre-
cise Point Positioning (PPP). These methods have orders of magnitude higher accuracy
than code-based methods. However, the carrier phase of the received signal is severely
impaired by multipath effects, which causes these methods to perform poorly in mul-
tipath environments. When the GNSS receiver has a clear view of the sky and when
multipath effects are negligible, combined code and carrier-phase-based GNSS delay
estimation methods result in a ranging accuracy of few tens of centimeters. However,
when the GNSS receiver does not have a clear view of the sky, the multipath effects lead
to biased delay estimation, which significantly degrades localization.

Due to the discussed limitations, GNSS can not meet the security and accuracy
demands of emerging applications such as autonomous navigation [20], intelligent
transportation systems [21], internet-of-things (IoT) [22], and assisted living [23]. This is
especially the case in urban and indoor scenarios where severe multipath propagation
impairs the GNSS signals and performance of localization is poor or impossible due to
the high attenuation of GNSS signals [24]. Next, we illustrate the demand for novel and
precise localization methods for two specific groups of important emerging applications.

Example 1.1 (Autonomous navigation) Autonomous navigation is becoming increas-
ingly important for civilian and military applications, and it is revolutionizing the au-
tomotive [27], aviation [28], and naval industries [29]. One example application of au-
tonomous navigation is self-driving [30]. Self-driving comes with stringent safety and re-
liability demands. The key enablers to ensure these demands are environmental aware-
ness and accurate localization. Self-driving is relying on a fusion of data from multi-
ple sensors such as radar, lidar, cameras, and GNSS receivers to achieve environmental
awareness and accurate localization. However, lidar and cameras perform poorly under
adverse weather conditions such as fog, rain, and snow, which impede self-driving in
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(a) Vision of fulfillment center where autonomous
robots and drones are used for payload distribution.
(Image courtesy of [25])

(b) Smart farming: autonomous drones are
doing crop inspection and chemical treat-
ment. (Image courtesy of [26])

Figure 1.2: Example applications of autonomous navigation.

bad weather conditions [31]. In these conditions, self-driving typically relies on radar
and GNSS sensors which are resilient to weather conditions. However, radar sensors can
only ensure relative localization, while GNSS performs poorly in environments such as
urban canyons and tunnels due to the multipath effects and signal blocking. Therefore,
to ensure complete safety under any condition and in any environment, self-driving re-
quires ubiquitous localization with decimeter level ( 30 cm) accuracy and lane-level vehi-
cle navigation [32]. Similarly, autonomous navigation of robots and drones in smart fac-
tories requires centimeter-level ( 10 cm) localization accuracy in indoor environments
[33]. In these environments, GNSS signals are unavailable, and alternative localization
approaches are needed. The example applications of autonomous navigation in distri-
bution centers and smart farming are illustrated in Fig. 1.2.

Example 1.2 (Assisted Living) Assisted living (AL) technologies are becoming crucial for
ensuring health and safety services in our aging society. The advent of the Internet of
Things (IoT) technologies and wearable health monitoring sensors allows the develop-
ment of many innovative AL applications that will revolutionize current health care sys-
tems [34]. Precise positioning has been recently identified as a key enabler for these
applications in [35]. Several interesting AL systems based on RF signal analytics and
positioning have been illustrated in [23], such as activity recognition, behavior pattern
monitoring, and anomaly detection. Some of these systems use RF signals for applica-
tions such as emergency (fall) detection of the elderly or individuals with disabilities to
alert caretakers and emergency services (cf. Fig. 1.3), navigation for visually impaired in-
dividuals, geofencing for people with dementia, and behavior monitoring to assess the
physical and mental health of individuals. All these applications require decimeter-level
( 10cm) positioning accuracy, typically in indoor environments where GNSS is not avail-
able or performs poorly [36]. Other examples are applications for contact tracing and
human interaction monitoring that recently became crucial for containing the outbreak
of the COVID-19 pandemic [37]. Precise RF-based distance measuring proved to be the
key component for these applications, and a vital tool to contain the virus [38].

From these examples, we see that new approaches are needed for localization in
GNSS denied environments. The major challenge is to design practical localization sys-
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Figure 1.3: Illustration of the system for automatic fall detection and localization using radio sig-
nals.

tems and estimation methods that are robust to multipath propagation effects. In the
next section, we will do a gentle introduction to the problem of localization in multipath
radio channels and the main approaches for location estimation.

1.3. LOCALIZATION IN THE MULTIPATH RADIO CHANNEL

A promising localization approach in GNSS-denied environments is to use the existing
wireless communication infrastructure, and ambient RF signals [39]. Localization us-
ing these signals starts with probing the multipath channels between the mobile node
and multiple anchors. For example, an anchor transmits a known training signal that
bounces off surrounding objects and arrives at the mobile node as a superposition of
multipath components (MPCs) (cf. Fig. 1.4) that have different powers, directions-of-
arrival and time-delays. The propagation of the RF signals between the anchor and the
mobile node is mathematically modeled by the continuous-time channel impulse re-
sponse (CIR). For the multipath channel with K paths the baseband equivalent of CIR is
a function that is parameterized by the complex-amplitudesαk ∈C, Doppler frequencies
ηk ∈ R, time-delays τk ∈ R+, and directions of arrival βk , k = 1, . . . ,K , of MPCs present
in the channel. We denote the CIR as h(t ;θ), where θ = [α,η,τ,β]T collects the vec-
tors α,η,τ, and β that are collecting the parameters αk , ηk , τk , and βk , k = 1, . . . ,K ,
respectively. The parameters α,β, and τ encode the locations of the mobile node and
surrounding RF reflectors. In contrast, η encodes the relative speeds of RF reflectors
compared to the mobile node, and for the static scenario, it is the zero vector [40].

The location of the mobile node is encoded in the parameters of the line-of-sight
(LOS) path {α1,τ1,β1} while the MPCs obfuscate estimation of these parameters. There-
fore, the first step in radio localization is to estimate h(t ;θ), detect the LOS path, and
obtain its parameters from the signals exchanged between the anchor and the mobile
node. We refer to this problem as channel estimation for localization. A slightly different
problem is channel estimation for simultaneous localization and mapping (SLAM) us-
ing radio signals, which is the problem of simultaneous localization of the mobile node
and surrounding reflectors from the estimated multipath channels [41]. In this problem,
estimation of both parameters of the LOS path and MPCs is of interest.

To determine the location of the mobile node, typically the multipath channels be-
tween the mobile node and multiple anchors must be estimated. The number of chan-
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Figure 1.4: Illustration of an RF signal propagating in a multipath channel.

nels that need to be estimated for localization depends on the formulation of the lo-
calization problem and this is discussed in Chapter 2. After estimating h(t ;θ) for the
multiple anchors, the estimation of the location can proceed using (i) two-step or (ii) di-
rect location estimation (DLE) methods. In two-step methods, first the parameters of the
LOS paths are estimated, which are then used to estimate the location. In DLE methods,
the location is directly estimated from estimates of h(t ;θ) for multiple anchors.

In this thesis we are interested in practical approaches for localization and we limit
ourselves to the two-step methods. In particular, we focus on localization using time-
delay estimation in multipath channels. However, in Chapter 2 we provide a general
discussion on the problem of localization and show that measurements of any of the
LOS parameters satisfy the general model given by

r = f (p0)+n , (1.1)

where r is the vector collecting the estimates of the selected LOS parameter for multi-
ple anchors, f (p0) is a known nonlinear vector-valued function of the unknown mobile
node position p0, and n is a noise vector. The form of the function f (p0) depends on the
LOS parameter that is selected for localization. From model (1.1), it follows that any two-
step localization can be formulated as a nonlinear least squares optimization problem
of the form

p̂0 = argmin
p

∥∥r− f (p)
∥∥2

2 , (1.2)

where p is the optimization variable. The solution to this problem will depend on the
selected LOS parameter used for localization. The exact forms that the function f (p0)
can take, and solutions to the resulting problems are discussed in Chapter 2.

1.4. SCOPE AND CONTEXT OF THIS THESIS

In this section, we present the context of this thesis, the main research questions, and
objectives. We start by providing a brief overview of the SuperGPS research project that
steered the research context in this thesis. Then we introduce the main problem, re-
search questions, and objectives that we aim to solve, answer and achieve, respectively.
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Figure 1.5: High-level architecture of the SuperGPS project.

1.4.1. SUPERGPS

The research in this thesis was supported by KPN and NWO under the SuperGPS project.
The objective of the SuperGPS project is to design a system for accurate timing and lo-
calization in GNSS-denied environments. The main idea of the project is to combine
optical and terrestrial wireless (radio) networks to enable accurate localization and syn-
chronization in challenging radio propagation environments (cf. Fig. 1.5 for an illustra-
tion of the SuperGPS architecture). Timing distribution with sub-nanosecond accuracy
via the optical network is based on the White Rabbit (WR) system. WR was developed
as a collaboration of the European Organization for Nuclear Research (CERN), several
universities and companies aiming to provide new technology for synchronized control
and data acquisition. In the SuperGPS project, we used these results to synchronize a
wireless localization infrastructure, that is, to synchronize the anchors. The wireless in-
frastructure developed in the SuperGPS project consists of radio transceivers that equip
anchors and mobile nodes, which perform signal acquisition and location estimation.
The research in this thesis focuses on developing estimation and calibration methods
for precise localization that are the key signal processing components of the SuperGPS
system.

1.4.2. PROBLEM STATEMENT AND RESEARCH GOALS

In Section 1.3 we discussed the problem of localization using RF signals in multipath
propagation environments. We have shown that the first step to localize the mobile node
is to estimate the multipath channels between it and multiple anchors. Multipath chan-
nel estimation for localization is different from classical channel estimation for com-
munications, where the goal is to estimate the compound effects of propagation and
transceivers on signals and maximize energy per symbol to noise power spectral density
ratio Es/N0. The goal of channel estimation for localization is to detect the LOS path
of the multipath channel and estimate its parameters free of any transceiver hardware
impairments such as non-ideal frequency response or phase and frequency offsets. In
this thesis, we focus on localization using practical single antenna transceivers capable
of carrier frequency switching. From signals acquired using these transceivers, we can
estimate time-delays and complex amplitudes of the multipath components. However,
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the complex amplitudes are highly sensitive to multipath fading, and therefore they are
changing abruptly, making accurate localization using these parameters hard to achieve.

In this thesis, we are interested in high accuracy localization, and thus we focus
on location estimation from time-delay parameters. The main challenge for achieving
precise localization using these parameters is the detection of the LOS path and high-
resolution estimation of its time delay. The resolution of time-delay estimation using
classical methods such as matched filtering is inversely proportional to the bandwidth
of the training signals used for channel probing. Therefore, the high-resolution time-
delay estimation using these methods can be achieved when channel measurements are
collected over a large bandwidth. This has motivated the use of ultra-wideband (UWB)
communication technology for localization in recent years [42]. UWB based localization
systems achieve an accuracy of 10 to 20 cm in indoor environments. However, these lo-
calization systems require a dedicated UWB infrastructure, and they can only be used
for localization in small areas due to the limits set on the transmitted signal power. This
limit is defined by radio regulatory bodies, which define the rules for RF spectrum usage
and coexistence. As an example of constraints set on signals by radio regulators, we will
consider radio regulations set on the popular WiFi technology in Europe. The European
radio regulators define three frequency bands on 2.5, 5, and 6 GHz for WiFi communi-
cation [43] 1. Within these bands, several frequency channels with a bandwidth of 20,
40, 80, and 160 MHz are defined for instantaneous usage. The regulations and standard-
ization set on WiFi technology allow usage of multiple of these frequency channels in
a non-instantaneous fashion. This leads us to the first question to be answered in this
thesis:

Q1 How can we increase the accuracy of time-delay estimation and localization using
practical single-antenna transceivers considering constraints set by radio regulators
on the power and the bandwidth of the training signals?

The indoor multipath channel at 2.4 GHz between the anchor and a pedestrian mobile
node moving at a speed of 1 m/s is stationary for approximately 53 ms, and this du-
ration we call the channel coherence time. Considering that the typical WiFi training
signal used for channel probing has a duration of 40 µs, which is 1000 times less than the
channel coherence time, there is an opportunity to increase the bandwidth of the mul-
tipath channel measurements by probing the channel over multiple carrier frequencies
during the channel coherence time. We call this approach for acquiring multipath chan-
nel measurements the multiband channel probing scheme. Our end goal is to achieve a
high-resolution time-delay estimation of MPCs from these measurements. This brings
us to the following subquestions of Q1 that we answer in this thesis:

Q1.1 What is a reasonable parametric model for multiband multipath channel mea-
surements?

Q1.2 Is there an efficient and practical estimator that can estimate time-delays and
achieve the Cramér Rao Bound (CRB)?

1Here, we did not consider the frequency band at 900 MHz defined for usage in long-range WiFi networks
specified by the IEEE 802.11ah standard.
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Q1.3 Considering the proposed model, what is the theoretical limit on the variation of
the time-delay estimates, that is, what is the CRB?

In reality, the RF transceivers used to probe multipath channels and obtain measure-
ments are not ideal, and they introduce various hardware impairments which impact
the channel measurements. When these impairments are not calibrated, the estimated
time-delays are biased. This motivates the following question:

Q2 How can we jointly calibrate hardware impairments of RF transceivers and estimate
time-delay parameters?

In particular, the time-delay estimators are sensitive to hardware impairments that
directly impair the multipath channel measurements, such as non-ideal frequency re-
sponse and clock-skew of RF transceiver oscillators. This brings us to the following re-
lated subquestions of Q2:

Q2.1 Can we jointly estimate the time-delays and calibrate unknown frequency re-
sponses of multiband RF transceivers?

Q2.2 Is there an efficient estimator for joint time-delay and clock-skew estimation of RF
transceivers from multiband channel measurements?

While answering questions Q1 and Q2, several modeling assumptions are made,
which might not hold for all localization and measurement scenarios. Therefore, it is im-
portant to consider modeling errors resulting from approximations of multipath chan-
nel propagation done during data modeling when using real channel measurements. In
particular, it is hard to model the frequency dependency effects of the MPCs. In this
thesis, we choose to avoid these effects by ensuring that the frequency aperture of the
multiband channel measurements is not too large. This motivates the following research
question:

Q3 What is the performance of multiband time-delay estimation and localization in
real indoor multipath channels?

In particular, we are interested under which conditions the frequency dependency of
multipath components is negligible. This brings us to the subquestion of Q3:

Q3.1 What is the impact of modeling errors caused by frequency dependency of multi-
path propagation on the performance of time-delay estimation?

In the next sections, we provide a summary of the main parts of this thesis and their
respective contributions to the literature.

1.5. OUTLINE

This thesis is organized as follows. We first provide an introduction to principles of radio
localization and a general overview of localization approaches in Chapter 2. In Chapter
3, we focus on the problem of multipath channel time-delay estimation for localization
and discuss the main signal processing frameworks for solving this problem. Next, we



1.5. OUTLINE

1

17

discuss the signal model for multiband channel measurements and derive an algorithm
for time-delay estimation in Chapter 4. The proposed algorithm requires initialization,
and to provide initial estimates in Chapter 5 we propose a multiresolution time-delay
estimation algorithm that has a close-form solution. Following the development of the
algorithms, we assess the performance of the proposed algorithms by comparing them
to the CRB and other methods. These chapters address questions Q1.1, Q1.2, and Q1.3.
In Chapter 6, we discuss the problem of joint calibration of transceiver impairments and
time-delay estimation, where we address question Q2.1. We address question Q2.2 in
Chapter 7, where we discuss the problem of joint clock-skew and time-delay estimation
using narrowband radios and multiband channel measurements. In Chapter 8, we
evaluate the performance of the algorithms using real indoor multiband multipath
channel measurements and address question Q3. Finally, we conclude the thesis and
provide interesting open problems for future related research in Chapter 9. In what
follows, we provide a summary of the main parts of this thesis.

Chapter 2: This chapter introduces principles of radio localization. We start by
introducing a general parametric model for multipath radio channels between an
anchor and the mobile node. We show that the multipath channel parameters encode
the location of the mobile node and discuss the relation between these parameters and
the location. Following this discussion, we define the general model for typical mea-
surements obtained from the estimates of multipath channel parameters that are used
for localization, such as time of arrival (TOA), time difference of arrival (TDOA), received
signal strength (RSS), and direction of arrival (DOA). Using the general data model
for these measurements, we show that two-step localization is a nonlinear estimation
problem. The exact formulation of this problem depends on the type of measurements
selected for localization and the function that relates the measurements to the location
of the mobile node. We define these functions for the aforementioned measurements
and illustrate the derivations of several location estimators on the example of TOA
measurements. Next, we discuss the model for direct location estimation (DLE), where
the multipath channel is parameterized by the location and the location is directly
estimated from the multipath channel measurements. Finally, we conclude this chapter
by comparing the discussed localization methods.

Chapter 3: This chapter discusses the problem of channel estimation for local-
ization and motivates the rest of this thesis. In particular, we focus on the problem
of time-delay estimation in multipath channels. We formulate this problem in the
frequency domain, define the parametric model for multipath channel measurements
and discuss the signal processing frameworks that apply to this problem. The model
shows that time-delay estimation in the frequency domain becomes the problem of
estimating the parameters of a sum of complex exponentials. This problem has been
extensively treated in several signal processing frameworks such as subspace-based
estimation, finite rate of innovation (FRI) sampling, and compressive sensing. We then
discuss the formulation of the multipath channel delay estimation problem in these
frameworks and provide an overview of popular estimators that can be used to obtain a
solution to this problem.
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Chapter 4: Here, we address question Q1 and its subquestions Q1.1 and Q1.2.
In particular, we purpose increasing the resolution of delay estimation by multiband
channel probing. The main idea here is to increase the bandwidth, i.e., frequency
aperture, of the multipath channel measurements by probing the channel over mul-
tiple separate frequency bands during the channel coherence time. This provides an
opportunity for high-resolution time-delay estimation, even when using narrowband
RF transceivers. We then derive the model for multiband channel measurements
considering hardware impairments introduced by the transceivers, such as a non-ideal
frequency response and phase offset. Next, we present techniques for mitigation of
the unknown phase offset and calibration of the frequency response. We formulate the
multiband time-delay estimation as a multidimensional spectral estimation problem
and exploit the structure present in the measurements to estimate delays. We then
propose an algorithm that estimates the delays by solving a weighted subspace fitting
(WSF) problem. We refer to this algorithm as the multiband weighted delay estimation
(MBWDE) algorithm. To assess the performance of the MBWDE algorithm, we derive
the CRB for the data model of multiband multichannel measurements and perform
numerical simulations. We then compare the performance of the MBWDE algorithm
against several other methods presented in Chapter 3 and the CRB. From the results, it
is seen that MBWDE is statistically efficient and asymptotically meeting the theoretical
CRB.

Chapter 5: The algorithm presented in Chapter 4 is based on WSF, which is a non-
linear least-squares problem and requires initialization. In this chapter, we present an
algorithm with a closed-form solution that can be used to initialize the MBWDE algo-
rithm. We refer to this algorithm as a multiresolution time-delay (MRTD) estimation
algorithm. Similar to the previous chapter, to improve the resolution of time-delay
estimation while avoiding arriving at unrealistic sampling rates, we use multiband
channel measurements collected over a large frequency aperture. However, now the
multiband measurements are collected in two frequency bands and preferably in those
that create the largest frequency aperture. The MRTD algorithm exploits the multiple
shift-invariance properties of the collected measurements and joint-diagonalization to
provide a closed-form solution for the time-delays. In particular, this algorithm uses
shift-invariance introduced over a small frequency aperture within the bands to provide
low-resolution but unambiguous time-delay estimates and shift-invariance over a large
frequency aperture between the bands, to provide high-resolution but ambiguous
time-delay estimates. These estimates are then combined and results in high resolution
and unambiguous time-delay estimation. Numerical simulations are then used to
assess the performance of the proposed algorithm. The performance of the algorithm
is compared against several other methods and the CRB. These results show that the
algorithm is asymptotically efficient and asymptotically converges to the CRB.

Chapter 6: The MBWDE and MRTD algorithms presented in Chapter 4 are both
sensitive to calibration errors of the RF transceivers. There, we assumed that the fre-
quency response of the transceivers is measured and calibrated. However, in practical
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scenarios, the frequency response of transceivers might not be known nor calibrated
before time-delay estimation. Using the MBWDE and MRTD algorithms to estimate
delays from uncalibrated multiband measurements leads to a bias, which degrades
the performance of estimation. This chapter discusses this problem and proposes an
algorithm for joint calibration of multiband RF transceivers and delay estimation. We
show that this problem can be formulated as a particular case of covariance matching.
This problem is severely ill-posed, and to find its solution, we use prior information
about radio-frequency chain distortions and multipath channel sparsity for regulariza-
tion. This formulation results in a , which we reformulate to a rank-constrained linear
system, and solve by a simple group Lasso algorithm. We use numerical simulations
to benchmark the performance of this algorithm against several existing methods for
joint calibration and delay estimation. From these results, it is seen that the proposed
algorithm outperforms the existing methods.

Chapter 7: In Chapters 4, 5 and 6, we assumed that the local oscillators of the
mobile node and anchors are frequency synchronized during channel probing. This
frequency synchronization can be achieved using a known preamble at the beginning
of every training signal to estimate the frequency offsets. However, in the Internet of
Things (IoT) networks, where the mobile nodes are typically cheap battery-powered
sensor devices with low-quality clock sources, the process of synchronization needs to
be repeated regularly, which increases training overhead. This chapter focuses on the
problem of joint delay (range) and clock synchronization using phase difference of ar-
rival (PDoA) measurements of narrowband RF signals. We derive a data model for PDoA
measurements that incorporates the unknown clock-skew effects. We then formulate
joint estimation of the clock-skew and range as a two-dimensional (2-D) frequency
estimation problem. Furthermore, we propose: (i) a two-way communication protocol
for collecting PDoA measurements and (ii) a weighted least squares (WLS) estimator for
joint estimation of clock-skew and range, leveraging the shift-invariance property of the
measurement data. We use numerical simulations to benchmark the performance of
the algorithm against the CRB and several other methods. From these results, it is seen
that the proposed estimator is efficient and asymptotically meeting the theoretical CRB.

Chapter 8: In chapters 4 and 5, we made sensible modeling assumptions to ap-
proximate RF signal propagation and derive data models and estimators for multiband
delay estimation. We then used numerical simulations and CRBs to benchmark the
performance of the proposed estimators. From these results, it is seen that the proposed
estimators are statistically efficient and that they meet the CRBs. However, these results
do not say how these estimators perform in practical scenarios when real measurements
are used. This chapter evaluates the performance of multiband delay estimation using
real indoor multipath channel measurements collected in a hospital and a university
building. We select the parameters of the measurements following the definitions given
in the emerging IEEE 802.11be standard for WiFi networks. We then estimate the ranges,
i.e., time-delays, from collected measurements and use the empirical cumulative
distribution function (CDF) of the range estimation errors to illustrate the performance
of the MBWDE algorithm and to compare it with several other methods. Next, we
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demonstrate the performance of 2-D localization in a hospital environment by using the
estimated ranges. The results show that when channel measurements are collected over
a large frequency aperture (bandwidth), they exhibit frequency-dependent behavior.
The frequency dependency is not captured by the data model that is used to derive the
algorithms. Therefore, to avoid modeling errors, the frequency bands where measure-
ments are collected must be selected carefully. Finally, we discuss the implementation
of multiband delay estimation and localization systems on practical IEEE 802.11be
transceivers.

Chapter 9: In this chapter we provide conclusions driven from the results of this
thesis and we outline a number of open questions and possible future research
directions.
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2.1. INTRODUCTION

IN the first chapter of the thesis, we provided a gentle introduction to localization in
multipath radio channels. This chapter goes a step further and discusses the rela-

tion of the multipath channel parameters to the location information. We start from the
general parametric signal model for the multipath radio channel and then define the
relation between its parameters and the location information. This thesis focuses on
time-delay estimation for localization methods such as time-of-arrival (TOA) and time-
difference-of-arrival (TDOA). However, for the sake of completeness, we provide in this
chapter a general overview of localization methods based on multipath channel param-
eters, which also include direction-of-arrival (DOA) and received signal strength (RSS).
We show that under the additive Gaussian noise assumption on the errors of TOA, TDOA,
DOA, and RSS measurements, all related localization problems have a common under-
lying model and can be formulated as non-linear least squares (NLS) problems.

2.2. INFERRING LOCATION FROM MULTIPATH RADIO CHAN-
NELS

We introduced the problem of localization in multipath radio environments in Section
1.3. There, we discussed parametric multipath channel models and the model param-
eters that encode the locations of the mobile node and RF signal reflectors present in
the environment surrounding the mobile node and anchor stations. Therefore, the key
idea of localization in these environments is to estimate the location encoding multi-
path channel parameters from the radio signals exchanged between the mobile node
and anchors.

This process starts with probing the channels between the mobile node and multi-
ple anchors. Let us consider a scenario where we have NA anchors, denoted with indexes
i = 1, . . . , NA, and where the mobile node determines its location using signals sent by the
anchors. For example, anchor i transmits a known training signal x(t ) that bounces off
surrounding objects and arrives at the mobile node as a superposition of multipath com-
ponents (MPCs) (see Fig. 1.4) that have different powers, directions-of-arrival, and time-
delays [44]. This propagation phenomenon is mathematically modeled by the baseband
equivalent continuous-time channel impulse response (CIR), which including the an-
tenna response, is given as [45]

h(i )(t ) =
K (i )∑
k=1

α(i )
k e jβ(ϑ(i )

k )δ(t −τ(i )
k ) . (2.1)

In this model, there are K (i ) resolvable MPCs, where the kth MPC is characterized by
its parameters: complex path amplitude α(i )

k ∈ C, direction-of-arrival ϑ(i )
k ∈ R, and time-

delay τ(i )
k ∈ R+. Here, β(ϑ(i )

k ) is the phase shift with respect to the reference point and
is related to the direction-of-arrival of the signal on the antenna. Typically, antenna ar-
rays are required to resolve the ϑ(i )

k parameters, and thus they are usually ignored in the
single-antenna scenarios and channel models. Exceptions are recently proposed meta-
surface frequency-diverse antennas that encode and compress spatial information of
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RF signals before sampling and support DOA estimation from samples collected using
single antenna receivers [46]. The parameters of the MPCs {α(i )

k ,τ(i )
k ,ϑ(i )

k },k = 1, . . . ,K (i )

encode the locations of the mobile node and surrounding RF signal reflectors [40]. Note
that here we assume that the mobile node has low speed and therefore the Doppler fre-
quency shifts may be ignored.

Taking into account multipath propagation, the signals received at the mobile node
are given by

y (i )(t ) = x(t )∗h(i )(t ) , i = 1, . . . , NA , (2.2)

where∗ represents convolution operator. In this model, we ignored hardware effects and
frequency and phase offsets between the mobile node and anchors, which deteriorate
the channel measurements and performance of localization. We will discuss this in more
detail in Chapters 6 and 7.

Now, radio localization can be defined as the problem of estimating the location of
the mobile node from the received signals y (i )(t ). The location of the mobile node is
encoded in the parameters of the line-of-sight (LOS) paths {α(i )

1 ,τ(i )
1 ,β(i )

1 } while the MPCs
obfuscate estimation of these parameters. Therefore, the first step in radio localization is
to estimate the true h(i )(t ), from the received signals y (i )(t ), and then detect the LOS path
and obtain its parameters. We refer to this process as channel estimation for localization.
Important to note is that this is different from channel estimation for communications,
where the goal is to equalize the compound effects of hardware and h(i )(t ), maximize
energy per symbol to noise power spectral density, and estimate x(t ) [47].

After estimating h(i )(t ), i = 1, . . . , NA, the estimation of the location can proceed us-
ing (i) two-step, or (ii) direct location estimation (DLE) methods. In the two-step meth-
ods, first, the parameters of the MPCs are estimated, which are then used to estimate
the location. In direct location estimation (DLE) methods, the multipath channel is pa-
rameterized by the location parameters, and the location is directly estimated from the
multipath channel measurements.

In what follows, we discuss the multipath channel parameters and the measure-
ments used for two-step and direct localization estimation methods. We start by defining
a generalized data model for the measurements used in two-step localization methods.
We then briefly discuss derivations of two-step localization algorithms for an example
of time-delay measurements. These derivations are based on a generalized measure-
ment model, and they can be followed when deriving algorithms for two-step localiza-
tion based on other multipath channel parameters.

2.3. MEASUREMENTS FOR TWO-STEP LOCALIZATION METH-
ODS

For simplicity of exposition we will discuss measurements for two-step methods on an
example of localization in two-dimensional (2-D) space. The derived data models can
be easily extended to 3-D localization scenarios. Consider for example localization in
2-D space, where there are NA anchors with known positions zi = [z(i )

x , z(i )
y ]T ∈ R2, i =

1, . . . , NA and the mobile node with unknown position z0 = [z(0)
x , z(0)

y ]T ∈R2.

The parameters of the line-of-sight (LOS) path {α(i )
1 ,τ(i )

1 ,β(i )
1 } present in the multi-
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path channel h(i )(t ), between anchor i and the mobile node, are directly linked to the
location of the mobile node z0 [48]. The two-step localization approaches use estimates
of LOS parameters {α(i )

1 ,τ(i )
1 ,β(i )

1 } , obtained for multiple anchors, to estimate the location
z0 [49]. Depending on the parameter that is selected for localization, these methods can
be classified into methods based on time-delays τ(i )

1 [50], received signal powers |α(i )
1 |2

[51] 1, and direction-of-arrivals β(i )
1 [52]. However, the underlying measurement models

for the previously mentioned LOS parameters can be written in the general form as

r = f (z0)+n , (2.3)

where r is the vector collecting the estimates of the LOS parameter selected for location
estimation, f (z0) is a known nonlinear vector-valued function of z0 and its form depends
on the selected LOS parameter, and n is the error vector. Here, we assume that errors of
time-delay estimates are Gaussian distributed, and we model their disturbance on the
true time-delays as additive noise. This modeling assumption does not hold in general,
and it is valid for scenarios where the variance of the observation errors is small [53].
Likewise, in practice, the estimation errors are not necessarily Gaussian distributed [54].
For example, this can be seen in Chapter 8, where it is shown that time-delay estimates
obtained from real channel measurements using a multiband weighted delay estimation
algorithm presented in Chapter 4 have errors distributed in accordance with Lévy alpha-
stable distribution. There, we show that by ignoring the large outliers in the time-delay
estimates, Lévy alpha-stable distribution can be approximated by Gaussian distribution.
In practice, determining the exact distribution of the estimation errors caused by the
observation noise is often intractable [55]. Therefore, for simplicity of exposition in the
remaining of this chapter, we will use an approximate model for the estimation errors
of time-delay, direction-of-arrival, and received signal strength parameters and model
them as additive Gaussian random variables. This model in the context of time-delay
and direction-of-arrival estimates is accurate under the conditions that the variance of
the noise is small. In what follows, we discuss the multipath channel parameters and
exact formulations of the localization problems. We start by discussing time-delay pa-
rameters and localization methods.

2.3.1. TIME-DELAY MEASUREMENTS

The Euclidian distance (range) between anchor i and the mobile node is given by

d (i )(z0) := ‖z0 −zi‖2 =
√

(z(0)
x − z(i )

x )2 + (z(0)
y − z(i )

y )2 , i = 1, . . . , NA . (2.4)

These distances are directly linked to the delays of the LOS paths τ(i )
1 , which is given by

d (i ) = cτ(i )
1 , (2.5)

where c = 3 · 108 m/s is the speed of radio signals (electromagnetic waves) in the air.
However, the true delays τ(i )

1 , i = 1, . . . , NA are not known, and they need to be estimated

1Note that parameter |α(i )
1 |2 is not the overall received signal power, but rather the power of the signal received

via the LOS path.



2.3. MEASUREMENTS FOR TWO-STEP LOCALIZATION METHODS

2

27

from the signals sent from the anchors and received at the mobile node. In the general
scenario, when the clock of an anchor i and the mobile node are not synchronized, the
estimated delay of the LOS component is given by

τ̂(i )
1 := τ(i )

1 +∆τ(i ) +n(i )
τ , i = 1, . . . , NA , (2.6)

where∆τ(i ) is an unknown offset, and n(i )
τ is a zero-mean Gaussian random variable rep-

resenting the error of the time-delay estimates introduced by the presence of noise. De-
pending on the requirement for clock synchronization between the mobile node and the
anchors, time-delay localization methods can be divided into: (i) time-of-arrival (TOA)
and (ii) time-difference-of-arrival (TDOA) [56].

TIME-OF-ARRIVAL ( TOA):

In TOA-based localization, it is assumed that the clocks of the anchors and the mobile
node are synchronized. As a consequence, there is no offset in (2.6) and the estimated
delays between the mobile node and the anchors are given by

τ̂(i )
1 := τ(i )

1 +n(i )
τ , i = 1, . . . , NA . (2.7)

From (2.5) it follows that we can use the estimated delays τ̂(i )
1 to estimate the ranges as

d̂ (i ) = cτ̂(i )
1 . The estimated ranges satisfy the following model

d̂ (i ) := d (i ) +n(i ) , i = 1, . . . , NA , (2.8)

where n(i ) = cn(i )
τ . The ranges computed from TOA estimates are collected in the vector

rTOA = [d̂ (1), . . . , d̂ (NA)]T . In the absence of errors in the TOA estimates, each range d (i )

defines a circle on which the mobile node must lie in the 2-D space where the center
of the circle has the coordinates zi . This is illustrated in Fig. 2.1a. It is easy to see that
geometrically, three or more circles defined from error-free TOAs will result in a unique
intersection (cf. Fig. 2.1c), which is the mobile node location z0. This implies that to
estimate the location of the mobile node in 2-D space, the TOA estimates between the
mobile node and at least three NA =3 anchors are required. The green color around the
circles indicates the influence of noise on range (delay) estimation and its consequence
on localization, and we define it as the 2σ region. The region marked by a darker green
color indicates the higher probability that erroneous estimates will lie in it. The darkest
green color is around the circles that mark the true range (delay) between the mobile
node and the anchors. We can see that due to the influence of noise, the circles defined
using TOAs may not intersect or may have multiple intersections, and then the location
z0 can not be directly estimated by looking at the problem from a geometrical perspec-
tive. Therefore, in what follows, we formulate the problem of location estimation from
TOA estimates mathematically using the model (2.3). This mathematical formulation re-
sults in a system of nonlinear equations that can be solved using appropriate optimiza-
tion methods. The solution to the problem will be the estimated location of the mobile
node.

Starting from (2.3) we can write the model for rTOA as

rTOA = fTOA(z0)+nTOA , (2.9)
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Figure 2.1: Illustration of TOA-based localization: (a) the circle on which the mobile node is lying is
denoted by a black dashed line, and it is defined by the range (delay) between the mobile node and
the anchor A1, (b) the two points on which the circles (drawn based on TOA estimates between the
mobile node and two anchors) intersect, are marked by blue crosses, and these are equally pos-
sible locations of the mobile node, (c) the intersection point of three circles drawn based on TOA
estimates between the mobile node and three anchors reveals the location of the mobile node,
which is marked by the red cross.

where nTOA = [n(1), . . . ,n(NA)]T is the error vector and

fTOA(z0) :=


d (1)(z0)
d (2)(z0)

...
d (NA)(z0)

=


‖z0 −z1‖2

‖z0 −z2‖2
...

‖z0 −zNA‖2

 . (2.10)

The function fTOA(z0) is known, and it is parameterized by the unknown position of the
mobile node z0. This function is vector-valued and it collects the error-free ranges de-
fined in (2.4).
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The problem of location estimation using TOAs is to estimate z0 from rTOA using the
model (2.9). The function fTOA(z0) is nonlinear in the location parameter z0. Therefore,
the estimate of location z0 can be obtained by solving the system of nonlinear equations
(2.10). We first will derive the statistical model for the TOA estimates to support the
algorithm development and performance analysis in the coming section.

Assuming that n(i ), i = 1, . . . , NA are zero-mean uncorrelated Gaussian random vari-
ables, then the vector nTOA is also zero-mean Gaussian distributed. Therefore, we can
write nTOA ∼N (0,ΣTOA), where 0 is the zero vector of length NA, and covariance matrix
ΣTOA is given by

ΣTOA := E(nTOAnT
TOA) = diag([σ2

TOA,1, . . . ,σ2
TOA,N ]) , (2.11)

whereσ2
TOA,i are the variances of the estimates (cf. 2.1a) and E(·) is the statistical expecta-

tion operator. From this assumption and the model (2.9) it follows that the estimates col-
lected in rTOA are also Gaussian random variables and we can write rTOA ∼N (d,ΣTOA).
Here, d = fTOA(z0) collects error-free ranges where dependency on c0 is dropped as the
position c0 is fixed during TOA estimation. Therefore, the probability density function
(PDF) of the rTOA, denoted by p(rTOA) is given by

p(rTOA) = 1

(2π)NA/2(det(ΣTOA))1/2
exp

(
−1

2
(rTOA −d)TΣ−1

TOA(rTOA −d)

)
. (2.12)

Using the property that ΣTOA is a diagonal matrix, we can rewrite (2.12) as

p(rTOA) = 1

(2π)NA/2 ∏NA
i=1σTOA,i

exp

(
−1

2

NA∑
i=1

(
d̂ (i ) −d (i )

)2

σ2
TOA,i

)
, (2.13)

where d̂ (i ) and d (i ) are the estimated and the true ranges for the fixed position of the
mobile node z0, respectively.

TIME-DIFFERENCE-OF-ARRIVAL ( TDOA)

The TDOA methods assume that the clocks of the anchors are synchronized. However, it
does not require that the mobile node is synchronized with the anchors [57]. Therefore,
there is an unknown offset ∆τ in the estimated delays, and their model is given by (2.6).
The∆τ can be eliminated by selecting an anchor as a reference node and subtracting the
estimated delay corresponding to it from the delays estimated for other anchors [58]. Let
us denote the reference anchor node with index j and the estimated delay corresponding

to it with τ̂
( j )
1 . Then the TDOA estimate for an anchor i and reference anchor j is given

by

τ̂
(i , j )
D := τ̂(i )

1 − τ̂( j )
1 = τ(i )

1 −τ( j )
1 +n(i , j )

τ , ∀i | i 6= j , (2.14)

where the difference of errors n(i , j )
τ = n(i )

τ −n( j )
τ has a two times larger variance compared

to the variance of n(i )
τ and n( j )

τ when their variances are equal. The error-free TDOAs are

denoted by τ(i , j )
D and defined as τ(i , j )

D = τ(i )
1 −τ( j )

1 ,∀i | i 6= j . Alternatively, the TDOAs τ̂(i , j )
D

can be directly estimated from the channel measurements (2.1) without first estimating
the delays τ̂(i )

1 , i = 1, . . . , NA and then computing them using (2.14). The direct TDOA
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Figure 2.2: Illustration of TDOA-based localization. (a) A black dashed line denotes the circle on
which the mobile node is lying, and it is defined by the true range (delay) between the mobile node
and the anchor A1. Due to a clock offset, the estimated ranges (delays) are biased. We illustrate the
influence of positive bias by the purple dashed line and influence of the estimation errors by the
green colored band. (b) The hyperbola on which the mobile node is lying is defined by the delay
(range) differences between the mobile node and the anchors A1 and A2. (c) The location of the
mobile node is marked by the red cross and it is found as the intersection of three hyperbolas that
are defined as the range difference between the mobile node and four anchors, of which anchor
A1 is the reference node.

estimation has better performance compared to two-step delay difference estimation
due to lower error variance of the estimates [59, 60].

The difference of ranges that corresponds to reference anchor j and anchors i is de-
noted by d (i , j )(z0) and defined as

d (i , j )(z0) := d (i )(z0)−d ( j )(z0) = ‖z0 −zi‖2 −
∥∥z0 −z j

∥∥
2 , ∀i | i 6= j . (2.15)

Similar as for TOA estimates, the differences of the ranges d (i , j )(z0) are directly propor-

tional to the TDOAs τ(i , j )
D , where the relation is given by

d (i , j )(z0) := cτ(i , j )
D , ∀i | i 6= j . (2.16)

It is easy to see from (2.15) and Fig. 2.2b that each error-free estimate d (i , j )(z0) defines
a hyperbola in the 2-D space on which the mobile node must lie. Geometrically the
position of the mobile node can be determined as the point of intersection of at least
three hyperbolas (cf. Fig. 2.2). Therefore, the minimum number of anchors required to
determine the position of the mobile node in 2-D space using TDOA estimates is NA =
4. However, in the presence of errors, the hyperbolas do not necessarily need to have
an intersection point. This motivates the mathematical formulation of the problem of
TDOA-based localization. In what follows, we will show that by using the TDOAs, the
location of the mobile node z0 can be found by solving a set of hyperbolic equations.

Let us consider the most general scenario where the delays τ̂(i )
1 are estimated be-

tween the mobile node and every one of the anchors i = 1, . . . , NA. From these collected
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delays we can calculate in total NA(NA −1)/2 TDOAs τ̂(i , j )
D if we consider all possible se-

lections of the reference node. However, some of the calculated TDOAs will be redun-
dant, i.e., linear combination of other TDOAs. The number of non-redundant TDOAs is
(NA−1). It is shown in [61] that improved performance of localization can be achieved by
first estimating (NA−1) non-redundant TDOAs from NA(NA−1)/2 redundant ones using
weighted least squares. Then these estimates should be used for location estimation.

Without loss of generality, we will consider anchor j as reference node and denote

the estimated non-redundant TDOAs by τ̂(i , j )
D , ∀i | i 6= j . The difference of ranges are

obtained from the TDOA estimates following the relation (2.16) as d̂ (i , j )(z0) := cτ̂(i , j )
D ,

∀i | i 6= j and they satisfy the following model

d̂ (i , j )(z0) = d (i , j )(z0)+n(i , j ) , ∀i | i 6= j , (2.17)

where n(i , j ) = cn(i , j )
τ . These differences of ranges are then collected in the vector rTDOA =

[d̂ (1, j ), . . . , d̂ (NA, j )]T of length (NA −1) that has the following model

rTDOA = fTDOA(z0)+nTDOA , (2.18)

where nTDOA = [n(1, j ), . . . ,n(NA, j )]T is the error vector and

fTDOA(z0) :=


d (1, j )(z0)
d (2, j )(z0)

...
d (NA, j )(z0)

=


‖z0 −z1‖2 −‖z0 −z j ‖2

‖z0 −z2‖2 −‖z0 −z j ‖2
...

‖z0 −zNA‖2 −‖z0 −z j ‖2

 . (2.19)

Similar to the TOA case, the function fTDOA(z0) is known, and it is parameterized by the
unknown position of the mobile node z0. This is the vector-valued function that collects
the error-free differences of ranges given by (2.15).

The problem of location estimation using TDOAs is to estimate z0 given the rTDOA

and the model (2.18). The function fTDOA(z0) is nonlinear in the location parameter
z0. Therefore, the estimate of the location z0 can be obtained by solving the system of
nonlinear equations (2.19). To facilitate the algorithm development and performance
analysis, we derive the statistical model for the TDOAs.

Assuming that n(i , j ) are zero-mean Gaussian random variables, then the vector
nTDOA is also zero-mean Gaussian distributed. Therefore, we can write nTDOA ∼
N (0,ΣTDOA), where 0 is the zero vector of length NA and ΣTDOA is the covariance ma-
trix. Different from the covariance for TOAs,ΣTDOA is not a diagonal matrix as now τ̂(i , j ),
∀i | i 6= j are correlated as they are all determined compared to reference node j . Fur-
thermore, the variance of the TDOA τ̂(i , j ) is two times larger compared to the variance of
the TOAs from which it is computed when these TOAs have equal variances.

We denote the vector that collects error-free differences of ranges compared to the
anchor j by d j and it is given as d j = fTDOA(z0). Here, the dependency of d j on z0 is
dropped as the position z0 is assumed to be fixed during TDOA estimation. Following
from the assumption on the distribution of the error vector nTDOA, we can write rTDOA ∼
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N (d,ΣTDOA). Then, the probability density function (PDF) of the rTDOA is given by

p(rTDOA) = 1

(2π)(NA−1)/2(det(ΣTDOA))1/2
exp

(
−1

2
(rTDOA −d j )TΣ−1

TDOA(rTDOA −d j )

)
.

(2.20)

2.3.2. RECEIVED SIGNAL STRENGTH

The received signal strength (RSS) is the power of the received signal at the mobile node.
Typically it is assumed that this received power follows an exponentially decaying func-
tion, which is parameterized by the power of the signal at the transmitter (anchor node),
path loss exponent, and the distance between the mobile and anchor node [62]. This
model holds for channels in which multipath effects are small or can be ignored. How-
ever, in the presence of multipath effects, the power of the received signal varies sig-
nificantly with a slight change in position of the mobile node [63]. This phenomenon
is known as the multipath channel fading effect, and it is complex to model as a func-
tion of the location. Due to these modeling errors, RSS-based localization typically has
poor performance. The accuracy of RSS-based methods in multipath channels can be
improved by estimating the power of the LOS path instead of the average power of the
received signal. However, this requires resolving the LOS path from the MPCs in the time
domain. This is the objective of time-delay based localization methods, and generally,
these methods outperform RSS-based localization [50]. The advantage of RSS-based lo-
calization systems is that compared to TOA and DOA based localization systems, they
do not require synchronization or an antenna array, respectively. Therefore, they are
simpler to implement.

Let us consider a scenario where the i th anchor sends a signal with power P (i )
Tx . This

signal propagates through the channel and arrives at the receiver of the mobile node
with power P (i )

0 . Assuming that there is no noise and fading disturbances in the channel,

then the influence of the propagation on the received signal power P (i )
0 is given by

P (i )
0 :=G (i )P (i )

Tx

(
d (i )(z0)

)−κ
, i = 1, . . . , NA , (2.21)

where G (i ) captures all the hardware effects on P (i )
0 , such as antenna heights and gains at

the i th anchor and the mobile node, and κ is the path-loss exponent. The path-loss ex-
ponent κ depends on the propagation environment, and in general, it takes values from
2 to 5, whereκ= 2 for free-space channels. However, κ does not capture the disturbances
in the received signal power P (i )

0 that are caused by noise or fading. These disturbances

of P (i )
0 are known as shadow and multipath fading. Channel measurement campaigns

and statistical analysis of acquired measurements have shown that shadow fading on
average follows the log-normal distribution [64]. Therefore, the logarithmic model for
P (i )

0 that takes into account noise and shadowing effects, is given by

log10(P (i )
0 ) = log10(G (i ))+ log10(P (i )

Tx )−κlog10

(
d (i )(z0)

)
+n(i )

RSS , i = 1, . . . , NA . (2.22)

where log10(·) is the logarithm of a variable with base 10 and n(i )
RSS is a Gaussian random

variable (in dB) that models shadow fading.
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Assuming that the total hardware gains G (i ) and the transmitted signal powers
P (i )

Tx , i = 1, . . . , NA are measured in advance and known, we can define the calibrated error-
free RSSs as

s(i ) := log10(P (i )
0 )− log10(G (i ))− log10(P (i )

Tx ) , i = 1, . . . , NA . (2.23)

From (2.22), it follows that the estimated RSSs after calibration of hardware effects satisfy
the model given by

ŝ(i ) =−κlog10

(
d (i )(z0)

)
+n(i )

RSS , i = 1, . . . , NA . (2.24)

These measurements are collected in the vector rRSS = [ŝ(1), . . . , ŝ(N )]T that satisfies the
following model

rRSS = fRSS(z0)+nRSS , (2.25)

where nRSS = [n(1)
RSS, . . . ,n(NA)

RSS ]T and

fRSS(z0) :=−κ


log10

(
d (1)(z0)

)
log10

(
d (2)(z0)

)
...

log10

(
d (NA)(z0)

)
 . (2.26)

The problem of localization using RSSs is to estimate z0 given the rRSS and a known
model of the function fRSS(z0). The function fRSS(z0) has a similar form as the function
fTOA(z0) in the TOA model as both of them model the relation between the estimates
and the ranges. The position z0 can be obtained by solving a nonlinear system of equa-
tions (2.25), and the geometrical interpretation of this problem is the same as shown in
Fig. 2.1 for TOA-based localization. The first step to design an algorithm and analyse its
efficiency is to statistically model fRSS.

Assuming that n(i )
RSS are zero-mean uncorrelated Gaussian random variables we can

write n(i )
RSS ∼N (0,σ2

RSS,i ), whereσ2
RSS,i is the variance of the i th estimate. The vector nRSS

is then also zero-mean Gaussian distributed, and we can write nRSS ∼N (0,ΣRSS), where
ΣRSS is the covariance matrix. The matrix ΣRSS is diagonal, as the estimation errors are
assumed to be uncorrelated. Using these assumptions we can derive the distribution for
the RSS estimates. Let us first denote the vector that collects error-free RSS estimates
with s = [s(1), . . . , s(NA)]T . This vector satisfies the model s = fRSS(z0), where we drop its
dependency on z0 as the position of the mobile node is fixed during the collection of
the measurements. Using the assumption on nRSS, we can write rRSS ∼N (s,ΣRSS) and
define the probability density function (PDF) of the rRSS as

p(rRSS) = 1

(2π)NA/2(det(ΣRSS))1/2
exp

(
−1

2
(rRSS −s)TΣ−1

RSS(rRSS −s)

)

= 1

(2π)NA/2 ∏NA
i=1σRSS,i

exp

−1

2

NA∑
i=1

(
r (i )

RSS +κlog10

(
d (i )(z0)

))2

σ2
RSS,i

 ,

(2.27)

where ΣRSS = diag([σ2
RSS,1, . . . ,σ2

RSS,NA
]).
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Figure 2.3: Illustration of DOA-based localization. (a) The black dashed line denotes the true di-
rection of arrival of the signal transmitted from the mobile node. The green color indicates the
effects of noise in the DOA estimates. (b) The location of the mobile node is marked by the red
cross, and it is found as the intersection of the two lines defined by the DOAs estimated for the two
anchors.

It is important to note that when the hardware gains G (i ) and the powers P (i )
Tx are

calibrated at the anchors such that G (i ) =G and P (i )
Tx = PTx,∀i but unknown at the mobile

node, it is possible to eliminate the unknowns G and PTx by calculating the received
signal strength differences (RSSDs) [65]. The RSSDs are calculated following the same
idea used to obtain the TDOAs. The RRSDs are linked to the difference of ranges in the
same way as it was the case for TDOAs. The geometrical interpretation for localization
using TDOA and RRSD is the same as shown in Fig. 2.2. We will not derive the model for
RRSD measurments, as the same steps as used for the TDOA model derivation can be
used.

2.3.3. DIRECTION OF ARRIVAL (DOA)

The DOA of a signal is the angle under which that signal arrives at the receiver [66]. With-
out loss of generality, we will assume that DOAs are collected at a mobile node that is
equipped with an antenna array. The location of the mobile node in 2-D space can
be determined using DOAs estimated from the signals transmitted by two anchors, as
shown in Fig. 2.3. These DOAs can be used to draw direct lines from the anchors to the
mobile node. The point of intersection of these lines then represents the location of the
mobile node. DOA-based localization does not require clock synchronization between
the mobile node and the anchors or between the anchors [67]. This makes DOA local-
ization more attractive for scenarios where synchronization is hard to achieve. How-
ever, DOA-based localization requires receivers equipped with antenna arrays that have
known orientation. This requirement increases the implementation complexity of DOA-
based localization systems. Furthermore, here we assume that mobile nodes are far-field
sources, and thus their location can be directly estimated from DOAs. In scenarios where
mobile nodes are in the near-field regions of antenna arrays, both DOAs and ranges are
necessary to estimate their location, which results in a more complicated problem [68].

Let us consider the scenario of DOA estimation of the signal sent from anchor i to the
mobile node. We will consider a scenario of 2-D localization to simplify the relationship
between the true DOAϑ(i ) of this signal and the locations of the anchor zi and the mobile
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node z0 as

tan(ϑ(i )) = z(0)
y − z(i )

y

z(0)
x − z(i )

x

, i = 1, . . . , NA . (2.28)

Geometrically, ϑ(i ) represents the angle between the direction line drawn from anchor
i and the mobile node as shown in Fig. 2.3. The estimated DOAs are contaminated by
noise and they satisfy the model

ϑ̂(i ) :=ϑ(i ) +n(i )
DOA = tan−1

(
z(0)

y − z(i )
y

z(0)
x − z(i )

x

)
+n(i )

DOA , i = 1, . . . , NA . (2.29)

where n(i )
DOA, are zero-mean uncorrelated Gaussian variables with variances σ2

DOA,i . The

DOA estimates are collected in the vector rDOA = [ϑ̂(1), . . . , ϑ̂(NA)]T that satisfies the fol-
lowing model

rDOA = fDOA(z0)+nDOA , (2.30)

where nDOA = [n(1)
DOA, . . . ,n(NA)

DOA]T is the error vector and

fDOA(c0) :=



tan−1
(

z(0)
y −z(1)

y

z(0)
x −z(1)

x

)
tan−1

(
z(0)

y −z(2)
y

z(0)
x −z(2)

x

)
...

tan−1
(

z(0)
y −z

(NA)
y

z(0)
x −z

(NA)
x

)


. (2.31)

The mobile node localization problem using DOA measurements is to estimate z0 given
rDOA and the known model for the function fDOA(z0), which is nonlinear in the param-
eter z0. We can estimate the location z0 by solving the nonlinear system of equations
(2.30) [69]. However, there are several approaches to arrive at the algorithm and the so-
lution to this problem. The first step to design an algorithm and perform the analysis of
its efficiency is to statistically model the estimates rDOA.

From the assumption that the error vector n(i )
DOA is zero-mean Gaussian distributed,

it follows that nDOA ∼ N (0,ΣDOA), where ΣDOA is the covariance matrix. As the errors
are assumed to be uncorrelated, the matrix ΣDOA is diagonal. Now, using these as-
sumptions, it is straightforward to derive the PDF of the DOA measurements. Let us
first denote the vector that collects error-free DOA measurements ϑ(i ), i = 1, . . . , NA, as
ϑ= [ϑ(1), . . . ,ϑ(NA)]T . This vector satisfies model ϑ= fDOA(z0), where we drop its depen-
dency on z0 as it is fixed during the collection of the measurements. Then, we can write
rDOA ∼N (ϑ,ΣDOA) and define the PDF of the rDOA as

p(rDOA) = 1

(2π)NA/2(det(ΣDOA))1/2
exp

(
−1

2
(rDOA −ϑ)T Σ−1

DOA (rDOA −ϑ)

)

= 1

(2π)NA/2 ∏NA
i=1σDOA,i

exp

−1

2

NA∑
i=1

(
r (i )

DOA −ϑ(i )
)2

σ2
DOA,i

 ,

(2.32)
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where ΣDOA = diag([σ2
DOA,1, . . . ,σ2

DOA,NA
]).

2.4. ALGORITHMS FOR TWO-STEP LOCALIZATION METHODS

In Section 2.3, we discussed measurements and parameters that can be used as input
for two-step localization algorithms, namely we discussed data models for TOA, TDOA,
RSS, and DOA measurements. We showed that for all these measurements, their data
models can be generalized to r = f (z0)+n (2.3), where r is the vector collecting the mea-
surements, f (z0) is the vector-valued function of the mobile node position z0, which
is specific for each of the measurements, and n is the error vector. The exact forms
of the vector-valued function f (z0) for TOA, TDOA, RSS, and DOA measurements are
given in (2.10), (2.19), (2.26), and (2.31), respectively. It can be seen that for all the mea-
surements f (z0) is a nonlinear function of the parameter z0. Therefore, the problem of
mobile node location estimation can be formulated as a nonlinear least squares (NLS)
or weighted nonlinear least squares (WNLS) optimization problem. These methods use
model (2.3) and the known function f (z0) to minimize the least squares (LS) or weighted
least squares (WLS) cost function constructed from the nonlinear error function given
by

enlin(z) = r− f (z), (2.33)

where z = [zx zy ]T is the optimization variable.
These nonlinear optimization problems may not have a global solution, and their

computational complexity is higher than the complexity of linear least squares (LLS)
problems. Another approach to solve problems described by the model (2.3) is to trans-
form the model such that that a nonlinear function f (z0) in z0 is approximated by a linear
function in z0. This process is called linearization of the model (2.3), and the result is the
linear model in z0 given by

m = Az0 +q , (2.34)

where m and A are a vector of the measurements after transformation and the known de-
sign matrix, respectively, and q is the transformed error vector. The linear error function
for this model is then given by

elin(z) = m−Az . (2.35)

Minimizing the LS or WLS cost function of the linear error function elin(z) results in lin-
ear least squares (LLS) and weighted linear least squares (WLLS) estimators. Minimizing
a linear error function elin(z) in LS or WLS sense has a unique solution, and solving it is
less computationally complex compared to nonlinear methods. However, nonlinear es-
timators outperform linear estimators, especially in the sense of root mean square error
(RMSE) for low signal-to-noise (SNR) scenarios.

In what follows, we will illustrate derivations of localization algorithms based on
nonlinear and linear cost functions. In this thesis, we focus on time-delay estimation of
multipath channel parameters for localization. Therefore, we select to illustrate deriva-
tions of the algorithms for localization using the example of TOA measurements. How-
ever, we already showed that all the other measurements that we have discussed before,
such as TDOA, RSS, DOA, share the same underlying data model (2.3) as TOA measure-
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ments. Therefore, this derivation can be used as a guideline to derive the algorithms for
localization based on these measurements.

2.4.1. NONLINEAR ESTIMATION

We saw that nonlinear algorithms obtain the location by solving NLS or WNLS optimiza-
tion problems, which results in NLS or Maximum Likelihood (ML) estimators, respec-
tively. The cost functions used in these optimization problems are multi-modal, and
therefore, the convergence to the global solution is not guaranteed. The NLS estimator
is simpler than the ML estimator, and it does not require information about noise statis-
tics. However, the ML estimator has better performance in terms of RMSE as it takes
into account the differences in the measurement errors by applying weights to the er-
rors according to the noise statistics. The ML estimator is optimal in the sense that it is
unbiased, and it asymptotically achieves the lower bound on the RMSE of the estimated
parameter, i.e., the Cramér Rao Bound (CRB), when the number of measurements is in-
creasing.

NONLINEAR LEAST SQUARES (NLS) ESTIMATION:

The NLS algorithms estimate the location by finding the minimum of the LS cost
function constructed from the error function (2.33), where the function f (z) is selected
depending on the measurements that are used as input to the algorithm. We will
illustrate the NLS algorithm using TOA measurements as example.

NLS TOA Localization: Using the error function (2.33) and the function (2.10) that
relates TOA measurements to the position, we can define the NLS cost function
JNLS,TOA(z) as

JNLS,TOA(z) :=(
rTOA − fTOA(z)

)T (
rTOA − fTOA(z)

)
=

N∑
i=1

(
d̂ (i ) −d (i )(z)

)2
.

(2.36)

The location estimate is obtained by finding z that minimizes the cost function
JNLS,TOA(z), that is by solving the following optimization problem

ẑ0 = argmin
z

JNLS,TOA(z) . (2.37)

Solving this optimization problem is possible by using iterative optimization methods
such as Gauss-Newton, Levenberg-Marquardt, and steepest descent. All of these meth-
ods require as input an initial estimate of the location ẑ(0)

0 and then they perform a search
for the local minimum close to the initial estimate. If the initial estimate is close to the
true solution z0, then these methods will converge to it. Otherwise, they will converge
to ẑ0 that corresponds to the local minimum of the cost function. Other approaches for
solving the problem (2.37) are based on a search for the global minimum using a grid
search or random search techniques such as genetic algorithms [70] or particle swarm
optimization [71].



2

38 2. PRINCIPLES OF RADIO LOCALIZATION

MAXIMUM LIKELIHOOD (ML) ESTIMATION:

When deriving the ML algorithm, it is assumed that the probability distribution of the
errors in the measurements is known. Then the objective of the ML algorithms is to find
z that maximizes the likelihood functions of the TOA (2.12), TDOA (2.20), RSS (2.27), and
DOA (2.32) measurements, respectively. Therefore, we can define the ML estimator as

ẑ = argmax
z

p(r; z) , (2.38)

where p(r;z) denotes the PDF of measurements. Typically, we consider that errors
are zero-mean Gaussian distributed, and therefore the PDFs have exponential models.
Finding the maximum of a PDF requires computing its gradient, and this can be compli-
cated if computed directly from the PDF with exponential form. We use the fact that the
logarithm is monotonically increasing on R+ and redefine the ML estimator as

ẑ = argmax
z

ln p(r; z) . (2.39)

This formulation is equivalent to the one in (2.38), as the location of the extremes of
the function will not change. When the noise is assumed to be zero-mean Gaussian
distributed, the resulting estimator is the weighted version of the previously discussed
NLS estimator. Next, we will illustrate the derivation of the ML estimator for location
estimation from the TOA measurements. This procedure is general, and the same steps
can be followed to derive estimators for other discussed types of measurements.
ML TOA Localization: We apply the logarithm operation to the PDF for the TOA mea-
surements (2.12) and write the result as [72]

ln p(rTOA; z) = ln
1

(2π)N /2(det(ΣTOA))1/2
− 1

2

(
rTOA − f (z)

)T
Σ−1

TOA

(
rTOA − f (z)

)
. (2.40)

We can see that only the second term in this expression depends on z. Therefore, max-
imizing ln p(rTOA; z) with respect to z is equivalent to minimizing the second term in
(2.40). We use this to define the ML location estimator as

ẑ0 = argmin
z

(
rTOA − f (z)

)T
Σ−1

TOA

(
rTOA − f (z)

)
. (2.41)

Using the cost function we can define the ML estimator as

ẑ0 = argmin
z

JML,TOA(z) . (2.42)

From (2.41) the ML cost function immediately follows and it is given as

JML,TOA(z) = (
rTOA − f (z)

)T
Σ−1

TOA

(
rTOA − f (z)

)
=

N∑
i=1

(
d̂ (i ) −d (i )

)2

σ2
TOA,i

.
(2.43)

Comparing the cost functions JML,TOA(z) (2.43) and JNLS,TOA(z) (2.36), we observe
that for the zero-mean Gaussian assumption on the distribution of the measurements
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rTOA, JML,TOA(z) is the weighted version of the JNLS,TOA(z) (2.36). Therefore, we can con-
clude that the ML estimator is a generalized version of the NLS estimator. The ML es-
timator is equivalent to the NLS estimator when the noise covariance matrix ΣTOA is
proportional to the identity matrix, that is when the variance of the noise in the TOA
measurements is equal for all anchors. The same optimization methods for solving NLS
problems can be used to solve the WNLS problem given in (2.42). However, now the
noise covariance matrix ΣTOA is assumed to be known or estimated prior to ML location
estimation.

2.4.2. LINEAR ESTIMATION METHODS

We already mentioned that the basic idea behind linear location estimation methods
is to linearize the nonlinear model of the measurements given in (2.9), (2.18), (2.25),
and (2.30) [48]. Then the LS and WLS cost functions constructed from the linear error
function (2.35) are unimodal, and it is guaranteed that optimization methods will find
their global minimum. The resulting estimator will depend on the selected cost function
used in the optimization. Minimizing the LS cost function of the errors will result in
the LLS location estimator while minimizing the WLS cost function of the error will lead
to the WLLS location estimator. Another approach to estimate the location from the
linearized model of the measurements is to use subspace techniques to solve for the
unknown parameter z from the set of linear measurement equations. However, we will
not discuss these methods in this thesis. In what follows, we will illustrate derivations of
LLS and WLLS location estimators.

LINEAR LEAST SQUARES (LLS) ESTIMATION:

To derive the LLS estimators, we need to linearize the functions that are given in the mea-
surement models (2.9), (2.18), (2.25) and (2.30), with respect to the unknown parameter
z. Then the location z can be estimated using the ordinary LS method. We will illustrate
the derivation of the LLS location estimator using the example of TOA measurements.
LLS TOA Localization: To linearize the model for the TOA measurements, we first define
the squared range estimates using the model given in (2.8) as(

d̂ (i )
)2 =

(
d (i )(z0)

)2 +
(
n(i )

)2 +2d (i )n(i ) , i = 1, . . . , NA . (2.44)

Using the definition of the Euclidian distance (2.4) we can express the squared ranges as
a function of the unknown coordinates z0 = [z(0)

x , z(0)
y ]T of the mobile node as(

d̂ (i )
)2 = (z(0)

x − z(i )
x )2 + (z(0)

y − z(i )
y )2 +q (i ) , i = 1, . . . , NA , (2.45)

where q (i ) = (
n(i )

)2 + 2d (i )n(i ). Next, we rearrange the terms in (2.45) to separate the
unknowns from the knowns as(

d̂ (i )
)2 −

(
z(i )

x

)2 −
(
z(i )

y

)2 =−2z(i )
x z(0)

x −2z(i )
y z(0)

y + (
z(0)

x

)2 +
(
z(0)

y

)2 +q (i ) , i = 1, . . . , NA .

(2.46)
There are two approaches on how to write a linear model for these equations. One ap-
proach is to select one of these equations and subtract it from the others to cancel the



2

40 2. PRINCIPLES OF RADIO LOCALIZATION

term
(
z(0)

x

)2 +
(
z(0)

y

)2
. However, the better approach that will be illustrated here is to de-

fine
(
z(0)

x

)2 +
(
z(0)

y

)2
as a new unknown variable γ and estimate it together with z(0)

x and

z(0)
y . Then the set of the equations (2.46) can be rewritten as

(
d̂ (i )

)2 −
(
z(i )

x

)2 −
(
z(i )

y

)2 =−2z(i )
x z(0)

x −2z(i )
y z(0)

y +γ+q (i ) , i = 1, . . . , NA . (2.47)

Now, we can write the model for these equations as

m := Ab+q , (2.48)

where

m =



(
d̂ (1)

)2 −
(
z(1)

x

)2 −
(
z(1)

y

)2

(
d̂ (2)

)2 −
(
z(2)

x

)2 −
(
z(2)

y

)2

...(
d̂ (NA )

)2 −
(
z(NA )

x

)2 −
(
z(NA )

y

)2

 , q =


q (1)

q (2)

...
q (NA )



A =


−2z(1)

x −2z(1)
y 1

−2z(2)
x −2z(2)

y 1
...

...
...

−2z(NA )
x −2z(NA )

y 1

 , and b =
z(0)

x

z(0)
y

γ

 .

Assuming that n(i ), i = 1, . . . , NA, are zero-mean Gaussian distributed random vari-
ables with relatively small variances such that E(q) ≈ 0, we can approximate (2.48) as

m ≈ Ab . (2.49)

Using this approximation, we can define the LS cost function for the linearized model of
TOA measurements as

JLLS,TOA(b) = (Ab−m)T (Ab−m) . (2.50)

The LS estimator of vector b is then given by

b̂= argmin
b

JLLS,TOA(b) . (2.51)

The cost function JLLS,TOA(b) is unimodal and therefore this optimization problem has
a unique solution which is easy to compute. In fact this problem has the closed form
solution given by

b̂= (
AT A

)−1
AT m . (2.52)

Finally, the LS location estimate ẑ0 is obtained by selecting the first and second entries
of b̂ as ẑ(0)

x and ẑ(0)
y , respectively.
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WEIGHTED LINEAR LEAST SQUARES ( WLLS) ESTIMATION:

The LLS estimator given in (2.52) is not statistically efficient when errors in the mea-
surements (2.48) are not independent and identically distributed. The performance of
estimation can be improved by constructing the weighted least squares cost function
from the linear error function. We will illustrate the derivations of the WLLS estimation
for the example of TOA measurements.
WLLS TOA Localization: We start from the LLS cost function (2.50) and define the WLLS
cost function by including the weighting matrix W in it as

JWLLS,TOA(b) = (Ab−m)T W (Ab−m) . (2.53)

The matrix W is typically symmetric and its choice will influence the statistical perfor-
mance of the estimator. The WLLS location estimator is then given by

b̂= argmin
b

JWLLS,TOA(b) . (2.54)

This optimization problem has a closed form solution given by

b̂= (
AT WA

)−1
AT Wm . (2.55)

Computing the weighting matrix from the noise covariance matrix as W = Σ−1
q , where

Σq = E(qqT ), results in the best linear unbiased estimator (BLUE) [72]. The BLUE esti-
mator is unbiased and has the smallest variance of the estimation error of all the linear
estimators. Likewise, as for LLS estimator, ẑ(0)

x and ẑ(0)
y directly follow from b̂.

2.4.3. DIRECT LOCATION ESTIMATION (DLE)

The direct location estimation (DLE) methods treat the location estimation from the re-
ceived signals differently than the two-step methods. These methods estimate the loca-
tion z0 directly from the measurements of the received signals yi (t ), i = 1, ..., NA, with-
out the intermediate step of first estimating specific parameters of the LOS path [73].
The DLE methods start from the parametric model for the received signals where the
received signals are expressed as a nonlinear function of the position z0 [74]. We will il-
lustrate DLE for the simplified example of localization using single antenna narrowband
transceivers. Due to the narrowband assumption, we model radio signal propagation
with a single path LOS channel model. Therefore, the signals from the anchors as re-
ceived at the mobile node are given by

yi (t ) :=α(i )x(t −τ(i ))+n(i ) , i = 1, . . . , NA , (2.56)

where n(i ) are zero-mean uncorrelated Gaussian distributed random variables with vari-
ances σ2

i , i = 1, . . . , NA. We can write the delays of the LOS paths as τ(i ) = ‖z0 − zi‖2/c.
Then the model for the received signal can be written as

yi (t ; z0) :=α(i )x

(
t − ‖z0 −zi‖2

c

)
+n(i ) , i = 1, . . . , NA . (2.57)
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Assuming that for each received anchor signal yi (t ;z0), N samples are collected in the
vector y(i ) = [y (i )[0], y (i )[1], . . . , y (i )[N −1]]T and using the assumption made for the dis-
tribution of the noise, the PDFs for the received signals are given by

p(y(i ); z0) = 1(
2πσ2

i

)N /2
exp

−1

2

N∑
i=1

(
y (i )[n]−α(i )x

(
nTs − ‖z0−zi ‖2

c

))2

σ2
i

 , (2.58)

where Ts is the sampling interval. When the signals y(i ) , i = 1, . . . , NA , are independent
and identically distributed (i.i.d), then their join PDF is

p
(
y(1),y(2), . . . ,y(NA); z0

)= NA∏
i=1

p(y(i );z0) . (2.59)

The ML estimator for DLE now becomes

ẑ0 = argmin
z

p
(
y(1),y(2), . . . ,y(NA);z

)
. (2.60)

where z is the optimization variable. By estimating location directly from signals re-
ceived from all anchors, the DLE methods introduce an additional constraint in the lo-
cation estimation problem that all the measurements of the received signals must be
a function of the unknown location [73]. This constraint is not present in two-step lo-
calization methods since measurements such as TOA, TDOA, or DOA are obtained for
each anchor separately. Then afterward, these measurements are used to estimate the
unknown location. This is the reason why the DLE methods outperform the two-step
localization methods. However, using the raw signal measurements from all anchors to
estimate unknown locations in the single-step results in a complex optimization prob-
lem whose complexity increases significantly with an increase of the number of multi-
path components in the channel [75]. Therefore, these methods are typically applied for
localization using narrowband signals or scenarios where multipath propagation can be
ignored [76].

2.5. CONCLUSIONS

In this section, we discussed methods for location estimation using radio signals. We
showed that multipath channel parameters encode the location information. We then
presented two-step and direct location estimation methods in Sections 2.3 and 2.4.3,
respectively.

In the two-step localization approaches, first, a parameter of the LOS path is esti-
mated from the received signal measurements yi (t ) , i = 1, . . . , NA (2.2). Then the relation
between the estimated parameter r and the mobile node location z0 is used to define a
nonlinear system of equations (2.3). At last, the location z0 is estimated by finding the
solution to this nonlinear system of equations. We did not discuss two-step approaches
where multiple location parameters are used to estimate the location. For example,
these methods combine TOA and DOA [77, 78, 79], TDOA and DOA [80] or RSS and DOA
[81] measurements to estimate the location. These methods improve the accuracy of
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localization compared to single parameter localization methods. However, at the same
time, they result in a more complex nonlinear optimization problem.

In direct location estimation methods, the received signal measurements yi (t ) or es-
timated multipath channel response h(i )(t ) , i = 1, . . . , NA , are directly parametrized by
the location parameter z. The location is directly estimated from the collected measure-
ments, without the intermediate step of first estimating a specific parameter and then
estimating the location based on this parameter. These methods have a large compu-
tational complexity and are typically not practical for localization in multipath environ-
ments.
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3.1. INTRODUCTION

THIS chapter introduces the problem of multipath channel time-delay estimation for
localization and provides necessary theoretical preliminaries and terminology used

throughout the thesis. First, we discuss the signal model for multipath channel mea-
surements and formulate the problem of time-delay estimation for localization. We start
from the general parametric multipath channel model (2.1) given in Chapter 2 and tailor
it to the problem of time-delay estimation with single antenna wireless transceivers. The
resulting model is known from spectral estimation and appears in several other popu-
lar applications such as underwater communications, radar, and ultrasound imaging, to
name a few. The parameter estimation for this model is well studied in the past using
popular signal processing frameworks related to spectral estimation such as maximum
likelihood [72], subspace-based [82], and compressive sensing-based [83] estimation.
We provide an introduction to these signal processing frameworks and discuss how they
can be applied of our problem. In particular, we focus on methods for parametric time-
delay estimation and provide an overview of previous works related to this thesis.

3.2. TIME-DELAY ESTIMATION FOR LOCALIZATION

In Chapter 2, we introduced a general parametric signal model for multipath channel
measurements (2.1) and discussed the parameters that encode the location informa-
tion. We saw that the time-delays τ(i )

k , complex path amplitudes α(i )
k , and directions of

arrival ϑ(i )
k , k = 1, . . . ,K , of the MPCs present in the channel between anchor i and the

mobile node encodes the mobile node’s location and those of the surrounding RF reflec-
tors. To estimate the location of the mobile node using two-step localization approaches,
we first need to estimate the parameters of the multipath channels between the mobile
node and several anchors. The number of multipath channels whose parameters need to
be estimated depends on the formulation of the localization problem, and this has been
discussed in the previous chapter. This thesis focuses on the problem of time-delay es-
timation for TOA and TDOA based localization using single antenna RF transceivers. In
particular, we focus on the estimation of the time-delay of the LOS path τ(i )

1 which, up
to a possible bias, directly relates to the range between the mobile node and anchor i .
The causes of a bias can be imperfect calibration of the RF transceivers [84] or failure
to resolve all the MPCs present in the channel [85]. Therefore, to accurately estimate
the time-delay of the LOS path, MPCs present in the channel must be resolved and their
time-delays estimated as well. The accuracy of time-delay estimation depends on the
bandwidth of the training signals used for the channel probing and the signal-to-noise
ratio (SNR) at the receiver. High accuracy estimation can be achieved if multipath chan-
nel measurements are collected with large bandwidth training signals. However, most
practical RF transceivers do not have large instantaneous frequency bandwidth, making
high-resolution time-delay estimation challenging. In this thesis, we propose multipath
channel acquisition methods and algorithms that can solve this problem.

We start from the general multipath channel model (2.1) and tailor it to the problem
of time-delay estimation using single antenna RF transceivers. To simplify notation in
the rest of this thesis, we drop the dependency of the channel parameters on index i . We
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Figure 3.1: The true multipath channel impulse response h(t ) and the compound impulse re-
sponse c(t ) after filtering by the low-pass filter. The compound impulse response is generated
for two different bandwidths of the low-pass filter.

will implicitly assume that we estimate time-delays between the mobile node and multi-
ple anchors when discussing location estimation. The signal model (2.1), after tailoring
to our problem and notation simplification, is given by

h(t ) =
K∑

k=1
αkδ(t −τk ) , (3.1)

where τk ∈R+ is the time-delay of the kth resolvable multipath component andαk ∈C is
its complex path amplitude. In practice, when we estimate time-delays, we do not have
direct access to the samples of h(t ). We first need to probe the channel with the training
signal and then estimate h(t ) from the discrete samples of the noise corrupted received
signal y(t ). In the acquisition process, the bandwidth of the training signals is limited
due to the limited bandwidth of the transceiver’s RF front-end and sampling rates. We
model these effects of bandwidth limitation using an ideal low-pass filter g (t ) that has
continuous-time Fourier transform (CTFT) G(ω) limited to the interval [−πB ,πB ], where
B is the bandwidth. We can write G(ω) as

G(ω) =
{

1, ω ∈ [−πB ,πB ]

0, otherwise.
(3.2)

The received signal before sampling is then given by

y(t ) = x(t )∗ c(t )+q(t ) , (3.3)

where c(t ) = g (t )∗h(t ) is the compound impulse response of the multipath channel and
low-pass filter, and q(t ) represents a zero-mean Gaussian noise process. Considering
the assumption on g (t ), we can write the compound impulse response c(t ) as

c(t ) =
K∑

k=1
αk ·Bsinc[B(t −τk )] . (3.4)
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Therefore, the time-delay parameters are estimated from the samples of y(t ), where the
multipath channel is represented by its low-pass approximation c(t ) that has bandwidth
limited to [−B/2,B/2]. Figure 3.1 shows the multipath channel impulse response h(t )
and the compound impulse responses c(t ) for two different bandwidths of the low-pass
filter g (t ) when there are K = 5 paths in the channel. We can see that after low-pass
filtering, the MPCs are smoothed by the sinc kernel of the filter. When MPCs are suffi-
ciently separated in the time domain compared to the bandwidth of the low-pass filter,
we can resolve them from the compound response c(t ) and accurately determine their
time-delays. This scenario is represented by the orange color in Fig. 3.1. However, if we
decrease the bandwidth of the filter, the width of the sinc kernel increases, and MPCs
that arrive close by are superimposed over each other and form a single MPC. This sce-
nario is represented by the green color in Fig. 3.1, and we can see that the first two paths
are now represented as a single path. Therefore, these two paths are not directly resolv-
able from Fig. 3.1. On the other hand, in this scenario, the last two paths are resolvable,
but they interfere with each other, and the maxima of their powers do not correspond to
the true time-delays.

From this example, it is obvious that the ability to detect a number of MPCs present
in the channel and estimate their time-delays depends on the separation of their delays
and the bandwidth of the channel measurements. The minimum time-delay between
two MPCs that is resolvable by an algorithm will be called the resolution of the algo-
rithm. In this example, we did not consider the influence of noise in the measurements,
which makes time-delay estimation even more challenging. The influence of noise on
the estimation will be illustrated in the next section. In this thesis, we are interested in
practical approaches for acquiring multipath channel measurements using off-the-shelf
RF transceivers and algorithms that support high-resolution time-delay estimation from
these measurements.

Using the property of the time-frequency duality, we can equivalently formulate the
problem of the time-delay estimation in the frequency domain. The continuous-time
Fourier transform (CTFT) of h(t ) is given by

H(ω) =
K∑

k=1
αk e− jωτk , (3.5)

where ω represents angular frequency. The channel frequency response H(ω) resem-
bles the model whose parameter estimation has been treated extensively in spectral es-
timation [82]. The multipath channel frequency response (3.5) is modeled as a sum of
complex exponentials, and the objective of spectral estimation is to estimate the pow-
ers | αk |2 and their corresponding frequencies. The estimated frequencies are directly
related to the time-delays of the MPCs τk ,k = 1, . . . ,K . Therefore, the problem of detect-
ing the frequencies with the highest power from the samples of H(ω) coincides with the
problem of detecting MPCs and estimating their time-delays. This means that the ob-
jective of time-delay estimation in the frequency domain and the objective of spectral
estimation are the same. This is an important signal processing problem and has been
studied in several signal processing frameworks such as subspace and sparsity-based
estimation.

In the next section, we connect our problem to similar problems in other useful ap-
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plications such as optics, radar, or ultrasound imaging. We then use the example from
single-molecule microscopy [86] to illustrate the challenges set by noise and limited res-
olution of the measurement devices on the accurate estimation of the parameters.

3.3. SUPER-RESOLUTION PROBLEMS

The problem of super-resolution parameter estimation arises in many signal processing
applications that share the goal of overcoming the sensors’ resolution limit in order to
increase the resolution of parameter estimation. Therefore, this problem is important
for applications such as radar [87, 88, 89], microscopy, ultrasound imaging [90, 91], wire-
less [92, 93, 94] and underwater communications [95], to name a few. In these applica-
tions, sensors typically limit the temporal or spatial resolution of the acquired signal due
to various limitations introduced by physics or hardware, such as the numerical aper-
ture of a microscope, the wavelength of the electromagnetic waves, or the sampling rate
of the analog-to-digital converter [96]. Although the physical phenomena of interest in
these applications are different, the acquired signal is typically modeled as a linear su-
perposition of translated and modulated versions of some template function (e.g., a sinc
or a point spread function). The challenge to increase the resolution of estimation of
the translation (e.g., delay or location) or modulation (e.g., frequency offset or Doppler)
parameters is known as the super-resolution problem.

Next, We will shortly detour from our original problem to illustrate the super-
resolution problem and the impact of noise and limited resolution on it using an ex-
ample of the recovery of the point sources in single-molecule microscopy [97]. This
example is more intuitive for illustration as we can use images to illustrate the effects
of noise and limited resolution. At the same time, it is an extension of our problem to
two-dimensional (2D) parameter estimation.

In single-molecule microscopy, the goal is to estimate the location of small fluoresc-
ing molecules, i.e., point sources, from the optical signals observed by a microscope.
This is a challenging problem as the molecules are typically closely spaced while the res-
olution of the microscope is limited by the inverse of the wavelength of the optical signal
that is observed. The limited resolution of the microscope is due to the diffraction limit
of light, which causes blurring effects in the observed image. This effect is similar to the
effect of limited time-delay resolution of a receiver on RF signals.

To illustrate these effects, we perform an experiment where we generate a 300 × 300
samples image as shown in Fig. 3.2a. This image has four quarters with different point
source densities where: (i) the top-left quarter has 4, (ii) the top-right quarter has 12, (iii)
the bottom-left has 16, and (iv) the bottom-right has 20 sources. Figures 3.2b and 3.2c
illustrate the effects of limited resolution of the microscope on the observed sources,
where in Fig. 3.2c more blurring is introduced. We introduce blurring by convolving
the ground truth image shown in Fig. 3.2a with Gaussian kernels to generate images
shown in Figures 3.2b and 3.2c. By comparing the ground truth with Figures 3.2b and
3.2c we can notice that due to the limited resolution and blurring we are unable to re-
solve closely spaced source by the bare eye in Fig. 3.2c. To illustrate the effect of noise
we generate Fig. 3.2d by adding Gaussian noise to Fig. 3.2a. We then introduce blurring
on Fig. 3.2d to generate Fig. 3.2e. To illustrate the joint effects of a limited resolution
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(a) (b) (c)

(d) (e) (f)

Figure 3.2: (a) Ground truth image of point sources, and images with introduced (b) small blurring,
(c) severe blurring, (d) noise, (e) noise and severe blurring. (f) Magnified segments of images (c),
(d) and (e).

and noise we zoom in on three identical segments of the Figures 3.2c, 3.2d, and 3.2e,
which are marked by purple, red, and green colors, in Fig. 3.2f, respectively. From the
red segment we see that effect of moderate level of noise is not severe for the source sep-
aration. However, in the purple segment, due to blurring, we are not able to distinguish
three closely spaced sources in the top-left corner. When the effects of noise and blur-
ring are combined the problem of detecting and resolving sources becomes even more
challenging as illustrated by the green segment in the Fig. 3.2f.

The solutions to super-resolution estimation problems are typically found by mak-
ing the assumptions that we know the signal model for the physical phenomenon that
we observe and that we have some prior knowledge of its structure. For example from
Figures 3.1 and 3.2 we can observe that sources are sparse in the time-domain and have
2-D coordinates, respectively. Therefore, collecting samples of the multipath channel
response in the time domain, in which it is compact, is not a good idea as there is a high
probability that we will miss sparse MPCs. For this reason, typically, alternative sampling
schemes are designed that allow recovering the signals Fourier coefficients from low rate
samples of the signal [98, 99]. In this thesis, we use a practical approach to increase the
bandwidth of the multipath channel measurements by sampling the channel frequency
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response over multiple bands. We then use signal processing frameworks known from
spectral estimation to develop super-resolution time-delay estimation algorithms.

In the next section, we discuss the discrete data model for multipath channel mea-
surements and signal processing frameworks that can be used to design algorithms for
super-resolution time-delay estimation.

3.4. SUPER-RESOLUTION SPECTRAL ESTIMATION

We begin the overview of spectral estimation methods by introducing the discrete fre-
quency domain data model for multipath channel measurements. We then show that
this model has the same form as the general model used in 1-D spectral estimation. Fi-
nally, we introduce the main super-resolution spectral estimation methods that apply to
our problem. This includes (i) maximum likelihood methods and methods based on (ii)
subspace, and (iii) sparsity estimation.

3.4.1. DISCRETE DATA MODEL

We start the derivation of our discrete model for multipath channel measurements by
writing the CTFT of the received signal y(t ) (3.3) as

Y (ω) = X (ω) ·C (ω)+Q(ω) , (3.6)

where C (ω) = H(ω) ·G(ω) is the compound channel frequency response (CFR), G(ω) is
the CTFT of the low-pass filter (3.2), and X (ω) and Q(ω) are the CTFTs of the training
signal x(t ) and noise q(t ). Considering the CTFT G(ω) of the low-pass filter we can write
the CTFT for the received signals as

Y (ω) =
{

X (ω) ·H(ω)+Q(ω), ω ∈ [−πB ,πB ]

0, otherwise.
(3.7)

The receiver samples the signal y(t ) with sampling period Ts = 1/B , and during the
period of one training symbol Tsym = N Ts it collects N complex samples. Next, an N -
point DFT is applied on the collected samples, the output of which is stacked in increas-
ing order of DFT frequencies in y ∈ CN . The discrete-time data model for the received
signal (3.7) can now be written as

y = diag(x)h+q , (3.8)

where x collects N samples of X (ω), q ∼ CN (0,Σq) is zero-mean circularly-symmetric
Gaussian noise with covariance Σq =σ2

qIN , and σ2
q is its variance. Likewise, h collects N

samples of H(ω) ,ω ∈ [−πB ,πB ], and its entries are given by

[h]n =
∫ Tsym

0
h(t )e− j∆ωnt d t , n =−N

2
, . . . ,

N

2
−1, (3.9)

where ∆ω = 2π
N Ts

, and we assume that N is an even number. The entries of h are then
given by

H [n] = H (n∆ω) , n =−N

2
, . . . ,

N

2
−1. (3.10)
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Inserting the channel model (3.5) into (3.10) gives

H [n] =
K∑

k=1
αk e− j n∆ωτk . (3.11)

We use this result to write h in a more compact form as

h = M(φ)α , (3.12)

where M(φ) = [m(φ1) m(φ2) . . . m(φK )] ∈CN×K is a Vandermonde matrix, given by

M(φ) =


1 1 · · · 1
φ1 φ2 · · · φK

...
...

. . .
...

φN−1
1 φN−1

2 · · · φN−1
K

 , (3.13)

φk = e− jφk , φk = ∆ωτk is the phase shift introduced by the delay of kth MPC τk , and
φ= [φ1, . . . ,φK ]T ∈CK collects the phase shifts for all the MPCs. Likewise, with a slight
abuse of notation α= [α1, . . . ,αK ]T ∈CK collects the complex amplitudes of the MPCs
where each αk captures the normalizing phase shift factor φ−N /2

k .
We assume that the training signal x is known and that none of its samples are zero

or close to zero, so we can estimate h from y in (3.8) by applying deconvolution as
h = diag−1(x)y. The resulting data after deconvolution with a slight abuse of notation
satisfies the model

h = M(φ)α+q . (3.14)

Here, we assume that the transceivers are phase synchronized during the channel prob-
ing, and therefore there is no additional phase offset introduced in the measurements.
We will discuss the data model for the channel measurements collected using unsyn-
chronized transceivers and techniques to eliminate the unknown phase offset in Section
4.2.3. We also assume that samples of the training symbols x have a constant magnitude
ensuring that q has the same statistics after deconvolution and the noise remains white.

The multipath channel is typically probed multiple times during its channel coher-
ence time. We assume that the delays τ, i.e., phase shifts φ, stay constant during this
period while the complex amplitudes α and noise q may vary. Therefore, usually mul-
tiple observations (let us say M) of (3.14) are available. These observations satisfy the
following model

h(m) = M(φ)α(m) +q(m) , m = 1, . . . , M . (3.15)

whereα(m) and q(m) collect the complex amplitudes of the MPCs and the noise samples
for the mth observation, respectively.

The objective of multipath channel time-delay estimation from the (3.14) or (3.15) is
to estimate the phase shifts φ introduced by the time-delays τ of MPCs. From the esti-
mated φ, τ immediately follows. Therefore, in the rest of this section, we will focus on
the estimation of the phase shifts φ. The models (3.14) and (3.15) are often indicated as
single measurement vector (SMV) and multiple measurement vector (MMV) models, re-
spectively [100]. These models appear in many signal processing applications and they
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are well known from array signal processing [101], spectral analysis [82], and compres-
sive sensing [102]. Therefore, many super-resolution algorithms for estimation of these
models have been already proposed for various popular signal processing applications
related to radars [103, 89], ultrasound imaging [90, 91], and wireless communications
[87, 88], to name a few. In what follows, we provide an overview of the most important
methods and super-resolution frameworks that can be used for super-resolution time-
delay estimation of MPCs.

3.4.2. MAXIMUM LIKELIHOOD ESTIMATION

In Chapter 2, we showed an example of TOA based localization to illustrate principles
of maximum likelihood (ML) estimation [72]. The key idea is to define the likelihood
function of the measurements parameterized by the unknown parameter that we aim
to estimate. Then the ML estimator is found by finding the value of the parameter that
maximizes the likelihood function. The problem of ML estimation can be formulated
in two ways which are known as deterministic and stochastic ML estimation [101]. The
difference in these two formulations comes from the different assumptions made on the
statistical properties of the measurements when deriving ML estimators.

To derive the deterministic ML delay estimator, we model noise q in (3.14) as a zero-
mean circularly-symmetric Gaussian noise with covariance Σq, and we assume that the
complex path amplitudes α are unknown but deterministic parameters. Under these
assumptions, the likelihood function of the multipath channel measurements is given
by

p(h; φ,α) = 1

(2π)N /2(det(Σq))1/2
exp

(
−1

2
(h−M(φ)α)HΣ−1

q (h−M(φ)α)

)
, (3.16)

where M(φ)α and Σq are the mean and covariance of the PDF, respectively. As already
discussed in Section 2.4.1, finding the parameter φ that maximizes the likelihood func-
tion p(h; φ,α) is equivalent to finding the parameter that maximizes the log-likelihood
function ln

(
p(h; φ,α)

)
. In the case of exponential distributions, such as the Gaussian

distribution, the second approach is more convenient. Therefore, we define the ML es-
timator as

φ̂= argmax
φ,α

ln
(
p(h; φ,α)

)
. (3.17)

Assuming that the covariance matrix of the noise satisfies Σq = σ2
qIN , the ML estimator

is given by
φ̂= argmin

φ,α
‖h−M(φ)α‖2

2 . (3.18)

The deterministic ML formulation of the estimation problem results in a non-linear least
squares (NLS) problem. Therefore, the parameters φ and α can be estimated by solving
the NLS problem given in (3.18).

In the stochastic formulation of the ML estimation problem, we consider that not
only the noise q but also the complex path amplitudes α are assumed to be indepen-
dent random variables. The procedure for deriving a stochastic ML estimator is similar
to the one shown for the deterministic formulation, and we will not elaborate on it in
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this thesis. The readers interested in stochastic estimators for estimation of multipath
channel parameters we refer to [104, 105].

We discussed ML estimation by using the SMV model (3.14) as an example. The ex-
tensions of these results to the MMV model (3.15) is straightforward to do and this is
described in [106]. Next, we discuss the major properties of the ML estimators.

The ML estimators have the asymptotic properties of being unbiased, efficient, and
achieving the CRB as N tends to infinity [72]. These estimators are also robust to vio-
lations of statistical assumptions on the data model, such as assumptions on noise and
statistical correlation between the complex amplitudes α [107, 108]. This means that in
these cases, the performance of ML estimators is not severely degraded. However, the
deterministic ML estimators do not stay asymptotically efficient for the MMV models,
i.e., when M > 1, which is the consequence of the increase in the number of complex
amplitude parameters that need to be estimated for these models [106]. On the other
hand, the stochastic ML estimator remains consistent and asymptotically efficient as M
tends to infinity.

The main disadvantage of ML estimators is that they are usually not practical for im-
plementation. For example, the objective function of the NLS problem given in (3.18)
is highly multimodal with many local minima [109]. As already discussed in Chapter
2, the typical approach to finding the solution to NLS problems is to use iterative op-
timization methods such as Gauss-Newton, Levenberg-Marquardt, or steepest descent
[110, 111, 112]. However, all of these methods require initialization by the solution of
some suboptimal estimator. If the initial estimate of a suboptimal estimator is close to
the global minimum of the cost function, then these methods will converge to the opti-
mal solution [113]. Otherwise, however, they will converge to a local minimum and not
the optimal solution. Therefore, the performance of these methods strongly depends on
the accuracy of the initialization. Another disadvantage is that ML estimators assume
prior knowledge of the model order in (3.14) or (3.15) [72]. For our problem, the order
of the model is proportional to the number of the MPCs K and can be estimated before
parameter estimation by using methods given in [114, 115, 116].

3.4.3. SUBSPACE BASED ESTIMATION

The subspace-based super-resolution methods use analysis of signal and noise sub-
spaces for the estimation of parameters. These methods can be classified according to
their numerical procedure [117, 118] into

• extrema-searching techniques such as MUSIC [119] and RARE [120] algorithms,

• polynomial-rooting techniques such as Pisarenko’s harmonic decomposition
[121], root-MUSIC [122] and MODE [123] algorithms, and

• matrix-shifting techniques such as ESPRIT [124], matrix pencil methods [125, 126],
optimally weighted ESPRIT [127], and Unitary ESPRIT [128].

All of these methods, as a first step, perform subspace decomposition on the covari-
ance matrix of the data Σh or on the Hankel matrix constructed from the data h(m) ,m =
1, . . . , M . The subspace decomposition of these matrices can be done by using eigenvalue
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decomposition (EVD) [118] or singular value decomposition (SVD) [129]. In this thesis,
we choose to estimate the signal and noise subspaces by constructing a Hankel matrix
and applying SVD.

From the channel measurements h, we can construct a Hankel matrix of size P ×Q
as follows

H :=


H [0] H [1] · · · H [Q]
H [1] H [2] · · · H [Q +1]

...
...

. . .
...

H [P −1] H [P ] · · · H [N −1]

 , (3.19)

where P is a design parameter and Q = N−P+1. The constructed Hankel matrix satisfies
the model

H = M′(φ)X+Q , (3.20)

where M′(φ) is P ×K submatrix of M,

X := [α Φα Φ2α · · ·ΦQ−1α],

Q is a noise matrix andΦ= diag(φ). When matrix H is designed such that it is full rank,
i.e., rank(H) = K , then its SVD is given by

H := UΛVH = [
Us Un

]
Λ

[
VH

s
VH

n

]
, (3.21)

whereΛ is a P ×Q diagonal matrix containing the singular values. These singular values
are ordered such that

λ1 ≥λ2 ≥ ·· · ≥λK >λK+1 ≈ ·· · ≈λP ≈σ ,

where σ2 is the noise power. The first K singular values are associated to the columns
of Us = [u1 . . . uK ]. The remaining P −K smaller singular values are associated to the
columns of Un = [uK+1 . . . uN ]. The columns of Us and Un are called signal and noise
singular vectors, respectively. The signal singular vectors span the signal subspace, the
same subspace that is spanned by steering matrix M(φ). On the other hand, the noise
singular vectors span the noise subspace, that is, the same subspace that is orthogonal
to the signal subspace. We can write this more compactly as

range(Us) = range(M(φ)) , range(Un) ⊥ range(M(φ)) . (3.22)

The subspace-based algorithms exploit properties and structures present in the signal
and noise subspaces to estimate unknown parameters. We will illustrate time-delay es-
timation using subspace-based methods in examples of MUSIC and ESPRIT algorithms.

MULTIPLE SIGNAL CLASSIFICATION (MUSIC)

The MUSIC algorithm uses the property that when matrix H is full rank, the subspaces
spanned by M′(φ) and Un are orthogonal. From this, it follows that

mH (φ)Un = 0 if φ is an entry in φ , (3.23)
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Algorithm 1: Standard MUSIC

Input: N ,P,K ,h
Output: φ̂
Q ← N −P +1;

H ← hankel(h,P,Q); (3.19)

Û ← SVD(H); (3.21)

Ûn ← Û[:,K +1 : Q];

Pmusic(φ) ← calPseudoSpectrum(Ûn,φ),∀φ ∈ [0,2π); (3.24)

φ̂← searchPeaks(Pmusic(φ),K );

where 0 is the null vector. It is shown in [82] that this condition is both necessary and suf-
ficient for φ to be an entry inφ. Therefore, if we know the number of MPCs K the phase
shifts introduced by their time-delays can be found as K peaks of the MUSIC pseudo
spectrum

Pmusic(φ) = 1

‖ÛH
n m(φ)‖2

2

, φ ∈ [0,2π) . (3.24)

A summary of the MUSIC algorithm is shown as Algorithm 1. The abstract routine
calPseudoSpectrum(·) points to the calculation of the MUSIC pseudospectrum (3.24)
from Ûn and ∀φ ∈ [0,2π). The routine searchPeaks(·,K ) searches for K peaks of the
pseudospectrum and returns its corresponding phases. SVD(·) refers to the SVD of a ma-
trix. After applying SVD from the estimated column space, we select singular vectors
corresponding to the noise singular values, i.e., Û[:,K +1 : Q]. The remaining parts of the
summary are self-explanatory.

ESTIMATION OF SIGNAL PARAMETERS VIA ROTATIONAL INVARIANCE (ESPRIT)

The ESPRIT algorithm uses the property (3.22) which says that the columns of Us form a
K -dimensional basis for the column space of H. Therefore, Us and M′(φ) span the same
column space and from H we can estimate M′(φ) up to a K ×K non-singular matrix T.
This means that we can write M′(φ) = UsT−1 and that a shift invariance structure present
in M′(φ) is also present in Us.

Let us define the selection matrices

J1 = [IP−1 0P−1], J2 = [0P−1 IP−1], (3.25)

where IP−1 is the identity matrix of size (P −1)×(P −1) and 0P−1 is a null vector of length
(P −1). The submatrices M1 = J1M′(φ) ∈ C(P−1)×K and M2 = J2M′(φ) ∈ C(P−1)×K are ob-
tained by dropping the first and last row of M′(φ), respectively. In view of the shift invari-
ance structure of M′(φ), we have

M2 = M1Φ . (3.26)

Likewise, we can define submatrices of Us as

U1 = J1Us, U2 = J2Us , (3.27)
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Algorithm 2: Standard ESPRIT

Input: N ,P,K ,h
Output: φ̂
Q ← N −P +1;

H ← hankel(h,P,Q); (3.19)

Ûs ← TSVD(H,K );

Û1 ← J1Ûs; (3.27)

Û2 ← J2Ûs; (3.27)

Ψ← Û†
1Û2; (3.29)

Φ← EVD(Ψ);

τ̂k = arg{φ̂k }/(2π∆ω) , k = 1, . . .K

that satisfy the following models

U1 = M1T, U2 = M2T . (3.28)

Now, from (3.26) and (3.28) it follows that the matrixΨ= U†
1U2 satisfies the model

Ψ= TΦT−1 . (3.29)

The diagonal matrix Φ that collects the phase shifts φ = [φ̂1 . . . φ̂K ] on its diagonal can
be estimated from Ψ by taking its EVD. In other words, let φ̂k be an estimate of the kth
eigenvalue ofΨ, then the corresponding time delay estimate is τ̂k = arg{φ̂k }/(2π∆ω).

A summary of the ESPRIT algorithm is shown as Algorithm 2. The abstract rou-
tine TSVD(·,K ) refers to the truncated SVD of a matrix (truncating at rank K ). Likewise,
EVD(·) refers to EVD of a matrix returning the diagonal matrix that collects its eigenvalues
φ̂k ,k = 1, . . . ,K . The remaining parts of the summary are self-explanatory.

The performance of both MUSIC and ESPRIT algorithms can be further improved by
using smoothing and forward-backward averaging techniques [130, 128]. Furthermore,
both of these algorithms are easily extendable for MMV models. For a more detailed
overview and discussion on subspace-based methods, we refer the interested reader to
[108].

Subspace-based algorithms, in general, have good performance and are widely used
in practice. These methods can resolve sources spaced much below the natural reso-
lution limits, and their estimation performance is close to the CRB. However, there are
several disadvantages to these methods. The performance of subspace-based methods
degrades if the assumption on white noise and statistical independence of the complex
amplitudes αk ,k = 1, . . . ,K are violated [82]. Furthermore, these algorithms assume that
MPCs are specular with distinct values of their parameters and that the number of MPCs
K present in the channel is known. However, this is usually not the case in practice, as
rough surfaces produce diffuse scattering of RF signals. In the presence of diffuse scat-
tering, except for the LOS path, each MPC is often a cluster of paths with similar time-
delays and direction-of-arrivals [131]. Therefore in the presence of diffuse scattering,
detection of the number of MPCs is a difficult problem, and often methods that are used
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for detection such [114, 132, 133, 116] fail in these scenarios. Misdetection of the number
of MPCs deteriorates the performance of the subspace-based methods as their perfor-
mance inherently depends on the accuracy of the estimated subspaces. Furthermore, if
the number of available snapshots M is low, the estimated subspaces will be perturbed
by noise which limits the accuracy of these methods [134].

3.4.4. SPARSE ESTIMATION METHODS

The previously presented MLE and subspace-based methods require knowledge of the
number of MPCs present in the channel before channel estimation. When using these
methods, we assume that the number of MPCs is estimated, before time-delay estima-
tion, by methods for model order selection [114, 135]. This two-step approach to channel
estimation is usually not favorable. The wrong estimate of the model order leads to mod-
eling errors that significantly deteriorate the performance of time-delay estimation. The
sparse estimation methods proposed in [136, 137, 138, 139, 140] alleviate these issues. In
this section, we introduce methods for sparse estimation and key related works to this
thesis.

The common sparse estimation frameworks are focused on estimating parameters of
discrete linear models [83]. This is different from model (3.14) where multipath channel
measurements are a nonlinear function of continuous time-delay parameters. Depend-
ing on the modeling assumptions, we can classify the sparse estimation methods into the
following three main categories, (i) on-grid, (ii) off-grid, and (iii) gridless methods. The
on-grid sparse estimation methods assume that unknown parameters take values on a
discrete grid of points. This assumption introduces modeling errors when estimating
continuous-valued parameters resulting in poor estimation performance. The off-grid
sparse estimation methods reduce these errors by introducing a first-order Taylor expan-
sion of the dictionary to estimate off-grid parameters. However, these methods still rely
on a discrete grid, and modeling errors are reduced but still present when estimating off-
grid parameters. Recently, gridless sparse estimation methods are proposed that do not
require discrete dictionaries and can directly estimate continuous-valued parameters.

The sparse estimation methods can also be categorized based on the problem formu-
lation into: (i) deterministic and (ii) Bayesian sparse estimation methods. In determinis-
tic sparse estimation, we do not make any statistical assumptions on the signal. Instead,
we assume that signal parameters are deterministic but unknown variables. The param-
eters are then estimated as those that result in the sparsest signal candidate by some
sparse metric. On the other hand, we make statistical assumptions on the data model
and the distribution of unknown parameters in the Bayesian framework. Therefore, in
the Bayesian framework, the unknown parameters are treated as random variables, and
we assume that we know the probability density distribution that describes them. In
particular, to achieve sparsity, a prior distribution that promotes sparsity is assumed for
the sparse parameters, and we refer to it as a sparse prior.

In what follows, we present sparsity-based time-delay estimation in examples of on-
grid estimation methods. We will formulate the problem of sparse estimation in both
deterministic and Bayesian frameworks. Finally, we will provide a brief overview of key
results related to off-grid and gridless sparse estimation methods.
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ON-GRID SPARSE ESTIMATION

We first discuss the problem of sparse-based multipath channel estimation in a deter-
ministic framework, and later we introduce the Bayesian formulation of the same prob-
lem.
Deterministic Sparse Time-Delay Estimation: The sparse model for multipath channel
measurements is given by

h = M(φ̃)α̃+q , (3.30)

where M(φ̃) = [m(φ̃1) . . . m(φ̃K̃ )] ∈ CN×K̃ is a Vandermonde matrix of the form (3.13),

with N ¿ K̃ , where α̃ ∈ CK̃ is a sparse coefficient vector and q accounts for the noise in
the measurements. We refer to M(φ̃) as the dictionary and its columns are called atoms.
This model is sparse in the sense that only a few entries, i.e., K ¿ K̃ , of α̃ are of nonzero
magnitude and the rest are zero or close to zero. Assuming that there are K MPCs present
in the channel with time-delays laying on the grid defined by the dictionary M(φ̃), the
measurements h can be well approximated by the model (3.30) as a linear combina-
tion of K atoms in M(φ̃). Given the measurements h, the problem of sparse multipath
channel estimation is to find the sparse vector α̃ that well approximates measurements
according to the selected data consistency metric. Therefore, the solution to the sparse
multipath channel estimation can be found by solving the following optimization prob-
lem

α̂= argmin
α̃

λ‖α̃‖1 +‖h−M(φ̃)α̃‖2
2 , (3.31)

where ‖α̃‖1 promotes the sparse solution to the optimization problem and it is known
as the sparsity term, while ‖h−M(φ̃)α̃‖2

2 is the data fidelity term that promotes smaller
error between the measurements h and the model M(φ̃)α̃. The regularization param-
eter λ > 0 is a design parameter that weights the relative importance of sparsity and
data fidelity terms, and it is often selected to be equal to the variance of the noise σ2

q.
Therefore, from a practical perspective, this parameter has a similar role as model or-
der selection in subspace-based estimation methods. The optimization problem given
in (3.31) is also known as the least absolute shrinkage and selection operator (LASSO)
[141]. Alternatively, this optimization problem can be formulated as the basis pursuit
de-noising (BPDN) problem as presented in [142]. In general, these problems are known
as `1 optimization problems.

The LASSO and BPDN are convex optimization problems [143] and as such there
is guarantee that they can be solved in a polynomial time [144]. However, when the
problem dimension is high it is hard to find an efficient solution to this problem since the
sparsity term in (3.31) is not a smooth function. In the last decade, several algorithms are
proposed to accelerate finding the solution to `1 optimization problems such as the `1-
magic [145], the conjugate gradient method [146], the Nesterov’s smoothing technique
with continuation (NESTA) [147, 148], the alternating direction method of multipliers
(ADMM) [149] and SPGL1 [150, 151], to name a few.

Sparse estimation methods can be easily extended to the MMV model (3.15) when
multiple channel measurements are available. For MMV models, we assume that vectors
h(m),m = 1, . . . , M , are jointly sparse, and they satisfy the model

h(m) = M(φ̃)α̃(m) +q(m) , (3.32)
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where α̃(m) are jointly sparse vectors. This is typically satisfied if the channel measure-
ments are collected during the channel coherence time. Therefore, the matrix formed by
stacking collected measurement as its columns H= [h(1) . . . h(M)] ∈CN×M satisfies the
following model

H= M(φ̃)X +Q , (3.33)

where X = [α̃(1) . . . α̃(M)] ∈ CK̃×M is row sparse matrix with only a few, i.e., K , non-zero
rows and Q= [q(1) . . . q(M)]. Now, the sparse solution to multipath channel estimation
for the MMV model (3.15) is found by solving the following optimization problem

X̂ = argmin
X

λ‖X ‖2,1 +‖H−M(φ̃)X ‖2
F , (3.34)

where ‖[a1 . . . aN ]‖2,1 := ∑N
i=1 ‖ai‖2 is the `2,1-norm of a matrix A which is known to

promote column sparsity. Likewise, ‖A‖F =
√

Tr(AAH ) is the Forbenius norm of a matrix
and has the role of data fidelity metric. The regularization parameter λ > 0 weights the
relative importance of sparsity and data fidelity terms. It is important to notice that time-
delays of MPCs are not directly estimated by solving problems (3.31) and (3.34). Instead,
they are found by decoding the indexes of non-zero entries in the vector α̂ or non-zero
rows in X̂ using the phase grid of the dictionary M(φ̃). When the number of snapshots
M is too large, the optimization problem (3.34) becomes too computationally expensive.
In this case, it is more practical to apply dimensionality reduction on the measurements
before sparse estimation. This method for sparse estimation of MMV models is known
as `2,1-SVD [152].

Multipath channel estimation using deterministic sparsity-based methods has been
studied in [87, 153, 154]. In these works, it is assumed that the multipath channel has a
few specular MPCs with time-delays that lay exactly on the discrete grid defined by the
dictionary. This means that the multipath channel is sparse in the time domain and it
can be well represented by the sparse model (3.30). However, in reality, time-delays often
lay off the grid, which causes a basis mismatch [155, 156], leading to overall estimation
performance degradation. Consequently, CS methods cannot achieve super-resolution
even in noiseless scenarios.
Bayesian Sparse Time-Delay Estimation: The alternative approach to sparse estimation
is by using the Bayesian framework. Bayesian sparse estimation methods are based on
statistical assumptions on the data model and solution to promote the desired sparse es-
timate. In the Bayesian framework, both the noise term q and amplitudes of MPCsα are
assumed to be random variables, where certain prior distribution p(α) is assumed onα
that promotes a sparse solution [137, 157]. The estimation then proceeds by formulat-
ing the estimation problem in Maximum A Posteriori (MAP), or a hierarchical Bayesian
framework [158, 159]. We will illustrate the key idea of sparse Bayesian estimation by
deriving the MAP estimation for channel estimation using the complex Gaussian scale
mixture (GSM) model to model the distribution of the elements inα.

The MAP estimator is defined as [157]

α̂= argmax
α

p(α | h) = p(h |α)p(α)∫
p(h |α)p(α)dα

= argmax
α

p(h |α)p(α) ,
(3.35)
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where p(α | h) is the posterior distribution of α given the measurements h, p(h | α) is
the posterior distribution of h given α, and p(α) is the prior distribution of α. When
α is real, it is well known that assuming the Laplace distribution on its elements leads
to the `1 regularized least squares MAP estimator. However, in our case, αk are com-
plex random variables, and we can not directly use the Laplace distribution to model
them. Instead, these variables are first modeled using the complex GSM model with a
gamma mixing density (see [160] for details). These modeling assumptions result in the
so-called Laplace distribution for complex variables. Now, assuming thatαk ,k = 1, . . . ,K ,
are Laplace i.i.d complex distributed random variables their joint prior distribution is
given by [160]

p(α) =
K∏

k=1
Lap(αk ;0,1/λ) ∝

K∏
k=1

exp(−λ |αk |) , (3.36)

where ∝ denotes proportionality. Assuming that measurements follow model (3.30) and
that the noise is Gaussian distributed the posterior distribution p(h |α) is given by

p(h |α) ∝ exp
[
−(h−M(φ)α)HΣ−1

q (h−M(φ)α)
]

. (3.37)

Substituting (3.36) and (3.37) in (3.35) we can write the log likelihood posterior distribu-
tion as

ln p(α | h) ∝−(h−M(φ)α)HΣ−1
q (h−M(φ)α)−λ

K∑
k=1

|αk | . (3.38)

We now assume that Σq =σ2I and write p(α | h) in a more compact form as

ln p(α | h) ∝−‖h−M(φ)α‖2
2 −λ‖α‖1 . (3.39)

Finally, the MAP estimator is given by

α̂= argmin
α

λ‖α‖1 +‖h−M(φ)α‖2
2 . (3.40)

The obtained MAP estimator is equivalent to the estimator given in (3.31). However, we
arrived at this result differently by using the Bayesian framework and making the statis-
tical assumption that the complex amplitudes are distributed according to the Laplace
distribution. The Laplace distribution has heavy tails, different from the Gaussian dis-
tribution which has very light tails. This means that the probability that an observation
of a Gaussian random variable can take values far from its mean decreases very fast. In
other words, if we provide a Gaussian prior, the predictions far away from the mean are
heavily penalized. By selecting a heavy-tail prior distribution with zero mean, we expect
that most of the estimates will be around zero, but we allow for a few of them to be large,
resulting in a sparseα. Therefore, the sparse Bayesian estimation becomes synonymous
with imposing heavy-tail priors [159].

Our example does not illustrate the full potential of sparse estimation using the
Bayesian framework. Instead, our aim is to illustrate the key idea behind sparse Bayesian
estimation. The estimator given in (3.40) is the same as the one given for deterministic
sparse estimation (3.31). Therefore, one may wonder what the benefits of formulating
sparse estimation in the Bayesian framework are. The Bayesian framework provides us
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the flexibility to select the prior distribution that promotes sparsity, and different choices
will favor different levels of sparsity [140]. Furthermore, selecting the regularization pa-
rameter λ in (3.31) is data-dependent and requires cross-validation. For example, multi-
path channels in different scattering environments will have different numbers of MPCs,
and therefore the optimal selection of parameter λ is data-dependent. The Bayesian
framework and hierarchical models enable us to automatically select the regularization
parameter and inherently estimate the number of MPCs in the channel [161, 162]. A
non-exhaustive list of prior work-related on-grid sparse Bayesian methods for multipath
channel estimation is [163, 164, 165, 160]. The off-grid and gridless sparse estimation
problems can also be formulated in the Bayesian framework, and in the next sections we
will provide a list of related work.

OFF-GRID SPARSE ESTIMATION

In the previous section, we discussed on-grid sparse estimation methods. These meth-
ods suffer from basis mismatch when the parameters to be estimated do not lie on the
grid defined by the dictionary [155]. The time-delays of the MPCs are continuous param-
eters, and therefore when using on-grid sparse estimation methods, errors introduced by
the basis mismatch are inevitable [166]. Off-grid and gridless sparse estimation methods
are proposed in [167] and [168], respectively, to alleviate the basis mismatch problem.

The key idea in off-grid sparse estimation methods is to approximate the model for
the dictionary (3.31) to enable estimation of parameters that do not exactly lie on the
grid [144]. Let us assume that the phase shift φk , introduced by the time-delay of the kth
MPC, does not lie on the grid defined by the dictionary M(φ̃). Then we can approximate
its steering vector, i.e., atom, using a first-order Taylor expansion as

m(φk ) ≈ m(φ̃nk )+d(φ̃nk̃
)(φk − φ̃nk̃

) , (3.41)

where d(φ̃nk̃
) = ∂m(φ)

∂φ

∣∣∣
φ=φ̃nk̃

, φ̃nk̃
is the nearest grid point to φk with |φk −φ̃nk̃

|≤ ∆
2 and

∆ = φ̃k̃ − φ̃k̃−1 , k̃ = 2, . . . , K̃ , is the grid interval. Now, the off-grid sparse data model can
be written as

h = [
M(φ̃)+D(φ̃)diag(∆φ)

]
α̃+q , (3.42)

where M(φ̃) is defined in (3.30), D(φ̃) = [d(φ̃1̃) . . . d(φ̃K̃ )], and ∆φ is the vec-
tor collecting the grid offsets. Here, α̃ is a sparse vector and the grid offsets

φ= [∆φ1 . . . ∆φK̃ ] ∈ [−∆
2 , ∆2

]K̃
, are given by

∆φk̃ =
{
φk − φ̃nk̃

, if φ̃k̃ = φ̃nk̃

0, otherwise.
(3.43)

Now, the problem of sparse estimation becomes to estimate the parameters ∆φ and
α̃ from the measurements h using model (3.42). This problem can be formulated as a
sparse total least squares (STLS), BPDN, or sparse Bayesian learning problem as shown
in [167], [169], and [170], respectively. Here, we will discuss only the BPDN formulation
of the off-grid sparse estimation problem, and for details on other methods, we refer
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the reader to previously mentioned references. For the single snapshot case, the sparse
off-grid estimation can be formulated as the following BPDN problem

α̂,∆φ̂= argmin

α̃ ,∆φ∈[− ∆
2 , ∆2

]K̃

‖α̃‖1 ,

subject to
∥∥h− [

M(φ̃)+D(φ̃)diag(∆φ)
]
α̃

∥∥2
2 ≤ η ,

(3.44)

where η should be set according to the expected noise and modeling error levels. This
optimization problem is nonconvex, and an alternating algorithm is proposed in [167],
that alliteratively solves for α and ∆φ. However, the difficulty in this algorithm is to
select η as it requires prior estimation of noise level and modeling errors, which is often
challenging. This issue is solved by formulating off-grid sparse estimation in a Bayesian
framework as shown in [170, 171, 172] where the parameter η is automatically selected
during the estimation.

To summarize, here we have provided an introduction to off-grid sparse estimation
methods. We presented an off-grid sparse estimation method that relies on the fixed grid
approach and approximates the dictionary for off-grid phase shifts using the first-order
Taylor approximation (3.42). In this method, we needed to jointly estimate the sparse
signal α̃ and the grid offset ∆φ̂ by solving a BPDN-like optimization problem (3.44). An-
other approach to off-grid sparse estimation is to use a dynamic grid and jointly estimate
the sparse vector α̃ and dictionary grid φ̃ [161, 173, 174]. The off-grid sparse estimation
methods overcome the issue of basis mismatch. However, these methods introduce ad-
ditional unknown parameters that need to be estimated, complicating the algorithm de-
sign and implementation. Most of the presented algorithms involve solving nonconvex
optimization problems. Therefore, only convergence to the local optimum can be guar-
anteed. This problem is solved by gridless sparse estimation methods that are presented
in the next section.

GRIDLESS SPARSE ESTIMATION

In this section, we provide a brief overview of gridless sparse estimation methods. These
methods do not require gridding of the dictionary parameters, i.e., gridding of the phase
shifts introduced by time delays of MPCs [144]. Different than on-grid and off-grid
sparse estimation methods, these methods work directly in the continuous domain,
which solves any issues that arise from grid-based dictionary approximations such as
basis mismatch [175, 96]. Furthermore, these methods involve solving convex optimiza-
tion problems that can be solved in a polynomial-time [176, 177]. Similar to the previous
methods, gridless sparse estimation can be formulated in deterministic [176, 177, 178,
179], and Bayesian frameworks [180, 181, 182, 183].

Many gridless sparse estimation methods rely on Vandermonde decomposition of
Toeplitz covariance matrices. In particular, these methods transform the frequency es-
timation problem into the estimation of a positive semidefinite (PSD) Toeplitz matrix
from available measurements. The estimated PSD Toeplitz matrix encodes the unknown
frequencies, which can be estimated from its Vandermonde decomposition [178, 179].
This is different from classical subspace-based estimation algorithms, where frequen-
cies are estimated from sample covariance matrices that are computed directly from the
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available measurements. In stead, the gridless methods use optimization methods to
estimate the data covariance matrix from the available measurements by enforcing spe-
cial structures on it such that it is a PSD Toeplitz matrix with low-rank properties [168].
In general, these methods show better performance than classical subspace-based es-
timation methods. However, they often require solving computationally unattractive
semidefinite programming problems (SDP).

In the context of multipath channel time-delay estimation, the covariance matrix
will have a Toeplitz structure only when the measurements are collected in consecutive
frequency bands. Therefore many of these methods can not be used for estimation in
scenarios where channel measurements are collected in multiple separated frequency
bands. The Bayesian view on the problem of gridless sparse estimation of complex ex-
ponentials is taken in [180, 183]. In these works, the stochastic ML model regularized by
a sparsity promoting prior on the coefficients of the exponentials is used to describe the
measurements. These algorithms, in general, have a high estimation accuracy and in-
herently estimate the number of MPCs present in the channel. In particular, the VALSE
algorithm allows gridless estimation of complex exponentials with automatic estima-
tion of the number of MPCs from incomplete but single snapshot measurements [180].
However, this is an iterative algorithm with a high computational complexity due to the
variational estimation of the posterior on the frequencies. Its per-iteration complexity is
cubic in the number of exponentials, and therefore, its complexity increases rapidly with
the number of MPCs.

3.5. CONCLUSIONS

This section introduces the problem of multipath channel time-delay estimation and
signal model for multipath channel measurements. We showed that transforming the
presented signal model to the frequency domain results in a model that is well known
in super-resolution spectral estimation. Subsequently, we described the main chal-
lenges of super-resolution problems and introduced several popular signal process-
ing frameworks that can be applied to these problems, such as ML, subspace-based,
and compressive sensing-based estimation. We saw that ML algorithms provide unbi-
ased and statistically efficient solutions, yet they are often impractical for implementa-
tion. On the other hand, subspace-based approaches have lower computational com-
plexity while performing similarly to ML algorithms. However, the performance of the
subspace-based methods inherently depends on the accuracy of the estimated sub-
spaces. Lastly, we discussed sparse estimation methods, including both their determin-
istic and Bayesian formulation. The main challenges related to these methods are basis
mismatch and regularization parameter selection for on-grid sparse estimation methods
and computational complexity for gridless sparse estimation methods.

In the rest of this thesis, we will use several of the algorithms presented in this chap-
ter to evaluate the performance of the proposed algorithms that are presented later. In
particular, in Chapter 4, we will use ML, MUSIC, ESPRIT and L1 algorithms discussed
in Sections 3.4.2, 3.4.3, 3.4.3 and 3.4.4 respectively, for estimation of multipath channel
time-delays. Likewise, in Chapters 5 and 7, we will use subspace-based algorithms pre-
sented in Section 3.4.3 to estimate multipath channel time-delays and clock-skew of the
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wireless nodes. Finally, in Chapter 7, `2,1-norm based sparse estimation algorithm pre-
sented in Section 3.4.4 will be used to jointly estimate multipath channel time-delays
and the frequency response of RF transcivers.





4
MULTIBAND TIME-DELAY

ESTIMATION FOR RANGING AND

LOCALIZATION

”All models are wrong, but some are useful.”

— George Box

Part of this chapter is published as: T. Kazaz, GJM Janssen, J. Romme, and A.J. van der Veen, “Delay Estima-
tion for Ranging and Localization Using Multiband Channel State Information”, IEEE Transactions on Wireless
Communications, 2021.
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4.1. INTRODUCTION

IN the previous chapters, we presented the idea of utilizing radio frequency (RF) signals
[39] to enable precise localization in GPS-denied environments. Localization using

these signals starts with the estimation of the multipath channels between the mobile
node and multiple anchors [40]. In chapters 2 and 3 we discussed the parametric multi-
path channel model and the relation of its parameters to the location. In particular, we
showed that the time-delay of the line-of-sight (LOS) path is directly linked to the range
(distance) of the mobile node to the anchor, and forms the input for range-based local-
ization methods based on time-of-arrival (TOA) and time-difference-of-arrival (TDOA).
The localization performance of these methods primarily depends on channel estima-
tion and the ability to resolve MPCs, estimate their parameters, and detect the LOS path.
Therefore, to improve the accuracy of localization, it is crucial to increase the resolution
of multipath channel time-delay estimation.

In this chapter, we focus on high-resolution estimation of multipath channel time-
delays. Channel estimation is fundamental to wireless communications, but there this
information is primarily used for equalization [153, 154, 184, 185], where the precise
knowledge of multipath parameters is not really important. Classically, time-delay es-
timation is based on searching for the first dominant peak in the correlation between
the received signal and the known training signal [50]. In Chapter 3, we saw that the
resolution of such methods is limited by the inverse of the bandwidth of the training
signal. Typical training signals used in wireless networks have a fairly low bandwidth
due to RF spectrum regulations and hardware constraints. The insufficient resolution
prevents separation of the LOS path from closely arriving MPCs, leading to biased range
estimates and degraded localization performance [186]. Therefore, the main challenge is
the design of (i) a practical approach for measuring the channel, and (ii) high-resolution
time-delay estimation algorithms in the presence of close-in multipath.

The early multipath channel estimation methods were based on maximum likeli-
hood (ML) estimation [72]. It is known that ML estimators are asymptotically consistent
and statistically efficient when the number of measurements increases to infinity [72].
However, these methods are often not practical for implementation as they involve min-
imizing highly multimodal objective functions with many local minima. Many of the
super-resolution estimation methods that are presented in Chapter 3 have been applied
to the problem of multipath channel time-delay estimation. The methods proposed in
the previous works can be classified into those based on (i) subspace estimation [92, 187,
188], (ii) compressive sensing (CS) [87, 89], and (iii) finite-rate-of-innovation (FRI) sam-
pling [189, 99, 190]. However, most of these works consider multipath parameter esti-
mation from channel measurements collected in a single frequency band, limiting the
resolution of time-delay estimation.

The route to improve the resolution of time-delay estimation is to increase the band-
width of the training signals. Practical approaches to achieve this are based on multi-
band channel probing [191, 192, 193, 194] (see Fig. 4.2). Here, multiple frequency bands
are probed during the channel coherence time to increase the frequency aperture of the
CSI measurements, thereby increasing the resolution of time-delay estimation. Calibra-
tion is needed to undo the effects of transceiver impairments such as frequency and
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Figure 4.1: The multipath propagation environment between a mobile node and an anchor, de-
scribed by K MPCs, where the red color denotes the LOS path. Each MPC is characterized by its
complex gain αk and time-delay τk . The equivalent baseband channel (including the effects of
the RF chains) is ci (t ), where index i refers to the i th band in a multiband system.

phase offsets that affect each band differently [47]. In [47], MUSIC is used for time-delay
estimation. However, this approach does not exploit all structures present in the multi-
band CSI, which results in statistically inefficient estimation. In [192, 194], compressed
sensing algorithms based on `1-norm regularized least squares (CS(L1)) are proposed.
However, these algorithms consider the collection of CSI in consecutive bands and have
limited resolution due to basis mismatch.

On the other hand, the classical gridless sparse estimation methods require that
multiband channel measurements are collected in consecutive bands to ensure a
Toeplitz structure of the covariance matrix of the measurements. This constraint is
alleviated by formulating the problem of multiband time-delay estimation in a sparse
Bayesian framework. In particular, the VALSE algorithm [180] discussed in Section 3.4.4
can be applied to the problem of multiband time-delay estimation. However, this algo-
rithm has a high numerical complexity that increases rapidly with the number of MPCs
present in the channel.

In this chapter, we present a method that exploits the multiband and carrier fre-
quency switching capabilities of modern wireless transceivers, and we propose to ac-
quire the CSI on multiple bands spread over a large frequency aperture to increase time-
delay resolution. We start by deriving the data model for multiband CSI considering or-
thogonal frequency-division multiplexing (OFDM) training signals as used in WiFi, LTE,
and DVB networks, but we do not require the collection of CSI in consecutive bands.
After stacking the multiband CSI into Hankel matrices, the data model shows a mul-
tiple shift-invariance structure. The same structure appears in DOA estimation [195],
and related multidimensional spectral estimation algorithms are applicable to this prob-
lem [196]. We use these properties to develop a weighted subspace fitting algorithm for
time-delay estimation that exploits a multiple shift-invariance structure present in the
multiband CSI. We present the optimal weighting and introduce several data extension
techniques that further improve the performance of the algorithm. After time-delay esti-
mation, the complex amplitudes of MPCs are estimated by solving a linear least-squares
(LS) problem. Then, we derive the Gaussian Cramér-Rao Bound (CRB) [55] for the multi-
band CSI data model and analyze the effects of wireless system parameters, e.g., band-
width, number of CSI measurements, and band selection on the CRB. Finally, we demon-
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Figure 4.2: Multiband channel probing and effects of the limited transceivers’ bandwidth on the
time-delay resolution of multipath components.

strate the applicability of the proposed algorithm to the problem of time-delay estima-
tion in the future WiFi-7 network defined by the IEEE 802.11be standard [197]. This
standard will support multiband operation in 2.4, 5, and 6 GHz bands, which makes
this application an interesting showcase for the proposed algorithm. Various scenarios
are simulated to show the influence of wireless system parameters on the algorithm’s
performance.

4.2. DATA MODEL

In this section, we introduce the ranging scenario and derive the corresponding data
model. We start derivations from the discrete model for multipath channel measure-
ments presented in Chapter 3 and extend it to the model for multiband channel mea-
surements. While doing derivations, we repeat some of the results presented in Chapter
3. However, to be relevant to current WiFi standards, the model and derivations are now
tailored to the scenario of multiband channel ranging using OFDM training signals. In
particular, we consider a localization system that uses OFDM training signals exchanged
at multiple bands, i.e., frequency channels, to obtain multiband CSI measurements. We
will refer to WiFi frequency channels as frequency bands. We first define continuous-
time signal models for training signals and the multipath channel. We then derive the
data model for multiband CSI, which reveals the multiple-shift invariance structure of
the measurements. Finally, we briefly discuss synchronization impairments between
transceivers and the impact of phase offset on the measurements.

4.2.1. SYSTEM MODEL

Consider a localization system that uses OFDM training signals to estimate ranges be-
tween the mobile node and at least three (four) anchors for localization in 2-D (3-D)
space. This process starts with the exchange of a known training signal x(t ) between an
anchor and the mobile node (or vice versa), and estimation of the corresponding multi-
path channel (cf. Fig. 4.1). Assume that the training signal has N orthogonal subcarriers
in a single OFDM symbol where the symbol duration is Tsym and the frequency spacing
of adjacent subcarriers is ωsc = 2π/Tsym. The duration of each OFDM symbol is period-
ically extended with the cyclic prefix of duration Tcp to ensure cyclic convolution with
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the channel, which results in the total duration of a transmission block T = Tsym +Tcp.
The baseband model for the training signal in a single transmission block can be written
as

x(t ) =
[

N−1∑
n=0

s[n]e jωscnt

]
p(t −T ) , (4.1)

where s = [s[0], . . . , s[N −1]]T ∈CN are the known training symbols, and

p(t ) =
{

1, t ∈ [−Tcp,Tsym] ,

0, otherwise.

This training signal is upconverted to the carrier frequency ωi and transmitted as

x̃i (t ) = Re
{

x(t )e j (ωi t+ψA,i )
}

, (4.2)

where ψA,i is an unknown phase of the local oscillator at the anchor node. Here we
assumed, without loss of generality, that all frequency channels use the same training
signal, as is often done in practice. We further consider that the anchor and mobile node
are frequency synchronized during channel probing. This is typically the case in practi-
cal OFDM systems, where before channel estimation a frequency offset is estimated and
compensated using known training signals such as legacy short and long training fields
(L-STF and L-LTF) in IEEE 802.11be [197].

4.2.2. MULTIBAND CHANNEL PROBING

To probe the multipath channel, the training signal x(t ) is transmitted at L separate fre-
quency bands, Wi = [ωi −πB ,ωi +πB ], where B is the bandwidth and ωi is the central
angular frequency of the i th band (cf. Fig. 4.2). We consider that the multipath channel
is probed over a large frequency aperture. Therefore, it is suitable to use the UWB chan-
nel model presented in Chapter 3 to model the propagation between the anchor and
the mobile node. For this channel, the continuous-time channel impulse response (CIR)
h(t ) is given by (3.1). We assume that there are K resolvable MPCs in the channel where
their time-delays are sorted in increasing order, i.e., τk−1 < τk , k = 2, . . . ,K , and τ1 is con-
sidered to be the time-delay of the LOS path. The complex path amplitudes are assumed
to be wide-sense stationary and mutually uncorrelated Gaussian random variables with
PDF given by αk ∼ CN (0,σ2

α,k ), k = 1, . . . ,K , where σ2
α,k is their average power.

Practical wideband antennas and RF chains have a frequency-dependent response
[198]. We model the compound frequency response of the RF chains including antennas
at the i th probed band as an equivalent linear and time-invariant baseband filter with
impulse response gi (t ) = gA,i (t )∗ gM,i (t ) (cf. Fig. 4.1). Here, gA,i (t ) and gM,i (t ) are the
impulse responses of the RF chains at the transmitter and receiver, respectively. The filter
gi (t ) has frequency response Gi (ω) with passband ω ∈ [−πB ,πB ]. Then, the compound
impulse response of the multipath channel and RF chains at the i th band is given by

ci (t ) = h(t )∗ gi (t ) . (4.3)

We assume that the ci (t ), i = 0, . . . ,L−1, are time-limited to the duration of the OFDM
symbol’s cyclic prefix, i.e., ci (t ) = 0 for t ∉ [0,Tcp]. Therefore, there is no inter-symbol
interference, allowing us to consider the signal model for a single OFDM symbol.
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Now, using the results of Section 3.4.1, the frequency domain baseband model for
the signal received at the i th frequency band is given by

Yi (ω) =
{

X (ω)Ci (ω)+Qi (ω), ω ∈ [−πB ,πB ]

0, otherwise,
(4.4)

where Ci (ω) is the compound Channel Frequency Response (CFR), and X (ω) and Qi (ω)
are the CTFTs of the training signal x(t ) and low-pass filtered Gaussian noise qi (t ), re-
spectively. Further, with a slight abuse of notation, Ci (ω) =Gi (ω)Hi (ω), where in using
subscript i in Hi (ω) we implicitly take into account the bandwidth limitation effect of
Gi (ω) on the CTFT of h(t ), and write Hi (ω) as

Hi (ω) =
K∑

k=1
αk e− j (ωi+ω)τk , ω ∈ [−πB ,πB ] . (4.5)

Here, we assumed that the mobile node and anchor are phase synchronized (cf. the
remark at the end of this section for the signal model in the presence of the phase offset).

4.2.3. DISCRETE DATA MODEL

The receiver samples signal yi (t ) with period Ts = 1/B , performs packet detection, sym-
bol synchronization, and removes the cyclic prefix. During the period of a single OFDM
symbol, N complex samples are collected, where N is equal to the number of sub-
carriers and Tsym = N Ts. Next, an N -point DFT is applied on the collected samples, and
they are stacked in increasing order of DFT frequencies in yi ∈ CN . The discrete-time
data model of the received signal (4.4) can be written as

yi = diag(s)ci +qi , (4.6)

where qi ∼ CN (0N ,σ2
qi

IN ) represents a complex Gaussian normal distributed noise vec-

tor with mean 0N and covariance matrix σ2
qi

IN . The vector ci collects N samples of the
compound CFR at the subcarrier frequencies, and its entries are

[ci ]n =
∫ Tsym

0
ci (t )e− jωsc nt d t , n =−N

2
, . . . ,

N

2
−1, (4.7)

where ωsc = 2π
N Ts

, and we assume that N is an even number. Similarly, from (4.3) we
obtain (see [199] for details)

ci = diag(gi )hi , (4.8)

where gi and hi collect samples of Gi (ω) and Hi (ω) at the subcarrier frequencies, respec-
tively. We further refer to hi as the CSI vector and its entries are given as

Hi [n] = Hi (nωsc) , n =−N

2
, . . . ,

N

2
−1. (4.9)

We consider that the bands
{
Wi

}L−1
i=0 lie on a discrete frequency grid, i.e., ωi = ω0 +

niωsc , i = 1, . . . ,L −1, where ni ∈ N. This is always the case in the WiFi standards [197].
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Inserting the channel model (4.5) into (4.9) gives

Hi [n] =
K∑

k=1
αk e− j niωscτk e− j nωscτk , (4.10)

where e− jω0τk and the normalizing phase shift factor φ−N /2
k are absorbed in αk ∀k.

Then, hi can be written in a more compact form as

hi = MΘiα , (4.11)

where M ∈ CN×K is a Vandermonde matrix, given by (3.13). However, now φk = ωscτk

is the phase shift introduced by the kth MPC over the subcarriers. Likewise, Θi is a di-
agonal matrix that collects the band dependent phase shifts introduced by the time-
delays {τk }K

k=1 and the complex path amplitudes are collected in α= [α1, . . . ,αK ]T ∈CK .
In view of the band positions on the frequency grid, we can write Θi = Φni , where
Φ= diag([φ1 · · ·φK ]).

We assume that none of the entries of s or gi are zero or close to zero, so we can esti-
mate the CSI from the data vector yi using classical channel estimation in the frequency
domain as hi = diag−1(s¯ gi )yi [200]. Then, from models (4.6) and (4.8), with a slight
abuse of notation considering qi , it follows that hi satisfies the model

hi = MΦniα+qi . (4.12)

Here, we assume that the frequency response gi of the RF chains is calibrated and known.
An algorithm for joint calibration and time-delay estimation is presented in Chapter 6
and [84]. The training symbols s typically have a constant magnitude by design, and we
assume that the frequency responses of the receiver chains gi can be assumed almost
flat for a single frequency band. Therefore qi is zero-mean white Gaussian distributed
noise with covariance Rqi = σ2

qi
IN . When the frequency responses of the RF chains are

not flat, qi will be colored noise. However, its coloring is known and can be taken into
account. We conclude this section with a remark on the influence of phase offset on the
estimated channel model (4.12).
Remark. If the mobile node and anchor are not phase synchronized, i.e., ψM,i 6≈ψA,i ,
the data model for the CSI collected at a mobile node becomes

hM,i =Ψi hi , (4.13)

where Ψi = e− jψi IN and ψi =ψM,i −ψA,i is the unknown phase offset at the i th carrier
frequency. The phase offset changes whenever the carrier frequency of the transceivers
is changed. However, assuming that the transceiver is capable of Tx/Rx switching while
keeping the phase lock loop (PLL) in-lock,ψi stays the same for a fixed carrier frequency
and has the opposite sign when estimated at the mobile node compared to the anchor.
Using this property and assuming that the channel is reciprocal, we can write the model
for the CSI collected at the anchor as hA,i = Ψ∗

i hi . Now, the phase offset can be elim-
inated by taking the square-root of the point-wise product between collected CSIs as
hD,i = (hM,i ¯ hA,i )1/2 = ±hi , where the exponent is applied element-wise. Here, the
square-root is used to avoid generation of additional unknown time-delays which are
the result of inter-products between {φk }K

k=1. The resulting measurements satisfy the
model hD,i =±MΘiα, where the ambiguity can be resolved by tracking the phase differ-
ence between multiple bands [201].
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4.3. MULTIBAND TIME-DELAY ESTIMATION

Given the CSI estimates hi , i = 0, . . . ,L − 1, the problem of ranging is to detect the LOS
MPC and estimate its time-delay τ1. Then the range between the mobile node and an
anchor is given by d = τ1c, where c denotes the speed of light. To do this accurately,
all MPCs present in the channel need to be resolved and accordingly their time-delay
and amplitude parameters {τk ,αk }K

k=1 must be estimated. We start by stacking the CSI

estimates hi , i = 0, . . . ,L − 1, into a multiband CSI vector h = [hT
0 , . . . ,hT

L−1]T ∈ CN L×1.
Using the model (4.12), it follows that h satisfies

h = Aα+q :=


M

MΦn1

...
MΦnL−1

α+


q0

q1
...

qL−1

 . (4.14)

If the band center frequencies ωi are uniformly spaced, then matrix A has a multiple
shift-invariance structure and resembles the data model of Multiple Invariance ESPRIT
[195], which was exploited in our initial works [202] and [203]. The results of the latter
work are presented in Chapter 5. In the more general case, the overall structure present
in (4.14) can be exploited to estimate the time-delay parameters {τk }K

k=1 from the phase
shifts φ = [φ1 · · ·φK ]. These phase shifts are introduced over both subcarrier and band
frequency apertures. The small aperture of the subcarriers promotes poor resolution but
unambiguous estimation, while the very large aperture of the bands favors high resolu-
tion but results in ambiguous estimation of the time-delay parameters. We aim at an al-
gorithm that will provide both high resolution and unambiguous time-delay estimates.
To utilize all the structure present in the measurements, we formulate the multiband
time-delay estimation as a multidimensional spectral estimation problem. We then pro-
pose an algorithm that estimates the time-delays {τk }K

k=1 by solving a weighted subspace

fitting problem. After estimating the time-delays, the amplitudes {αk }K
k=1 are estimated

by solving a linear LS problem.

4.3.1. ALGORITHM OUTLINE

We first outline the key idea and the procedure for the estimation, and then introduce
improvements to arrive at the final algorithm.

In subspace fitting methods, we would like to estimate the column span of A in (4.14).
However, this “signal subspace” cannot be directly estimated from a single snapshot of
the multiband CSI h. To restore the rank, we construct Hankel matrices Hi of size P ×Q
from the vectors hi , i = 0, · · · ,L−1, as

Hi :=


Hi [0] Hi [1] · · · Hi [Q −1]
Hi [1] Hi [2] · · · Hi [Q]

...
...

. . .
...

Hi [P −1] Hi [P ] · · · Hi [N −1]

 , (4.15)

where P is a design parameter, and Q = N −P +1. From (4.12) and the shift-invariance
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structure present in M, the constructed Hankel matrices have the factorization

Hi = M′Φni X+Q′
i , (4.16)

where M′ is an P ×K submatrix of M,

X := [α Φα Φ2α · · ·ΦQ−1α],

and Q′
i is a noise matrix with covariance Rq′

i
= σ2

q′
i
IP . Then we construct a block-row

matrix H of size LP ×Q by stacking matrices Hi , i = 0, . . . ,L−1, as

H :=


H0

H1
...

HL−1

 . (4.17)

The matrix H preserves the shift-invariance properties of h and has a factorization

H = A′(φ)X+Q′ :=


M′

M′Φn1

...
M′ΦnL−1

X+


Q′

0
Q′

1
...

Q′
L−1

 . (4.18)

Therefore, if we can choose the design parameter P such that both LP ≥ K and Q ≥ K
and if all factors in (4.16) are full rank, then H has rank K , the number of MPCs present
in the channel. This means that from the column span of H we can estimate matrix A′
up to a K ×K non-singular matrix T. In other words, we can write A′ = UT−1, where the
columns of U form a K -dimensional basis of the column space of H.

The matrix U can of course be estimated using a singular value decomposition (SVD)
of H, and selecting the left singular vectors corresponding to the K largest singular values
{λ j }K

j=1. If the noise levels σ2
q′

i
, i = 1, . . . ,L−1, are known and unequal, the blocks Hi can

be prewhitened prior to taking the SVD of H. The dimension K can be estimated from the
singular values using information-theoretic criteria [204]. In particular, in Chapter 8 we
find K as the value k ∈ {0,1, . . . ,Q−1} that minimizes the modified minimum description
length (MDL) criteria [205] given by

MDL(k) =− (D −k)D · log

∏D
j=k+1λ

1/(D−k)
j

1
D−k

∑D
j=k+1λ j

+k(2D −k) · log(D)/4+k ,

(4.19)

where D =Q −1.
The estimation of φ from H is based on exploiting the shift invariance structure

present in A′ and U. Accounting for the errors introduced during estimation of U, we
can write A′(φ) ≈ ÛT−1. Now, to estimateφ, we formulate the subspace fitting problem

φ̂, T̂ = argmin
φ,T

∥∥Û−A′(φ)T
∥∥2

F . (4.20)
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The problem of minimizing the cost function in (4.20) is a nonlinear least-squares (NLS)
problem. It is easy to see that for the optimal φ, the optimal T must satisfy T = A′†(φ)Û.
Therefore, this problem can be further recast into a separable nonlinear least-squares
(SNLS) problem [112],

φ̂= argmin
φ

J (φ) ,

J (φ) = Tr
(
P⊥

A′ (φ)ÛÛH )
,

(4.21)

where P⊥
A′ (φ) = I−PA′ and PA′ = A′A′† is a projection onto the column span of A′. This

reformulation reduces the dimension of the parameter space and also results in a better-
conditioned problem, which can be efficiently solved using iterative optimization meth-
ods such as variable projection or the Levenberg-Marquardt (LM) [112]. We use the LM
method, where good initialization of the algorithm is obtained by the multiresolution
time-delay (MRTD) estimation algorithm [203]. With this initialization, the LM method
converges very fast, typically within five steps for moderate signal-to-noise ratios (SNRs)
as shown in Section 4.5.

4.3.2. WEIGHTING

The dominant sources of estimation errors in (4.20) are caused by perturbations of the
subspace estimates. The estimated singular vectors in Û are each perturbed differently.
Thus, the estimator based on unweighted subspace fitting is not statistically efficient,
and it is sensitive to noise. These errors can be reduced by introducing an appropriate
column weighting in the cost function (4.21), [206]. Therefore, to improve estimation
and to penalize subspace perturbation errors, we estimate φ by solving the following
weighted subspace fitting problem [196]

φ̂ , T̂ = argmin
φ,T

∥∥ÛW1/2 −A′(φ)T
∥∥2

F , (4.22)

where W is a K ×K matrix. Similar as in (4.21), this problem can be recast to the SNLS
problem with a cost function J (φ) = Tr(P⊥

A′ (φ)ÛWÛH ), and the same initialization and
optimization methods can be applied to find the solution. The matrix W is assumed to
be positive definite and Hermitian, and its role is to whiten perturbations of the singular
vectors in Û. A good choice for W is given in [206] as

W = Λ̂s − σ̂2IK , (4.23)

where Λ̂s is a diagonal matrix that collects the K largest squared singular values of H and
σ̂2 is the estimated noise power. The noise power σ̂2 follows from the noise levels σ2

q′
i
,

i = 1, . . . ,L−1. If these are unequal, we would prewhiten the blocks Hi prior to taking the
SVD of H.

4.3.3. DATA EXTENSIONS

In this section, we discuss techniques for extending the data matrix H if multiple channel
measurements are available or if subcarrier frequencies of a multiband training signal
satisfy a centro-symmetric configuration.
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MULTIPLE SNAPSHOTS

So far, we have assumed that the CSI is collected only once during the channel coherence
time. However, the coherence time of common multipath radio channels is much longer
than the duration of training signals. For example, the indoor radio channel that charac-
terizes propagation of WiFi signals in the 2.4 GHz frequency band between anchors and
pedestrians with a velocity of 1 m/s, has a coherence time of approximately 53 ms. Now,
assuming that a WiFi training signal with a duration of 40 µs is used to estimate the CSI,
then at least 50 snapshots of CSI can be collected during the coherence time.

Let us assume that M snapshots of multiband CSI (4.14) are collected during the
coherence time. These measurements satisfy the model

h(m) = Aα(m) +q(m) , m = 1, . . . , M . (4.24)

where α(m) collects the complex amplitudes of the MPCs. Similar as in the single snap-
shot case, from every snapshot h(m) a block Hankel matrix H(m) is formed as shown in
Section 4.3.1. We assume that the time-delays {τ(m)

k }K
k=1 of the MPCs stay the same during

the coherence time. On the other hand, we assume that the amplitudesα(m) are complex
Gaussian random variables that can vary with time while their mean magnitudes stay
constant during the coherence time. Similar as in (4.18), the matrix H(m) satisfies the
model H(m) := A′X(m) +Q′(m), where now X(m) := [α(m) Φα(m) · · ·ΦQ−1α(m)], and Q′(m)

represents the noise matrix of the mth snapshot. The matrices H(m), m = 1, . . . , M , have
the same column subspace and from them an extended LP ×QM data matrix is con-
structed as

H := [H(1) H(2) · · · H(M)] . (4.25)

The matrix H has a factorisation

H= A′X +Q , (4.26)

where X := [X(1) · · · X(M)] and Q := [Q′(1) · · · Q′(M)]. The estimation of φ from H pro-
ceeds as described in Section 4.3.2. However, the number of columns in the data matrix
is now increased, which provides improvement of estimation accuracy in terms of noise.
Multiple snapshots also enable the opportunity to increase the number of rows in H(m)

as now the number of columns Q, necessary to restore the dimension of the signal sub-
space, can be smaller: Q ≥ max(1,K + 1− M). Increasing the number of rows in H(m)

increases the frequency aperture and leads to improved time-delay resolution.

FORWARD-BACKWARD AVERAGING

Another technique to extend the data matrix is known as forward-backward (FB) aver-
aging [130]. This technique can only be applied when multiband CSI is collected on a
centro-symmetric set of frequencies. Let the central frequency of the set of probed fre-
quencies Wi , i = 0, . . . ,L−1, be defined as ωc = (ωL−1 +ω0)/2. A set of frequencies is
centro-symmetric if for any frequency in the set there is a corresponding frequency lo-
cated in the opposite direction and equidistant with respect to the central frequency of
the set. If these constraints are satisfied, then FB averaging can be applied by exploiting
the structure of A in (4.14) and the fact that the {φk }K

k=1 are on the unit circle. LetΠ de-
note the LP ×LP exchange matrix that reverses the ordering of the rows, then it is seen
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thatΠA∗ = AΥ, for some unitary diagonal matrixΥ related toΦ. In particular, A andΠA∗
have the same column span.

Thus, we can construct the forward-backward averaged multiple snapshot data ma-
trix as

He := [H ΠH∗] , (4.27)

of size LP ×2QM . Then, He has a factorisation

He = A′X e +Qe := A′[X ΥX ∗]+ [Q ΠQ∗] . (4.28)

Thus, the FB averaging doubles the number of columns of the data matrix, which leads
to improved accuracy. It also provides the opportunity to increase the number of rows in
H(m), as now the number of columns Q, necessary to restore the dimension of the signal
subspace, is half of what it used to be. The estimation of τ from the extended data matrix
proceeds as described in Section 4.3.2.

4.3.4. NOISE REDUCTION

The Hankel matrices Hi , i = 0, . . . ,L−1, stacked in H, all have the same K -dimensional
basis for their column spaces, i.e., the column span of M′. Instead of stacking the Hi

vertically into H, we can stack them horizontally. This allows us to obtain a good estimate
of that basis.

Here, we consider the general case, but first we exploit the structure of M in (3.13),
to apply FB averaging on each of Hi . The FB averaged multiple snapshot data matrix for
the i th band is defined as He,i := [Hi Π′H∗

i ], where

Hi := [H(1)
i . . . H(M)

i ] , (4.29)

H(m)
i is a Hankel matrix formed from CSI collected in the i th band at the mth snapshot,

andΠ is the P ×P exchange matrix. To estimate the basis, we construct

Hr := [He,0 He,1 · · ·He,L−1] , (4.30)

which has a factorisation

Hr = MX r +Qr

:= M[X e,0 · · ·ΘL−1X e,L−1]+ [Qe,0 · · ·Qe,L−1] .
(4.31)

After computing the SVD of Hr, let matrix Ûr contain the K dominant left singular vec-
tors, i.e., the estimated basis for the column span of M′.

Moving back to the vertically stacked data matrix He, the noise in this matrix can be
reduced by projecting each of its blocks onto the low dimensional column span of Ûr :

Hp = (
IL ⊗PUr

)
He ,

where PUr = ÛrÛH
r . The projected data matrix Hp has a factorisation

Hp = A′X e +Qp :=


M′

M′Φn1

...
M′ΦnL−1

X e +


PUrQe,0

PUrQe,1
...

PUrQe,L−1

 . (4.32)
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The column space of matrix Hp has the same structure as the column space of He.
However, the noise matrices Qe,i , i = 0, . . . ,L − 1, are projected onto the lower dimen-
sional subspace, which improves accuracy. The estimation of τ from Hp proceeds as
described in Section 4.3.2.

4.3.5. ESTIMATION OF AMPLITUDES AND ALGORITHM SUMMARY

After estimation of the time-delays τ, the amplitudesα(m) (if they are of interest) can be
found as the least-squares solution to (4.24), that is

α̂(m) = Â†h(m) , m = 1, . . . , M , (4.33)

where Â is constructed based on model (4.14) using τ̂.
A summary of the resulting Multiband Weighted Delay Estimation (MBWDE) algo-

rithm is shown as Algorithm 3. With the input τ̂MRTD we denote an initial estimate of
τ obtained using the related multiresolution delay estimation algorithm [203]. The ab-
stract routine construct(·) points to the construction of A or A′ from τ (viaΦ) in (4.14)
or (4.18), respectively. TSVD refers to the truncated SVD (truncating at rank K ). The re-
maining parts of the summary are self-explanatory.

4.4. GAUSSIAN CRAMÉR-RAO BOUND

In this section, we derive the Gaussian CRB for the model (4.24), which sets a lower
bound on the error covariance matrix of any unbiased estimator [72]. This bound is
accurate under the assumption that the noise present in multiband channel estimates
is Gaussian and white distributed, which holds for the case of the training signals with
equal power over subcarriers [200]. In the remainder of this thesis, we refer to Gaussian
CRB as CRB. After deriving the CRB, we analyze the effects of wireless system parameters,
namely the bandwidth, number of CSI measurements and band selection, on it.

The mean square error (MSE) of the estimated time-delays, when only errors due to
the variance of the estimator are present [72], is defined as

MSE(τ̂) := E{(τ̂−τ)2} = var(τ̂) , (4.34)

where var(τ̂) is the variance of the estimates.
Let us assume that all MPCs are resolved and that the bias can be ignored, then the

covariance matrix of the time-delay estimation errors and its lower bound are defined as

Cτ̂ := E{(τ̂−τ)(τ̂−τ)T }<CRB(τ) , (4.35)

CRB(τ) := F−1 , (4.36)

where τ̂ are estimated time-delays and F is the Fisher’s Information Matrix (FIM). The
entries on the diagonal of Cτ̂ are equal to the variances of the estimated time-delays
var(τ̂).

The data model (4.24) is familiar from array signal processing, and the FIM and the
Gaussian CRB for DOA estimation are derived in [207]. We can readily adapt these results
to the problem of delay estimation by making the following assumptions:
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Algorithm 3: Multiband Weighted Delay Estimation

Input: τ̂MRTD, N ,P,K , {h(m)
i : m = 1, . . . , M }L−1

i=0
Output: τ̂,α̂(m)

Q ← N −P +1;

H(m)
i ← hankel(h(m)

i ,P,Q),∀i ,m; (4.15)

H← [H(1) . . . H(M)],∀i ; (4.25)

He ←H;

if ForwardBackward then
He ← [H ΠH∗]; (4.27)

end
if NoiseReduction then

Hi ← [H(1)
i . . . H(M)

i ],∀i ; (4.29)

He,i ← [Hi Π′H∗
i ];

Hr ← [He,0 He,1 · · ·He,L−1]; (4.30)

Ûr ← TSVD(Hr,K );

PUr ← ÛrÛH
r ;

He ←
(
IL ⊗PUr

)
He;

end
{Û,Λ̂s, σ̂2} ← TSVD(He,K );

W ← Λ̂s − σ̂2IK ; (4.23)

Â′
MRTD ← construct (τ̂MRTD); (4.14)

τ̂← solNLS(Â′
MRTD,Û,W); (4.22)

h(m) ← [h(m)T
1 . . .h(m)T

L−1 ]T ,∀m;

Â ← construct (τ̂); (4.14)

α̂(m) ← solLS(Â,h(m)),∀m; (4.33)

(A1) The noise q(m) in the model (4.24) is zero-mean circularly-symmetric Gaussian
with covariance Rq = σ2

qILN . This assumption is satisfied when the transceivers
have equal gain in all bands and the training symbols s have a constant magnitude.

(A2) The amplitudes of the MPCs are assumed to be circularly symmetric complex
Gaussian random variables, i.e., αk ∼ CN (0,σ2

α,k ), k = 1, . . . ,K , with covariance
matrix Rα. Thus, the magnitudes of the MPCs are Rayleigh distributed, and we
assume that they have an exponentially decaying power-delay profile. This is dif-
ferent from the assumption made in Section 3.4.4, where to promote a sparse so-
lution for α we used the complex Gaussian scale mixture model with a gamma
mixing density to model the PDF of αk ,k = 1, . . . ,K .

(A3) The FIM matrix given in (4.37) is non-singular and the CRB can be computed by
taking its inverse. The validity of this assumption depends on the delay separation
between MPCs with respect to the system bandwidth [208]. As a rule of thumb, we
say that matrix F will become rank deficient if the delay separation of two MPCs
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is much smaller than the inverse of the total bandwidth, i.e., much smaller than
1/(LB). In numerical experiments presented in Section 4.5 we see that for LB = 80
MHz, this assumption is satisfied even if the delay separation of MPCs is 125 times
smaller than 1/(LB).

(A4) The MPCs and noise are temporally uncorrelated.

Based on the above assumptions, the FIM for the time-delay parameters, condi-
tioned on the path amplitudes, is given as

F = 2M

σ2
q

Re
{

DH P⊥
A D¯Rα

}
, (4.37)

where

D =
[
∂a(τ1)

∂τ1
, . . . ,

∂a(τK )

∂τK

]
, (4.38)

a(τk ) is the kth column of A, P⊥
A = ILN −PA, PA = AA†. To gain further insights in the CRB

we partition the FIM in terms associated to the time-delays of MPCs and their coupling
with other multipath parameters, and write it in the following explicit form as

F = 2M

σ2
q

Re{ DH D¯Rα︸ ︷︷ ︸
Partition of FIM

of delay parameters

− DH PAD¯Rα︸ ︷︷ ︸
Partition of FIM

of coupled parameters

} . (4.39)

We can make the following observations.

• The CRB depends on the time-delaysτ, frequency band selection {Wi }L−1
i=0 through

A and D, and correlation between amplitudesα through Rα.

• The first term in the FIM represents the effects of the time-delays τ on the estima-
tion error, and is equivalent to the FIM for time-delay estimation in the additive
white Gaussian noise channel when there is no multipath propagation.

• The second term represents the effects of coupling between parameters τ and α
on the estimation error of time-delays τ. This term is always non-negative, and it
will increase the CRB except when the parameters are decoupled. An increase of
the CRB due to coupling of the parameters depends on the conditioning of matrix
AH A, and it will be low when this matrix is well-conditioned.

Unfortunately, these observations do not intuitively interpret the impact of band se-
lection {Wi }L−1

i=0 on the CRB. To arrive at a more interpritable expression for the CRB,
we will make the additional assumption that matrix Rα = diag[σ2

α,k ,k = 1. . .K ] is diag-
onal, which holds for wide sense stationary uncorrelated scattering (WSSUS) channels
[209]. Then using (4.37), we can write the closed-form expression for the CRB on the
time-delay estimates of the kth MPC as

CRB(τ̂k ) = 1

2M ·SNRk
b−1(τk ) , (4.40)
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where SNRk =σ2
α,k /σ2

q, b(τk ) = dH (τk )(ILN −PA)d(τk ) and d(τk ) is the kth column of D.
This expression shows that the CRB is inversely proportional to the number of snapshots
M , SNRk and the scalar b(τk ), where b(τk ) depends on the coupling between the param-
eters. If we ignore the effects of coupling, then dH (τk )PAd(τk ) = 0, and (4.40) reduces to
the CRB for time-delay estimation in AWGN channels [210]. The scalar b(τk ) then can
be written as b(τk ) =∑

n∈S (ωsc n)2, where S is the index set of all used subcarriers of all
frequency bands. It is defined as S =⋃L−1

i=0 Si , where Si = {n ∈Z | nc,i − N
2 ≤ n < nc,i + N

2 },
nc,i = ni − nL−1−n0

2 , and ni = ωi−ω0
ωsc

, i = 0, . . . ,L − 1. Now, it is easy to see that the CRB
(4.40) can be reduced by collecting the CSI over a large frequency aperture. However, the
results of real data experiments show that a large frequency aperture introduces model-
ing errors caused by frequency dependency of multipath channels [211]. Therefore the
bands need to be selected carefully, and this is further discussed in Chapter 8.

4.5. NUMERICAL EXPERIMENTS

This section presents numerical results that illustrate the performance of the MBWDE
algorithm. We first describe the simulation setup and then compare different variants
of the algorithm and study how the trade-offs among design and system parameters im-
pact the performance. Lastly, we compare the performance of the algorithm against sev-
eral other algorithms. The results show that the algorithm is asymptotically efficient,
achieves the CRB, and improves the resolution of time-delay estimation with respect to
the bandwidth of the training signals.

In the simulations, we consider time-delay estimation using IEEE 802.11be
transceivers. Although the IEEE 802.11be standard is in a preliminary phase, its main
candidate features are already known [197]. In particular of interest to us is that it will
enable multiband operation at 2.4, 5, and 6 GHz. At 6 GHz, the RF spectrum from 5.925
to 7.125 GHz will be allocated for primary 20, 40, 80, and 160 MHz channels and their
contiguous and non-contiguous combinations. The large bandwidth allocated at the 6
GHz band offers a great opportunity for localization.

In the default setup, we consider that CSIs are collected using OFDM training sig-
nals with subcarrier spacing ωsc = 78.125 kHz and a bandwidth of B = 20 MHz at L = 4
bands with central frequencies {6,6.120,6.320,6.440} GHz. This corresponds to prob-
ing the channel using the 20 MHz wide extremely high throughput long training fields
(EHT-LTF) described in the standard. We consider that M = 12 CSI snapshots are col-
lected within the channel’s coherence time and assume that the multipath channel has
K = 7 MPCs with Rayleigh distributed magnitudes. The time-delays of MPCs are set to
{3,5,10,16,22,28,33} ns and their average powers are set to {0,−3,−5,−4,−6,−5.5,−7}
dB. The number of iterations allowed for convergence of the SNLS problem (4.21) is set
to 10. To assess the performance of the algorithm, we compute the root mean square
error (RMSE) of the LOS time-delay estimate using 104 Monte Carlo trials and compare
it to the CRB derived in Section 4.4. The RMSE is defined as RMSE(τ̂) :=p

MSE(τ̂), where
the MSE is given by (4.34). In the subsequent simulations, some of these parameters are
varied.
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Figure 4.3: RMSE of LOS time-delay estimation for different variants of the MBDE and MBWDE
algorithms.
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Figure 4.4: RMSE of time-delay estimation using the MBWDE(FB&NR) algorithm for the MPCs in
the channel.

PERFORMANCE OF MBWDE

Fig. 4.3 shows the RMSE of time-delay estimation for different variants of the MB-
WDE algorithm and its initialization is obtained using MRTD estimation as a function
of SNR. The unweighted variant of the algorithm is indicated with MBDE, and the vari-
ants that include FB averaging and noise reduction or both have extensions (FB), (NR),
and (FB&NR), respectively. All simulation parameters are set as listed previously. It is
seen that the MBWDE algorithm asymptotically achieves the CRB as the SNR increases.
The results also show that FB averaging and NR techniques provide approximately 2.5
dB of SNR gain. The MBWDE(FB&NR) variant of the algorithm performs best, and in the
following, we will mostly focus on it.

In this thesis, we aim at time-delay estimation for ranging, where the primary interest
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Figure 4.5: Influence of the number of CSI snapshots M on the performance of time-delay estima-
tion.
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Figure 4.6: Impact of the bandwidth B of training signals on the RMSE.

is to estimate the delay of the line-of-sight (LOS) path. However, we also evaluated the
performance of time-delay estimation using the MBWDE(FB&NR) algorithm for later ar-
riving MPCs. Here, we present the Root Mean Square Error (RMSE) of delay estimation
for the MPCs k = 2,3,4,5,6. We used the same simulation setup as in the previous sce-
nario to generate these results.
From Fig. 4.4, we see that the algorithm converges to the CRB for all MPCs. However,
the SNR level for which the algorithm starts to converge to the CRB is different for each
MPC. These levels depend on the mean magnitudes of the MPCs, and in general, the
algorithm will converge sooner to the CRB for the MPCs with a higher magnitude. This
is the consequence of the differences in the levels of the subspace perturbations.
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Figure 4.7: Impact of the choice of carrier frequencies of the bands on the RMSE.
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Figure 4.8: Impact of MPC misdetection on the performance of MBWDE (FB&NR)

INFLUENCE OF SYSTEM PARAMETERS M , B AND { fc,i }L
i=1

We first study the scenario where all parameters are set as in the default setup, ex-
cept that now we vary the number of CSI snapshots. We repeat these simulations for
SNR = 5 and 15 dB and compare the performance of MBDE(FB), MBWDE(FB), and MB-
WDE(FB&NR). From Fig. 4.5, it is seen that the performances of all algorithms improve
when the number of CSI snapshots is increased. However, MBDE(FB) never achieves
the CRB and stays biased, even for high SNR, due to the lack of weighting of the sub-
space perturbations. On the other hand, 12 snapshots are enough for the MBWDE(FB)
and MBWDE(FB&NR) algorithms to attain the CRB for high SNR (15 dB), while for low
SNR (5 dB), these algorithms attain the bound for 30 snapshots and more.

Next, we simulate the scenario where the bandwidth of the training signals is varied.
We set the bandwidth parameter B to {20,40,80,160} MHz. The other parameters are set
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Figure 4.9: RMSE of estimation for MBWDE(FB&NR) considering time-delay separation between
the LOS path and the closest MPC.

as in the default simulation setup. Fig. 4.6 shows the RMSE of the time-delay estimation
for the MBWDE(FB&NR) algorithm. As expected, it is seen that by increasing the band-
width, the resolution increases. A gain of approximately 10 dB in SNR is achieved when
the bandwidth B is doubled.

We have shown in Section 4.4 that by increasing the frequency aperture of the
CSI measurements, the CRB decreases. Now, we simulate scenarios where the car-
rier frequencies of the bands are set to the following sets: {6,6.120,6.320,6.440},
{6,6.160,6.320,6.440} and {5.960,6.120,6.320,6.480} GHz. Fig. 4.7 shows that the reso-
lution of estimation increases for larger frequency apertures. However, it is also seen
that for low SNR, the RMSE increases for a larger aperture. This confirms the results of
Section 4.4, and we can conclude that the band selection is a trade-off between resolu-
tion and robustness to noise. Later, in Chapter 8 we will see that real multipath channels
are frequency-dependent, which sets a limit on the size of frequency aperture that can
be selected without introducing modeling errors in (4.14).

INFLUENCE OF MPC DETECTION

Fig. 4.8 shows the RMSE of the MBWDE algorithm when the number of MPCs in the
channel K is wrongly detected. We consider two scenarios where the value of SNR is set
to 15 and 20 dB. The true number of MPCs K is 7. It is seen that when K is correctly
detected, the algorithm attains the CRB. Its performance sharply deteriorates when K is
wrongly detected. The underestimation of K introduces modeling error, and it is more
severe compared to overestimation.

RESOLUTION AND CONVERGENCE OF MBWDE

We assess the resolution of the MBWDE(FB&NR) algorithm by varying the time-delay
separation between LOS and the closest MPC, i.e., ∆τ2,1 = τ2 − τ1, in the range from
0.01 to 10 ns, while keeping the SNR fixed at 15 dB. We repeat this simulation scenario
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Figure 4.10: Influence of stacking design parameter P on the RMSE.

while setting the number of iterations allowed for convergence of the SNLS problem to
{5,10,20,40}. Fig. 4.9 shows the RMSE for this scenario, and it can be seen that the algo-
rithm converges to the CRB for a time-delay separation larger than 2 ns. It is also seen,
that for "well-separated" paths (∆τ2,1 ≥ 2 ns), 5 iterations are sufficient for the algorithm
(4.21) to converge. For critical scenarios, when paths are closely spaced (∆τ2,1 ≤ 0.2 ns),
there is a slight improvement when 10 or more iterations are allowed for convergence.
However, allowing more than 10 iterations does not result in substantially better perfor-
mance. This experiment illustrated the impact of the first MPC on the delay estimation
of the LOS path. In [212], we analyzed the impact of other MPCs of delay estimation of
the LOS path using the MBWDE(FB&NR) algorithm. There we used the idea of the first
contiguous cluster [213] and showed that all the MPCs that are within this cluster, i.e.,
that are separated less than 1/(BL) from the LOS path, introduce a bias in the delay esti-
mation of the LOS path. This bias depends on the relative powers of the MPCs compared
to the LOS path and their delay separation from the LOS.

INFLUENCE OF DESIGN PARAMETER P

In Section 4.3.1, we have introduced the design parameter P , which controls the dimen-
sions of the Hankel matrices (4.15). We use the default simulation setup to evaluate the
influence of parameter P on the RMSE of the algorithm. From Fig. 4.10 it is seen that
for high SNR, the performance improves when P is increased. This result is intuitive as
an increased number of rows in the Hankel matrices increases the frequency aperture.
Furthermore, the matrix A′ (4.18) becomes taller and the mutual linear independence of
its columns increases.

COMPARISON TO OTHER ALGORITHMS

Finally, we compare MBWDE to DML [113] and SML [105] methods, algorithms pro-
posed in [47] (MUSIC), [192, 194] (CS(L1)), and DOA estimation algorithms ESPRIT [124]
and MI-MUSIC [214], that are tailored to the problem of delay estimation. We provide
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Figure 4.11: Performance comparison of MBWDE(FB&NR) with ESPRIT, MUSIC, DML, SML, MI-
MUSIC and CS(L1).

CSI with a contiguous bandwidth of B = 80 MHz to MUSIC and ESPRIT. For all other
algorithms, we provide multiband CSI collected in L = 4 bands with B = 20 MHz. The
CRB is computed for both contiguous and non-contiguous band allocations. We use de-
lay estimates obtained using the MR algorithm [203] to initialize DML, SML, and MB-
WDE(FB&NR). Fig. 4.11 shows that algorithms that utilize contiguous bands have a
more than 10 times higher RMSE compared to algorithms that use multiband CSI. The
best performance is shown by SML, which is asymptotically consistent and statistically
efficient as M and B tend to infinity. However, it has a higher complexity than MB-
WDE(FB&NR) as it minimizes a complex multimodal cost function for the delays, com-
plex amplitudes, and noise. The performance of MBWDE(FB&NR) is close to SML. It is
also seen in Fig. 4.11 that the consistency and efficiency properties do not hold for DML
in multiple snapshot scenarios. The results show that CS(L1) never attains the CRB due
to basis mismatch and that MI-MUSIC diverges from it for high SNR (>23 dB) where grid
mismatch errors dominate noise errors. These errors are caused by the discretization of
the delay grid, where we set the grid step to 0.005 ns. For lower SNR, the performance of
MBWDE(FB&NR) and MI-MUSIC are almost the same. However, MI-MUSIC has a much
higher computational complexity due to an exhaustive grid search.

4.6. CONCLUSIONS

This chapter considered the problem of high-resolution time-delay estimation for range-
based localization using multiband CSI measurements. We derived a data model for
multiband CSI and showed that it has multiple shift-invariance structures. We designed
the Multiband Weighted Delay Estimation (MBWDE) algorithm that exploits this struc-
ture to estimate time-delay parameters. This algorithm requires initialization, and we
used a MRTD estimation algorithm [203] to find a good initial estimate of the time-
delays. This algorithm and its performance will be presented in Chapter 5. We presented
several data extension and preprocessing techniques that further improve the perfor-
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mance of MBWDE. To assess the performance of MBWDE and several other algorithms,
we derived the CRB on the RMSE of time-delay estimates considering a multiband CSI
model. We used parameters of the emerging IEEE 802.11be standard to define simu-
lation scenarios that illustrate the performance of MBWDE. The results of simulations
showed that MBWDE almost attains the CRB when MPCs, present in the channel, are
resolved and outperforms other multiband estimation algorithms such as CS(L1) and
MI-MUSIC. However, the results of numerical simulations are not a sufficient indicator
of the performance of algorithms in real scenarios. For this reason, we present addi-
tional experiments with real channel measurements in Chapter 8, to verify the modeling
assumptions and illustrate the performance of the MBWDE algorithm in practical local-
ization scenarios.
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5.1. INTRODUCTION

IN the previous chapter, we presented multiband time-delay estimation algorithms re-
ferred to as MBDE and MBWDE. These algorithms are based on subspace fitting, and

they estimate time-delays by finding solutions to the separable nonlinear least-squares
(SNLS) problems given in (4.20) and (4.22). The optimization problems that are solved
in these algorithms have a highly multimodal objective function with many local min-
imums. The solution to these optimization problems can be found using iterative op-
timization methods such as variable projection [112], Gauss-Newton [111], Levenberg-
Marquardt [215], and steepest descent [216]. However, all of these optimization methods
require initialization, and then they perform a search for the local minimum that is close
to the initial estimate. These methods will converge to a true solution when the initial es-
timate is close to it. Otherwise, they might converge to any other local minimum of the
objective functions given in (4.20) and (4.22). Therefore, to improve the performance
of time-delay estimation using the MBDE and MBWDE algorithms, it is crucial to find
accurate estimates to initialize optimization of SNLS problems.

In this chapter, we present a multiresolution time-delay (MRTD) estimation algo-
rithm. Similar to the MBDE and MBWDE algorithms, to improve resolution while avoid-
ing arriving at unrealistic sampling rates, we use multiband sampling to acquire channel
measurements [91, 102]. We showed in Chapter 4 that after stacking these measure-
ments into Hankel matrices, the resulting data model has a multiple shift-invariance
structure (4.18). The same structure appears in Multiple Invariance ESPRIT [195] and
the related algorithms are applicable to our problem, in particular the Multiresolution
ESPRIT algorithm [217], which was aimed at carrier frequency estimation.

Similar to [217], we propose an algorithm where the invariance structure of a single
band will provide coarse parameter estimates, while the invariance structure of the low-
est against the highest frequency band will provide high-resolution but phase wrapped
estimates. The wrapping is resolved using the coarse estimates.

The proposed algorithm improves resolution compared to single band estimation
methods, such as classical ESPRIT [124] and MUSIC [119], presented in Chapter 2. This
algorithm allows time-delay estimation from channel measurements collected in two
separate frequency bands, which provides the opportunity to increase the resolution of
time-delay estimation by selecting frequency bands that form a large frequency aper-
ture. At the same time, it does not require solving an NLS and has a closed-form solution
based on joint-diagonalization [218].

To derive the algorithm, we first revisit the data model (4.18) for multiband channel
measurements, as presented in Chapter 4. We then discuss derivations of the algorithm
and present the results of numerical simulations. To evaluate the performance of MRTD
estimation algorithm, we compare the the root mean square error (RMSE) of its time-
delay estimates against the CRB given in Section 4.4. The results show that the algorithm
is asymptotically consistent and efficient when the number of measurements increases
to infinity, and it converges to the CRB.
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5.2. DATA MODEL

In Section 4.3, we showed that multipath channel measurments hi , i = 1, . . . ,L−1, satisfy
the following data model

hi = MΘiα+qi , (5.1)

where M is a Vandermonde matrix given in (3.13) and Θi = Φni , Φ= diag([φ1 · · ·φK ])
is collecting the subcarrier dependent phase shifts φk = e− jφk , k = 1, . . . ,K , where φk =
ωscτk with ωsc is subcarrier spacing, and α= [α1, . . . ,αK ]T ∈CK collects the complex-
amplitudes of the MPCs.

5.3. MULTIRESOLUTION TIME-DELAY ESTIMATION

Our next objective is to estimate the time-delays {τk }K
k=1. We begin with an algorithm for

estimating the time-delays using a single frequency band, which is later extended to two
bands. The single-band algorithm is in fact a classical array signal processing algorithm
(cf. [124, 219, 220]).

5.3.1. SINGLEBAND TIME-DELAY ESTIMATION ALGORITHM

Following the structure for the Hankel matrix, as given in Section 4.3.1, from hi , i =
1, . . . ,L − 1, we form the Hankel matrices Hi , i = 1, . . . ,L − 1, that satisfy the following
model

Hi = M′Φni X+Q′
i , (5.2)

where M′ is an P ×K submatrix of M,

X := [α Φα Φ2α · · ·ΦQ−1α],

and Q′
i is a noise matrix.

Since (5.2) resembles the data model of the classical ESPRIT algorithm, Φ can be
estimated by exploiting the shift-invariance properties of the Hankel matrices Hi , i =
1, . . . ,L −1. For the single band time-delay estimation algorithm we select a band i and
estimate Φ from the low-rank approximation of Hi . Then from the estimated Φ, the
parameters τk immediately follow.

In particular, let U be a K -dimensional orthonormal basis for the column span of Hi ,
obtained using the singular value decomposition, then we can write M′ = UT, where T is
a K ×K nonsingular matrix. Next, let us define the selection matrices

J(r )
1 = [IP−r 0P−r,r ], J(r )

2 = [0P−r,r IP−r ] . (5.3)

For r = 1, U1 = J(1)
1 U and U2 = J(1)

2 U are submatrices of U obtained by dropping its first
and last row, respectively. In view of the shift-invariance structure of M′, we have

U1 = M′
1T−1 , U2 = M′

1ΦT−1, (5.4)

where M′
1 = J(1)

1 M′. Finally, we compute the matrix Ψ = U†
1U2. Now, Φ can then be esti-

mated directly from the eigenvalue decomposition ofΨ, as it satisfies the model

Ψ= TΦT−1 . (5.5)
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Figure 5.1: Multiband channel frequency response with phase shifts introduced over the subcar-
riers and carrier frequency defined apertures denoted by ∆φi and ∆θi . The channel frequency
responses from the 0th and L−1th bands are used for multiresolution time-delay estimation.

In other words, λ̂k is equivalent to the estimate of the phase shift φk introduced by the
time-delay τk of the kth multipath component. Therefore, τk can be estimated from
λ̂k as τk = arg{λk }/ωsc . Since ωscτk < 2π because τk < Ts ym , there is no phase wrapping
issue here. Note that for time-delay estimation, we are mostly interested in retrieving the
smallest τk as it belongs to the LOS propagation, i.e. due to the true distance between
the transmitter and the receiver.

5.3.2. MULTIRESOLUTION TIME-DELAY ESTIMATION ALGORITHM

The aforementioned algorithm uses data from a single frequency band and has a limited
time resolution, since it is based on the shift of one row in the Hankel matrix Hi , which
results in only a small phase shiftωscτk . Note that the sampling rate does not play a role
in ωsc = 2π

Ts ym
, only the total signal duration Ts ym = N Ts . Thus, increasing the sampling

rate without increasing the bandwidth of the training signal would, until a certain level,
increase the signal-to-noise ratio (SNR) but not the temporal resolution.

The matrix M is also invariant for shifts over multiple rows, and therefore, if N is
sufficiently large, we can increase the resolution by considering shifts of multiple rows
of Hi . Indeed, a shift of r rows using shift matrices J(r )

1 and J(r )
2 (or by interleaving rows

of Hi [221]) leads to an estimate ofΦr . Unfortunately, phase shifts have an ambiguity of
multiples of 2π, so these approaches for increasing the resolution introduce ambiguity in
the estimates of τk ,k = 1, . . . ,K . If Ts ym is not very large, the improvement in resolution
with this approach is limited.

In Chapter 4, we introduced algorithms that use channel measurements collected in
all L bands, however, these algorithms involved solving SNLLS optimization problems
presented in Section 4.3.1, that require initialization. Here, we are interested in an al-
gorithm for high resolution and unambiguous estimation of τk from multiband channel
measurements with a closed-form solution. This algorithm is aimed to provide initial-
ization for the algorithms proposed in Chapter 4. To avoid arriving at the NLLS opti-
mization problem, we focus on time-delay estimation from only two frequency bands.
In particular, to increase the temporal resolution, we estimate time-delays from channel
measurements collected in two frequency bands that give the largest frequency aper-
ture, i.e., from the two frequency bands that are furthest apart. However, this algorithm
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is general and can be applied to time-delay estimation from any two frequency bands.
We will denote these bands with indexes i = 0 and i = L−1, and their central frequencies
are ω0 and ωL−1 =ω0 +nL−1ωsc , where nL−1 ∈N is a positive integer number that relates
ω0 and ωL−1. Following the procedure described in Section 5.3.1, we form the Hankel
matrices H0 and HL−1, following the structure given in (4.15), and stack them in a block
matrix

H =
[

H1

HL−1

]
. (5.6)

The matrix H has the model

H := AX+Q =
[

M′
M′Θ

]
X+Q , (5.7)

where X = [α Φα Φ2α · · ·ΦQ−1α], Q is formed by stacking Q′
1 on top of Q′

2,
Θ= diag([θ1 · · ·θK ]) is a diagonal matrix collecting the band dependent phase shifts
θk = e− jθk , k = 1, . . . ,K , on its diagonal. Here, θk = nL−1ωscτk , and we can write Θ =
ΦnL−1 . Note that H has a double shift-invariance structure introduced by the time-delays
τk ,k = 1, . . . ,K , over (i) the subcarrier spacing within a single band, i.e., φk =ωscτk , and
over (ii) the carrier frequency difference between two bands, i.e., θk = nL−1φk , as shown
in Fig. 5.1. In general, the carrier frequency difference is much higher than the subcarrier
spacing, and therefore, θk Àφk for k = 1, · · · ,K . The estimation of τk ,k = 1, . . . ,K , fromΘ

will result in high resolution but ambiguous estimates due to unknown multiples of 2π in
the phases. However, we can use the idea of multiresolution (MR) parameter estimation
[217] to develop the algorithm for high resolution estimation of τk without ambiguity by
combining coarse and fine estimates obtained fromΦ andΘ, respectively.

We follow a similar approach as in the previous section. Let U be an orthonormal ba-
sis for the column span of H, obtained using a truncated SVD. Let us, define the selection
matrices

J(r )
Φ,1 = I2 ⊗ [IP−r 0P−r,r ], JΘ,1 = [1 0]⊗ IP ,

J(r )
Φ,2 = I2 ⊗ [0P−r,r IP−r ], JΘ,2 = [0 1]⊗ IP .

(5.8)

To estimate Φ, we set r = 1 and take submatrices consisting of the first and the last row
of each block matrix stacked in U, respectively, that is UΦ,1 = J(1)

Φ,1U and UΦ,2 = J(1)
Φ,2U. The

estimation of Θ is based on the first and the second block matrix present in U, respec-
tively, that is UΘ,1 = JΘ,1U and UΘ,2 = JΘ,2U. The selected matrices have the following
models:

UΦ,1 =
[

M′′
M′′Θ

]
T−1, UΘ,1 = M′T−1,

UΦ,2 =
[

M′′
M′′Θ

]
ΦT−1, UΘ,2 = M′ΘT−1,

(5.9)

where M′′ = J(1)
1 M′ and J(1)

1 is given in (5.3). The Least Squares approximate solutions to
the set of equations in (5.9) satisfy a model of the form

Ψ := U†
Φ,1UΦ,2 = TΦT−1,

Υ := U†
Θ,1UΘ,2 = TΘT−1.

(5.10)
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Observe thatΨ andΥ are jointly diagonalizable by the same matrix T. If each subma-
trix in (5.9) has at least K rows, the joint diagonalization can be computed by means of
QZ iterations or Jacobi iterations [222, 223]. After T has been determined, the parameters
φk and θk for k = 1, · · · ,K , are estimated.

Based on the phase estimates, coarse and fine time-delay estimates are computed as

τk =ω−1
sc φk = (nL−1ωsc )−1(θk +2πmk ). (5.11)

The unknown number of cycles mk is determined as the best fitting integer that sat-
isfies (5.11), that is,

mk = round

{
1

2π

(
nL−1φk −θk

)}
. (5.12)

If the estimation errors of the φk and the θk are comparable, then the τk estimate based
on θk is nL−1 times more accurate and less affected by noise compared to the one based
on φk . Therefore, the final estimate of φk is obtained based on θk , or by optimal com-
bining of coarse and fine estimates [217].

5.3.3. DATA EXTENSIONS

So far, we have discussed MRTD estimation considering single snapshot multipath chan-
nel measurements. Similar as in Section 4.3.3, MRTD estimation can be used to estimate
time-delay from multiple snapshot measurements. Furthermore, data matrix H can be
extended using the forward-backward (FB) averaging technique [130]. Next, we discuss
these extensions of the basic MRTD estimation algorithm.

MULTIPLE SNAPSHOTS

Let us assume that M snapshots of channel measurements h(m)
i , m = 1, . . . , M (5.1) are

collected during the coherence time for the bands i = 1,L − 1. Then, similar as in the
single snapshot case, from measurements collected in every snapshot h(m)

i , i = 1,L −1,

we can construct a block Hankel matrix H(m)

H(m) =
[

H(m)
1

H(m)
L−1

]
, (5.13)

where H(m)
i is a Hankel matrix (4.15) constructed from h(m)

i . The block Hankel matrix

H(m) satisfies the following model

H(m) = AX(m) +Q(m) , (5.14)

where now X(m) := [α(m) Φα(m) · · ·ΦQ−1α(m)], and Q(m) represents the noise matrix of
the mth snapshot. Here, we assumed that the time-delays {τ(m)

k }K
k=1, m = 1, . . . , M , of the

MPCs stay the same during the coherence time. From (5.14), it is easy to see that the
matrices H(m), m = 1, . . . , M , have the same column subspace. We use this property to
increase the dimension of the data matrix by constructing the following extended data
matrix

H := [H(1) H(2) · · · H(M)] , (5.15)
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which has factorization H = AX + Q ,. Here, X := [X(1) · · · X(M)] and
Q := [Q′(1) · · · Q′(M)]. The estimation of τ from H proceeds as described in Section
5.3.2. Now the number of columns in the data matrix is increased, which reduces errors
when estimating the signal subspace and it improves time-delay estimation accuracy
due to noise.

FORWARD-BACKWARD AVERAGING

The multiband channel measurements collected for any two frequency bands of equal
size are taken centro-symmetric [130]. Therefore we can apply the forward-backward
(FB) averaging technique presented in Section 4.3.3 to double the number of columns in
the data matrix H. The forward-backward averaged multiple snapshot data matrix He

is constructed as
He := [H ΠH∗] , (5.16)

whereΠ denote the 2P ×2P exchange matrix that reverses the ordering of the rows, and
(·)∗ denotes the complex conjugate of the elements of a matrix. The column space of the
matrix He is spanned by the same basis H and all shift-invariance properties stay pre-
served after FB averaging. However, the number of columns in He is twice the number
of columns in H, which leads to improved accuracy when estimating the signal sub-
space and time-delays. The estimation of τ from He proceeds as described in Section
5.3.2.

5.3.4. ALGORITHM SUMMARY

A summary of MRTD estimation algorithm is given as Algorithm 4. The routine
JDIAG(·, ·) refers to joint diagonalization of matrices [222, 223]. The remaining parts of
the summary are self-explanatory.

5.4. NUMERICAL EXPERIMENTS

In this section, we present numerical results that illustrate the performance of MRTD
algorithm. We first describe the general simulation setup, and later we introduce sev-
eral specific scenarios that are considered in the experiments. We consider a sce-
nario where the multipath channel has eight dominant MPCs, i.e., K = 8, with the
gains distributed according to the Rayleigh distribution. The time-delays of MPCs
are set to {1,7,14,21,27,31,35,40} ns, and their relative average powers are set to
{0,−4,−5,−4,−6,−5.5,−8,−7} dB. In the simulations, we consider that the multipath
channel is probed using OFDM training signals with a subcarrier spacing ofωsc = 78.125
kHz. These training signals are used to probe multiple frequency bands and obtain
multiband channel measurements, which are then used as input to the algorithms for
time-delay estimation. In particular, we compare the performance of multiresolution
time-delay (MRTD) estimation to the following: single band time delay estimation al-
gorithm ESPRIT [124], multiband time-delay estimation algorithms MBWDE [224], and
finally MI-MUSIC [214], which are previously discussed in Chapter 4. We use RMSE as
the metric to compare the performance of the time-delay estimation for the algorithms
mentioned before. The RMSEs are obtained over 104 independent Monte Carlo runs
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Algorithm 4: Multiresolution (MR) Time-Delay Estimation

Input: N ,P,K ,r, {h(m)
i : m = 1, . . . , M }i=0,L−1

Output: τ̂
Q ← N −P +1;

H(m)
i ← hankel(h(m)

i ,P,Q),∀i ,m; (4.15)

H← [H(1) . . . H(M)],∀i ; (5.15)

He ←H;

if ForwardBackward then
He ← [H ΠH∗]; (5.16)

end
{U,∼,∼} ← TSVD(He,K );

J(r )
Φ1 ← I2 ⊗ [IP−r 0P−r,r ]; (5.8)

J(r )
Φ2 ← I2 ⊗ [0P−r,r IP−r ]; (5.8)

JΘ1 ← [1 0]⊗ IP ; (5.8)

JΘ2 ← [0 1]⊗ IP ; (5.8)

UΦ1 ← J(1)
Φ1U; (5.9)

UΦ2 ← J(1)
Φ2U; (5.9)

UΘ1 ← JΘ1U; (5.9)

UΘ2 ← JΘ2U; (5.9)

Ψ← U†
Φ1UΦ2 = TΦT−1; (5.10)

Υ← U†
Θ1UΘ2 = TΘT−1; (5.10)

T ← JDIAG(Ψ,Υ);

Φ← T−1ΨT;

Θ← T−1ΥT;

mk ← round
{ 1

2π

(
nL−1φk −θk

)}
, k = 1, . . . ,K ; (5.12)

τk ← (nL−1ωsc )−1(θk +2πmk ), k = 1, . . . ,K ; (5.11)

and they are compared against the CRB for the multiband channel data model derived
in Section 4.35.

We first evaluate the influence of the bandwidth of the training signals on the perfor-
mance of MRTD algorithm. We simulate scenarios where the bandwidth B of the training
signals is set to {20,40,80} MHz. The channel is probed in L = 2 frequency bands with
carrier frequencies set to {6,6.120} GHz and M = 10 snapshots are collected during the
channel coherence time. Fig. 5.2 presents the RMSEs of the estimated time-delay (τ1)
for the LOS path plotted against the SNR for the scenarios where training signals have
varying bandwidths. From the figure, it can be seen that the proposed algorithm asymp-
totically achieves the CRB for increasing SNR. Furthermore, as expected, for larger band-
widths, the proposed algorithm is more robust to noise and offers higher resolution.

In the second experiment, we evaluate the influence of carrier frequency selection of
the probed bands on the performance of MRTD estimation. In these scenarios, we keep
the bandwidth of the training signals and the number of snapshots fixed to B = 20 MHz
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Figure 5.2: Root Mean Square Error (RMSE) of time-delay estimates (τ1) for varying bandwidths
of the measurements. The results show that the algorithm asymptotically achieves the CRB for
increasing SNR and that for larger bandwidths of the measurements, it is more robust to noise and
offers higher resolution.
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Figure 5.3: Root Mean Square Error (RMSE) of time-delay estimates (τ1) for varying band posi-
tions. The results show that by separating the two bands further apart, i.e., by increasing the fre-
quency aperture, the resolution of the multiresolution time-delay estimation increases.

and M = 10, respectively, while the carrier frequencies of the probed frequency bands
are set to {6,6.120}, {6,6.160}, and {6,6.200} GHz respectively. Fig. 5.3 shows the RMSEs
of the estimated time-delays (τ1) for the LOS path. It can be seen that by separating
the two bands further apart, i.e., by increasing the frequency aperture, the resolution of
MRTD estimation increases. However, for low SNR, MRTD estimator has slightly better
performance in scenarios where the frequency aperture is lower due to decreased ambi-
guity and lower error for fine time-delay estimation.

Fig. 5.4 shows the performance of the MRTD, MBWDE, ESPRIT and MI-MUSIC algo-
rithms as a function of SNR. MRTD supports time-delay estimation from channel mea-
surements collected in two separate frequency bands, i.e., L = 2. The performance of this
algorithm is evaluated using the measurements collected from the training signals that
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Figure 5.4: Performance comparison of multiresolution time-delay (MRTD) estimation with ES-
PRIT, MBWDE, and MI-MUSIC. The results show that from algorithms that have a closed-form
solution, i.e., ESPRIT and MRTD, MRTD algorithm has better performance, and it converges to the
CRB with the increase of SNR.

Figure 5.5: Influence of the number of multiband channel snapshots M on the performance of
multiresolution time-delay (MRTD) estimation. The results show that the RMSE of time-delay
estimation decreases with the number of snapshots.

have a bandwidth of B = 20 MHz, where their carrier frequency parameters are set to
{6,6.120} GHz. To compare the performance of MRTD against single band time-delay
estimation algorithms, we use ESPRIT [124], to which we provide multipath channel
measurements collected in a single band. However, to have a fair comparison, the mea-
surements provided to ESPRIT are collected using a training signal whose bandwidth is
twice the bandwidth of the signals used for MRTD, i.e., B = 40 MHz. Meanwhile, the
carrier frequency of the training signal is set to 6 GHz. Lastly, we compare the perfor-
mance of MRTD against MBWDE [224] and MI-MUSIC [214]. For these algorithms, we
provide multiband channel measurements collected in L = 4 frequency bands, where
each band has a bandwidth that is half the bandwidth used for MRTD, i.e., B = 10 MHz,
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and their carrier frequencies are set to {6,6.04,6.08,6.120} , the frequency aperture re-
mains the same. Fig. 5.4 shows that MBWDE has the best performance as it is the first
one to converge to CRB. MRTD shows worse performance than MI-MUSIC, but it out-
performs classical ESPRIT. More specifically, due to the small frequency aperture of the
channel measurements used for time-delay estimation with ESPRIT, it never converges
to the CRB derived for the multiband channel model. These results are in accordance
with those presented in Fig. 4.11, where it can be seen that single band time-delay algo-
rithms have worse performance than multiband time-delay estimation algorithms and
that the CRB for single-band channel measurements is above the CRB for multiband
measurements.

In the last experiment, we fixed the signal-to-noise ratio to SN R = 10 dB, while other
parameters were kept as in the previous experiment. We then evaluate the performance
of the algorithms listed in the previous experiment for different numbers of snapshots
M . From Fig. 5.5, it is seen that the RMSE of time-delay estimation decreases with the
number of snapshots. It can be observed that the number of snapshots needs to be suf-
ficiently high, i.e., equal to or higher than 3, for the algorithms to perform well, which
comes as a consequence of subspace estimation errors. The minimum number of snap-
shots required for MRTD to converge to CRB increases as the SNR decreases.

5.5. CONCLUSIONS

In this chapter, we introduced the MRTD estimation algorithm, which has a closed-
form solution and supports time-delay estimation from channel measurements col-
lected in two frequency bands. From numerical results, we observed that this algorithm
converges to the CRB derived for multiband channel measurements. The results also
showed that the time-delay resolution of the algorithm can be improved by increasing
the frequency aperture over which multiband channel measurements are collected. The
performance of MRTD is compared against ESPRIT, which supports time-delay estima-
tion from single-band channel measurements. As expected, MRTD outperforms ESPRIT
due to the lower frequency aperture of the measurements provided to the ESPRIT al-
gorithm. Likewise, the performance of MRTD is compared against MBWDE and MI-
MUSIC, which are more general multiband time-delay estimation algorithms that sup-
port time-delay estimation from multiband channel measurements collected in an arbi-
trary number of bands. These algorithms converge to the CRB at a lower SNR compared
to MRTD. However, MBWDE does not have a closed-form solution, and it requires a good
initial estimate of the time-delays, while MI-MUSIC demands an exhaustive search. At
the same time, MRTD has a performance close to those of MBWDE and MI-MUSIC while
having a closed-form solution, being asymptotically efficient and converging to the CRB.
Therefore, MRTD can provide good initial estimates for solving the optimization prob-
lems described in (4.20) and (4.22).
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JOINT RF CHAIN CALIBRATION

AND TIME-DELAY ESTIMATION

”Any measurement that you make without the
knowledge of its uncertainty is completely
meaningless.”

— Walter Lewin

Part of this chapter is published as: T. Kazaz, M. Coutino, G.J.M. Janssen, and A.J. van der Veen, “Joint Blind
Calibration and Time-Delay Estimation for Multiband Ranging”, IEEE International Conference on Acoustics,
Speech, and Signal Processing (ICASSP), Barcelona, Spain, May 2020.
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6.1. INTRODUCTION

SO far, we have assumed that multiband channel measurements are collected using
ideal RF transceivers. In particular, we considered that the frequency response of

transceivers’ RF chains is measured and calibrated before the acquisition of the channel
measurements. However, in practical scenarios, the frequency response of transceivers
might not be known nor calibrated. When this is the case, the nonideal response of RF
chains will introduce modeling errors in the data models that are used for the develop-
ment of MBWDE and MRTD algorithms in Chapters 4 and 5, respectively. For this rea-
son, these algorithms are sensitive to RF chain calibration errors and will result in biased
time-delay estimation from uncalibrated multiband measurements.

As a large frequency band (aperture) must be covered during channel probing to in-
crease the resolution of time-delay estimates [225], nodes are required to have integrated
wideband RF chains. These often introduce frequency-dependent gain and phase dis-
tortions in the training signals due to the used amplifiers and anti-aliasing filters [226].
For instance, consider multiband acquisition of multipath signals [227, 228, 102]. Due
to the large frequency aperture required during channel probing [203], channel mea-
surements are affected by distortions introduced in the RF chains. As these effects can
significantly deteriorate range estimation, they need to be estimated and corrected in
a calibration process. In channel sounding experiments, distortions of RF chains are
usually manually calibrated [229]. Unfortunately, calibration in localization scenarios is
challenging as the mobile and anchor nodes are diverse, and manual calibration of each
node is not practical.

Calibration is of interest for many applications such as communications [230, 231,
232], radio astronomy [233, 234, 235], and medical imaging [236]. Therefore, many sig-
nal processing algorithms have already been proposed for calibration in these applica-
tions. While some of these algorithms assume prior knowledge of the measurement ma-
trix, e.g., the array response or the second-order statistics of the calibration parameters,
others rely on the Toeplitz structure of the covariance matrix related to the underlying
sensor array.

In this chapter, our goal is to design an algorithm that jointly calibrates the RF
chains and estimates parameters of the multipath components. Differently from pre-
vious works, we exploit the properties of the communication channel and formulate the
joint calibration and time-delay estimation as a special case of a covariance matching
problem [237]. Even though this formulation leads to an ill-posed problem, using prior
information about the distortions of RF chains and the sparse property of multipath
channels, the problem can be regularized. Here, we consider that gain distortions of
RF chains are slowly varying with frequency, while phase distortions are negligible [238].
This assumption allows us to approximate the distortions of the RF chains with a set
of known basis functions, leading to a biconvex problem in the calibration and time-
delay parameters. Although biconvex optimization algorithms are applicable, e.g., [239,
240], the approach in [239] does not consider multiple measurement scenarios, and the
algorithm in [240] has high complexity and no convergence guarantees. Therefore, we
propose to re-cast the biconvex optimization problem as a rank-1 constrained linear sys-
tem using the lifting technique [241, 242, 243], which can be solved efficiently as a group
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Lasso problem.
The performance of the proposed algorithm is evaluated through simulations by

comparing it with algorithms presented in [240, 244]. The results show that the pro-
posed algorithm provides better calibration performance and a higher resolution for
time-delay estimation.

6.2. PROBLEM FORMULATION AND DATA MODEL

In this chapter, we are interested in estimating time-delays τ and calibrating the multi-
band frequency response of RF transceivers gi , i = 0, . . . ,L −1. This problem is similar to
the one presented in Chapter 4. However, now we assume that the frequency responses
of the RF chains at the mobile and anchor nodes are not calibrated in advance, and
they are to be estimated together with parameters α and τ from the multiband chan-
nel measurements. We assume that the multiband channel measurements are collected
by probing the channel using a known wideband OFDM training signal x(t ) transmitted
over i = 0, . . . ,L−1, frequency bands Wi = [ωi −πB ,ωi +πB ], where B is the bandwidth,
and ωi is the central angular frequency of the i th band. The channel probing is per-
formed M times during the channel coherence time. We consider that transceivers with
unknown frequency responses of their RF chains are used during the channel probing,
and our objective is to perform calibration of their frequency responses and estimate τ
andα from the collected measurements.

We consider a baseband signal model presented in Section 4.2.2 and assume ideal
conversion to and from the passband. The unknown responses of the RF chains at the
i th frequency band are modeled using equivalent linear and time-invariant low-pass
filters gi (t ) = gA,i (t )∗ gM,i (t ), where the corresponding CTFT Gi (ω) =GA,i (ω)GM,i (ω) has
passband [−πB ,πB ]. The compound impulse response of the RF chains and the channel
is ci (t ) = gi (t )∗h(t ), where h(t ) is the baseband equivalent channel impulse response
given in (3.1), and its CTFT is given in (4.5). Now, using the results of Section 4.2.2, we
can write the frequency domain continuous-time model for the signal received in the i th
band as

Yi (ω) =
{

X (ω)Ci (ω)+Qi (ω), ω ∈ [−πB ,πB ]

0, otherwise,
(6.1)

where Ci (ω) = Gi (ω)Hi (ω) is the compound CFR and Hi (ω) is given by (4.5). Likewise,
X (ω) and Qi (ω) are the CTFTs of training signal x(t ) and the low-pass filtered zero-mean
Gaussian noise qi (t ), respectively.

6.2.1. DISCRETE-TIME SIGNAL MODEL

The continuous-time data model is the similar to the one presented in Chapter 4. The
difference now is that we assume that the multiband frequency responses of the RF
chains Gi (ω), i = 0, . . . ,L−1, are unknown while in Chapter 4 we assumed them as known.
Therefore, we can directly use the derivations given in Section 4.2.3 and write the discrete
data model for the signals (cf. (4.6) for details) received during M probing intervals as

y(m)
i = diag(s)c(m)

i +q(m)
i , m = 1, . . . , M , (6.2)
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where c(m)
i = diag(gi )h(m)

i , s collects the pilot symbols, and q(m)
i ∈CN is zero-mean white

Gaussian distributed noise. The samples of Gi (ω) at the subcarrier frequencies are col-
lected in gi = [gi ,0, . . . , gi ,N−1]T ∈ CN , where gi ,n = ρi ,ne jψi ,n with ρi ,n and ψi ,n denoting
the unknown gain and phase introduced by the nonideal frequency response of the RF
chains, respectively. Likewise, h(m)

i ∈ CN collects the samples of Hi (ω) in increasing or-
der of frequencies and its model is given by (cf. (4.11) for details)

h(m)
i = MΘiα

(m) , (6.3)

where M is a Vandermonde matrix given by (3.13) and Θi = Φni is a diagonal matrix
collecting band dependent phase shifts introduced by the time-delays of the MPCs.

6.2.2. DATA MODEL

From y(m)
i , the compound responses c(m)

i are estimated by deconvolution of (6.2) as

c(m)
i = diag−1(s)y(m)

i .

The deconvolved measurements satisfy the model

c(m)
i = diag(gi )MΘiα

(m) +q′(m)
i , (6.4)

where the pilot symbols have a constant magnitude and q′(m)
i = diag−1(s)q(m)

i is zero-
mean white Gaussian distributed noise.

The estimates of the compound frequency response, c(m)
i , are stacked in c(m) =

[(c(m)
0 )T , . . . , (c(m)

L−1)T ]T ∈CN L . From (6.4), the model for c(m)
i is

c(m) = diag(g)A(τ)α(m) +q(m) , (6.5)

where A(τ) = [a(τ1), . . . ,a(τK )] ∈CN L×K has the multiple shift-invariance structure

A(τ) =


M

MΘ1
...

MΘL−1

 , g =


g1

g2
...

gL

 ,

and likewise, q(m) ∈CN L collects q′(m)
i , i = 0, . . . ,L−1.

Stacking all the estimates of the compound frequency responses, collected during M
probing intervals in C = [c(1), . . . ,c(M)] ∈CN L×M , leads to the model given by (6.5)

C = diag(g)A(τ)X+Q , (6.6)

where X = [
α(1), . . . ,α(M)

] ∈CK×M , and Q collects q(m) ∀ M .

6.3. JOINT CALIBRATION AND TIME-DELAY ESTIMATION

Our objective is to estimate the unknown responses of the RF chains, g, and time-delays,
τ, of the MPCs from the measurement matrix C. We first introduce a general problem
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formulation for joint calibration and time-delay estimation and then propose an effi-
cient algorithm for solving it. Joint calibration and time-delay estimation can be formu-
lated as the following optimization problem

ĝ, τ̂, X̂ = argmin
g,τ,X

‖C−diag(g)A(τ)X‖2
F . (6.7)

This problem is clearly ill-posed and nonlinear, making it difficult to solve without fur-
ther assumptions or prior information. Therefore, we use prior knowledge about the fre-
quency response of RF chains and the sparsity of the multipath channels to reformulate
the problem.

6.3.1. ASSUMPTIONS

We assume that the response of the RF chains is gradually varying with respect to fre-
quencies within a single frequency band [238]. Therefore, the entries of gi , i = 0, . . . ,L−1
are slowly changing, and gi can be approximated as gi = Bi p, where the columns of
Bi ∈CN L×R are given by R known basis functions whose choice depends on the calibra-
tion scenario, and p are the unknown calibration parameters. For example, Bi can be
a matrix constructed from the first R columns of the DFT (Discrete Fourier Transform)
matrix [239] or the first R Chebyshev polynomials of the first kind [245]. In this paper,
we aim at a near minimax polynomial approximation of gi , and we select the columns of
Bi to be the first R Chebyshev polynomials of the first kind [245]. The columns of Bi are
constructed from the polynomials evaluated at the normalized frequencies correspond-
ing to gi to capture changes in the response between the frequency bands, i.e., between
the vectors gi , i = 0, . . . ,L −1. Therefore, to approximate the overall frequency response
of all bands, the matrix B that collects basis vectors is constructed as B = [BT

0 , . . . ,BT
L−1]T .

Now, the overall frequency response g can be approximated as g = Bp.
Let the maximum expected time-delay to be estimated in the ranging scenario be

τmax = dmax
c +τtot, where dmax is the maximum distance, c is the speed of light, and τtot

is the maximum delay spread of the channel. Assuming that the unknown time-delays
lie on a uniform grid of V À N L delays, i.e., τk ∈ T = {0, τmax

V , . . . , τmax(V −1)
V }, the following

optimization problem can be formulated to solve the joint blind calibration and time-
delay estimation

p̂, X̂s = argmin
p,Xs

‖C−diag(Bp)AD Xs‖2
F +λ‖XT

s ‖2,1 , (6.8)

where AD = [a(t0), . . . ,a(tV −1)] ∈ CN L×V is a dictionary matrix with column vector de-
fined in (6.5), tv = v

V τmax and Xs ∈ CV ×M is a row sparse matrix. The regularization
parameter λ > 0 determines the sparsity, i.e., the number of non-zero rows in Xs , and
‖[a1, . . . ,an]‖2,1 :=∑n

i=1 ‖ai‖2 is the `2,1-norm of a matrix which is known to promote col-
umn sparsity.

The optimization problem in (6.8) is biconvex, i.e., it is convex in p for fixed Xs and
convex in Xs for fixed p, and alternating minimization can be used to estimate both
Xs and p. However, this optimization problem has no convergence guarantees, and it
has high computational complexity when multiple snapshots are used for estimation,
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which makes the problem formulation given in (6.8) unpractical. Therefore, we propose
a method that offers a better solution using the ideas of covariance matching.

Let us assume that the multipath channel is a wide-sense stationary and uncorre-
lated scattering (WSSUS) fading channel. Therefore,α(m) and q(m) are statistically inde-
pendent and mutually uncorrelated variables with covariance matrices Σα = diag(σα),
withσα = [σ2

α,1, . . . ,σ2
α,K ]T andΣq =σ2

q IN L [209]. With this assumption, we can write the

covariance matrix of c(m) as

Rc := E
{

c(m) (c(m))H
}
∈CN L×N L ,

= diag(g)A(τ)ΣαAH (τ)diag(ḡ)+σ2
q IN L .

(6.9)

To obtain a linear measurement model, we vectorize (6.9) and write it as

rc = diag(g∗⊗g)K(τ)σα+ rq , (6.10)

where K(τ) = A∗(τ)◦A(τ) ∈C(N L)2×K and rq =σ2
q vec(IN L).

6.3.2. ALGORITHM

The covariance matrix can be estimated from the measurements as R̂c = 1
M CCH , where

its vectorized form is r̂c = vec(R̂c ). Here, we assume a priori knowledge of the noise
powerσ2

q , and we define r̃c = r̂c−rq . For the case with unknownσ2
q , we can first estimate

it according to [246]. Considering the modelling assumption on g and multipath channel
sparsity, and using the properties of the Kronecker product, we can rewrite (6.10) as

rc = diag(Dz)KD rα+ rq , (6.11)

where D = B∗⊗B has size (N L)2 ×R2, z = p∗⊗p ∈CR2
, KD = A∗

D ◦AD ∈C(N L)2×V is a dic-
tionary matrix and rα ∈ RV is a K sparse vector that collects the entries of σα, i.e., that
collects the powers of the MPCs. The unknown parameters in the data model are the
calibration parameters z and the powers of the MPCs rα. Note that finding the columns
of KD that correspond to the non-zero elements of rα is equivalent to estimating τ. To
estimate these parameters, we formulate the following sparse covariance matching op-
timization problem

ẑ, r̂α = argmin
z,rα

‖r̃c −diag(Dz)KD rα‖2
2 +λ‖rα‖1 , (6.12)

where λ> 0 controls the level of sparsity of rα.
Similar to (6.8), the objective function of this optimization problem is biconvex in

the unknown parameters z and rα. To alleviate difficulties arising from the biconvexity
of the objective function, we reformulate (6.12) as a problem involving solving a linear
system whose solution obeys a rank-1 constraint by lifting the unknown variables. The
elements of rc can be written as

[rc ]n = [Dz]n kT
n rα+ [rq ]n = dT

n zrT
αkn + [rq ]n , ∀n, (6.13)
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Algorithm 5: Joint Blind Calibration and Time-Delay Estimation

Input: {T ,B,Γ, r̃c ,λ}

ê ← argmin
e

‖r̃c −Γvec(E)‖2
2 +λ‖E‖2,1;

Ê ← unvec(ê);

{ẑ,∼, r̂α} ← TSVD(E,1);

Z ← unvec(ẑ);

{∼,∼, p̂} ← TSVD(Z,1);

ĝ ← Bp̂;

{σ̂α, indxSet} ← find (r̂α ∼= 0);

τ̂← T (indxSet);

Output: {p̂, ĝ,σ̂α, τ̂}

where dT
n and kT

n denote the nth row of D and KD , respectively. Let us define the rank-1

matrix E := zrT
α and the linear operator A :CR2×V →CN L as

rc =A(E)+ rq := vec({dT
n Ekn}N L

n=1)+ rq . (6.14)

Given that dT
n Ekn = (kn ⊗dn)T vec(E)∀n, (6.14) becomes

rc =Γe+ rq , (6.15)

where the nth row of Γ ∈ CN L×R2V (the matrix representation of the operator A) is γT
n =

(kn ⊗dn)T , and e = vec(E).
The problem of estimating z and rα then reduces to finding a rank-1 matrix E sat-

isfying the set of linear constrains (6.15). The find solution that promotes the rank-1
properties of E, we can solve the following relaxed problem

Ê = argmin
E

‖r̃c −Γvec(E)‖2
2 +λ‖E‖∗ , (6.16)

where ‖·‖∗ denotes the nuclear norm of a matrix which promotes low rank solutions. To
further simplify the problem, we use the sparsity of E. Due to rα, the matrix E is not only
rank-1 but also column sparse. Since for any matrix L, ‖L‖2,1 > ‖L‖∗ holds, we can use
the ‖ · ‖2,1-norm to regularize (6.16) instead of ‖ · ‖∗ following [239] and obtain a simpler
formulation. Therefore, to estimate z and rα it is sufficient to solve

ê = argmin
e

‖r̃c −Γvec(E)‖2
2 +λ‖E‖2,1 , (6.17)

where the regularization parameter λ > 0 is set to be proportional to the noise power
σ2

q . This problem, besides of being convex, can be identified as a group Lasso problem,
which can be solved efficiently. Here, we use the spectral gradient-projection method
[150, 247].

To estimate z and rα after solving (6.17), first E is reconstructed from e, and then the
singular value decomposition is used to find the best rank-1 approximation of E in the
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Figure 6.1: RMSE for estimated calibration parameters with respect to the number of snapshots
(M) (a) and signal-to-noise ratio (SNR) (b).
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Figure 6.2: RMSE for the estimated time-delay parameter with respect to the number of snapshots
(M) (a) and signal-to-noise ratio (SNR) (b).

`2-sense [129]. Then, z and rα are found as the left and right principal singular vectors,
respectively. Similarly, to estimate the calibration parameters p, first matrix Z ∈ CR×R is
constructed from z, and then p is proportional, up to a complex scaling factor, to the
right principal singular vector of Z. As this scaling ambiguity does not influence perfor-
mance of the time-delay estimation, it can be ignored. The estimates for parameters g,
τ and σα, then directly follow.

A summary of the resulting algorithm is shown as Algorithm 5. The abstract rou-
tine unvec(·) points to the construction of a matrix by splitting a vector into equal sub-
vectors and stacking them one after another as columns of the matrix. TSVD(·,n) refers
to the truncated SVD (truncation at rank n). find(·,condition) points to the routine for
searching values and indices of the elements in an vector that satisfy a given condition.
The remaining parts of the summary are self-explanatory.

As the resolution of the τ estimates from (6.17) is restricted by the resolution of the
chosen grid T , in case that the TDs τ do not lie exactly on the grid T , this algorithm can
be extended with grid-less estimation methods such as multiple invariance ESPRIT [202,
195].
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6.4. NUMERICAL EXPERIMENTS

This section evaluates the performance of the proposed algorithm via numerical simu-
lations. We consider a scenario where the multipath channel has eight dominant MPCs,
i.e., K = 8, with gains distributed according to a Rayleigh distribution. The continuous-
time channel is modeled using a 2 GHz grid, with channel tap delays spaced at 500 ps. We
consider that the receiver estimates the channel frequency response in four frequency
bands, i.e., L = 4, using a probing signals with N = 64 subcarriers and a bandwidth of
B = 20 MHz. The center frequencies of the bands are {10,70,130,280} MHz, respectively.
The gain errors, i.e., the elements of g, are taking values from the interval of [−3,3] dB,
while the gain variations are smooth over subcarriers. During the simulations, g is kept
fixed. To evaluate the performance for time-delay estimation, we use the root mean
square error (RMSE) of the time-delay estimation of the line-of-sight (LOS) path. Like-
wise, to assess the performance of the calibration, we use the average RMSE of the gain
estimates over all the subcarriers and bands. The RMSE is computed using 103 indepen-
dent Monte-Carlo trials and compared with the RMSEs of the algorithms proposed in
[240, 244] which we refer to as ALMIN and BLC, respectively.

The original formulation of the BLC algorithm does not require knowledge of the
noise covariance Σq , as the authors in [244] assume that the non ideal response of the
sensor array is affecting both signal and noise. While this is typically the case for acous-
tic sensor vectors, this assumption does not hold for calibrating RF chains. Therefore,
we provide a good initial estimate of Σq to the BLC algorithm. Likewise, the ALMIN al-
gorithm is initialized with a good initial guess on g, and to limit its computational com-
plexity the maximum number of iterations is set to eight.

Fig. 6.1a shows the calibration performance of the proposed, ALMIN and BLC algo-
rithms with respect to the number of snapshots M . The signal-to-noise ratio (SNR) is set
to 5 dB and kept fixed during the trials. From Fig. 6.1a, we observe that the calibration
RMSE decreases as the number of snapshots increases for all three algorithms due to
better estimation of the covariance matrix, R̂c , and a better model matching (cf. (6.17)).

In the second scenario, we fixed the number of snapshots to M = 400, and evaluated
the methods performance as a function of SNR. From Fig. 6.1b, it is seen that the calibra-
tion RMSE decreases with SNR. However, for SNR > 5 dB, for the proposed and ALMIN
algorithm, or a SNR > 15 dB, for the BLC algorithm, the RMSE saturates, due to model
mismatch related to the limited number of snapshots.

The same simulation scenarios are repeated for the time-delay estimation, and the
corresponding RMSEs are shown in Fig. 6.2a and Fig. 6.2b. In addition to the algorithms
mentioned above, the RMSEs of the estimates obtained using the `1 based algorithm,
with perfectly calibrated and uncalibrated RF chains, are shown. From Fig. 6.2a, we ob-
serve that for a sufficient number of snapshots, the proposed algorithm is able to per-
fectly estimate the time-delay of the LOS path. However, the BLC and ALMIN algorithm
are biased due to the model mismatch and the limited number of iterations allowed for
convergence, respectively. In Fig. 6.2b, the RMSEs are shown for M = 400 snapshots and
different SNR levels. It is seen that in the case of a limited number of snapshots, the RM-
SEs of all the algorithms saturate for SNR > 5 dB. Therefore, all the algorithms are biased
compared to the `1 based time-delay estimation with perfect calibration. This is a con-
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sequence of errors in the estimation of the covariance matrix from the limited number
of snapshots.

6.5. CONCLUSIONS

In this chapter, we presented an algorithm for joint blind calibration and time-delay es-
timation for multiband ranging by formulating this problem as a particular case of co-
variance matching. Although this problem is severely ill-posed, prior information about
RF chain distortions and multipath channel sparsity was used to regularize it. The re-
sulting optimization problem, though biconvex, can be recast as a rank-1 constrained
linear system of equations by using the lifting technique, which can be solved efficiently
using a group Lasso algorithm. We have performed a numerical simulation to evaluate
the performance of calibration and time-delay estimation. The simulation results have
shown that errors in the compound channel covariance matrix estimation highly dete-
riorate the performance of calibration. Therefore, to reduce the calibration errors, it is
crucial to have a sufficient number, i.e., M > 300, of snapshots of the compound chan-
nel frequency response. These results have also demonstrated that the limited number
of snapshots has a milder impact on the proposed algorithm’s calibration performance
than to the ALMIN and BLC methods. In addition, the simulations reveal that time-
delay estimation becomes highly biased when the frequency responses of RF chains are
not calibrated. However, it is observed that for a sufficient number of snapshots, i.e., M
> 400, the performance of the time-delay estimation of the proposed algorithm for joint
calibration and time-delay estimation matches up to the performance of the `1 based
algorithm that estimates time-delays from perfectly calibrated measurements.
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7.1. INTRODUCTION

IN previous chapters, we considered the problem of time-delay estimation, i.e., rang-
ing, using wideband radios. We assumed that the clocks of the anchors and the mo-

bile node are synchronized during time-delay estimation, or that clock impairments
are eliminated from the measurements using frequency and phase offset estimation
or two-way ranging techniques such as time-difference-of-arrival (TDOA). However, in
Internet-of-Things (IoT) and sensor networks, wireless nodes are low-power devices
equipped with poor reference clock sources, making their accurate synchronization
challenging. The individual clocks, i.e., local oscillators, drift from each other during the
collection of measurements due to clock imperfections caused by environmental and
voltage variations. These clock drifts directly impact the channel measurements and
introduce a bias in the range estimation. This bias deteriorates the performance of syn-
chronization and localization in IoT networks. However, accurate synchronization and
localization are crucial for many IoT applications such as distributed sensing, data ag-
gregation, and processing, and other tasks which benefit from node location information
and network-wide synchronization [248, 249]. Therefore, to support these applications,
it is essential to design methods that will support accurate clock synchronization and
range estimation.

The problems of synchronization and localization in IoT networks have received
considerable attention in the past. Many research efforts have approached these prob-
lems as either separate or joint estimation problems [250, 251, 252, 57, 253, 254, 255].
Existing methods can be classified into (i) time-stamping methods based on ultra-
wideband (UWB) signals [250, 251, 252, 57], and (ii) phase-based methods that utilize
carrier phase measurements of narrowband signals [253, 254, 255]. Methods falling in
the first category offer high temporal resolution, and a plethora of protocols and algo-
rithms for joint ranging and clock synchronization have been proposed [251, 252, 57].
However, in general, these methods are not applicable to IoT networks due to the nar-
rowband constraints of the nodes. On the other hand, the methods based on phase-
based ranging, i.e., the phase difference of arrival (PDoA), use frequency hopping (i.e.,
carrier switching) capabilities of narrowband radios to increase the frequency aperture
of the collected measurements and improve the resolution of time-delay estimation
[201]. However, the traditional PDoA data models typically ignore the impact of un-
known clock-skew on these measurements, which results in a biased range estimation
in the presence of clock-skew.

In this chapter, we study the problem of clock-skew and range estimation from PDoA
measurements. We derive a precise data model that captures the clock-skew and chan-
nel effects on the PDoA measurements. Following the model, we propose a two-way
communication protocol for collecting PDoA measurements over a two-dimensional (2-
D) set of time epochs and carrier frequencies. The proposed protocol is practical and
can be easily implemented as an adaptation of existing medium access control (MAC)
protocols which are based on channel frequency switching such as time-slotted channel
hopping (TSCH), or WirelessHART [256]. The structures present in the collected mea-
surements allow for joint clock-skew and range estimation. To exploit these structures,
we construct a data matrix whose rows collect measurements acquired on the same car-
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node 1 (anchor)

node 0 (sensor)

η𝟎?
𝐱0?

𝟏
𝐱1

Figure 7.1: Illustration of the nodes in the IoT network, with known and unknown parameters,
two-way carrier messages and a data message.

rier frequencies but at different time epochs. The data matrix has a structure that al-
lows us to apply 2-D subspace estimation techniques to jointly estimate clock-skew and
range. In particular, we show that for the radio channels with dominant LOS path, the
data matrix has rank one and that its principal singular vectors have shift-invariance
properties that can be used to estimate clock-skew and range.

We propose an estimator for joint clock-skew and range estimation, based on a
weighted least squares (WLS) algorithm for 2-D frequency estimation [257, 258, 259].
This algorithm exploits the shift-invariance structure present in the data matrix to esti-
mate unknown clock-skew and range. In particular, the shift-invariance of the left sin-
gular vector encodes the range, while the shift-invariance of the right singular vector en-
codes the clock-skew. Finally, the performance of the proposed protocol and estimator is
compared against the Gaussian Cramér Rao Bound (CRB), using numerical simulations,
demonstrating that the proposed estimator is asymptotically efficient and converges to
the CRB as the signal-to-noise ratio (SNR) increases.

7.2. PROBLEM FORMULATION AND SIGNAL MODEL

Without loss of generality, we will consider a scenario with a single sensor (node 0) and
anchor node (node 1) in a fully asynchronous wireless IoT network, as shown in Fig.
7.1. Lets assume that the anchor node has a relatively stable clock oscillator and known
position, while the sensor node has an unknown position and a non-ideal oscillator with
frequency drift. The clock behavior of the sensor node is considered to be characterized
by the first-order affine clock model [260]

ν0 = ν1(1+ηo), (7.1)

whereηo is the relative clock-skew of the sensor node, which it is typically very small, and
therefore measured in parts per million (ppm) [261]. However, in the above equation, we
have assumed implicit conversion from ppm to a number, hence the relative clock-skew
is given as this number. Likewise, ν0 and ν1 are the frequencies of the oscillator signals
at the sensor and anchor node, respectively.

We assume that the nodes are equipped with narrowband radio transceivers allowing
two-way communication. In addition, the radio transceivers support estimation of the
phase difference between the carrier frequency of the received signal and its own local
oscillator frequency.
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For simplicity, consider that the nodes are distributed over a two-dimensional space,
and let the vectors xi ∈ R2×1, i = 0,1 collect the coordinates of the nodes, where the
coordinates of the sensor node x0 are unknown. The range between the anchor and
sensor nodes is defined as d01 = d10 = ‖x1 −x0‖2, where ‖·‖2 denotes the Euclidean norm.

7.2.1. FREQUENCY SYNTHESIZER MODEL

Each radio transceiver generates a carrier signal using a frequency synthesizer driven by
the clock signal of the local oscillator to transmit a signal at the desired carrier frequency.
Modern radio transceivers support communication on a number of carrier frequencies
which can be selected by changing the gain of the divider in the frequency synthesizer.
The key idea of PDoA measurements is to exploit these carrier frequency switching ca-
pabilities of narrowband radio devices to sequentially hop over a large bandwidth and
increase the frequency aperture of the measurements. In the following, we assume that
all the nodes have the same frequency synthesizer with a set of K equispaced gains de-
fined as G (k) = G (1) + (k − 1)∆G , k = 1, . . . ,K , where G (k) ∈ Q is the kth gain and ∆G is
the step of the frequency divider. The carrier frequency generated at the output of the
frequency synthesizer for the kth gain is given by f (k)

i =G (k)νi , i = 0,1, where i denotes
the node index [262]. The set of all equispaced carrier frequencies supported by the fre-
quency synthesizer can now be written as

Fi =
{

f (k)
i = f (1)

i + (k −1)∆ fi : { f (1)
i ,∆ fi } ∈R

}K

k=1
, (7.2)

where ∆ fi = ∆Gνi is the step size of the frequency synthesizer, and it depends on the
clock oscillator frequency as given in (7.1).

7.2.2. SIGNAL MODEL

In this section, we will derive the signal model that captures propagation and clock-skew
effects on the radio signal. We start from the narrowband signal model that is adapted
to carrier frequency switching scenarios. The resulting signal model is used in the next
section to derive a data model for PDoA measurements. Consider that the sensor node
transmits a single tone unmodulated carrier signal at the kth carrier frequency

s(k)
0 (t ) = Re

{
s0e

j
(
2π f (k)

0 t+ϕ(k)
0

)}
, (7.3)

where s0 ∈R is the amplitude of the complex envelope of s(k)
0 (t ) and ϕ(k)

0 is the unknown
phase offset introduced by the frequency synthesizer during the process of carrier fre-
quency switching [263].

The transmitted signal s(k)
0 (t ) is narrowband, and therefore, it is reasonable to con-

sider a flat-fading channel model. Therefore, the signal received at the anchor node after
propagation through the channel and down-conversion by f (k)

1 is given by

r (k)
01 (t ) =β(k)

01 s0e
j
(
2πµ(k)

01 t+δ(k)
01

)
+n(k)

1 (t ), (7.4)

where β(k)
01 ∈ C is the complex path attenuation of the channel at f (k)

0 , and n(k)
1 (t ) v

CN (0,σ2
1) denotes the zero-mean complex Gaussian noise present at the anchor node.
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The complex path attenuation β(k)
01 is given by

β(k)
01 =α(k)

01 e− j 2π f (k)
0 τ01 ,

where α(k)
01 ∈R+ is the channel attenuation, τ01 = d01/c = d10/c is the unknown propaga-

tion delay between two nodes and c is the speed of radio signal propagation. Likewise,
µ(k)

01 and δ(k)
01 denote the unknown frequency and phase offsets at kth carrier frequency,

respectively, and they are given by

µ(k)
01 = f (k)

0 − f (k)
1 , and

δ(k)
01 =ϕ(k)

0 −ϕ(k)
1 .

Now, from the frequency synthesizer (7.2) and clock (7.1) models, it follows that the car-
rier frequency offset can be written as

µ(k)
01 =µ(1)

01 + (k −1)∆µ01 , (7.5)

where ∆µ01 =∆ f1ηo .

7.3. COMMUNICATION PROTOCOL AND DATA MODEL

Our objective is to estimate the unknown parameters ηo and d01 given the PDoA mea-
surements collected by the radio transceivers. In the following section, we first derive a
detailed data model for PDoA measurements considering a classical two-way protocol
for ranging. Then, based on the derived model we propose a novel 2-D PDoA protocol
for joint ranging and clock-skew estimation.

7.3.1. CLASSICAL PDOA RANGING PROTOCOL

In the classical two-way PDoA protocol (cf. Fig. 7.2a), the sensor node initiates the com-
munication and sends a message using the signal s(k)

0 (t ), i.e., using carrier frequency f (k)
0 ,

to the anchor node. When the anchor node receives the message as the signal r (k)
01 (t ), it

replies back to the sensor node by sending a message using signal s(k)
1 (t ), i.e., using car-

rier frequency f (k)
1 . After the exchange, both nodes change their carrier frequencies to

f (k+1)
i = f (k)

i +∆ fi , i = 0,1, and the same two-way message exchange pattern is repeated.

The phase difference of the carrier signals,ψ(k)
0 andψ(k)

1 , using the kth carrier frequency
are measured at both sensor and anchor nodes, respectively.

Now, considering the noiseless case and assuming that the channel reciprocity1 con-
ditions hold, using (7.4) ψ(k)

0 and ψ(k)
1 are given by

ψ(k)
0 =−2πµ(k)

01 ∆t −2π f (k)
1 τ01 −δ(k)

01

ψ(k)
1 =−2π f (k)

0 τ01 +δ(k)
01 ,

(7.6)

where ∆t is the deterministic time epoch between the measurements collected at an-
chor and sensor nodes, while all other nondeterministic timing differences between the

1The received signals at anchor and sensor nodes differ only in the signs of the phases and the frequency offset.
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Figure 7.2: (a) Classical PDoA two-way ranging protocol, (b) 2-D PDoA protocol for ranging and
synchronization, and (c) 2-D equispaced time-frequency grid at anchor node.

nodes are absorbed in δ(k)
01 . In general, the time epoch ∆t is controllable by the anchor

node and it has values in the order of tens of microseconds. However, in the classical
PDoA protocol, it is assumed that ∆t is fixed during the collection of measurements.

In this paper, we focus on indoor localization scenarios where the channel coherence
time is typically of the order of several hundreds of milliseconds [264]. Hence, we can as-
sume that N ≤ K two-way messages can be exchanged according to the PDoA protocol
within the channel coherence time. For the sake of simplicity, the N phase difference
measurements recorded at the sensor and anchor nodes are transformed to their nega-
tive complex exponential form and collected in the vectors

b0 =
[

e− jψ(1)
0 , . . . ,e− jψ(N )

0

]T
∈CN×1 ,

b1 =
[

e− jψ(1)
1 , . . . ,e− jψ(N )

1

]T
∈CN×1 .

(7.7)

For ranging purposes, the phase offset represents a nuisance parameter which can be
eliminated from the acquired measurements by considering a = b0 ¯b1 instead. The ar-
gument of the kth element in a is given by

arg{ak } = 2πµ(k)
01 ∆t +2π( f (k)

1 + f (k)
0 )τ01. (7.8)

Using the frequency synthesizer model and (7.6), we can write

µ(k)
01 =G (1)ν1η0 + (k −1)η0∆ f1,

f (k)
1 + f (k)

0 = (2+η0)(G (1)ν1 + (k −1)∆ f1).
(7.9)
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Therefore, the vector a has the following structure:

a(τη) = a(τη)
[

1,e j 2π∆ f1τη , . . . ,e j 2π(N−1)∆ f1τη
]T

, (7.10)

where a(τη) = e j 2πG(1)ν1τη is the the first element of a(τη) and τη = ηo∆t + (2+ηo)τ01.
Note that a(τη) has a shift invariance structure. This structure is identical to that of the
uniform linear array (ULA) response vector in array processing [101]. However, in this
case the phase shift of the elements in a(τη) is caused by equispaced carrier frequency
switching, i.e., a special form of frequency hopping [253].

7.3.2. 2-D PDOA RANGING AND SYNCHRONIZATION PROTOCOL

The shift invariance of a(τη) only allows for the estimation of a single parameter τη.
Therefore, ηo and τ01, i.e., d01, cannot be uniquely determined from a(τη). For exam-
ple, estimation of τ01 from a(τη) results in an estimate that is biased by the clock-skew.
To alleviate this, we propose the protocol for collecting measurements that allows joint
clock-skew and range estimation.

In the classical PDoA protocol, measurements are collected over the set of equis-
paced carrier frequencies, while the time epoch∆t is fixed during the message exchange
period. In the 2-D PDoA protocol, we propose to collect the measurements over a 2-D
set of time epochs and carrier frequencies (cf. Figs. 7.2b and 7.2c). In this case, the
sensor node transmits a single message per two-way exchange, while the anchor node
transmits P messages based on the set of time epochs. The set of time epochs for the kth
carrier frequency is given by ∆t (k,p) = p∆t/k, where k = 1, . . . , N and p = 1, . . . ,P . Note
that these time epochs depend on the index of the carrier frequency, i.e., k.

The P phase difference measurements recorded at the sensor node for the kth carrier
frequency are transformed in their negative complex exponential form and collected in
the vector bk ∈ CP×1. As before, we follow a similar approach for nuisance parameters
elimination. The vector that collects noiseless PDoA measurements recorded at the kth
carrier frequency is written as ak = e− jψ(k)

1 bk ∈CP×1 which satisfies the model

ak (ηo ,τ01) = a(τη)γk−1[1,φ, . . . ,φP−1]T , (7.11)

where a(τη) is defined in (7.10), γ= e j 2π∆ f1(2+ηo )τ01 and φ= e j 2π∆ f1ηo∆t .
Remark on practical implementation: The 2-D PDoA protocol requires that during a
single two-way message exchange no carrier frequency switching occurs. This constraint
ensures that the phase offset between two nodes remains constant during time hopping.
However, there is no constraint on the frequency hopping sequence. This makes the pro-
posed protocol attractive for implementation as an extension of existing MAC protocols
such as time-slotted channel hopping (TSCH) [265] or WirelessHART [266].

7.4. JOINT CLOCK-SKEW AND RANGE ESTIMATION

In the following, we show how to jointly estimate clock-skew ηo and time delay τ01, i.e.,
range, from collected measurements.
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The noise-corrupted version of ak is given by mk = ak +nk , where nk is a zero-mean
complex Gaussian distributed noise vector2. From a set of N noisy 2-D PDoA measure-
ments, we construct a measurement matrix of size P ×N as

M = [m1, . . . ,mN ]. (7.12)

The measurement matrix satisfies the model

M = A+N, (7.13)

where A = [a1, . . . ,aN ] and N ∈CP×N is the noise matrix. Using (7.11), it is straightforward
to show that A can be modeled as

A = q(η0,τ01)hT (η0,τ01), (7.14)

where
q =a(τη)[1,φ, . . . ,φP−1]T

h = [1,γ, . . . ,γN−1]T .
(7.15)

Model (7.13), after replacing A with (7.14), resembles the signal model for 2-D frequency
estimation of a single complex sinusoid in white Gaussian noise. This is a classical sig-
nal processing problem for which numerous methods have been proposed [268, 257,
258, 259]. Although the maximum likelihood estimator proposed in [268] can attain op-
timum performance, it has high computational requirements due to the multidimen-
sional search. Here, we are interested in computationally more attractive methods that
have close to optimal performance.

To develop an estimator for joint clock-skew and range estimation, we start from the
results of [259]. We can observe from (7.14) that A has rank one and that the vectors q
and h span its column and row space, respectively. Since q and h exhibit shift invariance,
it is possible to estimate γ and φ from the low-rank approximation of M. Then, from φ

and γ, the parameters ηo and τ01, i.e., d01, immediately follow.
In particular, let u1 and v1 be the principal orthonormal basis vectors for the column

and row span of the rank-one approximation of M, respectively. These vectors can be
obtained using the singular value decomposition (SVD) of M and can be expressed as

u1 = 1/ρq q, v1 = 1/ρh h∗, (7.16)

where ρq and ρh are unknown complex constants. Now, let us define the selection ma-
trices:

Jφ1 = [IP−1 0P−1], Jγ1 = [IN−1 0N−1],

Jφ2 = [0P−1 IP−1], Jγ2 = [0N−1 IN−1].
(7.17)

To estimate φ, we take subvectors consisting of the first and the last P − 1 elements of
u1. That is, we consider uφ1 = Jφ1u1 and uφ2 = Jφ2u1, respectively. We follow the same

2The phase estimation errors in PLLs are von Mises distributed [267]. However, for large signal to noise ratio,
the von Mises distribution can be approximated by a Gaussian distribution.
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process for the estimation of γ, i.e., we take subvectors vγ1 = Jγ1v1 and vγ2 = Jγ2v1, re-
spectively. From the shift invariance property of u1 and v1 we have that

uφ2 ≈ uφ1φ and vγ2 ≈ vγ1γ
∗. (7.18)

In the case of white noise, the approximate solutions to the relations in (7.18) can be
found using least squares (LS). However, here we adopt the weighted least squares (WLS)
approach [258] and formulate problem (7.18) as

φ̂= argmin
φ

‖C−1/2
φ (uφ1φ−uφ2)‖2

2

γ̂= argmin
γ

‖C−1/2
γ (vγ1γ

∗−vγ2)‖2
2,

(7.19)

where Cφ = E(rφrH
φ ) and Cγ = E(rγrH

γ ) are the covariance matrices of the residuals

rφ = uφ1φ−uφ2 and rγ = vγ1γ
∗−vγ2, respectively. Therefore, the weighting matrices are

the inverse of the covariance of the residuals, i.e., Wφ = C−1
φ and Wγ = C−1

γ , respectively.
The optimal Wφ and Wγ for the considered problem are given in closed-form by [269]

Wφ[p,n] = (Pmin(p,n)−pn)φ(p−n)/P

Wγ[p,n] = (N min(p,n)−pn)γ(n−p)/N ,
(7.20)

where p = 1, . . . ,P and n = 1, . . . , N . Note that Wφ and Wγ depend on the unknown pa-
rametersφ and γ. Therefore, first we estimateφ and γ using LS and then these estimates
are used for the construction of Wφ and Wγ. Finally, the WLS is used to obtain φ̂ and γ̂.
Based on the WLS estimates of φ and γ the unknown parameters are computed as

η̂o = (2π∆ f1∆t )−1arg(φ̂)

d̂01 = c(2π∆ f1∆t (2+ η̂o))−1arg(γ̂).
(7.21)

Note that first the clock-skew is estimated and later this estimate is used for estimating
the range.

7.5. GAUSSIAN CRAMÉR RAO BOUND

The errors on PDoA measurements are typically modeled as circular random variables.
Previously we mentioned that the central limit theorem over circular domains shows
that the most entropic model for circular variables with known mean and variance is the
von Mises distribution [255]. For a large SNR, the von Mises distribution can be approxi-
mated by a Gaussian distribution. Therefore, to assess the performance of the proposed
estimators (7.19) we derive the Gaussian CRB for joint clock-skew and range estimation
using model (7.13), which is accurate for large SNR scenarios. In the remainder of this
chapter, we refer to Gaussian CRB as CRB.

For an unbiased estimator θ̂, the CRB is the lower bound on the error variance, that
is

var(θ̂) ≥ F−1 (7.22)
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where var(θ̂) = E((θ̂−θ)(θ̂−θ)T ) and F is the Fisher information matrix. We assume that
the proposed estimators (7.19) are approximately unbiased for sufficiently large SNR and
well designed measurement matrix M [270].

In the case of 2-D frequency estimation of a sum of sinusoids, the Fisher information
matrix is given by [126]

Fp,k = 2σ−2ℜ
[
∂aH

∂θp

∂a

∂θk

]
∈R2×2 (7.23)

where Fp,k is the (p, k)th element of F,σ2 is the variance of the noise, ∂/∂θp is the partial
derivative with respect to the pth element of θ, a = vec(A) ∈ CP N×1 is the vector formed
by stacking the columns of A. The resulting Fisher information matrix is invertible, so
closed-form expressions for the CRBs are given by

var(η̂0) ≥ 6

SN R(2π∆ f1∆t )2P N (P 2 −1)
,

var(d̂01) ≥ 6c2

SN R(4π∆ f1)2P N (N 2 −1)
.

(7.24)

where SN R =σ−2.

7.6. NUMERICAL EXPERIMENTS

In the following, simulations are used to compare the performance of the proposed esti-
mator against state-of-the-art estimators for the same problem. In particular, to bench-
mark the performance of the proposed estimator, we use estimators based on approxi-
mate iterative quadratic maximum-likelihood (AIQML) [269], weighted linear predictor
(WLP) [271] and ESPRIT [257] algorithms. In the simulations, we consider two nodes,
i.e., an anchor and a sensor node, which are deployed randomly within a range of 140 m.
The carrier frequency step ∆ fi , i = 0,1 and time epoch ∆t are set to 0.5 MHz and 80 µs,
respectively. The clock-skew of the sensor node ηo is set to 80 ppm. The phase differ-
ence of arrival measurements are corrupted with zero-mean Gaussian noise and all root
mean square errors (RMSEs) of the estimates are averaged over 103 independent Monte
Carlo runs.

Figs. 7.3a and 7.4a show the RMSEs of the clock-skew and range estimates vs SNR
for the previously mentioned estimators, respectively. In these simulation scenarios, the
number of time and frequency hops is equal to 10. All the estimators are independently
applied to the same set of PDoA measurements. As shown in the figures, the proposed
estimator outperforms the estimators based on AIQML, WLP, and ESPRIT algorithms.
Furthermore, for sufficiently high SNR the proposed estimator is asymptotically efficient
and approaches the CRB.

Fig. 7.3b and 7.4b show the RMSE of clock-skew and range estimates vs the SNR for
a varying number of PDoA measurements collected over P time epochs and a varying
number of carrier frequency hops N . It is shown that by increasing the number of time
epochs, the accuracy of the clock-skew estimates increases whereas the accuracy of the
range estimates increases with the number of frequencies, i.e., the covered bandwidth of
PDoA measurements.



7.7. CONCLUSIONS

7

123

-10 -5 0 5 10 15 20 25

10-5

10-4

10-3

10-2

(a)

-10 -5 0 5 10 15 20 25
10-6

10-5

10-4

10-3

10-2

(b)

5 10 15 20 25

10-5

10-4

(c)

Figure 7.3: (a) RMSE of the clock-skew estimates, η̂0, vs signal-to-noise ratio (SNR) for the pro-
posed estimator, approximate iterative quadratic maximum-likelihood (AIQML), weighted linear
predictor (WLP), and ESPRIT. The results show that the proposed estimator outperforms other
methods and converges to the CRB with increasing SNR. (b) RMSE of the estimated clock-skew
vs SNR for varying number of PDoA measurements collected over P time epochs and a varying
number of carrier frequency hops N . The results show that the accuracy of clock-skew estimation
increases with P . (c) RMSE of the estimated clock-skew for fixed SNR = 10 dB and a jointly varying
number of P and N . The results show that the proposed estimator outperforms other methods
and achieves the CRB.

Fig. 7.3c and 7.4c show the RMSE of clock-skew and range against the number of
PDoA measurements, with the SNR set to 10 dB. In these scenarios, the number of time
and frequency hops is equal. Similar as in the previous scenarios, the proposed estima-
tor outperforms AIQML, WLP and ESPRIT. In addition, it can be seen that the proposed
estimator achieves the CRB.

7.7. CONCLUSIONS

In this chapter, we investigated the problem of joint ranging and clock-skew estimation
using PDoA measurements. A novel and precise data model for PDoA measurements
is derived. The derived model shows that it is possible to jointly estimate clock-skew
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Figure 7.4: (a) RMSE of the range estimates, d̂01, vs signal-to-noise ratio (SNR) for the proposed
estimator, approximate iterative quadratic maximum-likelihood (AIQML), weighted linear predic-
tor (WLP), and ESPRIT. The results show that the proposed estimator outperforms other methods
and converges to the CRB with increasing SNR. (b) RMSE of the estimated range vs SNR for vary-
ing number of PDoA measurements collected over P time epochs and a varying number of carrier
frequency hops N . The results show that the accuracy of range estimation increases with N . (c)
RMSE of the estimated range for fixed SNR = 10 dB and a jointly varying number of P and N . The
results show that the proposed estimator outperforms other methods and achieves the CRB.

and range by collecting PDoA measurements over a 2-D time-frequency grid. Starting
from this data model, we have proposed a novel protocol for collecting PDoA measure-
ments and an estimator based on WLS for joint estimation of clock-skew and range. The
presented algorithm leverages shift-invariance properties of the principal singular vec-
tors of the collected measurements. To benchmark the performance of the proposed
estimator, we have performed numerical simulations and calculated RMSEs of clock-
skew and range estimation for the proposed estimator and other estimators based on
AIQML, WLP and ESPRIT. The simulations show that the proposed estimator outper-
forms AIQML, WLP and ESPRIT estimators. Furthermore, these results show that the
proposed estimator is asymptotically efficient and reaches the CRB for sufficiently high
SNR values.
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8.1. INTRODUCTION

THe algorithms presented in Chapters 4 and 5 assumed that multipath radio propa-
gation is described by the model given in 3.1. The numerical experiments that we

have performed in these chapters evaluated the performance of the algorithms on syn-
thetic multiband channel datasets. These datasets were generated using the multiband
channel model, and therefore these experiments did not validate the modeling assump-
tions made in these chapters. In this chapter, we perform experiments with real channel
measurements to validate the modeling assumptions and evaluate the performance of
multiband time-delay estimation algorithms presented in chapters 4 and 5. Further-
more, we demonstrate the applicability of the proposed algorithms in practical localiza-
tion scenarios. In particular, we consider localization in future WiFi-7 wireless networks
[272] defined by the emerging IEEE 802.11be standard [197]. This standard will sup-
port multichannel and multiband operation in the 2.4, 5, and 6 GHz bands (cf. Fig. 8.1),
which makes localization in these networks an interesting showcase for the proposed
algorithms. We perform several experiments to show the influence of IEEE 802.11be
system parameters on time-delay estimation and localization performance. For the ex-
periments, we use two multipath channel frequency response (CFR) datasets collected
using a vector network analyzer (VNA) in a hospital [273], and a university building en-
vironment [274]. The results of these experiments are mostly following the results of
the numerical simulations, however, it is seen that if multiband channel measurements
are collected over a frequency aperture that is larger than approximately 20% of the car-
rier frequency of the band, frequency dependency effects of multipath radio propaga-
tion [275] introduce modeling errors. Reducing these modeling errors is important for
achieving high-resolution time-delay estimation with multiband delay estimation algo-
rithms, and we discuss how to achieve this in Section 8.4.

This chapter is organized as follows. The IEEE 802.11be standard and channel esti-
mation using its training signals are discussed in Section 8.2. The measurement cam-
paigns and the obtained datasets, used in the experiments, are presented in Section 8.3.
Lastly, in Section 8.4 we present the experimental results and draw conclusions.

8.2. OVERVIEW OF IEEE 802.11BE TRAINING SIGNALS AND

CHANNEL ESTIMATION

In the experiments, we consider time-delay estimation using IEEE 802.11be transceivers.
The IEEE 802.11be standard is in a preliminary phase. However, its main candidate fea-
tures are already defined [197]. Of particular interest to us is that it will allow multiple
frequency channel aggregation and multiband operation at 2.4, 5, and 6 GHz, as shown
in Fig. 8.1. At 6 GHz, the RF spectrum from 5.925 to 7.125 GHz will be allocated for
primary frequency channels with a bandwidth of 20, 40, 80, and 160 MHz and their con-
tiguous and non-contiguous combinations. The large bandwidth available in the 6 GHz
band offers a great opportunity for localization and is an interesting use case for our
multiband time-delay estimation. Therefore, we will focus our experiments on time-
delay estimation in the 6 GHz band to avoid frequency dependency effects.

Next, we will introduce the system parameters of IEEE 802.11be and explain the
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Figure 8.1: Example of a multiband system: Frequency bands defined for use in the IEEE 802.11be
standard at 2.4, 5, and 6 GHz, with bandwidths of 20, 40, 80, and 160 MHz.
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Figure 8.2: The physical protocol data unit (PPDU) consisting of legacy and EHT training signals.
The legacy training signals are used for packet detection, frequency offset, timing, and channel
state information (CSI) estimation, while EHT signals are used for AGC training and MIMO CSI
estimation.

training signals and channel frequency response (CFR) estimation process. The CFR
is called channel state information (CSI) in IEEE 802.11be terminology. Therefore, in
the remainder of this chapter, we will refer to multiband CFR measurements as multi-
band CSI. There are several orthogonal frequency division multiplexing (OFDM) train-
ing signals, which are specifically designed for synchronization and channel estima-
tion in IEEE 802.11be transceivers. These training signals are organized in a data frame
known as the physical protocol data unit (PPDU) presented in Fig. 8.2. From this figure
we see that a PPDU consists of legacy training signals and signal fields, and extremely
high-throughput (EHT) training signals and signal fields. The legacy training signals are
known as Legacy Short Training Field (L-STF) and Legacy Long Training Field (L-LTF).
Likewise, EHT training signals are known as EHT Short Training Field (EHT-STF) and
EHT Long Training Field (EHT-LTF). The signal fields are known as legacy SIG field (L-
SIG), repeat legacy signal field (RL-SIG), a universal SIG (U-SIG) field, and EHT-SIG field.
The training signals are important for estimation of CSI, and in what follows, we will
summarize how they are used for synchronization and channel estimation.

In the receiver, the first frame is detected and a coarse frequency offset is estimated
using the L-STF training signals. The coarse frequency offset is then compensated and
the remaining frequency offset is estimated using the L-LTF training signals [200]. After
compensation for the fine frequency offset, these signals are then used for time synchro-
nization and in older versions of WiFi receivers for channel estimation. The signal fields,
i.e., L-SIG, RL-SIG, U-SIG, and EHT-SIG, carry information necessary for further signal
processing in the receiver, such as information about modulation and coding schemes,
frame length, uplink and downlink flag, to name a few. Finally, EHT-STF and EHT-LTF are
used for automatic gain control (AGC) training and fine MIMO CSI estimation, respec-
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tively. The CSI estimate is the collection of channel frequency responses at the subcarrier
frequencies of the EHT-LTF training signals. The estimated CSI is then used to equalize
the effects introduced by multipath propagation. The CSI is directly related to the chan-
nel frequency response in which the location information is encoded. The multiband
CSI is a collection of the CSI estimates obtained at several frequency channels, and in
the following, we use it for location estimation.

8.3. DATASETS

The main goal of the measurement campaigns described here, is to assess the perfor-
mance of indoor localization in realistic scenarios. For this reason, the measurements
are performed along predefined trajectories between a mobile node and multiple an-
chors. The measurements consist of channel frequency response (CFR) measurements
collected between a mobile node and anchors at each trajectory point. The CFRs are
determined by measuring the complex gains of a discrete set of equispaced frequencies,
which is similar to CSI estimation on OFDM subcarrier frequencies by using training sig-
nals such as EHT-LTF in IEEE 802.11be. The measurements are carried out in two differ-
ent indoor environments, namely in a hospital [273], and a university building environ-
ment [274]. Next, we discuss the details of the datasets collected in these measurement
campaigns.

DATASET COLLECTED IN THE UNIVERSITY BUILDING

In this measurement campaign, CFR measurements are collected between two anchors
and a mobile node in the hallway of a university building, where the mobile node is
moving in an area of 1 m2 [274] on a 22x22 grid, i.e. the distance between neighboring
measurement points is 5 cm, as shown in Fig. 8.3. In total, 484 CFRs are collected for dif-
ferent positions of the mobile node. The CFR is measured over 7501 discrete and equis-
paced frequencies with a spacing of 1 MHz, starting from 3.1 to 10.6 GHz. This frequency
spacing is 12.8 times larger than the subcarrier spacing of 78.125 kHz used in EHT-LTF.
The smaller frequency spacing, i.e., a larger number of CFR samples, would allow for a
larger unambiguous range and would improve the RMSE of range estimates with respect
to the noise. However, it will not impact time-delay resolution as the bandwidth of the
measurements is the same as in the IEEE 802.11be standard. The transmit power of the
training signal is set to +15 dBm. We use this dataset for experiments that illustrate the
effects of band and bandwidth selection on the RMSE of the range estimates.

DATASET COLLECTED IN THE HOSPITAL

The performance of 2-D positioning is assessed by using the CFR dataset collected in an
indoor hospital environment. These measurements are collected between 7 anchors and
a mobile node for 150 points on a trajectory shown in Fig. 8.4. The CFR is measured over
a set of 4096 equispaced frequency points, covering the frequency range of 5 to 10 GHz,
with a link budget of 110 dB [273]. This is equivalent to a subcarrier spacing of 1.22 MHz,
which is 15.6 times larger than the IEEE 802.11be configuration. The same conclusions
related to resolution and noise performance as for the previous dataset hold. To estimate
the number of multipath components K in these experiments, we use the MDL criteria
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Figure 8.3: Measurement scenario in the university building with a 22 x 22 trajectory grid of 484
measurement points with 5 cm spacing. The measurements are collected between the mobile
node moving on the grid (shown in blue) and two anchors, A1 and A2.

described in Chapter 4. The estimated K takes values between 12 and 21 MPCs for the
trajectory shown in Fig. 8.4.

When collected with off-the-shelf transceivers, the CSI measurements might get af-
fected by various hardware impairments. A detailed discussion on these effects is pro-
vided in [47, 198]. In Chapter 4, we discussed how to calibrate some of these effects,
such as nonideal frequency response, phase, and frequency offsets of the RF chains. The
CFR measurements that we consider in this chapter are calibrated up to the effects of
the antennas. However, the connections of the antennas and their phase center offsets
will introduce an unknown bias in the range estimates. We compute this bias as the me-
dian error of the range estimates compared to the ground truth and eliminate it from
the estimates. Another approach would be to directly estimate the bias from the range
estimates using the known positions of the anchors and multidimensional scaling algo-
rithms [276]. The two datasets that we consider are collected using different antennas.
Therefore, the calculated biases are different, and they are equal to 5 cm for the hospi-
tal dataset and 4.3 cm for the university building dataset. However, the biases remain
constant for all the anchors in a single dataset, as they use the same type of antenna.

8.4. EXPERIMENTS

To evaluate the performance of the methods presented in previous chapters, we con-
ducted several experiments with the datasets described in the previous section. We first
use the dataset collected in the university building to illustrate the effects of frequency
band { fc,i }L

i=1 and bandwidth B selection on the performance of ranging with the Multi-
band Weighted Delay Estimation (MBWDE) algorithm presented in Chapter 4. These
results are compared with those obtained with the Multiband Delay Estimation (MBDE)
algorithm and the Multiresolution Time-Delay (MRTD) estimation algorithm presented
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Figure 8.4: Anchors {A1, ... ,A7} and trajectory of the mobile node with 2-D position estimates in a
hospital building, for bandwidths B ∈ {80,160}MHz.

in Chapter 5.

We then use the dataset collected in the hospital environment to evaluate the per-
formance of ranging and 2-D positioning with the MBWDE algorithm on the trajectory
shown in Fig. 8.4. In these experiments, we vary the bandwidth of the multiband CSI
measurements to illustrate its influence on the performance of ranging and positioning.
The performance of the MBWDE algorithm is compared with the MI-MUSIC, CS(L1),
MUSIC, and ESPRIT algorithms, that are presented in chapters 3 and 4.

8.4.1. INFLUENCE OF SYSTEM PARAMETERS { fc,i }L
i=1 AND B

We first illustrate the impact of bandwidth B selection on the reconstructed channel
impulse response (CIR). We control the bandwidth by varying the number of discrete
frequency points, i.e., subcarriers, at which the CFR is estimated. The effects of band-
width selection on the CIR are shown in Fig. 8.5. Here, the CIRs are computed using
the CFRs with bandwidths of 1920 and 320 MHz for one of the mobile node positions.
The figure also shows the estimated MPCs obtained using the MR, MBDE, and MBWDE
algorithms.The number of bands for the MR algorithm is set to L = 2 where their central
frequencies are set to fi ∈ {5.990,6.230} and the bandwidth to B = 80 MHz. Similarly, for
the MBDE and MBWDE algorithms, the number of bands is set to L = 4 bands, where
their central frequencies are set to fi ∈ {5.990,6.030,6.070,6.110} and their bandwidth
stays the same as for the MR algorithm. The CIR for the bandwidth B = 320 MHz shows
that the LOS path and the first two MPCs are not resolved, which would result in a bi-
ased delay estimation with traditional methods. On the other hand, it is seen that the
MBWDE algorithm almost perfectly estimates the delay of the LOS path for the same
total bandwidth.
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Figure 8.5: Channel impulse response for varying total bandwidth and estimates of the MPCs in a
university building.

INFLUENCE OF BAND SELECTION

Next, we analyze the distribution of ranging errors with respect to band selection. We
consider scenarios where a single snapshot, i.e., M = 1, of CSI measurements is collected
in L = 4 bands, each with a bandwidth of B = 40 MHz. In the first scenario, we collect CSI
by taking samples of the CFR in the following bands: fi ∈ {5.990,6.070,6.150,6.230} GHz,
which results in the frequency aperture of 280 MHz. In the second scenario, we decrease
the total frequency aperture to 160 MHz and collect CSI in the following consecutive
bands fi ∈ {5.990,6.030,6.070,6.110} GHz. The selected frequencies correspond to the
IEEE 802.11be channels in the 6 GHz band (cf. Fig. 8.1). We estimate the ranges between
the mobile node and anchors for 484 different locations and compute the ranging errors
by comparing estimates with the ground truth. We then estimate the bias as a median
value of estimated ranges and compensate for it. Fig. 8.6 shows histograms of bias-free
ranging errors normalized to the probability. The histograms are fitted to the Gaussian
and Lévy alpha-stable distributions. It is seen that due to the small number of outliers
with a high ranging error, the Gaussian distribution does not fit well the histograms. The
alpha-stable distribution is more general compared to Gaussian, and its stability param-
eter α can be tuned to introduce more heavy tails in the PDF to better fit probabilities
of outliers [277]. The estimated parameters α for the first and second scenarios are 1.72
and 1.45, respectively. However, for these values of α, the common properties of dis-
tributions such as mean and standard deviation are undefined. Therefore, we use the
median value to express the bias and 95%-quantile (Q95) to express the accuracy of the
estimates. The Q95 is defined as the segment around the median, which contains 95%
of the estimates. To calculate Q95, we subtract the 2.5th percentile from the 97.5th per-
centile. The median and Q95 for these scenarios are given in Table 8.1(a). As expected
from the results for the larger frequency aperture, i.e., 280 MHz, and as shown in Chapter
4, the resolution of the estimates increases, and Q95 = 19.55 cm. This is approximately
two times lower compared to Q95 = 43.32 cm obtained when using the smaller frequency
aperture, i.e., 160 MHz.

However, the experiments also show that selecting a too large frequency aperture can
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Figure 8.6: Histogram of ranging errors with respect to band selection fitted with Gaussian and
Stable PDFs.

Table 8.1: Statistical parameters of ranging errors in a university building for selection of fc,i (a)
and B (b)

(a)

|d̂ −d |
Scenario

Median
[cm]

Q95
[cm]

1. 6.87 19.55
2. 7.74 43.3

(b)

|d̂ −d |
Scenario

Median
[cm]

Q95
[cm]

1. 7.95 38.37
2. 6.87 19.55
3. 4.05 10.84
4. 0.86 2.89

lead to degradation of delay estimation. This is caused by the frequency dependency of
RF scattering, which introduces errors in the model (4.14). The same effect occurs in
channel extrapolation for FDD massive MIMO systems [208], where the goal is to infer
the CSI of the downlink band from CSI estimates of the uplink band. The frequency de-
pendency is hard to model as it depends on the dimensions and materials of reflecting
structures that produce an RF scattering scene [278]. However, these modeling errors
are not critical if the frequency aperture is less than 20% of the carrier frequency [275].
We do not optimize the band selection in this thesis with respect to the trade-off be-
tween time-delay resolution and modeling errors, and this remains an open question
for future research. However, we avoid modeling errors in the experiments by estimat-
ing ranges from the CSI measurements collected in the bands that create a frequency
aperture smaller than 10% of the carrier frequency, i.e., smaller than 600 MHz.

INFLUENCE OF BANDWIDTH SELECTION

Next, we perform experiments that illustrate the impact of the bandwidth B of the
multi-band signal bands on the performance of time-delay estimation. We consider
four scenarios where the bandwidth B of L = 4 bands is varied, and takes the values
{20,40,80,160} MHz, and where their central frequencies are set to {5.98,6.06,6.14,6.22},
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Table 8.2: Statistical properties of the 2-D positioning error in an indoor hospital environment for
several choices of the bandwidth parameter B ∥∥p̂−p

∥∥
2

B [MHz]
Mean
[cm]

σp
[cm]

Q80
[cm]

Q95
[cm]

20 26.23 17.21 30.23 47.95
40 17.61 11.02 22.91 30.23
80 9.97 6.28 16.87 23.57

160 4.82 2.72 7.06 9.29

{5.95,6.03,6.15,6.23}, {5.97,6.13,6.21,6.37} and {6.01,6.21,6.37,6.57} GHz, respectively.
Although our motivation is to illustrate the impact of bandwidth on the performance
of ranging, we vary both the bandwidth and central frequencies of the probed bands in
these scenarios. We do this to avoid outliers in time-delay estimation that are introduced
in scenarios where the bandwidth B is low, e.g. 20 or 40 MHz, and the frequency aperture
is considerably larger than the bandwidth, e.g. 480 and 720 MHz. In these scenarios, a
large aperture improves the resolution of the estimation. However, the overall accuracy
of time-delay estimation is deteriorated due to outliers introduced by noise and mod-
eling errors. This is similar to the effects observed in Section 4.5 where we concluded
that the band selection comes as a trade-off between resolution and robustness to noise.
However, now in this trade-off, modeling errors must also be included.

We repeat the same procedure as previously to compute the median and Q95, and
the results are shown in Table 8.1(b). As expected, it is seen that Q95 decreases when the
bandwidth is increased, where the accuracy improvement is proportional to the increase
in bandwidth. To illustrate the distribution of ranging errors, Fig. 8.7 shows the empirical
CDFs for these scenarios. It is seen that in 80% of the cases, the absolute ranging error is
smaller than 16, 8, 4, and 1 cm for B ∈ {20,40,80,160} MHz, respectively.

8.4.2. PERFORMANCE OF POSITIONING AND RANGING

To illustrate the performance of ranging and 2-D positioning in a scenario where a mo-
bile node moves over a long trajectory, we use the dataset collected in the hospital en-
vironment (cf. Fig 8.4). We start with ranging experiments and compare the results of
the MBWDE algorithm with those of the MI-MUSIC, CS(L1), MUSIC, and ESPRIT algo-
rithms.

COMPARISON TO OTHER ALGORITHMS

To compare the MBWDE(FB&NR) algorithm against other algorithms, we consider three
scenarios where we vary the bandwidth B ∈ {20,40,80} MHz. The carrier frequencies of
the bands for MBWDE(FB&NR), MI-MUSIC, and CS(L1), are selected as in Section 8.4.1,
while for MUSIC and ESPRIT, a single band with the same total bandwidth is selected
starting from 5.925 GHz. The delay grid step is set to 0.15 ns (0.5 cm) for MI-MUSIC,
CS(L1), and MUSIC.

We use the previously mentioned algorithms to estimate the ranges between anchor
A2 and the mobile node moving on segment S1S2S3 of the trajectory (cf. Fig 8.4), where
the segment S3S4 is omitted because of the presence of NLOS propagation. We compute
the ranging error and empirical CDFs in the same way as in previous scenarios. These
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Figure 8.7: Empirical CDFs of the ranging error with respect to the bandwidth parameter B .

empirical CDFs are fitted with a Gaussian CDF and shown in Fig. 8.8. It is seen that in
all scenarios, MBWDE(FB&NR) shows the best performance, where the performance of
improvement of MBWDE compared to other algorithms is the largest when the band-
width is the smallest, i.e., B = 20 MHz. In scenarios where B ∈ {40,80}, the performance
of MI-MUSIC and MBWDE(FB&NR) are almost identical. MUSIC and ESPRIT perform
worst for all scenarios compared to algorithms that use multiband CSI due to the smaller
frequency aperture.

PERFORMANCE OF 2-D POSITIONING

Finally, we illustrate the performance of 2-D positioning by using range estimates of the
MBWDE (FB&NR) algorithm. We define the mobile node position as p = [x, y]T , where
x and y are the node’s coordinates. The mobile node positions are estimated using an
LS algorithm from the ranges estimated between the mobile node and three anchors (cf.
Fig. 8.4). In particular, for the segments S1S2, S2S3, and S3S4 the ranges are estimated
between the mobile node and anchors {A1, A2, A3}, {A2, A4, A5} and {A5, A6, A7}, respec-
tively. We select the anchors based on the floor map shown in Fig. 8.4 to avoid NLOS
propagation and outliers in the 2-D positioning. However, if a floor map is not available,
this could be done directly from the measurements as shown in [279].

We estimate the positions for four different scenarios described in Section 8.4.1
where Fig. 8.4 shows the position estimates for the scenarios when B ∈ {80,160} MHz.
It can be seen that for B = 160 MHz the position is almost perfectly estimated. To
quantify the performance of position estimation, we compute the estimation error as
RMSE(p̂) = ∥∥p̂−p

∥∥
2, where p is the ground truth and p̂ is the estimate. We compute

statistical properties of the errors such as mean, standard deviation σp, 80%-quantile
(Q80), and Q95. The Q80 is computed by subtracting the 10th percentile from the 90th

percentile. These properties are given in Table 8.2. As expected, RMSE(p̂) decreases with
increasing bandwidth B . It is seen that with a single snapshot of CSI with a total band-
width of 320 MHz and using 3 anchor nodes, it is possible to achieve an positioning error
below 24 cm in 95% of the cases.
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Figure 8.8: The CDFs of the ranging errors of the compared algorithms and choices of the band-
width parameter B : (a) 20 MHz, (b) 40 (b), and (c) 80 MHz.

8.5. CONCLUSIONS

In this chapter, we have assessed the performance of ranging and 2-D positioning using
the MBWDE algorithm by doing experiments with real indoor channel measurements.
These results are compared against those when using the MI-MUSIC, CS(L1), MUSIC,
and ESPRIT algorithms. The aim of these experiments is to validate the data modeling
assumptions and the numerical results presented in Chapters 4 and 5. The results reveal
that multiband channel probing and MBWDE improve time-delay resolution compared
to single band probing and time-delay estimation methods. This means that smaller
total bandwidth needs to be probed when using MBWDE than any single band time-
delay estimation method to achieve the same RMSE. The results also show that when the
total frequency aperture of multiband CSI is increased to more than ∼20% of the carrier
frequency, the frequency dependency effects of multipath propagation cause modeling
errors that degrade the estimation performance. Therefore, the problem of modeling
these frequency dependency effects of multipath propagation remains an open research
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question for future work. Accurate modeling of these effects would enable the design of a
multiband time-delay estimation algorithm that accounts for these effects, which would
allow combining multiband CSI measurements from all available frequency bands.
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CONCLUSIONS AND FUTURE

RESEARCH DIRECTIONS

”The highest reward for a person’s toil is not what
they get for it, but what they become by it.”

— John Ruskin
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9.1. CONCLUSIONS AND SUMMARY OF MAIN RESULTS

THe first attempts to localize objects using radio frequency (RF) signals have been
made at the beginning of the 20th century. However, the initial localization systems

had poor localization accuracy and limited coverage. In Chapter 1, we discussed these
matters and have provided historical background and a discussion on the importance of
precise radio localization for various popular applications in industry and science. We
saw that the emergence of satellite systems paved the way for developing GNSSs that
support global coverage with RF positioning signals and high accuracy localization in
outdoor environments with a clear view of the sky. These systems became crucial tools
for providing accurate navigation and timing in many vital industries, such as trans-
portation and logistics, location-based services, and military and defense, to name a few.
However, GNSS signals are unavailable in indoor environments, and GNSS localization
performs poorly in multipath propagation environments such as urban canyons. These
are often scenarios with extensive human activity and where precise positioning is cru-
cial for assisted living services and localization in the internet-of-things (IoT) networks,
or autonomous navigation in urban environments and factories of the future.

The trend of densification of wireless infrastructure in indoor and urban environ-
ments in future wireless networks will ensure high SNR at the receiver. At the same time,
the need for higher throughput promotes the use of signals with large bandwidth and
carrier aggregation. These favorable developments will open the opportunity to utilize
existing wireless infrastructure and ambient radio frequency (RF) signals for precise lo-
calization in GNSS denied environments. Localization using these signals starts with
multipath channel estimation between a mobile node and anchors where parameters of
the multipath channel (e.g., time-delays, directions-of-arrival, or complex-amplitudes)
encode location information of the mobile node and surrounding RF reflectors.

CHAPTER 2

In Chapter 2 we have provided preliminaries and a general introduction to radio local-
ization. There we discussed the multipath channel model and the relation between its
parameters and location information. We then introduced two-step localization and di-
rect localization methods and made a comparison between them.

We saw that the two-step localization methods first estimate the parameters of the
line-of-sight (LOS) paths of a number of anchors and then estimate the location of the
mobile node from the parameter estimates. The generalized data model for the mea-
surements used in two-step localization methods (e.g., TOAs, TDOAs, DOAs, and RSSs)
showed that these measurements are a nonlinear function of the unknown location of
the mobile node. Therefore, location estimation using two-step localization methods in-
volves solving nonlinear least squares (NLS) optimization problems. These optimization
problems can be solved efficiently using iterative optimization methods such as Gauss-
Newton, Levenberg-Marquardt, and steepest descent. However, they require initializa-
tion and their performance highly depends on the initial location estimate. We have also
presented linear location estimation methods that linearize the nonlinear data models
used in two-step localization. After linearizing the model, these methods estimate the
location by finding the minimum of least squares (LS) or weighted least squares (WLS)
cost functions.



9.1. CONCLUSIONS AND SUMMARY OF MAIN RESULTS

9

139

On the other hand, direct location estimation (DLE) methods estimate the location
directly from the measurements of the received signal without the intermediate step of
first estimating parameters of the LOS path. This approach is statistically more efficient
than two-step localization methods. However, DLE methods are highly computationally
intensive and require solving complex optimization problems where the number of opti-
mization parameters is proportional to the number of multipath components. Thereby,
we concluded that DLE methods are not practical for localization in multipath scenarios.
Therefore, in the remainder of this thesis, we have focused on high-resolution time-delay
estimation for two-step localization methods.

CHAPTER 3

In Chapter 3, we showed that the problem of high-resolution multipath channel time-
delay estimation belongs to the broad family of super-resolution signal processing prob-
lems. The super-resolution problems appear in many popular applications such as ultra-
sound imaging, optical imaging, and radar. We used a single-molecule microscopy prob-
lem as an intuitive example to illustrate the main impairments and challenges common
for super-resolution problems: the degrading effects of noise and the limited resolution
of a measurement device on the observed signals. We then derived the discrete data
model for multipath channel measurements, which belongs to the family of 1-D super-
resolution problems. In the remainder of this chapter, we have provided preliminaries
and related work on popular signal processing frameworks used for 1-D super-resolution
estimation. These frameworks include maximum likelihood (ML), subspace-based esti-
mation, and deterministic and Bayesian sparse estimation methods.

CHAPTERS 4 AND 5

Chapters 4 and 5 have been dedicated to high-resolution time-delay estimation of mul-
tipath components. In these chapters, the main questions that we have answered are
Q1, and its subquestions Q1.1, Q1.2 and Q1.3, as stated in Chapter 1.

In particular, we have proposed multiband channel probing to acquire multipath
channel measurements, which allows us to increase the frequency aperture of the mea-
surements while using RF transceivers with limited bandwidth and thus enable high-
resolution time-delay estimation. We then derived the data model for these measure-
ments, which showed that after stacking them in a block Hankel matrix, the data has
multiple shift-invariance structures. Later we used this property to design algorithms
for time-delay estimation based on weighted subspace fitting (WSF) and joint diagonal-
ization, which we called multiband weighted delay estimation (MBWDE) and multires-
olution time-delay (MRTD) algorithms, respectively. The MRTD algorithm has a closed-
form solution, and it can be used to initialize iterative optimization methods to solve
the nonlinear least-squares (NLS) problem present in the MBWDE algorithm. However,
the MRTD algorithm limits time-delay estimation to scenarios when multiband channel
measurements are collected in two frequency bands.

To evaluate the performance of the proposed algorithms, we used the data model
of the multiband channel measurements to derive the Cramér-Rao Bound (CRB) on the
root mean square error (RMSE) of their time-delay estimates. We then presented results
of extensive numerical simulations that showed that both algorithms are statistically ef-
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ficient and achieve the CRB. These results also show that the resolution of time-delay
estimation is improved for the measurements collected over a larger frequency aperture.
The derived data model is similar to the data models that arise in other signal processing
applications, such as radar and ultrasound imaging. Therefore, the algorithms presented
in this thesis can be adapted and extended to these and general problems of parameter
estimation from data whose models exhibit multiple shift-invariance structures.

CHAPTERS 6 AND 7

Next, in Chapters 6 and 7, we have focused on the problems of joint calibration of RF
transceivers and time-delay estimation, answering question Q2. In particular, in Chap-
ters 6 and 7, we have answered its subquestions Q2.1 and Q2.2, respectively.

In Chapter 6, we have provided a solution for joint multiband time-delay estima-
tion and calibration of the RF transceiver response. A wideband RF transceiver often
introduces frequency-dependent gain and phase distortions in the multipath channel
measurements due to various hardware nonidealities of RF components. If these hard-
ware impairments are not calibrated before time-delay estimation, they can significantly
deteriorate its performance. We use the properties of the communication channel and
formulate the joint calibration and time-delay estimation as a special case of a covari-
ance matching problem. The resulting problem is severely ill-posed. However, it can
be regularized by using the sparse nature of multipath channels and prior knowledge of
the basis functions that approximate the frequency response of RF transceivers. The
regularization leads to a biconvex optimization problem in the calibration and time-
delay parameters. We further recast the biconvex optimization problem into a rank-1
constrained linear system using the lifting technique, which can be efficiently solved as
a group Lasso problem. We conducted numerical simulations and comparisons with
other algorithms for joint calibration and parameter estimation. The results show that
the proposed algorithm has better calibration performance than the ALMIN and BLC
algorithms, that are used for comparison. At the same time, the proposed algorithm
supports high-resolution time-delay estimation.

In Chapter 7, we have solved the problem of joint clock-skew and range estimation
from phase difference of arrival (PDoA) measurements collected using narrowband RF
transceivers. To achieve this, we have derived a data model that captures the effects of
both clock-skew imperfections and narrowband signal propagation on the PDoA mea-
surements. Following the data model, we proposed a communication protocol for col-
lecting PDoA measurements that enables joint clock-skew and range estimation. From
the collected measurements, we construct a data matrix that has a structure that calls
for a 2-D subspace-based algorithm for estimation of clock-skew and range. The perfor-
mance of the proposed algorithms is compared against the CRB using numerical simu-
lations, and the results show that the algorithm is asymptotically efficient and approach-
ing the CRB for a sufficiently high signal-to-noise ratio (SNR). When designing the pro-
posed algorithm, we assumed a radio channel with only a LOS path between the anchor
and the sensor nodes. However, this algorithm can be extended to joint clock-skew and
range estimation in multipath scenarios where the effects of multipath components on
the PDoA measurements can not be neglected.
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CHAPTER 8

Finally, in Chapter 8, we have evaluated the performance of the multiband time-delay
estimation algorithms proposed in Chapters 4 and 5 using real multipath channel mea-
surements. In particular, we have addressed question Q3 and its subquestion Q3.1.

We performed several experiments with radio channel measurements collected in a
university building and in a hospital environment to answer these questions. Our exper-
iments consider the problem of time-delay estimation and localization in future WiFi-7
networks defined by the emerging IEEE 802.11be standard. We use this standard to de-
fine simulation parameters and experiment scenarios. The results of the experiments
with real measurements are in line with the results of the numerical experiments pre-
sented in Chapters 4 and 5. However, it is also seen that multipath channels exhibit
frequency dependency effects. In [275], a rule of thumb is given, saying that these ef-
fects are negligible if the frequency aperture of the channel measurements is less than
20% of the carrier frequency. To avoid modeling errors caused by frequency dependency
effects, we constrained the frequency aperture of the multiband channel measurements
to be less than 10% of the carrier frequency. However, the problem of modeling the fre-
quency dependency of multipath channels remains an open question.

9.2. SUGGESTIONS FOR FUTURE RESEARCH

The research for this thesis has resulted in several new challenges and research ques-
tions, which remain still open. This section concludes the thesis with a list of some of
these open problems worth further investigation, including discussion and suggestions
on how to approach these problems.

JOINT DETECTION OF MULTIPATH COMPONENTS AND MULTIBAND TIME-DELAY ESTIMA-
TION

In Chapters 4 and 5, we have presented methods for multiband time-delay estimation
that assume prior knowledge of the model order, i.e., of the number of multipath compo-
nents (MPCs)) (K ) present in the channel. To estimate the number K in these chapters,
we used the modified minimum description length (MDL) criterion [205], which com-
prises a data fidelity term representing the fitting error and a penalty term that increases
with the model order [135]. From the range of possible model orders, the number K
is selected by finding the tradeoff between the fitting error and model complexity such
that the MDL criterion is minimized. The MDL method and, in general, the information
criteria-based model order selection methods (e.g., AIC, BIC) tend to provide a wrong
model order in non-asymptotic regimes such as low SNR or a limited number of snap-
shots. In Figure 4.8, as discussed in Chapter 4, we showed that the performance of the
proposed multiband time-delay estimation algorithms deteriorates significantly when
the model order is wrongly estimated. This issue is generally related to the two-step
parametric estimation methods that separately estimate model order and parameters
[82].

Given the discussion above, the interesting question is, can we jointly estimate the
model order and multipath time-delay parameters from multiband channel measure-
ments. In particular, it would be useful to formulate the problem of multiband delay es-
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timation in the sparse Bayesian framework [180, 183]. That is, it would be interesting to
model the multiband channel measurements using the stochastic maximum likelihood
(ML) model regularized by sparsity promoting prior on the coefficients of the exponen-
tials. This formulation would allow for joint estimation of the number of MPCs and their
time delays.

A BAYESIAN APPROACH TO BAND SELECTION AND TRAINING SIGNAL DESIGN FOR MULTI-
BAND TIME-DELAY ESTIMATION

In Chapter 4, we did experiments that illustrate the influence of band selection on the
root mean square error (RMSE) of multiband time-delay estimation in multipath chan-
nels. In particular, Fig. 4.7 shows that selecting frequency bands for channel probing
such that the total frequency aperture of the channel measurements is increased, can de-
crease the RMSE of multiband time-delay estimation. The results of these experiments
are following the performance indication given by the Cramér-Rao Bound (CRB) that
is derived in Section 4.4. This leads to several interesting questions, such as: "What is
optimal selection of frequency bands in terms of RMSE of multiband time-delay estima-
tion?" and "What is the optimal training signal design in terms of the RMSE of multiband
time-delay estimation considering power and bandwidth constraints set by spectrum
regulations?". There have been several attempts to tackle these and similar problems
previously, such as, in [280, 281, 282]. These works select performance criteria for wave-
form parameter design and band selection based on the CRB.

In particular, in [280], the performance criteria is defined as a combination of the
CRB on time-delay estimation for a single-path channel and the bias measure (a so-
called measure of dependence for delay estimation) for a two-path channel. However,
it is seen that the bias measure depends on the time-delay parameters of the two paths
present in the channel. This dependency causes the performance criteria to become a
function of the parameters that are to be estimated and leads to optimal band selection
only for a specific channel realization and the time-delays considered in it. In Section
4.4, we came to the same conclusion for a general case of the CRB on multiband time-
delay estimation in multipath channels.

A promising approach to optimize band selection and the training signal for multi-
band time-delay estimation for the expected channel realizations is to follow the
Bayesian approach [283]. In the Bayesian framework, the time-delays of MPCs are con-
sidered as random variables whose probability density function (PDF) characterizes
prior constraints on the likelihood of time-delays [284, 285]. This formulation would
lead to a performance criteria function based on the Bayesian CRB (also called the global
CRB), which does not depend on time-delay parameters, leading to the optimal band
selection and training signal design in terms of the chosen PDF function for the time-
delays and other optimization constraints. The question of interest is, can such an opti-
mization problem be solved.

JOINT RANGING AND SYNCHRONIZATION FOR NARROWBAND TRANSCEIVERS IN MULTI-
PATH CHANNELS

In Chapter 7, we focussed on joint ranging and synchronization using narrowband RF
transceivers. In particular, we designed a protocol for collecting phase difference of ar-
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rival (PDoA) measurements that allows for joint range and clock-skew estimation. When
designing the algorithm, we have considered a single path channel with only one domi-
nant, i.e., LOS, path. However, this is rarely the case in practice, and the multipath effects
usually cannot be ignored, as otherwise, these effects lead to biased parameter estima-
tion. Therefore, it would be interesting to extend the algorithm presented in Chapter
7 to take into account multipath effects. In multipath channels, joint range and clock-
skew estimation can be formulated as the problem of two-dimensional (2-D) parameter
estimation of multiple complex exponentials [286], which can be solved using subspace-
based [287] and maximum likelihood [113] methods.

MULTIPATH CHANNEL FREQUENCY DEPENDENCY

In Chapter 8, the last chapter of this thesis, we validate the modeling assumptions and
the performance of multiband delay estimation algorithms presented in Chapters 4 and
5. These experiments showed that the performance of the derived algorithms follows the
theoretical result under the condition that the frequency aperture of the real multiband
measurements is not too large. However, if the frequency aperture of the measurements
becomes too large, the measurements start to exhibit frequency-dependency effect. This
effect is the consequence of frequency-dependent diffraction and scattering of the RF
signals on the reflecting structures that create an RF scattering scene [278]. In general,
the frequency-dependency is negligible if the frequency aperture is smaller than 20% of
the carrier frequency of the band [275].

The data models used to derive algorithms in Chapters 4 and 5 do not capture
frequency-dependency effects. Therefore, when they are present in the measurements,
the modeling errors are introduced, and the performance of the algorithms starts to
deteriorate. To avoid frequency-dependency effects in this thesis, we select the multi-
band channel measurements such that their frequency aperture is smaller than 10% of
the carrier frequency of the band. However, this is not the solution for scenarios where
regulatory bodies preallocate frequency bands with a large frequency aperture. There-
fore, frequency dependency effects can not always be ignored, and they often appear
in many practical multiband communication and radar problems such as multipath
channel state information extrapolation in frequency division duplexing (FDD) massive
MIMO communications [288, 208] or multiband radars [289]. One possible way to solve
this problem is to model the frequency dependency of multipath components and de-
rive new algorithms for multiband time-delay estimation. However, this modeling task is
challenging as these effects depend on the materials that create the RF scattering scene
[278].

Therefore, an interesting question is, can we design a hybrid data-driven and model-
based algorithm [290] for multiband time-delay estimation. This assumes that the model
is used to describe multipath propagation phenomena that do not depend on the fre-
quency of the RF signal, while the nonlinear function that models the frequency depen-
dency of RF signal scattering is learned from the channel measurements.

MULTIBAND TIME-DELAY ESTIMATION AND HARDWARE IMPAIRMENTS CALIBRATION

Finally, in Chapter 8 of the thesis we used multiband channel measurements collected
using a vector network analyzer (VNA) for the experiments. The parameters of the ex-
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periments are selected following the IEEE 802.11be standard. However, the question
remains unanswered, what is the performance of the time-delay estimation algorithms
presented in this thesis with multiband channel state information (CSI) measurements
collected using off-the-shelf IEEE 802.11be transceivers. In particular, it would be inter-
esting to see how significant is the impact of hardware impairments, such as frequency
and timing offsets, on the performance of the algorithms presented in this thesis. The
answer to this question could potentially motivate new research problems related to the
calibration of multiband CSI measurements.



BIBLIOGRAPHY

[1] Zaher Zak M Kassas et al. “I hear, therefore I know where I am: Compensating for
GNSS limitations with cellular signals”. In: IEEE Signal Processing Magazine 34.5
(2017), pp. 111–124.

[2] Cezary Specht, Adam Weintrit, and Mariusz Specht. “A history of maritime radio-
navigation positioning systems used in Poland”. In: The Journal of Navigation
69.3 (2016), pp. 468–480.

[3] Norman Bonnor Air Commodore. “A brief history of global navigation satellite
systems”. In: The Journal of Navigation 65.1 (2012), p. 1.

[4] Irving Lachow. “The GPS dilemma: balancing military risks and economic bene-
fits”. In: International Security 20.1 (1995), pp. 126–148.

[5] Gonzalo Seco-Granados et al. “Challenges in indoor global navigation satellite
systems: Unveiling its core features in signal processing”. In: IEEE Signal Process-
ing Magazine 29.2 (2012), pp. 108–131.

[6] Reza Malekian et al. “Design and implementation of a wireless OBD II fleet man-
agement system”. In: IEEE Sensors Journal 17.4 (2016), pp. 1154–1164.

[7] Y Jade Morton et al. Position, Navigation, and Timing Technologies in the 21st
Century, Volumes 1 and 2: Integrated Satellite Navigation, Sensor Systems, and
Civil Applications, Set. John Wiley & Sons, 2020.

[8] Xiang Sun and Nirwan Ansari. “EdgeIoT: Mobile edge computing for the Internet
of Things”. In: IEEE Communications Magazine 54.12 (2016), pp. 22–29.

[9] Greg Milner. Pinpoint: how GPS is changing technology, culture, and our minds.
WW Norton & Company, 2016.

[10] Michael Braasch and Andrew Dempster. “Tutorial: GPS receiver architectures,
front-end and baseband signal processing”. In: IEEE Aerospace and Electronic
Systems Magazine 34.2 (2019), pp. 20–37.

[11] Mark Petovello. “How does a GNSS receiver estimate velocity?” In: Inside GNSS
(2015), pp. 38–41.

[12] Rigas Themistoklis Ioannides, Thomas Pany, and Glen Gibbons. “Known vulner-
abilities of global navigation satellite systems, status, and potential mitigation
techniques”. In: Proceedings of the IEEE 104.6 (2016), pp. 1174–1194.

[13] Frank Stephen Tromp Van Diggelen. A-GPS: Assisted GPS, GNSS, and SBAS.
Artech House, 2009.

[14] Grace Xingxin Gao et al. “Protecting GNSS receivers from jamming and interfer-
ence”. In: Proceedings of the IEEE 104.6 (2016), pp. 1327–1338.

145



146 BIBLIOGRAPHY

[15] Mark L Psiaki and Todd E Humphreys. “GNSS spoofing and detection”. In: Pro-
ceedings of the IEEE 104.6 (2016), pp. 1258–1270.

[16] Peter JG Teunissen. “A new method for fast carrier phase ambiguity estima-
tion”. In: Proceedings of 1994 IEEE Position, Location and Navigation Symposium-
PLANS’94. IEEE. 1994, pp. 562–573.

[17] Peter JG Teunissen. “Least-squares estimation of the integer GPS ambiguities”.
In: Invited lecture, section IV theory and methodology, IAG general meeting, Bei-
jing, China. 1993.

[18] Arash Hassibi and Stephen Boyd. “Integer parameter estimation in linear models
with applications to GPS”. In: IEEE Transactions on signal processing 46.11 (1998),
pp. 2938–2952.

[19] Peiliang Xu. “Voronoi cells, probabilistic bounds, and hypothesis testing in mixed
integer linear models”. In: IEEE Transactions on information theory 52.7 (2006),
pp. 3122–3138.

[20] Ekim Yurtsever et al. “A survey of autonomous driving: Common practices and
emerging technologies”. In: IEEE Access 8 (2020), pp. 58443–58469.

[21] Xiang Cheng, Liuqing Yang, and Xia Shen. “D2D for intelligent transportation
systems: A feasibility study”. In: IEEE Transactions on Intelligent Transportation
Systems 16.4 (2015), pp. 1784–1793.

[22] Li Da Xu, Wu He, and Shancang Li. “Internet of things in industries: A survey”. In:
IEEE Transactions on industrial informatics 10.4 (2014), pp. 2233–2243.

[23] Giovanni Acampora et al. “A survey on ambient intelligence in healthcare”. In:
Proceedings of the IEEE 101.12 (2013), pp. 2470–2494.

[24] Seung-Hyun Kong. “High sensitivity and fast acquisition signal processing tech-
niques for GNSS receivers: From fundamentals to state-of-the-art GNSS acquisi-
tion technologies”. In: IEEE Signal Processing Magazine 34.5 (2017), pp. 59–71.

[25] Artificial Intelligence in Logistics. https : / / www . ssi - schaefer . com /
en - th / best - practices - trends / trends / whitepaper - artificial -
intelligence-514320. Accessed: 2021-04-26. 2018.

[26] Mark Galvin. Precision Agriculture – the Future of Farming. https : / / www .
cubictelecom . com / blog / precision - agriculture - the - future - of -
farming/. Accessed: 2021-04-26. 2020.

[27] Ibrar Yaqoob et al. “Autonomous driving cars in smart cities: Recent advances,
requirements, and challenges”. In: IEEE Network 34.1 (2019), pp. 174–181.

[28] Hamid Menouar et al. “UAV-enabled intelligent transportation systems for the
smart city: Applications and challenges”. In: IEEE Communications Magazine
55.3 (2017), pp. 22–28.

[29] Yassen Dobrev et al. “Steady delivery: Wireless local positioning systems for
tracking and autonomous navigation of transport vehicles and mobile robots”.
In: IEEE Microwave Magazine 18.6 (2017), pp. 26–37.

https://www.ssi-schaefer.com/en-th/best-practices-trends/trends/whitepaper-artificial-intelligence-514320
https://www.ssi-schaefer.com/en-th/best-practices-trends/trends/whitepaper-artificial-intelligence-514320
https://www.ssi-schaefer.com/en-th/best-practices-trends/trends/whitepaper-artificial-intelligence-514320
https://www.cubictelecom.com/blog/precision-agriculture-the-future-of-farming/
https://www.cubictelecom.com/blog/precision-agriculture-the-future-of-farming/
https://www.cubictelecom.com/blog/precision-agriculture-the-future-of-farming/


BIBLIOGRAPHY 147

[30] Claudine Badue et al. “Self-driving cars: A survey”. In: Expert Systems with Appli-
cations (2020), p. 113816.

[31] You Li et al. “What happens for a ToF LiDAR in fog?” In: IEEE Transactions on
Intelligent Transportation Systems (2020).

[32] Gi-Poong Gwon et al. “Generation of a precise and efficient lane-level road map
for intelligent vehicle systems”. In: IEEE Transactions on Vehicular Technology
66.6 (2016), pp. 4517–4533.

[33] Anna Syberfeldt et al. “Localizing operators in the smart factory: A review of exist-
ing techniques and systems”. In: 2016 International Symposium on Flexible Au-
tomation (ISFA). IEEE. 2016, pp. 179–185.

[34] Fatih Erden et al. “Sensors in assisted living: A survey of signal and image pro-
cessing methods”. In: IEEE Signal Processing Magazine 33.2 (2016), pp. 36–44.

[35] Klaus Witrisal et al. “High-accuracy localization for assisted living: 5G systems
will turn multipath channels from foe to friend”. In: IEEE Signal Processing Mag-
azine 33.2 (2016), pp. 59–70.

[36] Fadel Adib et al. “3d tracking via body radio reflections”. In: 11th {USENIX} Sym-
posium on Networked Systems Design and Implementation ({NSDI} 14). 2014,
pp. 317–329.

[37] Moran Amit et al. “Mass-surveillance technologies to fight coronavirus spread:
the case of Israel”. In: Nature Medicine (2020), pp. 1–3.

[38] Nuria Oliver et al. Mobile phone data for informing public health actions across
the COVID-19 pandemic life cycle. 2020.

[39] Kimia Shamaei, Joe Khalife, and Zaher M Kassas. “Exploiting LTE signals for nav-
igation: Theory to implementation”. In: IEEE Transactions on Wireless Commu-
nications 17.4 (2018), pp. 2173–2189.

[40] Erik Leitinger et al. “Evaluation of position-related information in multipath
components for indoor positioning”. In: IEEE Journal on Selected Areas in com-
munications 33.11 (2015), pp. 2313–2328.

[41] Hassan Naseri and Visa Koivunen. “Cooperative simultaneous localization and
mapping by exploiting multipath propagation”. In: IEEE Transactions on Signal
Processing 65.1 (2016), pp. 200–211.

[42] Benjamin Kempke et al. “Surepoint: Exploiting ultra wideband flooding and di-
versity to provide robust, scalable, high-fidelity indoor localization”. In: Proceed-
ings of the 14th ACM Conference on Embedded Network Sensor Systems CD-ROM.
2016, pp. 137–149.

[43] M Shahwaiz Afaqui, Eduard Garcia-Villegas, and Elena Lopez-Aguilera. “IEEE
802.11 ax: Challenges and requirements for future high efficiency WiFi”. In: IEEE
Wireless Communications 24.3 (2016), pp. 130–137.

[44] Richard B Ertel et al. “Overview of spatial channel models for antenna array com-
munication systems”. In: IEEE personal communications 5.1 (1998), pp. 10–22.



148 BIBLIOGRAPHY

[45] Ruonan Zhang et al. “Two-dimensional DoA estimation for multipath propaga-
tion characterization using the array response of PN-sequences”. In: IEEE Trans-
actions on Wireless Communications 15.1 (2015), pp. 341–356.

[46] Okan Yurduseven et al. “Frequency-diverse computational direction of arrival es-
timation technique”. In: Scientific reports 9.1 (2019), pp. 1–12.

[47] Navid Tadayon et al. “Decimeter ranging with channel state information”. In:
IEEE Transactions on Wireless Communications 18.7 (2019), pp. 3453–3468.

[48] Reza Zekavat and R Michael Buehrer. Handbook of position location: Theory,
practice and advances. Vol. 27. John Wiley & Sons, 2011.

[49] Faheem Zafari, Athanasios Gkelias, and Kin K Leung. “A survey of indoor local-
ization systems and technologies”. In: IEEE Communications Surveys & Tutorials
21.3 (2019), pp. 2568–2599.

[50] Sinan Gezici et al. “Localization via ultra-wideband radios: a look at position-
ing aspects for future sensor networks”. In: IEEE signal processing magazine 22.4
(2005), pp. 70–84.

[51] Slavisa Tomic, Marko Beko, and Rui Dinis. “RSS-based localization in wire-
less sensor networks using convex relaxation: Noncooperative and cooperative
schemes”. In: IEEE Transactions on Vehicular Technology 64.5 (2014), pp. 2037–
2050.

[52] Biao Zhou et al. “DoA-based rigid body localization adopting single base station”.
In: IEEE Communications Letters 23.3 (2019), pp. 494–497.

[53] Heidi Steendam, Marc Moeneclaey, and Herwig Bruneel. “An ML-based estimate
and the Cramer-Rao bound for data-aided channel estimation in KSP-OFDM”.
In: EURASIP Journal on Wireless Communications and Networking 2008 (2007),
pp. 1–9.

[54] Sangwoo Park, Erchin Serpedin, and Khalid Qaraqe. “Gaussian assumption: The
least favorable but the most useful [lecture notes]”. In: IEEE Signal Processing
Magazine 30.3 (2013), pp. 183–186.

[55] Petre Stoica and Prabhu Babu. “The Gaussian data assumption leads to the
largest Cramér-Rao bound [lecture notes]”. In: IEEE Signal Processing Magazine
28.3 (2011), pp. 132–133.

[56] Regina Kaune. “Accuracy studies for TDOA and TOA localization”. In: 2012 15th
International Conference on Information Fusion. IEEE. 2012, pp. 408–415.

[57] Raj Thilak Rajan and Alle-Jan van der Veen. “Joint ranging and synchronization
for an anchorless network of mobile nodes”. In: IEEE Transactions on Signal Pro-
cessing 63.8 (2015), pp. 1925–1940.

[58] Sundeep Prabhakar Chepuri, Geert Leus, and Alle-Jan van der Veen. “Joint lo-
calization and clock synchronization for wireless sensor networks”. In: Signals,
Systems and Computers (ASILOMAR), 2012 Conference Record of the Forty Sixth
Asilomar Conference on. IEEE. 2012, pp. 1432–1436.



BIBLIOGRAPHY 149

[59] William A Gardner and Chad M Spooner. “Comparison of autocorrelation and
cross-correlation methods for signal-selective TDOA estimation”. In: IEEE Trans-
actions on signal processing 40.10 (1992), pp. 2606–2608.

[60] Hailong Shi, Hao Zhang, and Xiqin Wang. “A TDOA technique with super-
resolution based on the volume cross-correlation function”. In: IEEE Transac-
tions on Signal Processing 64.21 (2016), pp. 5682–5695.

[61] Hing Cheung So, Yiu Tong Chan, and Frankie Kit Wing Chan. “Closed-form for-
mulae for time-difference-of-arrival estimation”. In: IEEE Transactions on Signal
Processing 56.6 (2008), pp. 2614–2620.

[62] Mohammad Reza Gholami, Reza Monir Vaghefi, and Erik G Ström. “RSS-based
sensor localization in the presence of unknown channel parameters”. In: IEEE
Transactions on Signal Processing 61.15 (2013), pp. 3752–3759.

[63] Neal Patwari et al. “Locating the nodes: cooperative localization in wireless sen-
sor networks”. In: IEEE Signal processing magazine 22.4 (2005), pp. 54–69.

[64] Alan J Coulson, Allan G Williamson, and Rodney G Vaughan. “A statistical basis
for lognormal shadowing effects in multipath fading channels”. In: IEEE Trans-
actions on Communications 46.4 (1998), pp. 494–502.

[65] Y Hu. “Signal strength based localization and path-loss exponent self-estimation
in wireless networks”. PhD thesis. Delft University of Technology, 2017.

[66] Yue Wang and KC Ho. “An asymptotically efficient estimator in closed-form for
3-D AOA localization using a sensor network”. In: IEEE Transactions on Wireless
Communications 14.12 (2015), pp. 6524–6535.

[67] Yimao Sun, KC Ho, and Qun Wan. “Eigenspace solution for AOA localization in
modified polar representation”. In: IEEE Transactions on Signal Processing 68
(2020), pp. 2256–2271.

[68] Keke Hu, Sundeep Prabhakar Chepuri, and Geert Leus. “Near-field source local-
ization: Sparse recovery techniques and grid matching”. In: 2014 IEEE 8th Sensor
Array and Multichannel Signal Processing Workshop (SAM). IEEE. 2014, pp. 369–
372.

[69] Alessio Fascista et al. “A localization algorithm based on V2I communications
and AOA estimation”. In: IEEE Signal Processing Letters 24.1 (2016), pp. 126–130.

[70] Kerry Gallagher and Malcolm Sambridge. “Genetic algorithms: a powerful tool
for large-scale nonlinear optimization problems”. In: Computers & Geosciences
20.7-8 (1994), pp. 1229–1236.

[71] Konstantinos E Parsopoulos and Michael N Vrahatis. “On the computation of all
global minimizers through particle swarm optimization”. In: IEEE Transactions
on evolutionary computation 8.3 (2004), pp. 211–224.

[72] Steven M Kay. Estimation theory. Prentice Hall PTR, 2010.

[73] Anthony J Weiss. “Direct position determination of narrowband radio frequency
transmitters”. In: IEEE Signal Processing Letters 11.5 (2004), pp. 513–516.



150 BIBLIOGRAPHY

[74] Liran Tzafri and Anthony J Weiss. “High-resolution direct position determination
using MVDR”. In: IEEE Transactions on Wireless Communications 15.9 (2016),
pp. 6449–6461.

[75] Oded Bialer, Dan Raphaeli, and Anthony J Weiss. “Maximum-likelihood direct
position estimation in dense multipath”. In: IEEE Transactions on Vehicular Tech-
nology 62.5 (2012), pp. 2069–2079.

[76] Pau Closas and Adria Gusi-Amigo. “Direct position estimation of GNSS receivers:
Analyzing main results, architectures, enhancements, and challenges”. In: IEEE
Signal Processing Magazine 34.5 (2017), pp. 72–84.

[77] Saleh Al-Jazzar, Mounir Ghogho, and Desmond McLernon. “A joint TOA/AOA
constrained minimization method for locating wireless devices in non-line-of-
sight environment”. In: IEEE transactions on vehicular technology 58.1 (2008),
pp. 468–472.

[78] Lorenzo Taponecco, Antonio Alberto D’Amico, and Umberto Mengali. “Joint TOA
and AOA estimation for UWB localization applications”. In: IEEE Transactions on
Wireless Communications 10.7 (2011), pp. 2207–2217.

[79] Fang Shang, Benoit Champagne, and Ioannis N Psaromiligkos. “A ML-based
framework for joint TOA/AOA estimation of UWB pulses in dense multipath en-
vironments”. In: IEEE Transactions on Wireless Communications 13.10 (2014),
pp. 5305–5318.

[80] Jihao Yin et al. “A simple and accurate TDOA-AOA localization method using two
stations”. In: IEEE Signal Processing Letters 23.1 (2015), pp. 144–148.

[81] Slavisa Tomic, Marko Beko, and Rui Dinis. “Distributed RSS-AoA based localiza-
tion with unknown transmit powers”. In: IEEE Wireless Communications Letters
5.4 (2016), pp. 392–395.

[82] Petre Stoica, Randolph L Moses, et al. Spectral analysis of signals. Pearson Pren-
tice Hall Upper Saddle River, NJ, 2005.

[83] Yonina C Eldar and Gitta Kutyniok. Compressed sensing: theory and applications.
Cambridge university press, 2012.

[84] Tarik Kazaz et al. “Joint blind calibration and time-delay estimation for multi-
band ranging”. In: ICASSP 2020-2020 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP). IEEE. 2020, pp. 4846–4850.

[85] Tarik Kazaz et al. “Analysis of multipath channel delay estimation using subspace
fitting”. In: 2020 54th Asilomar Conference on Signals, Systems, and Computers.
IEEE. 2020, pp. 1237–1241.

[86] Joseph W Goodman. Introduction to Fourier optics. Roberts and Company Pub-
lishers, 2005.

[87] Richard Baraniuk and Philippe Steeghs. “Compressive radar imaging”. In: 2007
IEEE radar conference. IEEE. 2007, pp. 128–133.

[88] Qiong Huang et al. “UWB through-wall imaging based on compressive sensing”.
In: IEEE Transactions on Geoscience and Remote Sensing 48.3 (2009), pp. 1408–
1415.



BIBLIOGRAPHY 151

[89] Sunil Rudresh and Chandra Sekhar Seelamantula. “Finite-rate-of-innovation-
sampling-based super-resolution radar imaging”. In: IEEE Transactions on Signal
Processing 65.19 (2017), pp. 5021–5033.

[90] Ronen Tur, Yonina C Eldar, and Zvi Friedman. “Innovation rate sampling of pulse
streams with application to ultrasound imaging”. In: IEEE Transactions on Signal
Processing 59.4 (2011), pp. 1827–1842.

[91] Noam Wagner, Yonina C Eldar, and Zvi Friedman. “Compressed beamforming
in ultrasound imaging”. In: IEEE Transactions on Signal Processing 60.9 (2012),
pp. 4643–4657.

[92] Michaela C Vanderveen, A-J Van der Veen, and Arogyaswami Paulraj. “Estimation
of multipath parameters in wireless communications”. In: IEEE Transactions on
Signal Processing 46.3 (1998), pp. 682–690.

[93] Hlaing Minn and Naofal Al-Dhahir. “Optimal training signals for MIMO OFDM
channel estimation”. In: IEEE transactions on wireless communications 5.5
(2006), pp. 1158–1168.

[94] Anum Ali, Nuria González-Prelcic, and Robert W Heath. “Millimeter wave beam-
selection using out-of-band spatial information”. In: IEEE Transactions on Wire-
less Communications 17.2 (2017), pp. 1038–1052.

[95] Christian R Berger et al. “Sparse channel estimation for multicarrier underwater
acoustic communication: From subspace methods to compressed sensing”. In:
IEEE Transactions on Signal Processing 58.3 (2009), pp. 1708–1721.

[96] Yuejie Chi and Maxime Ferreira Da Costa. “Harnessing sparsity over the contin-
uum: Atomic norm minimization for superresolution”. In: IEEE Signal Processing
Magazine 37.2 (2020), pp. 39–57.

[97] Veniamin I Morgenshtern and Emmanuel J Candes. “Super-resolution of positive
sources: The discrete setup”. In: SIAM Journal on Imaging Sciences 9.1 (2016),
pp. 412–444.

[98] Martin Vetterli, Pina Marziliano, and Thierry Blu. “Sampling signals with fi-
nite rate of innovation”. In: IEEE transactions on Signal Processing 50.6 (2002),
pp. 1417–1428.

[99] Kfir Gedalyahu, Ronen Tur, and Yonina C Eldar. “Multichannel sampling of pulse
streams at the rate of innovation”. In: IEEE Transactions on Signal Processing 59.4
(2011), pp. 1491–1504.

[100] Cheng-Rung Tsai, Yu-Hsin Liu, and An-Yeu Wu. “Efficient compressive channel
estimation for millimeter-wave large-scale antenna systems”. In: IEEE Transac-
tions on Signal Processing 66.9 (2018), pp. 2414–2428.

[101] Hamid Krim and Mats Viberg. “Two decades of array signal processing research:
the parametric approach”. In: IEEE signal processing magazine 13.4 (1996),
pp. 67–94.

[102] Yonina C Eldar. Sampling theory: Beyond bandlimited systems. Cambridge Uni-
versity Press, 2015.



152 BIBLIOGRAPHY

[103] Omer Bar-Ilan and Yonina C Eldar. “Sub-Nyquist radar via Doppler focusing”. In:
IEEE Transactions on Signal Processing 62.7 (2014), pp. 1796–1811.

[104] J Bohme. “Estimation of source parameters by maximum likelihood and non-
linear regression”. In: ICASSP’84. IEEE International Conference on Acoustics,
Speech, and Signal Processing. Vol. 9. IEEE. 1984, pp. 271–274.

[105] Petre Stoica et al. “Maximum likelihood array processing for stochastic coherent
sources”. In: IEEE Transactions on Signal Processing 44.1 (1996), pp. 96–105.

[106] Björn Ottersten et al. “Exact and large sample maximum likelihood techniques
for parameter estimation and detection in array processing”. In: Radar array pro-
cessing. Springer, 1993, pp. 99–151.

[107] Petre Stoica and Arye Nehorai. “Performance study of conditional and uncondi-
tional direction-of-arrival estimation”. In: IEEE Transactions on Acoustics, Speech,
and Signal Processing 38.10 (1990), pp. 1783–1795.

[108] Harry L Van Trees. Optimum array processing: Part IV of detection, estimation,
and modulation theory. John Wiley & Sons, 2004.

[109] Fredrik Athley. “Threshold region performance of maximum likelihood direc-
tion of arrival estimators”. In: IEEE Transactions on Signal Processing 53.4 (2005),
pp. 1359–1373.

[110] Ya-Xiang Yuan. “Recent advances in numerical methods for nonlinear equations
and nonlinear least squares”. In: Numerical algebra, control & optimization 1.1
(2011), p. 15.

[111] Philip E Gill and Walter Murray. “Algorithms for the solution of the nonlin-
ear least-squares problem”. In: SIAM Journal on Numerical Analysis 15.5 (1978),
pp. 977–992.

[112] Gene Golub and Victor Pereyra. “Separable nonlinear least squares: the variable
projection method and its applications”. In: Inverse problems 19.2 (2003), R1.

[113] Yoram Bresler and Albert Macovski. “Exact maximum likelihood parameter esti-
mation of superimposed exponential signals in noise”. In: IEEE Transactions on
Acoustics, Speech, and Signal Processing 34.5 (1986), pp. 1081–1089.

[114] Mati Wax and Ilan Ziskind. “Detection of the number of coherent signals by the
MDL principle”. In: IEEE Transactions on Acoustics, Speech, and Signal Processing
37.8 (1989), pp. 1190–1196.

[115] Joao Paulo CL da Costa et al. “Enhanced model order estimation using higher-
order arrays”. In: 2007 Conference Record of the Forty-First Asilomar Conference
on Signals, Systems and Computers. IEEE. 2007, pp. 412–416.

[116] Alle-Jan van der Veen, Jac Romme, and Ye Cui. “Rank detection thresholds for
Hankel or Toeplitz data matrices”. In: 2020 28th European Signal Processing Con-
ference (EUSIPCO). IEEE. 2020, pp. 1911–1915.

[117] Fu Li and Richard J Vaccaro. “Unified analysis for DOA estimation algorithms in
array signal processing”. In: Signal Processing 25.2 (1991), pp. 147–169.



BIBLIOGRAPHY 153

[118] Sergios Theodoridis and Rama Chellappa. Academic Press library in signal pro-
cessing: communications and radar signal processing. Academic Press, 2013.

[119] Ralph Schmidt. “Multiple emitter location and signal parameter estimation”. In:
IEEE transactions on antennas and propagation 34.3 (1986), pp. 276–280.

[120] Min Lin and Luxi Yang. “Blind calibration and DOA estimation with uniform cir-
cular arrays in the presence of mutual coupling”. In: IEEE Antennas and Wireless
Propagation Letters 5 (2006), pp. 315–318.

[121] Monson H Hayes. Statistical digital signal processing and modeling. John Wiley &
Sons, 2009.

[122] Arthur Barabell. “Improving the resolution performance of eigenstructure-based
direction-finding algorithms”. In: ICASSP’83. IEEE International Conference on
Acoustics, Speech, and Signal Processing. Vol. 8. IEEE. 1983, pp. 336–339.

[123] Petre Stoica and Kenneth C Sharman. “Maximum likelihood methods for
direction-of-arrival estimation”. In: IEEE Transactions on Acoustics, Speech, and
Signal Processing 38.7 (1990), pp. 1132–1143.

[124] Richard Roy and Thomas Kailath. “ESPRIT-estimation of signal parameters via
rotational invariance techniques”. In: IEEE Transactions on acoustics, speech, and
signal processing 37.7 (1989), pp. 984–995.

[125] Yingbo Hua and Tapan K Sarkar. “On SVD for estimating generalized eigenvalues
of singular matrix pencil in noise”. In: 1991., IEEE International Sympoisum on
Circuits and Systems. IEEE. 1991, pp. 2780–2783.

[126] Y. Hua. “Estimating two-dimensional frequencies by matrix enhancement and
matrix pencil”. In: IEEE Transactions on Signal Processing 40.9 (1992), pp. 2267–
2280. DOI: 10.1109/78.157226.

[127] Anders Eriksson and Petre Stoica. “Optimally weighted ESPRIT for direction esti-
mation”. In: Signal processing 38.2 (1994), pp. 223–229.

[128] Martin Haardt and Josef A Nossek. “Unitary ESPRIT: How to obtain increased es-
timation accuracy with a reduced computational burden”. In: IEEE transactions
on signal processing 43.5 (1995), pp. 1232–1242.

[129] A-J Van Der Veen, ED F Deprettere, and A Lee Swindlehurst. “Subspace-based
signal analysis using singular value decomposition”. In: Proceedings of the IEEE
81.9 (1993), pp. 1277–1308.

[130] S Unnikrishna Pillai and Byung Ho Kwon. “Forward/backward spatial smoothing
techniques for coherent signal identification”. In: IEEE Transactions on Acoustics,
Speech, and Signal Processing 37.1 (1989), pp. 8–15.

[131] Fuxi Wen et al. “5G positioning and mapping with diffuse multipath”. In: IEEE
Transactions on Wireless Communications 20.2 (2020), pp. 1164–1174.

[132] Keyong Han and Arye Nehorai. “Improved source number detection and direc-
tion estimation with nested arrays and ULAs using jackknifing”. In: IEEE Trans-
actions on Signal Processing 61.23 (2013), pp. 6118–6128.

https://doi.org/10.1109/78.157226


154 BIBLIOGRAPHY

[133] Ahmad Bazzi, Dirk TM Slock, and Lisa Meilhac. “Detection of the number of su-
perimposed signals using modified MDL criterion: A random matrix approach”.
In: 2016 IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP). IEEE. 2016, pp. 4593–4597.

[134] Bhaskar D Rao and KVS Hari. “Weighted subspace methods and spatial smooth-
ing: analysis and comparison”. In: IEEE Transactions on Signal Processing 41.2
(1993), pp. 788–803.

[135] Petre Stoica and Yngve Selen. “Model-order selection: a review of information
criterion rules”. In: IEEE Signal Processing Magazine 21.4 (2004), pp. 36–47.

[136] David L Donoho. “Superresolution via sparsity constraints”. In: SIAM journal on
mathematical analysis 23.5 (1992), pp. 1309–1331.

[137] Michael E Tipping. “Sparse Bayesian learning and the relevance vector machine”.
In: Journal of machine learning research 1.Jun (2001), pp. 211–244.

[138] David L Donoho. “Compressed sensing”. In: IEEE Transactions on information
theory 52.4 (2006), pp. 1289–1306.

[139] Emmanuel J Candès and Michael B Wakin. “An introduction to compressive sam-
pling”. In: IEEE signal processing magazine 25.2 (2008), pp. 21–30.

[140] David P Wipf and Bhaskar D Rao. “Sparse Bayesian learning for basis selection”.
In: IEEE Transactions on Signal processing 52.8 (2004), pp. 2153–2164.

[141] Robert Tibshirani. “Regression shrinkage and selection via the lasso”. In: Journal
of the Royal Statistical Society: Series B (Methodological) 58.1 (1996), pp. 267–288.

[142] Shaobing Chen and David Donoho. “Basis pursuit”. In: Proceedings of 1994
28th Asilomar Conference on Signals, Systems and Computers. Vol. 1. IEEE. 1994,
pp. 41–44.

[143] Stephen Boyd, Stephen P Boyd, and Lieven Vandenberghe. Convex optimization.
Cambridge university press, 2004.

[144] Zai Yang et al. “Sparse methods for direction-of-arrival estimation”. In: Academic
Press Library in Signal Processing, Volume 7. Elsevier, 2018, pp. 509–581.

[145] Emmanuel Candes and Justin Romberg. “l1-magic: Recovery of
sparse signals via convex programming”. In: URL: www. acm. caltech.
edu/l1magic/downloads/l1magic. pdf 4 (2005), p. 14.

[146] Michael Lustig, David Donoho, and John M Pauly. “Sparse MRI: The applica-
tion of compressed sensing for rapid MR imaging”. In: Magnetic Resonance in
Medicine: An Official Journal of the International Society for Magnetic Resonance
in Medicine 58.6 (2007), pp. 1182–1195.

[147] Yu Nesterov. “Smooth minimization of non-smooth functions”. In: Mathematical
programming 103.1 (2005), pp. 127–152.

[148] Stephen Becker, Jérôme Bobin, and Emmanuel J Candès. “NESTA: A fast and ac-
curate first-order method for sparse recovery”. In: SIAM Journal on Imaging Sci-
ences 4.1 (2011), pp. 1–39.



BIBLIOGRAPHY 155

[149] Stephen Boyd, Neal Parikh, and Eric Chu. Distributed optimization and statistical
learning via the alternating direction method of multipliers. Now Publishers Inc,
2011.

[150] E. van den Berg and M. P. Friedlander. “Probing the Pareto frontier for basis pur-
suit solutions”. In: SIAM Journal on Scientific Computing 31.2 (2008), pp. 890–
912. DOI: 10.1137/080714488. URL: http://link.aip.org/link/?SCE/31/
890.

[151] E. van den Berg and M. P. Friedlander. SPGL1: A solver for large-scale sparse re-
construction. https://friedlander.io/spgl1. Sept. 2019.

[152] Dmitry Malioutov, Müjdat Cetin, and Alan S Willsky. “A sparse signal reconstruc-
tion perspective for source localization with sensor arrays”. In: IEEE transactions
on signal processing 53.8 (2005), pp. 3010–3022.

[153] Waheed U Bajwa et al. “Compressed channel sensing: A new approach to es-
timating sparse multipath channels”. In: Proceedings of the IEEE 98.6 (2010),
pp. 1058–1076.

[154] J. Meng et al. “Compressive Sensing Based High-Resolution Channel Estimation
for OFDM System”. In: IEEE Journal of Selected Topics in Signal Processing 6.1
(2012), pp. 15–25.

[155] Georg Taubock et al. “Compressive estimation of doubly selective channels in
multicarrier systems: Leakage effects and sparsity-enhancing processing”. In:
IEEE Journal of selected topics in signal processing 4.2 (2010), pp. 255–271.

[156] Yuejie Chi et al. “Sensitivity to basis mismatch in compressed sensing”. In: IEEE
Transactions on Signal Processing 59.5 (2011), pp. 2182–2195.

[157] Kevin P Murphy. Machine learning: a probabilistic perspective. MIT press, 2012.

[158] ACFME Tipping and A Faul. “Analysis of sparse Bayesian learning”. In: Advances
in neural information processing systems 14 (2002), pp. 383–389.

[159] Sergios Theodoridis. Machine learning: a Bayesian and optimization perspective.
Academic press, 2015.

[160] Niels Lovmand Pedersen. “Bayesian Inference Methods for Sparse Channel Esti-
mation”. English. PhD thesis. July 2013. ISBN: 978-87-7152-035-4.

[161] Dmitriy Shutin and Bernard H Fleury. “Sparse variational Bayesian SAGE algo-
rithm with application to the estimation of multipath wireless channels”. In: IEEE
Transactions on signal processing 59.8 (2011), pp. 3609–3623.

[162] Jordan Frecon et al. “Bayesian-driven criterion to automatically select the regu-
larization parameter in the L1-Potts model”. In: 2017 IEEE International Confer-
ence on Acoustics, Speech and Signal Processing (ICASSP). IEEE. 2017, pp. 3839–
3843.

[163] Zhilin Zhang and Bhaskar D Rao. “Sparse signal recovery with temporally corre-
lated source vectors using sparse Bayesian learning”. In: IEEE Journal of Selected
Topics in Signal Processing 5.5 (2011), pp. 912–926.

https://doi.org/10.1137/080714488
http://link.aip.org/link/?SCE/31/890
http://link.aip.org/link/?SCE/31/890


156 BIBLIOGRAPHY

[164] Dmitriy Shutin et al. “Fast variational sparse Bayesian learning with automatic
relevance determination for superimposed signals”. In: IEEE Transactions on Sig-
nal Processing 59.12 (2011), pp. 6257–6261.

[165] Ranjitha Prasad, Chandra R Murthy, and Bhaskar D Rao. “Joint approximately
sparse channel estimation and data detection in OFDM systems using sparse
Bayesian learning”. In: IEEE Transactions on Signal Processing 62.14 (2014),
pp. 3591–3603.

[166] Petre Stoica and Prabhu Babu. “Sparse estimation of spectral lines: Grid selection
problems and their solutions”. In: IEEE Transactions on Signal Processing 60.2
(2011), pp. 962–967.

[167] Hao Zhu, Geert Leus, and Georgios B Giannakis. “Sparsity-cognizant total least-
squares for perturbed compressive sampling”. In: IEEE Transactions on Signal
Processing 59.5 (2011), pp. 2002–2016.

[168] Badri Narayan Bhaskar, Gongguo Tang, and Benjamin Recht. “Atomic norm de-
noising with applications to line spectral estimation”. In: IEEE Transactions on
Signal Processing 61.23 (2013), pp. 5987–5999.

[169] Zai Yang, Cishen Zhang, and Lihua Xie. “Robustly stable signal recovery in com-
pressed sensing with structured matrix perturbation”. In: IEEE Transactions on
Signal Processing 60.9 (2012), pp. 4658–4671.

[170] Zai Yang, Lihua Xie, and Cishen Zhang. “Off-grid direction of arrival estimation
using sparse Bayesian inference”. In: IEEE Transactions on Signal Processing 61.1
(2012), pp. 38–43.

[171] Jisheng Dai et al. “Root sparse Bayesian learning for off-grid DOA estimation”. In:
IEEE Signal Processing Letters 24.1 (2016), pp. 46–50.

[172] Haoyue Tang, Jintao Wang, and Longzhuang He. “Off-grid sparse bayesian
learning-based channel estimation for mmwave massive mimo uplink”. In: IEEE
Wireless Communications Letters 8.1 (2018), pp. 45–48.

[173] Dmitriy Shutin, Wei Wang, and Thomas Jost. “Incremental sparse Bayesian learn-
ing for parameter estimation of superimposed signals”. In: 10th International
Conference on Sampling Theory and Applications. 1. 2013, pp. 6–9.

[174] Lei Hu et al. “Compressed sensing of complex sinusoids: An approach based on
dictionary refinement”. In: IEEE Transactions on Signal Processing 60.7 (2012),
pp. 3809–3822.

[175] Petre Stoica et al. “Gridless compressive-sensing methods for frequency estima-
tion: Points of tangency and links to basics”. In: 2014 22nd European Signal Pro-
cessing Conference (EUSIPCO). IEEE. 2014, pp. 1831–1835.

[176] Zai Yang and Lihua Xie. “On gridless sparse methods for line spectral estimation
from complete and incomplete data”. In: IEEE Transactions on Signal Processing
63.12 (2015), pp. 3139–3153.

[177] Carlos Fernandez-Granda. “Super-resolution of point sources via convex pro-
gramming”. In: Information and Inference: A Journal of the IMA 5.3 (2016),
pp. 251–303.



BIBLIOGRAPHY 157

[178] Emmanuel J Candès and Carlos Fernandez-Granda. “Super-resolution from
noisy data”. In: Journal of Fourier Analysis and Applications 19.6 (2013), pp. 1229–
1254.

[179] Emmanuel J Candès and Carlos Fernandez-Granda. “Towards a mathematical
theory of super-resolution”. In: Communications on pure and applied Mathemat-
ics 67.6 (2014), pp. 906–956.

[180] Mihai-Alin Badiu, Thomas Lundgaard Hansen, and Bernard Henri Fleury. “Vari-
ational Bayesian inference of line spectra”. In: IEEE Transactions on Signal Pro-
cessing 65.9 (2017), pp. 2247–2261.

[181] Thomas Lundgaard Hansen. “Sparsity-Based Algorithms for Line Spectral Esti-
mation”. English. PhD thesis. 2018. DOI: 10.5278/vbn.phd.tech.00037.

[182] Thomas Lundgaard Hansen et al. “An iterative receiver for OFDM with sparsity-
based parametric channel estimation”. In: IEEE Transactions on Signal Processing
66.20 (2018), pp. 5454–5469.

[183] Thomas Lundgaard Hansen, Bernard Henri Fleury, and Bhaskar D Rao. “Super-
fast line spectral estimation”. In: IEEE Transactions on Signal Processing 66.10
(2018), pp. 2511–2526.

[184] Slavche Pejoski and Venceslav Kafedziski. “Estimation of sparse time dispersive
channels in pilot aided OFDM using atomic norm”. In: IEEE Wireless Communi-
cations Letters 4.4 (2015), pp. 397–400.

[185] Hongyun Chu, Le Zheng, and Xiaodong Wang. “Semi-blind millimeter-wave
channel estimation using atomic norm minimization”. In: IEEE Communications
Letters 22.12 (2018), pp. 2535–2538.

[186] Henk Wymeersch et al. “A machine learning approach to ranging error mitiga-
tion for UWB localization”. In: IEEE transactions on communications 60.6 (2012),
pp. 1719–1728.

[187] Xinrong Li and Kaveh Pahlavan. “Super-resolution TOA estimation with diversity
for indoor geolocation”. In: IEEE Transactions on Wireless Communications 3.1
(2004), pp. 224–234.

[188] Feng-Xiang Ge et al. “Super-resolution time delay estimation in multipath envi-
ronments”. In: IEEE Transactions on Circuits and Systems I: Regular Papers 54.9
(2007), pp. 1977–1986.

[189] M. Vetterli, P. Marziliano, and T. Blu. “Sampling signals with finite rate of innova-
tion”. In: IEEE Transactions on Signal Processing 50.6 (2002), pp. 1417–1428.

[190] Yann Barbotin et al. “Estimation of sparse MIMO channels with common sup-
port”. In: IEEE Transactions on Communications 60.12 (2012), pp. 3705–3716.

[191] Jie Xiong, Karthikeyan Sundaresan, and Kyle Jamieson. “Tonetrack: Leveraging
frequency-agile radios for time-based indoor wireless localization”. In: Proceed-
ings of the 21st Annual International Conference on Mobile Computing and Net-
working. 2015, pp. 537–549.

https://doi.org/10.5278/vbn.phd.tech.00037


158 BIBLIOGRAPHY

[192] Deepak Vasisht, Swarun Kumar, and Dina Katabi. “Decimeter-level localization
with a single WiFi access point”. In: 13th USENIX Symposium on Networked Sys-
tems Design and Implementation (NSDI 16). 2016, pp. 165–178.

[193] Chen Chen et al. “Achieving centimeter-accuracy indoor localization on WiFi
platforms: A frequency hopping approach”. In: IEEE Internet of Things Journal
4.1 (2016), pp. 111–121.

[194] Mahdi Barzegar Khalilsarai et al. “WiFi-based indoor localization via multi-band
splicing and phase retrieval”. In: 2019 IEEE 20th International Workshop on Sig-
nal Processing Advances in Wireless Communications (SPAWC). IEEE. 2019, pp. 1–
5.

[195] A Lee Swindlehurst et al. “Multiple invariance ESPRIT”. In: IEEE Transactions on
Signal Processing 40.4 (1992), pp. 867–881.

[196] Mats Viberg and Bjorn Ottersten. “Sensor array processing based on subspace
fitting”. In: IEEE Transactions on signal processing 39.5 (1991), pp. 1110–1121.

[197] David López-Pérez et al. “IEEE 802.11 be extremely high throughput: The next
generation of Wi-Fi technology beyond 802.11 ax”. In: IEEE Communications
Magazine 57.9 (2019), pp. 113–119.

[198] Camillo Gentile et al. “Methodology for Benchmarking Radio-Frequency Chan-
nel Sounders through a System Model”. In: IEEE Transactions on Wireless Com-
munications 19.10 (2020), pp. 6504–6519.

[199] M. Luise, R. Reggiannini, and G. M. Vitetta. “Blind equalization/detection for
OFDM signals over frequency-selective channels”. In: IEEE Journal on Selected
Areas in Communications 16.8 (1998), pp. 1568–1578.

[200] Ove Edfors et al. “OFDM channel estimation by singular value decomposition”.
In: IEEE Transactions on communications 46.7 (1998), pp. 931–939.

[201] Pepijn Boer et al. “Performance of High-Accuracy Phase-Based Ranging in
Multipath Environments”. In: 2020 IEEE 91st Vehicular Technology Conference
(VTC2020-Spring). IEEE. 2020, pp. 1–5.

[202] Tarik Kazaz, Gerard JM Janssen, and Alle-Jan van der Veen. “Time Delay Es-
timation from Multiband Radio Channel Samples in Nonuniform Noise”. In:
2019 53rd Asilomar Conference on Signals, Systems, and Computers. IEEE. 2019,
pp. 1237–1241.

[203] Tarik Kazaz et al. “Multiresolution time-of-arrival estimation from multiband ra-
dio channel measurements”. In: ICASSP 2019-2019 IEEE International Confer-
ence on Acoustics, Speech and Signal Processing (ICASSP). IEEE. 2019, pp. 4395–
4399.

[204] Mati Wax and Thomas Kailath. “Detection of signals by information theoretic
criteria”. In: IEEE Transactions on acoustics, speech, and signal processing 33.2
(1985), pp. 387–392.



BIBLIOGRAPHY 159

[205] Abdo Gaber and Abbas Omar. “A study of wireless indoor positioning based
on joint TDOA and DOA estimation using 2-D matrix pencil algorithms and
IEEE 802.11 ac”. In: IEEE Transactions on Wireless Communications 14.5 (2014),
pp. 2440–2454.

[206] A Lee Swindlehurst and Thomas Kailath. “A performance analysis of subspace-
based methods in the presence of model error. II. Multidimensional algorithms”.
In: IEEE Transactions on Signal Processing 41.9 (1993), pp. 2882–2890.

[207] Petre Stoica and Arye Nehorai. “MUSIC, maximum likelihood, and Cramer-Rao
bound”. In: IEEE Transactions on Acoustics, speech, and signal processing 37.5
(1989), pp. 720–741.

[208] François Rottenberg et al. “Performance Analysis of Channel Extrapolation in
FDD Massive MIMO Systems”. In: IEEE Transactions on Wireless Communica-
tions 19.4 (2020), pp. 2728–2741.

[209] Niels Lovmand Pedersen et al. “Analysis of smoothing techniques for subspace
estimation with application to channel estimation”. In: 2011 IEEE International
Conference on Communications (ICC). IEEE. 2011, pp. 1–6.

[210] Marco Driusso et al. “Performance analysis of time of arrival estimation on
OFDM signals”. In: IEEE Signal Processing Letters 22.7 (2014), pp. 983–987.

[211] Wasim Q Malik, David J Edwards, and Christopher J Stevens. “Frequency depen-
dence of fading statistics for ultrawideband systems”. In: IEEE Transactions on
Wireless Communications 6.3 (2007), pp. 800–804.

[212] Tarik Kazaz et al. “Analysis of Multipath Channel Delay Estimation Using Sub-
space Fitting”. In: 2020 54th Asilomar Conference on Signals, Systems, and Com-
puters. 2020, pp. 1070–1074. DOI: 10.1109/IEEECONF51394.2020.9443360.

[213] Yuan Shen and Moe Z Win. “Fundamental limits of wideband localization—Part
I: A general framework”. In: IEEE Transactions on Information Theory 56.10
(2010), pp. 4956–4980.

[214] A Lee Swindlehurst, Petre Stoica, and Magnus Jansson. “Exploiting arrays with
multiple invariances using MUSIC and MODE”. In: IEEE Transactions on Signal
Processing 49.11 (2001), pp. 2511–2521.

[215] Jorge J Moré. “The Levenberg-Marquardt algorithm: implementation and the-
ory”. In: Numerical analysis. Springer, 1978, pp. 105–116.

[216] Allen A Goldstein. “On steepest descent”. In: Journal of the Society for Industrial
and Applied Mathematics, Series A: Control 3.1 (1965), pp. 147–151.

[217] Aweke N Lemma, A-J Van der Veen, and Ed F Deprettere. “Multiresolution ESPRIT
algorithm”. In: IEEE Transactions on signal processing 47.6 (1999), pp. 1722–1726.

[218] Petr Tichavsky and Arie Yeredor. “Fast approximate joint diagonalization incor-
porating weight matrices”. In: IEEE Transactions on Signal Processing 57.3 (2008),
pp. 878–891.

[219] Cheng Qian et al. “Enhanced PUMA for direction-of-arrival estimation and its
performance analysis”. In: IEEE Transactions on Signal Processing 64.16 (2016),
pp. 4127–4137.

https://doi.org/10.1109/IEEECONF51394.2020.9443360


160 BIBLIOGRAPHY

[220] Jens Steinwandt, Florian Roemer, and Martin Haardt. “Generalized least squares
for ESPRIT-type direction of arrival estimation”. In: IEEE Signal Processing Letters
24.11 (2017), pp. 1681–1685.

[221] Irena Maravic and Martin Vetterli. “Sampling and reconstruction of signals with
finite rate of innovation in the presence of noise”. In: IEEE Transactions on Signal
Processing 53.8 (2005), pp. 2788–2805.

[222] Alle-Jan van der Veen, P Bas Ober, and Ed F Deprettere. “Azimuth and elevation
computation in high resolution DOA estimation”. In: IEEE Transactions on Signal
Processing 40.7 (1992), pp. 1828–1832.

[223] Gilles Chabriel et al. “Joint matrices decompositions and blind source separation:
A survey of methods, identification, and applications”. In: IEEE Signal Processing
Magazine 31.3 (2014), pp. 34–43.

[224] Tarik Kazaz et al. “Delay estimation for ranging and localization using multiband
channel state information”. In: IEEE Transactions on Wireless Communications
(2021).

[225] Klaus Witrisal et al. “Noncoherent ultra-wideband systems”. In: IEEE Signal Pro-
cessing Magazine 26.4 (2009).

[226] Ahmad Bazzi, Laura Cottatellucci, and Dirk Slock. “Blind on board wideband an-
tenna RF calibration for multi-antenna satellites”. In: 2017 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE. 2017,
pp. 6294–6298.

[227] Kfir Gedalyahu and Yonina C Eldar. “Time-delay estimation from low-rate sam-
ples: A union of subspaces approach”. In: IEEE Transactions on Signal Processing
58.6 (2010), pp. 3017–3031.

[228] Martin Vetterli, Pina Marziliano, and Thierry Blu. Sampling signals with finite rate
of innovation. Tech. rep. EPFL, 2001.

[229] Thomas Zwick, Troy J Beukema, and Haewoon Nam. “Wideband channel
sounder with measurements and model for the 60 GHz indoor radio channel”.
In: IEEE transactions on Vehicular technology 54.4 (2005), pp. 1266–1277.

[230] Anthony J Weiss and Benjamin Friedlander. “Eigenstructure methods for direc-
tion finding with sensor gain and phase uncertainties”. In: Circuits, Systems and
Signal Processing 9.3 (1990), pp. 271–300.

[231] Arogyaswami Paulraj and Thomas Kailath. “Direction of arrival estimation by
eigenstructure methods with unknown sensor gain and phase”. In: ICASSP’85.
IEEE International Conference on Acoustics, Speech, and Signal Processing.
Vol. 10. IEEE. 1985, pp. 640–643.

[232] Keyong Han, Peng Yang, and Arye Nehorai. “Calibrating nested sensor arrays with
model errors”. In: IEEE Transactions on Antennas and Propagation 63.11 (2015),
pp. 4739–4748.

[233] Stefan J Wijnholds et al. “Calibration challenges for future radio telescopes”. In:
IEEE Signal Processing Magazine 27.1 (2009), pp. 30–42.



BIBLIOGRAPHY 161

[234] Stefan J Wijnholds and Alle-Jan Van Der Veen. “Multisource self-calibration for
sensor arrays”. In: IEEE Transactions on Signal Processing 57.9 (2009), pp. 3512–
3522.

[235] Alle-Jan van der Veen, Stefan J Wijnholds, and Ahmad Mouri Sardarabadi. “Sig-
nal Processing for Radio Astronomy”. In: Handbook of Signal Processing Systems.
Springer, 2019, pp. 311–360.

[236] Pim van der Meulen et al. “Calibration techniques for single-sensor ultrasound
imaging with a coding mask”. In: 2018 52nd Asilomar Conference on Signals, Sys-
tems, and Computers. IEEE. 2018, pp. 1641–1645.

[237] Björn Ottersten, Peter Stoica, and Richard Roy. “Covariance matching estimation
techniques for array signal processing applications”. In: Digital Signal Processing
8.3 (1998), pp. 185–210.

[238] Haolu Xie et al. “Single-chip multiband EGPRS and SAW-less LTE WCDMA CMOS
receiver with diversity”. In: IEEE Transactions on Microwave Theory and Tech-
niques 60.5 (2012), pp. 1390–1396.

[239] Shuyang Ling and Thomas Strohmer. “Self-calibration and biconvex compres-
sive sensing”. In: Inverse Problems 31.11 (2015), p. 115002.

[240] Benjamin Friedlander and Thomas Strohmer. “Bilinear compressed sensing for
array self-calibration”. In: 2014 48th Asilomar Conference on Signals, Systems and
Computers. IEEE. 2014, pp. 363–367.

[241] Emmanuel J Candes, Thomas Strohmer, and Vladislav Voroninski. “Phaselift: Ex-
act and stable signal recovery from magnitude measurements via convex pro-
gramming”. In: Communications on Pure and Applied Mathematics 66.8 (2013),
pp. 1241–1274.

[242] Ali Ahmed, Benjamin Recht, and Justin Romberg. “Blind deconvolution using
convex programming”. In: IEEE Transactions on Information Theory 60.3 (2013),
pp. 1711–1732.

[243] Mark A Davenport and Justin Romberg. “An overview of low-rank matrix recov-
ery from incomplete observations”. In: IEEE Journal of Selected Topics in Signal
Processing 10.4 (2016), pp. 608–622.

[244] Krishnaprasad Nambur Ramamohan et al. “Blind calibration of sparse arrays
for DOA estimation with analog and one-bit measurements”. In: ICASSP 2019-
2019 IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP). IEEE. 2019, pp. 4185–4189.

[245] Y Bistritz and G Langholz. “Model reduction by Chebyshev polynomial tech-
niques”. In: IEEE Transactions on Automatic Control 24.5 (1979), pp. 741–747.

[246] Yoram Bresler. “Maximum likelihood estimation of a linearly structured covari-
ance with application to antenna array processing”. In: Fourth Annual ASSP
Workshop on Spectrum Estimation and Modeling. IEEE. 1988, pp. 172–175.

[247] E. van den Berg and M. P. Friedlander. SPGL1: A solver for large-scale sparse re-
construction. http://www.cs.ubc.ca/labs/scl/spgl1. June 2007.



162 BIBLIOGRAPHY

[248] Yik-Chung Wu, Qasim Chaudhari, and Erchin Serpedin. “Clock synchronization
of wireless sensor networks”. In: IEEE Signal Processing Magazine 28.1 (2011),
pp. 124–138.

[249] Moe Z Win et al. “Efficient multisensor localization for the Internet of Things: Ex-
ploring a new class of scalable localization algorithms”. In: IEEE Signal Processing
Magazine 35.5 (2018), pp. 153–167.

[250] Yiyin Wang, Xiaoli Ma, and Geert Leus. “Robust time-based localization for
asynchronous networks”. In: IEEE Transactions on Signal Processing 59.9 (2011),
pp. 4397–4410.

[251] Raj Thilak Rajan and Alle-Jan van der Veen. “Joint ranging and clock synchroniza-
tion for a wireless network”. In: Computational Advances in Multi-Sensor Adap-
tive Processing (CAMSAP), 2011 4th IEEE International Workshop on. IEEE. 2011,
pp. 297–300.

[252] Sundeep Prabhakar Chepuri et al. “Joint clock synchronization and ranging:
Asymmetrical time-stamping and passive listening”. In: IEEE Signal Processing
Letters 20.1 (2013), pp. 51–54.

[253] Mathias Pelka, Christian Bollmeyer, and Horst Hellbrück. “Accurate radio dis-
tance estimation by phase measurements with multiple frequencies”. In: In-
door Positioning and Indoor Navigation (IPIN), 2014 International Conference on.
IEEE. 2014, pp. 142–151.

[254] Georg von Zengen et al. “No-Cost distance estimation using standard WSN ra-
dios”. In: Computer Communications, IEEE INFOCOM 2016-The 35th Annual
IEEE International Conference on. IEEE. 2016, pp. 1–9.

[255] Omotayo Oshiga, Stefano Severi, and Giuseppe TF de Abreu. “Superresolution
multipoint ranging with optimized sampling via orthogonally designed Golomb
rulers”. In: IEEE Transactions on Wireless Communications 15.1 (2016), pp. 267–
282.

[256] Thomas Watteyne, M Palattella, and L Grieco. Using IEEE 802.15. 4e time-slotted
channel hopping (TSCH) in the internet of things (IoT): Problem statement. Tech.
rep. 2015.

[257] Stephanie Rouquette and Mohamed Najim. “Estimation of frequencies and
damping factors by two-dimensional ESPRIT type methods”. In: IEEE Transac-
tions on signal processing 49.1 (2001), pp. 237–245.

[258] Hing-Cheung So and Frankie KW Chan. “A generalized weighted linear predictor
frequency estimation approach for a complex sinusoid”. In: IEEE Transactions on
Signal Processing 54.4 (2006), pp. 1304–1315.

[259] Hing-Cheung So et al. “An efficient approach for two-dimensional parameter es-
timation of a single-tone”. In: IEEE Transactions on Signal Processing 58.4 (2010),
pp. 1999–2009.

[260] Elad Tzoreff, Ben-Zion Bobrovsky, and Anthony J Weiss. “Single Receiver Emit-
ter Geolocation Based on Signal Periodicity With Oscillator Instability.” In: IEEE
Trans. Signal Processing 62.6 (2014), pp. 1377–1385.



BIBLIOGRAPHY 163

[261] Yiyin Wang, Zijian Tang, and Geert Leus. “Clock skewcalibration for UWB rang-
ing”. In: 2012 IEEE International Conference on Acoustics, Speech and Signal Pro-
cessing (ICASSP). IEEE. 2012, pp. 3013–3016.

[262] Behzad Razavi. RF Microelectronics (2Nd Edition) (Prentice Hall Communications
Engineering and Emerging Technologies Series). 2nd. Upper Saddle River, NJ, USA:
Prentice Hall Press, 2011. ISBN: 9780137134731.

[263] David Tse and Pramod Viswanath. Fundamentals of wireless communication.
Cambridge university press, 2005.

[264] Hariharan Shankar Rahul, Swarun Kumar, and Dina Katabi. “JMB: scaling wire-
less capacity with user demands”. In: Proceedings of the ACM SIGCOMM 2012
conference on Applications, technologies, architectures, and protocols for com-
puter communication. ACM. 2012, pp. 235–246.

[265] Peishuo Li et al. “An adaptive channel selection scheme for reliable TSCH-based
communication”. In: 2015 International Symposium on Wireless Communication
Systems (ISWCS). IEEE. 2015, pp. 511–515.

[266] Tomas Lennvall, Stefan Svensson, and Fredrik Hekland. “A comparison of Wire-
lessHART and ZigBee for industrial applications”. In: 2008 ieee international
workshop on factory communication systems. IEEE. 2008, pp. 85–88.

[267] Yuriy S Shmaliy. “Von Mises/Tikhonov-based distributions for systems with dif-
ferential phase measurement”. In: Signal Processing 85.4 (2005), pp. 693–703.

[268] Michael P Clark and Louis L Scharf. “Two-dimensional modal analysis based on
maximum likelihood”. In: IEEE Transactions on Signal Processing 42.6 (1994),
pp. 1443–1452.

[269] Hing-Cheung So and KW Chan. “Approximate maximum-likelihood algorithms
for two-dimensional frequency estimation of a complex sinusoid”. In: IEEE
Transactions on Signal Processing 54.8 (2006), pp. 3231–3237.

[270] Jun Liu, Xiangqian Liu, and Xiaoli Ma. “First-order perturbation analysis of sin-
gular vectors in singular value decomposition”. In: IEEE Transactions on Signal
Processing 56.7 (2008), pp. 3044–3049.

[271] S. Kay and R. Nekovei. “An efficient two-dimensional frequency estimator”. In:
IEEE Transactions on Acoustics, Speech, and Signal Processing 38.10 (Oct. 1990),
pp. 1807–1809. ISSN: 0096-3518. DOI: 10.1109/29.60114.

[272] Cailian Deng et al. “IEEE 802.11 be Wi-Fi 7: New challenges and opportunities”.
In: IEEE Communications Surveys & Tutorials 22.4 (2020), pp. 2136–2166.

[273] J Romme et al. “Measurement and analysis of UWB radio channel for indoor lo-
calization in a hospital environment”. In: 2014 IEEE International Conference on
Ultra-WideBand (ICUWB). IEEE. 2014, pp. 274–279.

[274] P. Meissner, E. Leitinger, S. Hinteregger, J. Kulmer, M. Lafer, K. Witrisal. Accessed
Jan. 10, 2021. MeasureMINT UWB database, Graz University of Technology. URL:
www.spsc.tugraz.at/tools/UWBmeasurements.

https://doi.org/10.1109/29.60114
www.spsc.tugraz.at/tools/UWBmeasurements


164 BIBLIOGRAPHY

[275] Andreas F Molisch. “Ultra-wide-band propagation channels”. In: Proceedings of
the IEEE 97.2 (2009), pp. 353–371.

[276] Yonghao Zhao et al. “Calibration-free indoor positioning using crowdsourced
data and multidimensional scaling”. In: IEEE Transactions on Wireless Commu-
nications 19.3 (2019), pp. 1770–1785.

[277] Yingjie Liang and Wen Chen. “A survey on computing Lévy stable distributions
and a new MATLAB toolbox”. In: Signal Processing 93.1 (2013), pp. 242–251.

[278] Katsuyuki Haneda, Andreas Richter, and Andreas F Molisch. “Modeling the fre-
quency dependence of ultra-wideband spatio-temporal indoor radio channels”.
In: IEEE transactions on antennas and propagation 60.6 (2012), pp. 2940–2950.

[279] Zhuoling Xiao et al. “Non-line-of-sight identification and mitigation using re-
ceived signal strength”. In: IEEE Transactions on Wireless Communications 14.3
(2014), pp. 1689–1702.

[280] Han Dun et al. “Design of Sparse Multiband Signal for Precise Positioning With
Joint Low-Complexity Time Delay and Carrier Phase Estimation”. In: IEEE Trans-
actions on Vehicular Technology 70.4 (2021), pp. 3552–3567.

[281] Michael D Larsen, Gonzalo Seco-Granados, and A Lee Swindlehurst. “Pilot opti-
mization for time-delay and channel estimation in OFDM systems”. In: 2011 IEEE
International Conference on Acoustics, Speech and Signal Processing (ICASSP).
IEEE. 2011, pp. 3564–3567.

[282] Rafael Montalban, Gonzalo Seco-Granados, and A Lee Swindlehurst. “Subopti-
mal method for pilot and data power allocation in combined positioning and
communications OFDM systems”. In: 2012 Conference Record of the Forty Sixth
Asilomar Conference on Signals, Systems and Computers (ASILOMAR). IEEE. 2012,
pp. 1041–1045.

[283] Harry L Van Trees and Kristine L Bell. Bayesian bounds for parameter estimation
and nonlinear filtering/tracking. Wiley-IEEE press New York, 2007.

[284] Ulkü Oktel and Randolph L Moses. “A Bayesian approach to array geometry de-
sign”. In: IEEE transactions on signal processing 53.5 (2005), pp. 1919–1923.

[285] Oliver Lange and Bin Yang. “Optimization of array geometry for direction-of-
arrival estimation using a priori information”. In: Advances in Radio Science 8.C.
1 (2010), pp. 87–94.

[286] Frankie KW Chan, Hing-Cheung So, and Weize Sun. “Subspace approach for
two-dimensional parameter estimation of multiple damped sinusoids”. In: Sig-
nal Processing 92.9 (2012), pp. 2172–2179.

[287] Aweke N Lemma, A-J Van der Veen, and Ed F Deprettere. “Joint angle-frequency
estimation using multi-resolution ESPRIT”. In: Acoustics, Speech and Signal Pro-
cessing, 1998. Proceedings of the 1998 IEEE International Conference on. Vol. 4.
IEEE. 1998, pp. 1957–1960.

[288] Yuwen Yang et al. “Deep Transfer Learning-Based Downlink Channel Prediction
for FDD Massive MIMO Systems”. In: IEEE Transactions on Communications
68.12 (2020), pp. 7485–7497.



BIBLIOGRAPHY 165

[289] Ying Zhang et al. “Multiple radar subbands fusion algorithm based on support
vector regression in complex noise environment”. In: IEEE Transactions on An-
tennas and Propagation 66.1 (2017), pp. 381–392.

[290] Nir Shlezinger et al. “Model-Based Machine Learning for Communications”. In:
arXiv preprint arXiv:2101.04726 (2021).





GLOSSARY

NOTATION

SETS

N Natural numbers.

N+ Positive natural numbers.

Z Integer numbers.

R Real numbers.

R+ Nonnegative real numbers.

RN Real length-N vectors.

RM×N Real M ×N matrices.

C Complex numbers.

CN Complex length-N vectors.

CM×N Complex M ×N matrices.

VECTORS AND MATRICES

x, X Plain lowercase and uppercase letters denote scalar.

x Lowercase boldface letters denote vectors.

X Uppercase boldface letters denote matrices.

XT Transpose of matrix X.

X∗ Complex conjugate of the elements in matrix X.

XH Complex conjugate transpose, i.e., Hermitian, of matrix X.

diag(x) Diagonal matrix with entries on the main diagonal collected in x.

0N N ×1 vector of all ones.

0N ,M N ×M matrix of all zeros.

IN N ×N matrix of all ones.

Tr(X) Trace of matrix X.

det(X) The determinant of square matrix X.

X−1 Inverse of matrix X.

X† := (XH X)−1XH Pseudo inverse (or the left-inverse) of a full-column rank tall matrix
X.

X< Y X−Y is a positive semidefinite matrix.

X¯Y Hadamard product of matrix X and matrix Y.

X⊗Y Kronecker product of matrix X and matrix Y.

X◦Y Khatri-Rao product of matrix X and matrix Y.
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168 GLOSSARY OF NOTATION AND ABBREVIATIONS

vec(X) M N ×1 vector formed by stacking the columns of an M ×N matrix
X.

unvec(X) M ×N matrix formed by the inverse vec(X) operation on an M N ×1
vector.

range(X) The range of matrix vec(X).

NORMS

‖x‖0 `0-(quasi) norm, i.e., number on non-zero entries of vector x.

‖x‖1 `1-norm of vector x.

‖x‖2 Euclidean (or `2-)norm of vector x.

‖X‖2,1 :=∑N
i=1 ‖xi‖2 `2,1 norm of matrix X that has columns xi , i = 1, . . . , N .

‖X‖F :=
√

Tr(XXH ) Forbenious norm of matrix X.

‖X‖∗ Nuclear norm of matrix X.

STOCHASTIC PROCESSES

E(x) Expected value of random vector x.

N (µ,Σ) Gaussian distribution with mean vector µ and covariance matrix Σ.

Lap(x,µ,b) Laplace distribution of variable x with location and scale parame-
ters denoted by µ and b.

p(x;θ) Probability density function of x parameterized by θ.

ABBREVIATIONS

ADC analog-to-digital-converter

AGC automatic gain control

AOA angle of arrival

cf. confer (compare)

CFR channel frequency response

CIR channel impusle response

CRB Cramér–Rao bound

CS compressive sensing

CSI channel state information

DAC digital-to-analog-converter

EHT extremly high throughput

EVD eigenvalue decomposition

e.g. exempli gratia (for example)

FIM Fisher information matrix

GNSS global navigation satellite system

GPS global positioning system

i.e. id est (that is)

i.i.d independent and identically distributed
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LS least squares

LTF long training field

MBWDE multiband weighted delay estimation

MI multiple invariance

MPC multipath component

MRTDE multiresolution time-delay estimation

MSE mean square error

NLS nonlinear least squares

PDF probability density function

PDoA phase difference of arrival

RF radio frequency

RMSE root mean square error

RSS received signal strength

STF short training field

SVD singular value decomposition

TDOA time difference of arrival

TOA time of arrival

UWB ultra-wideband

VNA vector network analyzer

WLS weighted least squares

WSF weighted subspace fitting
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