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Microphones are the 
most popular devices 

used to convert sound 
into electrical signals. 

However, with the advent 
of sensor technology, 
transducers capable 
of measuring vector 

quantities are opening up 
many new possibilities. 

One such device is an 
acoustic vector sensor 

(AVS), which measures both 
acoustic pressure and particle 

velocity, and has shown promising 
results with distinct advantages. In this work, 

we explore the characteristics of AVS arrays and 
their variations in comparison to the conventional 

microphone arrays for the purpose of direction-of-arrival 
estimation of far-field sound sources. Furthermore, we also look 

into one of the practical aspects of calibrating the AVS arrays and propose 
novel techniques to address this issue.
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SUMMARY

The localization and characterization of sound have played a vital role in various applica-
tions, ranging from noise control of machinery to battlefield awareness. Microphone arrays
are commonly used to find sound sources, which implicitly inherits a series of limitations.
Alternatively, acoustic vector sensors (AVSs) have shown promising results in overcoming
most of those limitations, specifically having a larger operation frequency while requiring
a smaller number of sensor nodes. However, literature about this topic is still evolving
and mainly focused on the theoretical aspects, disregarding most real-world limitations.
This thesis extends the AVS arrays’ theoretical framework for direction-of-arrival (DOA) es-
timation of far-field sources while considering practical constraints. Specifically, the study
considers the DOA estimation problem using AVS arrays in three main scenarios: spatially
under-sampled configurations, the presence of calibration errors, and sensors with a re-
duced number of channels.

The idea of spatial sampling by AVS arrays has a different interpretation compared to
the equivalent acoustic pressure sensor (APS) arrays. Notably, it is possible to carry out
unambiguous DOA estimation using a spatially under-sampled AVS array, which is the main
topic of interest in the first part of this work. Here we study the effects of the grating lobes
or spatial aliasing on the performance of DOA estimation. We will observe that this idea can
also be extended to beamforming applications.

Subsequently, in the second part of this work, we consider the DOA estimation problem
using AVS arrays in the presence of calibration errors. First, identifiability conditions are de-
rived for the solution to exist. Then two main classes of self-calibration approaches are pro-
posed. The first calibration approach is array geometry independent and is based on sparse
recovery techniques that lead to a one-step solver to estimate both the source DOAs and
the calibration parameters jointly. Further, the extension of the proposed self-calibration
approach in the presence of wide-band sources is also presented. The second calibration
approach applies only to a uniform linear array (ULA) of AVSs, where the Toeplitz block
structure of its covariance matrix is exploited to estimate the calibration errors followed by
the estimation of the source DOAs.

In the last part of the thesis, an alternate configuration of an AVS is considered for DOA
estimation with a reduced channel count. We refer to such an AVS as a uniaxial AVS (U-
AVS). The DOA estimation performance using a U-AVS array is analyzed, and specifically,
the impact of the extra degree-of-freedom originating from the fact that each U-AVS in the
array can have arbitrary orientation is studied comprehensively. Furthermore, all the anal-
yses and proposed algorithms in this thesis are supported by real experimental results per-
formed with AVS arrays in an anechoic chamber.

To conclude, this research on AVS arrays paves the way to achieve an increased situa-
tional awareness across our society; this could be either by detecting and localizing prob-
lems or threats occurring in an urban environment or assisting soldiers on the battlefield to
make a timely decision to achieve peace.

xi





SAMENVATTING

De lokalisering en karakterisering van geluid speelt een belangrijke rol in vele toepassingen,
van ruiscontrole in machines tot geluidsdetectie in oorlogsvoering. Doorgaans worden mi-
crofoonroosters gebruikt om geluid te lokaliseren, maar dat brengt een aantal beperkingen
met zich mee. Akoestische vectorsensoren daarentegen laten hoopgevende resultaten zien
om deze beperkingen te omzeilen. Zo kunnen ze bijvoorbeeld werken bij hogere frequen-
ties en met minder sensoren. De literatuur over dit onderwerp is echter beperkt en richt
zich vooral op theoretische aspecten zonder oog voor de praktijk. Deze thesis breidt de the-
orie van roosters van akoestische vectorsensoren uit voor richtingsschatting van bronnen
in het verre veld, daarbij rekening houdend met de praktische beperkingen. Meer speci-
fiek worden drie scenario’s bestudeerd: spatiale onderbemonstering, de aanwezigheid van
kalibratiefouten, en sensoren met een beperkt aantal kanalen.

Het spatiaal bemonsteren door roosters van akoestische vectorsensoren verschilt in in-
terpretatie van het bemonsteren door roosters van akoestische druksensoren. Zo is het
mogelijk om ondubbelzinnige richtingsschatting uit te voeren met een onderbemonsterd
rooster van akoestische vectorsensoren, wat het hoofdonderwerp is van het eerste deel van
deze thesis. Meer specifiek zullen we de effecten van hoge zijlobben en spatiale aliasering
op de prestatie van richtingsschatting bestuderen. Hierbij zullen we opmerken dat dit idee
ook kan uitgebreid worden naar bundelvorming toepassingen.

Vervolgens zullen we in het tweede deel van deze thesis het effect van kalibratiefouten
op roosters van akoestische vectorsensoren bestuderen. Eerst leiden we de voorwaarden af
waaronder een oplossing bestaat. Daarna stellen we twee zelfkalibratietechnieken voor. De
eerste techniek is onafhankelijk van de roostergeometrie en is gebaseerd op de reconstruc-
tie van schaarse signalen met veel nullen. Deze techniek leidt tot een oplossing in één stap
voor zowel de bronrichtingen als de kalibratiefouten. Verder wordt ook een uitbreiding van
deze techniek naar breedband bronnen voorgesteld. De tweede techniek is alleen toepas-
baar voor uniforme lineaire roosters van akoestische vectorsensoren en maakt gebruik van
de Toeplitz blokstructuur van de covariantiematrix om de kalibratiefouten te schatten. Op
basis van deze schatting worden dan in een tweede stap de bronrichtingen geschat.

In het laatste deel van deze thesis bestuderen we een alternatieve configuratie van een
akoestische vectorsensor met een gereduceerd aantal kanalen, genaamd een uniaxiale akoes-
tische vectorsensor. De prestatie van richtingsschatting met behulp van een rooster van
zulke uniaxiale akoestische vectorsensoren wordt geanalyseerd, waarbij vooral de impact
van de extra vrijheidsgraad bekomen door de willekeurige oriëntatie van elke uniaxiale sen-
sor uitvoerig wordt bestudeerd. Al de analyses en voorgestelde algoritmen in deze thesis
worden ondersteund door daadwerkelijke experimentele resultaten uitgevoerd met akoes-
tische vectorsensoren in een echovrije kamer.

Tot slot baant dit onderzoek over akoestische vectorsensoren de weg naar een verbeterd
omgevingsbewustzijn binnen onze samenleving; zij het door het detecteren en lokaliseren
van problemen of bedreigingen in een stedelijke omgeving of door het assisteren van sol-
daten op het slagveld om snel tot vrede te komen.
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INTRODUCTION

We, humans, are gifted with ears that sense air particle oscillations, which along with our
built-in processing system, allows us to hear the sounds around us. Further, we can pro-
cess the acoustic signals to extract information about our environment and communicate
with others. Our two-ear acoustic array also provides us spatial information of the acous-
tic field around us, which allows us to sense the sound direction of arrival. Starting from
developing primitive tools to passively amplify sound, we have evolved to develop complex
acoustic systems that can autonomously detect and estimate the parameters of interest.
Among them arrays of spatially distributed sensors that can sense, process, and estimate
the direction-of-arrival (DOA) of multiple acoustic waves, including the sound produced
by moving ships in the water across thousands of miles of ocean or a blast from a weapon
across several kilometers.

Nowadays, the DOA estimation problem is dealt with in the field of array signal pro-
cessing where an array of sensor elements is used to generate or pick up waves. Apart from
acoustics, the array signal processing framework plays an integral part in numerous diverse
applications, including radar, wireless communications, seismology, and radio astronomy.
The differences lie in the nature and medium of propagation. The array processing frame-
work and its tools are employed to extract useful information from the measurements cap-
tured by a spatially spread array of sensors. Usually, it is achieved by the fusion of spatial and
temporal measurements with the prior information such as array geometry, sensor char-
acteristics, etc. The information of interest mainly involves detection of an event and/or
subsequently either estimating spatio-temporal parameters such as time-of-arrival (TOA),
time-difference-of-arrival (TDOA), direction-of-arrival (DOA), source spectrum, etc., or the
content of the source signals itself based on beamforming.

In the field of acoustics, traditionally, microphones that measure acoustic pressure are
employed in the array, and those are commonly referred to as acoustic pressure sensor (APS)
arrays. Since acoustic pressure is a scalar quantity, those traditional measuring systems are
also referred to as scalar sensor arrays. The spatial diversity of the sensors provides informa-
tion related to spatio-temporal parameters of interest. Equivalent systems can be found for
electromagnetic applications, where they employ antennas that measure the scalar quan-
tity of the electric field (electric potential), and they are commonly referred to as antenna
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or phased arrays. On the other hand, the propagating wavefields are associated with vector
information which include,

• For acoustic waves, we have acoustic particle velocity, which is the spatial gradient of
the acoustic pressure.

• For electromagnetic waves, we have an electric field, which is the spatial gradient of
the electric potential, and the magnetic field.

With the recent advancements in micro-electro-mechanical systems (MEMS) technol-
ogy, the transducers that are capable of measuring vector information are nowadays avail-
able. One such device is an acoustic vector sensor (AVS), which measures both acoustic
pressure and particle velocity [1]. The application of such sensors that measure the vector
information in an array configuration has distinct advantages in comparison to the con-
ventional scalar sensor array [2, 3]. Unlike a traditional microphone, a single sensor can be
used for estimating the direction-of arrival (DOA) of sources [4].

1.1. ACOUSTIC VECTOR SENSOR
Transducers that are capable of measuring acoustic variations are essential to observe acous-
tic events; specifically, it is important to characterize the two fundamental building blocks
of acoustics: sound pressure and particle velocity. The transducers to measure those quan-
tities include:

• Microphones are the most common devices used to measure sound. They have an
internal membrane that responds to air pressure fluctuations in the same way as our
eardrums, moving backward and forward as the pressure force acts over the mem-
brane surface. The motion of the membrane is converted into an electrical signal by
a transducing element.

• Acoustic particle velocity sensors, or Microflowns [5], are transducers that are able
to capture the particle velocity in air. The transducers were inspired by hot-wire
anemometers: a wire is heated up by an electrical current and is cooled down when
exposed to an acoustic flow. Due to temperature changes in the wire, its resistance
changes accordingly, producing a variable electrical signal proportional to the inci-
dent flow. Using two closely-spaced heated wires and measuring the difference in
temperature between them provides a measure of the acoustic particle velocity. The
small size of this device allows three orthogonal sensors to be placed close to each
other to characterize the acoustic particle velocity vector of the sound field.

An acoustic vector sensor (AVS) measures both acoustic pressure and particle velocity. It is
constructed by placing multiple transducers nearly at the same point, including a combi-
nation of a microphone and three (two) particle velocity transducers that are orthogonal to
each other placed in R3 (R2). One such AVS manufactured by Microflown Technologies is
illustrated in Figure 1.1 (a), where all the transducers are placed on a pillar, with a micro-
phone on the top and three orthogonally placed particle velocity transducers on the sides of
it. A close-up picture of the hot wire anemometers principle-based particle velocity trans-
ducer is presented in Figure 1.1 (b).
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(a) Acoustic vector sensor (b) Acoustic particle velocity sensor

Figure 1.1: Acoustic vector sensor manufactured by Microflown Technologies [5, 6].

Multiple AVSs can be arranged in an array configuration as seen in the Figure 1.2. Such
arrays are used for multiple indoor applications, which can either be operated as a stand-
alone unit as seen in Figure 1.2 (a) or as a handheld unit as seen in Figure 1.2 (b). An out-

(a) Stand-alone array of AVSs. (b) Handheld array of AVSs.

Figure 1.2: An array of acoustic vector sensors manufactured by Microflown Technologies.

door version of the AVS array can be seen in Figure 1.3 1, where each sensor is equipped
with a wind and rain protection layer that is acoustically characterized during the calibra-
tion process of each AVS. These arrays can either contain AVSs with three channels (referred
as 2D-AVS) including acoustic pressure, x and y channels of the particle velocity as seen in
Figure 1.3 (a) or with four channels (referred as 3D-AVS) including an additional z-channel
particle velocity transducer as seen in Figure 1.3 (b). Additionally it is possible that the AVS
array can be placed on a moving platform with space constraints imposed by the vehicle
dimensions. A typical scenario where the AVSs are placed on a vehicle is depicted in Fig-
ure 1.4.

Depending on the application, these AVS arrays can be used as a standalone passive sys-
tem that can report the direction-of-arrival (DOA) and the time-difference-of-arrival (TDOA)

1Further details on these sensors can be found on www.microflown-avisa.com.
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(a) Two dimensional AVS array with three
channels each.

(b) Three dimensional AVS array with four
channels each.

Figure 1.3: The outdoor versions of the AVS array.

of the acoustic events. However, it is also possible that the AVS array (viewed as a single
node) is part of a network with many other nodes, and they can communicate to the main
station through radios. A typical scenario of such a network is depicted in Figure 1.5, which
is deployed for acquiring situational awareness based on acoustics, such that we can detect,
localize and track multiple sound sources. Further, each of these arrays additionally can
contain a weather station to report local wind and temperature information to fine tune the
sound position estimates, and a global positioning service (GPS) device to provide location
and synchronized time information.

1.1.1. APPLICATIONS
In practice, the AVS and its arrays have applications in a wide range of problems. The use
cases of AVS arrays can either be indoor or outdoor with near-field or far-field propaga-
tion of the acoustic waves in air or in an underwater medium. Depending on the nature
of the environment, propagation, and medium, AVS arrays have found their applicability
in a wide variety of fields, ranging from automotive, battlefield acoustics, and underwater
applications, among many others. They are used for tasks such as sound visualization and
imaging [7, 8], acoustic intensity and impedance measurement [9–11] and sound source de-
tection, localization and tracking [12–15]. In the following, we look at different case studies
where an AVS and its arrays are useful,

Case 1: Imaging of near-field acoustic events

The acoustic vector sensor, along with near-field sound imaging techniques such as
Scan&Paint [16] or near field holography (NAH) [17, 18] can be used for visualization
of sound fields in the form of sound maps. Usually, the sound maps are obtained for a
given frequency range of interest, and they can be visualized in both two and three di-
mensional space. Further, the obtained sound maps can be superimposed on a pho-
tograph or 3D model of the measured object, allowing to localize the sound origin for
either low, mid, or high frequencies in a clear and intuitive manner. A example of such
a scenario is presented in Figure 1.6, where the sound leakage of a car door is visual-
ized. There are numerous automotive applications where such near-field sound visu-
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Figure 1.4: The outdoor version of the AVS array deployed on a vehicle [5].

alization techniques are beneficial for noise source identification, component testing,
noise ranking, soundproofing, and benchmarking.

Case 2: Far-field sound source localization

Multiple AVS arrays can be used in a cooperative network configuration to provide
real-time localization of sound sources. Those sound sources can either be impulsive
(such as mortars, artillery, and rocket projectiles) or tonal (like drones, boats, heli-
copters, or unmanned aerial vehicles) in nature. Such a scenario of impulsive sound
source localization by a network of multiple spatially spread AVS arrays is presented
in Figure 1.7. The estimated localization (white circle) of the impulsive sound source
(the blue square) is achieved by combining the DOA estimated by each AVS array.
This localization approach can be used in combination with a source tracking algo-
rithm extending the capability to track moving sources such as boats, helicopters, or
drones. There are numerous applications where such techniques that enable situ-
ational awareness are helpful. Some of them include localization of accidents, ille-
gal fireworks [19], gunshots, sniper localization, helicopter localization, and track-
ing [12, 14, 20].

Case 3: Sound visualization of low-frequency noise

An AVS array can be deployed for sound visualization of a far-field and low-frequency
sound source such as wind turbine. The usage of AVS arrays allows for understanding
how different mechanical defects have an impact on the perceived sound. The sound
field studied through an array of AVSs enables locating low-frequency sound sources
with a relatively small aperture. The far-field sound field produced by a wind tur-
bine can be investigated using multiple beamforming techniques [21], and the sound
maps are obtained for a frequency range of interest. An example of such a sound
map that is super imposed on the image of a wind turbine is presented in Figure 1.8,
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Figure 1.5: A typical scenario of an acoustic network for situational awareness inference.

Figure 1.6: Applications of Acoustic Vector Sensor arrays - Sound visualization using two dimensional scan and
paint approach.

and we can observe that the sound is produced by the downstroke movement of the
wind turbine blades. Such approaches can also be used for monitoring and visual-
izing any annoying low frequency sound generated by machines or other pollution
noise sources [15].

1.2. CONTEXT AND RESEARCH OBJECTIVES OF THIS THESIS
The idea of exploring array processing concepts for direction-of-arrival (DOA) estimation of
far-field sources using an AVS array was carried out by the author as an MSc thesis project
in 2015. This task was a collaboration between TU Delft and Microflown AVISA (who kindly
funded the project). The promising results achieved triggered the creation of a Ph.D. pro-
posal with the same collaborators to further explore AVS array-based research topics for
DOA estimation.

In this thesis, we focus on exploring the capabilities of an AVS array in the presence of
far-field sound sources and for estimating their DOA. This scenario is suitable for applica-
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Figure 1.7: Applications of AVS arrays - Source localization using network of AVS arrays.

Figure 1.8: Applications of AVS arrays - Sound imaging to localize far-field and low frequency wind turbine noise.

tions such as the ones described above in Figure 1.7 (while focusing on local processing at
an individual AVS array node within the entire network) and Figure 1.8. These arrays will
be deployed permanently at a location either on the ground or on a moving platform with
an overall objective of achieving accurate DOA estimation performance. Further, these ar-
rays are battery-operated, where each operational cycle lasts for a couple of days. Such
demanding conditions give rise to many unique challenges, such as the restriction on the
array aperture, the fewer elements and the drifts in the receiver electronics with time, im-
pacting the performance of DOA estimation. In this work, we address these issues through
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the following five main research objectives:

• From a theoretical point of view to explore the idea of spatially under-sampling the
AVS array for the purpose of beamforming and DOA estimation of far-field sources.

• Explore array processing and sparse sensing concepts for the purpose of DOA estima-
tion of far-field acoustic events using AVS arrays.

• Investigate and develop algorithms to address practical issues such as self-calibration
techniques for sensor arrays (with focus on AVS arrays) for the purpose of DOA esti-
mation.

• Research alternate AVS array configurations such that the number of channels in the
array is reduced with only a small impact on the DOA performance in comparison to
the equivalent AVS and APS array.

• Contribute in the development of real-time algorithms suitable for a later integration
into a commercial beamforming based DOA estimation product (specifically inter-
esting for Microflown AVISA).

1.3. NOVELTIES OF THIS WORK
The main novelty of this thesis are listed below:

• The grating lobe’s behavior with spatially under-sampled AVS arrays for DOA esti-
mation and beamforming is analyzed [22]. For this purpose, the Cramér-Rao lower
bound (CRLB) on the estimated DOAs is considered to gain insights into spatially
under-sampled AVS arrays; however, the CRLB only provides local information around
the DOA of the sources, and it is not possible to know what is the impact at the loca-
tion of grating lobes. To overcome this issue, we consider the multi-source CRLB with
one of the sources scanning the entire direction range such that the grating lobe’s be-
havior is also known. Based on this study, it is concluded that it is indeed possible
to unambiguously estimate the DOAs of the far-field sources using spatially under-
sampled AVS arrays.

• Insights into classical and minimum variance distortion-less response (MVDR) beam-
forming based DOA estimation using spatially under-sampled AVS arrays (especially
at the location of grating lobes) are presented [22]. It is worth noting that the MVDR
based DOA estimators can significantly attenuate the grating lobes when the SNR is
relatively high, allowing for DOA estimation without ambiguities using the spatially
under-sampled AVS arrays. Further, a brief look into improvements of interference
cancellation using beamforming based on spatial under-sampled AVS arrays is also
presented in [22].

• Self-calibration techniques for AVS arrays with calibration errors are studied, such
that a set of conditions are derived for the existence of a unique solution to esti-
mate both the calibration errors and source DOAs [23]. Unlike the equivalent APS
array [24], based on the derived conditions, it is observed that we require only one
reference channel (where its gain and phase errors are known) of one of the AVSs
within the array for a unique solution to exist. As a consequence, we show that AVS
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arrays do not suffer from the progressive phase factor ambiguity [24–26] (that exists
for equivalent APS arrays), and the resulting calibration errors can be estimated with
respect to the reference channel of a considered AVS within the array.

• Two novel self-calibration algorithms that are applicable for both scalar and vector
sensor arrays are proposed [23, 27]. Unlike many of the past self-calibration approaches,
which rely on iterative alternating minimization methods, we exploit the algebraic
structure in the measurement data and develop a convex solver for jointly estimating
calibration errors and source DOAs. One of the proposed algorithms is developed
based on the element-space measurement model2, and another one is developed
based on the co-array measurement model2. Under ideal cases, we show that the
proposed convex formulation leads to the actual solution showcasing the effective-
ness of our approaches.

• An extension of the proposed self-calibration algorithm based on the co-array mea-
surement model in the presence of broadband sources is proposed [28]. The fact that
the calibration errors across frequencies change slowly, such that it can be assumed
constant or piece-wise linear for a specific range of frequencies, and the source DOA
remains the same, is exploited to improve the performance of the proposed narrow-
band version of the self-calibration algorithms. Further anechoic chamber-based ex-
perimental results are performed to validate the improvement obtained from the pro-
posed broadband version of the self-calibration algorithms.

• A new reduced channel alternate AVS array configuration is introduced such that it
contains one acoustic pressure and one particle velocity transducer [29]. The parti-
cle velocity transducer has an extra degree of freedom where its orientation can be
arbitrary. We refer to them as uniaxial acoustic vector sensors (U-AVSs). This frame-
work of U-AVSs and their arrays for DOA estimation generalizes much past work on
alternate/spatially spread acoustic pressure and particle velocity transducers. It was
demonstrated that the performance of the U-AVS arrays for DOA estimation is com-
parable to the equivalent AVS arrays and superior to the equivalent APS arrays. Fur-
ther, it is observed that by increasing the aperture and correctly choosing each of
the U-AVS orientations in the array, the DOA estimation performance can come very
close to the equivalent AVS arrays despite the use of significantly less channels.

• Experiments were carried out in an anechoic chamber to validate the proposed self-
calibration algorithms and the applicability of the U-AVS array for DOA estimation [23,
28, 29]. Those experimental results are in agreement with the simulation results of the
proposed algorithms demonstrating the validity of the proposed theoretical frame-
work and algorithms.

1.4. OUTLINE OF THIS THESIS
This chapter provides a brief overview of the AVS and its application in the field of sound
localization, clarifying the motivation and research objectives of this work. In the initial
part of the following chapter we present the fundamentals of DOA estimation using an
array of AVSs and then a detailed overview of the contributions of this work is discussed.

2Measurement models for the APS and AVS arrays are introduced in Chapter 2.
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From Chapter 3 to Chapter 7, this thesis is structured into three parts. In the first part of
this thesis (i.e., in Chapter 3), We discuss DOA estimation and beamforming using spatially
under-sampled AVS arrays. In the second part of this thesis (i.e., in Chapter 4-6), we look
into the of DOA estimation problem in the presence of calibration errors within the sen-
sor arrays (specifically focusing on AVS arrays). Finally, in the third part of the thesis (i.e.,
Chapter 7), an alternative version of the AVSs with reduced channels (referred to as uniaxial
AVSs) is discussed for DOA estimation and its performance is compared with conventional
APS and AVS arrays. The detailed outline for this thesis is as follows:

• Chapter 2: This chapter is divided into two sections. In the first section we discuss
the fundamentals of DOA estimation using AVS arrays. In that process, firstly, we dis-
cuss the measurement model for the AVS arrays in the presence of far-field acoustic
sources. This measurement model is referred to as the element-space data model.
Also, we will discuss the data model based on the second-order statistics, which is re-
ferred to as the covariance (or co-array) data model. Based on the element-space data
model of the AVS arrays, we go through the beampattern of the AVS array and com-
pare it with the equivalent APS arrays. Furthermore, we discuss the advantages of the
AVS array by considering the Cramér-Rao lower bound (CRLB) on the DOA estimate in
comparison to the equivalent APS array. In the second section of this chapter, we pro-
vide a detailed review of the contributions of this work discussed in Chapters 3 to 7.

• Chapter 3: In this chapter, based on the measurement model discussed in Chapter 2,
we look into one of the less explored aspects of spatially under-sampling of the AVS
arrays. Due to the measurement of vector quantities such as particle velocity, the grat-
ing lobes occur when the array is under-sampled, and they behave differently from
the conventional APS array. This behavior is beneficial for DOA estimation and beam-
forming. We provide insights into the theoretical performance of an under-sampled
AVS array for its DOA estimation performance using the Cramér-Rao lower bound
(CRLB). We also show that the minimum variance distortionless response (MVDR)
beamformer suppresses the grating lobes considerably compared to the classical (or
Bartlett) beamformer leading to unambiguous DOA estimates. Finally, through zero-
forcing (ZF) and minimization of maximum side lobe beamformers, the advantages
of an under-sampled AVS array for interference cancellation are presented.

This chapter has been published as

– K. Nambur Ramamohan, M.C. Coutino, S.P. Chepuri, D.F. Comesana and G.
Leus, "DOA Estimation and Beamforming using Spatially under-sampled AVS
arrays", in Proc. of the IEEE Workshop on Comp. Adv. in Multi-Sensor Adaptive
Proc. (CAMSAP 2017), Curacao, Dec. 2017.

• Chapter 4: In this chapter, we focus on the DOA estimation problem using both APS
and AVS arrays in the presence of calibration errors and without reference sources.
The problem requires estimating both the calibration errors and the DOA of the sources.
Such estimation problems in literature are referred to as self-calibration techniques.
Initially, in this chapter, we derive identifiability conditions for the existence of a
unique solution to estimate the source DOAs and the calibration errors for all the con-
sidered scenarios. Subsequently, we derive novel self-calibration algorithms based on
both the element-space data model and the covariance (or co-array) data model that
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are independent of the array geometry. The developed algorithms are obtained by
transforming the underlying bilinear calibration model into a linear model and us-
ing standard convex relaxation techniques to estimate the unknown calibration and
source DOA parameters jointly. To demonstrate the effectiveness of the proposed ap-
proach, numerical experiments and comparisons to the state-of-the-art methods are
provided for both APS and AVS arrays. Finally, the results from an actual experiment
performed in an anechoic chamber using an AVS array are presented to demonstrate
the usefulness of the proposed self-calibration techniques.

This chapter has been published as

– K. Nambur Ramamohan, S.P. Chepuri, D.F. Comesana and G. Leus, "Self-Calibration
of Scalar and Vector sensor arrays", IEEE Transactions on Signal Processing (To
appear), submitted in Apr 2021.

• Chapter 5: In this chapter, we extend the discussion on the self-calibration approaches
seen in Chapter 4 to a scenario in the presence of multiple far-field broadband sources.
By leveraging the fact that the calibration errors vary across frequencies smoothly
and the DOAs of broadband sources are the same for the frequency range of interest,
we propose a blind calibration method to estimate the calibration errors and source
DOAs jointly. This joint estimation problem is a non-convex optimization problem.
Hence, it is relaxed to a convex optimization problem by exploiting the underlying al-
gebraic structure. Numerical and experimental results using real measurement data
are presented to illustrate the efficiency of the proposed solver. Both results are based
on an AVS linear array.

This chapter has been published as

– K. Nambur Ramamohan, S.P. Chepuri, D.F. Comesana and G. Leus, "Blind Sen-
sor Array Calibration and DOA estimation of Broadband sources", in Proc. of
Asilomar Conf. Signals, systems, and Computers (Asilomar 2019), Pacific Grove,
California, USA, Nov. 2019.

• Chapter 6: In this chapter, we present a calibration algorithm for a specific case of
AVSs arranged in a uniform linear array configuration that exploits redundancies in
its second-order statistics. To do so, we leverage the Toeplitz blocks present in the
data covariance matrix. We develop linear estimators for estimating sensor gains
and phases. Further, we discuss the differences of the presented blind calibration
approach for acoustic vector sensor arrays compared to the approach for acoustic
pressure sensor arrays. In order to validate the proposed blind calibration algorithm,
simulation results for DOA estimation with an uncalibrated and calibrated uniform
linear array based on MVDR and multiple signal classification (MUSIC) algorithms
are presented. The calibration performance is analyzed using the CRLB of the DOA
estimates.

This chapter has been published as

– K. Nambur Ramamohan, S.P. Chepuri, D.F. Comesana, G.C. Pousa and G. Leus,
"Blind Calibration for Acoustic Vector Sensor arrays", in Proc. of the Interna-
tional Conference on Acoustics, Speech, and Signal Processing (ICASSP 2018), Cal-
gary, Canada, April. 2018.
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• Chapter 7: In this chapter, we move to the third part of this thesis, where we pro-
pose a specific reduced-channel AVS comprising one omnidirectional microphone
and only one particle velocity transducer, such that it can have an arbitrary orienta-
tion. Such a reduced transducer configuration is referred to as a uniaxial AVS (U-AVS).
The DOA performance of an array of U-AVSs is analyzed through its beampattern and
compared to conventional configurations. It is shown that the U-AVS array beampat-
tern results in an asymptotically biased estimate of the source location, and it can be
varied by choosing the orientation angles of the particle velocity transducers. Analyt-
ical expressions for the asymptotic bias are proposed and verified both numerically
as well as experimentally. Furthermore, the CRLB and the mean square error (MSE)
expressions are derived and numerically evaluated for a U-AVS array under a single-
source scenario. Finally, a design criterion is suggested to find proper orientation
angles for each of the U-AVSs in the array based on the derived MSE expressions.

This chapter has been published as

– K. Nambur Ramamohan, D.F. Comesana and G. Leus, "Uniaxial Acoustic Vector
Sensors for Direction-of-Arrival Estimation", Journal of Sound and Vibration,
vol. 437, pp. 276-291, Dec 2018.
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18 2. BACKGROUND ON DOA ESTIMATION USING AVS ARRAYS AND CONTRIBUTIONS

This chapter is mainly divided into two sections. In Section 2.1, we use the array processing
framework to discuss fundamentals of DOA estimation by employing an array of acoustic
vector sensors (AVSs). Subsequently in Section 2.2, we provide a detailed overview of the
contributions of this work.

2.1. FUNDAMENTALS OF DOA ESTIMATION USING AN AVS ARRAY
In order to keep the analysis traceable, the measurement model discussed in this work is
based on certain assumptions about the AVS and acoustic environment. First let us look
into some assumptions about the AVS:

• Co-located sensor components - Each AVS comprises a sound pressure sensor and
one (or several) particle velocity transducers, that are placed at the same location.
Therefore, each AVS is represented as a single point in space.

• Acoustic particle velocity sensors have an angle dependent response. The response
depends upon the cosine of the angle of arrival of the observed source with respect to
the sensor orientation.

Assumptions about the acoustic environment include:

• Free-space environment - It is assumed that the acoustic environment is a homoge-
nous isotropic medium.

• Narrow-band signals - The source signal is assumed to be narrow-band in nature,
such that signal time delays across sensors in the array are smaller than the inverse
bandwidth and can be represented as phase shifts of the signal.

• Plane wave propagation - We also assume that each AVS in the array measures the
plane wave of the source signal and this assumption is practical only if the distance
between the source and array is much larger (at least 10 times) than the array aper-
ture (i.e., in the far field environment). Also we assume that there are no reflections
present in the acoustic environment.

Based on these assumptions about the AVS and acoustic environment, we next discuss the
plane wave measurement data model of an AVS array.

2.1.1. MEASUREMENT MODEL
In this section the measurement model of an AVS array in the presence of far-field sources
for DOA estimation is discussed. Let us begin with the simple configuration consisting of
a single source and an AVS. The direction of a plane wave impinging on an AVS shall be
parametrized in terms of a three dimensional (R3) spherical coordinate basis, with azimuth
θ ∈ [0,2π) and elevation |ψ| ∈ [0, π2 ] as seen in Figure 2.1. Then we can define the unitary
vector in the direction of the source as:

u= [
ux uy uz

]T = [
cos(θ)cos(ψ) sin(θ)cos(ψ) sin(ψ)

]T
. (2.1)

In case of the two dimensional (R2) spherical coordinate basis with ψ = 0, (2.1) can be
rewritten as:

u= [
ux uy

]T = [
cos(θ) sin(θ)

]T
. (2.2)
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(a) One 3D AVS and single source
configuration in R3.
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(b) One 2D AVS and single source
configuration in R2.

Figure 2.1: Visualization of an AVS and single source configuration.

It can be shown that by solving the Euler equation of motion under a far-field narrow-
band source signal assumption, the sound pressure p(p, t ) and the acoustic particle velocity
v(p, t ) at time t are related as:

v(p, t ) =− u
ρc

p(p, t ), (2.3)

where ρ corresponds to the density of the medium, c corresponds to the speed of sound in
the medium and p is the position vector corresponding to the location of the sensor. The
term (ρc) represents the characteristic acoustic impedance of the medium.

ELEMENT-SPACE MEASUREMENT MODEL

Based on the simplified linear relationship between the sound pressure and acoustic par-
ticle velocity, we can develop a data model for the AVS. Although this can be extended, in
the further discussion, we will restrict ourselves to R2 (with ψ = 0). Then we can write the
element-space measurement data at time instant t as:

y(t ) = e jk(pT u)
[
η

u

]
s(t )+

[
np(t )
nv(t )

]

︸ ︷︷ ︸
n(t )

, (2.4)

where the exponential term corresponds to the wave phase delay with respect to the con-
sidered reference and it can be factored out because of the linear relation as seen in (2.3),
k = 2π

λ is the wave number or spatial frequency of the source signal, η corresponds to the
normalization term and it is proportional to the characteristic acoustic impedance of the
medium (ρc), s(t ) is the source signal and n(t ) is the measurement noise. For analysis pur-
poses we consider a value of η= 1 in the rest of the discussion.

In the given scenario we assume that an AVS is placed at the origin of the coordinate system,
which results in p=0. Based on this value of p, (2.4) can be modified as:

y(t ) =
[

1
u

]
s(t )+

[
np(t )
nv(t )

]
. (2.5)

Now we extend the discussion to a scenario with N sources located in the directions
pointed by the unit vectors u1,u2, ...,uN and M AVSs placed at arbitrary locations indicated
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by the position vectors p1,p2, ...,pM . For such a configuration, the element-space measure-
ment model in (2.5) at time instant t can be modified as [1]:

y(t ) = [
a(θ1) a(θ2) ... a(θN )

]




s1(t )
s2(t )

.

.

.
sN (t )



+n(t ),

= A(θ)s(t )+n(t ), (2.6)

where y(t ) ∈CQ with Q = 3M in R2 (Q = 4M in R3), θ = [
θT

1 θT
2 ... θT

N

]T
, and for the nth

source, the terms in (2.6) are defined as,

a(θn) = ap(θn)⊗h(θn), (2.7)

ap(θn) =
[

e jk(pT
1 un ) e jk(pT

2 un ) . . . e jk(pT
M un )

]T ∈CM×1, (2.8)

h(θn) = [
1 uT

n

]T
. (2.9)

The terms a(θn) is the AVS array response vector, ap(θn) is the equivalent APS array response
vector and h(θn) is the weighting vector containing the directional information about the
far-field source with respect to the vector sensor axes, ⊗ represents the Kronecker product.
On certain occasions it is also useful to rearrange and express the element-space measure-
ment model in (2.4) such that the AVS array response vector is modified as,

ā(θn) =h(θn)⊗ap(θn) = [
aP (θn) aX (θn) aY (θn)

]T
, (2.10)

where all the pressure channels (denoted by subscript P ) are arranged first and then fol-
lowed by the two components of the particle velocity channels (denoted by subscript X

and Y ). It should be noted that the AVS array measurement model in (2.6) reduces to an
APS array measurement model when h(θn) = [1] (i.e., y(t ) ∈CQ with Q = M), indicating that
the APS array is a subset of an equivalent AVS array. Until now we considered the element-
space measurement model at a given time instance t . If we have L samples of data then (2.6)
can be modified as:

Y = [
a(θ1) a(θ2) ... a(θN )

]




s1(1) s1(2) ... s1(L)
s2(1) s2(2) ... s2(L)

. . ... .

. . ... .

. . ... .
sN (1) sN (2) ... sN (L)



+N,

= A(θ)S+N. (2.11)

Also we can represent the generalized data model (2.11) in a different form, where A(θ) can
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be represented as the Khatri-Rao product (◦) of two matrices:

Y = [
a(θ1) a(θ2) ... a(θN )

]
S+N,

= [
ap(θ1)⊗h(θ1) ap(θ2)⊗h(θ2) ... ap(θN )⊗h(θN )

]
S+N,

= (Ap(θ)◦H(θ))︸ ︷︷ ︸
A(θ)

S+N, (2.12)

where

Ap(θ) = [
ap(θ1) ap(θ2) ... ap(θN )

] ∈CM×N ,

H(θ) = [
h(θ1) h(θ2) ... h(θN )

]
.

COVARIANCE DOMAIN (CO-ARRAY ) MEASUREMENT MODEL

In this section we extend the AVS array measurement model to the covariance domain [2],
i.e., based on the second-order statistics of the physical process described in (2.6). This
is also referred to as the co-array measurement model. For this we assume that both s(t )
and n(t ) are independent and identically distributed (i.i.d.), zero-mean, complex Gaus-
sian vector processes. Further, we assume that s(t ) and n(t ) are independent for all t , such
that they are completely characterized by their covariance matrices, E{s(t )sH (t )} = Rs and
E{n(t )nH (t )} = Rn. Based on these assumptions, the covariance matrix, Ry, of the mea-
surement data described in (2.6) is evaluated as:

Ry = A(θ)RsAH (θ)+Rn. (2.13)

If we further assume that the noise, n(t ), is spatially white, we obtain Rn =σnI. If the noise
variance of the pressure transducers differs from that of the particle velocity transducers
due to the nature of the sensor, it can be absorbed without loss of generality into the nor-
malization constant η as described in (2.4). Alternately, it is also possible to express the
noise covariance matrix as [3],

Rn = IM ⊗
[
σp 0
0 σvI2

]
,

where the noise variance of the pressure (σp) and particle velocity (σv) transducers is al-
lowed to be different. If the additive noise is spatially uncorrelated but not necessarily white,
then we obtain, Rn = diag(σn). In practice the covariance matrix Ry is estimated based on
averaging over N samples. That is:

R̂y = 1

N

N∑
t=1

y(t )yH (t ). (2.14)

It is also useful to perform vectorization (linear transformation which converts a matrix into
a column vector) on (2.13) as the resulting equation after vectorization forms the basis for
covariance domain sensing. After performing vectorization on (2.13), we obtain the follow-
ing co-array measurement model:

ry = vec(ARsAH )+vec(Rn),

= (
A∗ ⊗A

)
vec(Rs)+σn. (2.15)
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If the sources are uncorrelated to each other, then Rs = diag(σs), and (2.15) can be modified
as:

ry = (
A∗ ◦A

)
σs +σn,

= Acoσs +σn. (2.16)

By comparing (2.16) and (2.6), we see that ry acts as new measurement data of a virtual array
whose behavior is described by the co-array manifold matrix Aco. Aco is the array mani-
fold matrix of the virtual array based on the second-order statistics which results in sensors
located in the positions described by the difference set S= {pi −p j }, ∀ i , j ∈ 1,2, . . . , M . The
difference set S consists of elements corresponding to the spatial correlation lag between
the physical element pairs present in the array. The length of the co-array is defined as the
degrees of freedom (DOF) of the co-array. The DOF of the co-array can be increased if the
physical array is designed such that the number of redundant spacings in the difference
set is reduced. Such non-uniform linear array configurations include the minimum redun-
dancy array [4], nested array [5], co-prime array [6] and many more.

MEASUREMENT MODEL WITH CALIBRATION ERRORS

The measurement data model studied in (2.6) is an ideal scenario with all channels having
unity gain and without phase differences between them. All practical sensors/transducers
are far from ideal with different gain and phase responses, which stem from the inherent
uncertainties in the transducer manufacturing process and the receiver analog electron-
ics (e.g., conditioning units and pre-amplifier). We refer to gain and phase mismatches
between different channels as calibration errors. Such calibration errors affect both the
signal-of-interest and the noise part of the measurement data [7, 8], and the DOA estimates
obtained from the MUSIC or MVDR spectra are highly sensitive to them [7, 9].

The calibration error for the i th channel, out of the total 3M channels, of an AVS ar-
ray in R2 can be modeled as gi = αi e jφi with αi and φi being the magnitude and phase er-
rors/mismatches, respectively. We collect these mismatches in the diagonal matrix diag(g) =
diag(α)e j diag(φ) with g = [g1, . . . , gQ ]T , α = [α1, . . . ,αQ ]T and φ = [φ1, . . . ,φQ ]T . In the pres-
ence of calibration errors the element-space measurement model (2.6) is modified as,

x(t ) = diag(g)y(t ) = diag(g) [A(θ)s(t )+n(t )] . (2.17)

Usually acoustic transducers are calibrated during the manufacturing process with re-
spect to a known reference channel in the presence of a known source at a pre-defined
direction [10, 11]. However, the receiver analog electronics of the sensors deviate from its
nominal performance over a period of time and is also affected by environmental condi-
tions. As a result, they require periodic re-calibration for which self-calibration methods
are useful. Self-calibration techniques do not require the presence of reference sources
with known DOAs and can be performed locally at the location where the sensors are de-
ployed without bringing them back to a controlled environment. On the other hand, it is
also possible to have gain and phase errors that only affect the signal part of the measure-
ment [7]. Such errors originate due to, the positional/orientation errors of the sensors in
the array that leads to structured phase/gain errors or the perturbations in the sensors gain
and phase patterns.
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In Chapters 4, 5 and 6, we assume that the calibration errors are originated due to the
uncertainties in the analog electronics, and mainly will consider the measurement data
model where such errors affect both the signal and the noise. However in Chapter 4, the
adaptation of the proposed self-calibration algorithm for the measurement model where
the gain and phase errors affect only the signal is also presented.

The covariance matrix of the measurements in the presence of calibration errors as seen
in (2.17) can be written as

Rx = diag(g)
[
A(θ)diag(σs)AH (θ)+diag(σn)

]
diagH (g). (2.18)

It is also useful to express (2.18) in the vectorized form with vec(Rx) = rx, such that we
arrive at the co-array measurement model with calibration errors,

rx = diag(g∗ ⊗g)ry = diag(g∗ ⊗g) [Aco(θ)σs +σn] . (2.19)

2.1.2. BEAMPATTERN OF AVS ARRAY
Based on the measurement model described in (2.6) for a single far-field source located at
θ, we analyze the beampattern or spatial response of the AVS array. The expression for the
beampattern of the AVS array for a given beamformer w is expressed as:

B(θ) = wH a(θ). (2.20)

For a particular choice of w = a(θ̂), where 0 ≤ θ̂ < 2π, we obtain the matched-filter based
beampattern of the AVS array, i.e,

B(θ̂,θ) = aH (θ̂)a(θ). (2.21)

Substituting a(θ) as in (2.6) into (2.21) results in [12, 13]:

B(k, θ̂,θ) = VGM(θ̂,θ)Bp(k, θ̂,θ), (2.22)

where the beampattern expression is described explicitly as a function of the wavenum-
ber k as well as θ̂ and θ as those parameters change the behavior of the beampattern. It is
interesting to note that the beampattern of an AVS array B(k, θ̂,θ) is expressed as a product
of the equivalent APS array beampattern Bp(k, θ̂,θ) and a velocity gain modulation (VGM)
term VGM(θ̂,θ). After some simplifications, this VGM term can be written as1

VGM(θ̂,θ) = 1+cos(θ̂)cos(θ)+ sin(θ̂)sin(θ). (2.23)

We observe that the VGM term is independent of the number of sensors M in the array
and wave number (or frequency) k (or f ) of the source signal. This innovative observa-
tion allows us to prove distinct advantages of an AVS array in terms of array gain, ambiguity
discrimination, and operation with high and low frequency source signals [12–14]. To un-
derstand these advantages, we consider a scenario in R2 where sensors are arranged in a

1The VGM term in three dimensional space (R3) with ψ being the elevation angle of the source and |ψ̂| ≤ π
2 being

the scan angle across the range of the elevation angle can be extended as,

VGM(θ̂,ψ̂,θ,ψ) = 1+ (
cos(θ− θ̂)

)
cos(ψ̂)cos(ψ)+ sin(ψ̂)sin(ψ).
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uniform linear array (ULA) configuration, which simplifies the analysis. The beampattern
for an M-element APS array arranged in a uniform linear array (ULA) simplifies to:

Bp(k, θ̂,θ) = M

∣∣∣∣∣∣
sinc

(
kd
2 M

(
cos(θ)−cos(θ̂)

))

sinc
(

kd
2

(
cos(θ)−cos(θ̂)

))
∣∣∣∣∣∣
. (2.24)

Based on the beampattern expressions (2.22) and (2.24), the following observations can be
made,

• Conical angle (back lobe) ambiguity discrimination - If the source is located at an an-
gle θ, it is well understood that the beampattern of an APS ULA shall always produce
an ambiguity in the estimate of the source location at an angle θ

′ = 2π−θ as it suf-
fers from a front-back lobe ambiguity [15]. But interestingly the same trend is not
observed in the AVS ULA beampattern due to the presence of the VGM term in the
beampattern expression which allows for unambiguous DOA estimation in the entire
azimuth plane.

• Spatial aliasing discrimination - Similar to time signals producing frequency alias-
ing when they are under-sampled, we will have spatial aliasing in the beampattern
when the APS ULA is spatially under-sampled. The resulting grating-lobes from this
spatial aliasing limit the use of the APS ULA above a given design frequency (a.k.a.
the Nyquist frequency) [15]. However in the case of the equialent AVS ULA, again be-
cause of the presence of the VGM term, those grating lobes including the back lobe are
attenuated allowing for unambiguous DOA estimation even when the array is under-
sampled. This aspect of DOA estimation and beamforming using under-sampled AVS
arrays is explored in detail in Chapter 3.

• Signal-to-noise (SNR) increase - The VGM term in the beampattern of the AVS ULA
results in an increase of the array gain which is seen through the amplification of the
main lobe amplitude by a factor of 2. It is due to the extra channels per sensor node of
the AVS ULA that measures the same phase delays made by the equivalent APS ULA.

2.1.3. CRAMÉR-RAO LOWER BOUND ON DOA ESTIMATION

As presented in [3, 16], the covariance matrix for a single source in R3 with θ being the
azimuth angle and ψ being the elevation angle can be expressed as,

Ry = a(θ,ψ)aH (θ,ψ)σs +IM ⊗
[
σp 0
0 σvI3

]
. (2.25)

Based on the covariance matrix in (2.25) with unknown parameters grouped asγ = [θ,ψ,σs,σp,σv]T ,
it was shown in [16] that the Fisher information matrix (FIM) has block diagonal structure
and the Cramér-Rao lower bound (CRLB) on the DOA parameters is independent of the
knowledge of σs,σp,σv. Further in [16], the CRLB on the DOA parameters is expressed as,

CRLBp(θ,ψ) = 1

2L

1

M ρ

(
1+ 1

M ρ

)
J−1, (2.26)
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CRLBv(θ,ψ) = 1

2L

1

M ρρI

(
1+ 1

M ρρI

)
[J+K]−1 , (2.27)

where (2.26) is the CRLB of the APS linear array and (2.27) is the CRLB of the AVS linear array,
ρ = σs

σp
is the SNR at each pressure sensor and ρI = 1+ 1

κ is the effective increase in SNR with

κ= σp

σv
being the ratio of the pressure and particle velocity noise powers. Since ρI is always

greater than 1 (i.e., as κ is always positive) the effective increase in SNR for an AVS array is
always higher in comparison to the equivalent APS array. The terms J and K are defined as,

J= 4π2

M

[
cos2(ψ)

∑M
i=1

(
pT

i vθ

)2
cos(ψ)

∑M
i=1

(
pT

i vθ

)(
pT

i vψ

)

cos(ψ)
∑M

i=1

(
pT

i vθ

)(
pT

i vψ

) ∑M
i=1

(
pT

i vψ

)2

]
, (2.28)

K= 1

1+κ

[
cos2(ψ) 0

0 1

]
, (2.29)

where vθ = 1
cos(ψ)

∂u
∂θ and vθ = ∂u

∂ψ .

In case of a single source present in R2 (i.e., ψ= 0), the terms J in (2.28) and K in (2.29)
in the CRLB expression with unknowns γ = [θ,σs,σp,σ2

v]T are simplified as,

J= 4π2

M

M∑
i=1

(
pT

i vθ

)2
, K= 1

1+κ
. (2.30)

As a result, (2.26) and (2.27) can be expressed as,

CRLBp(θ) = 1

2Lρ

(
1+ 1

M ρ
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For a simplistic scenario where σp = σv (i.e., κ = 1,ρI = 2), the CRLB expression for an
AVS array with a single source as seen in (2.32) becomes,
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Based on (2.26) and (2.27), as discussed in [3] it can be observed that the CRLB expression
of an AVS array differs from the APS array expression in two ways. Firstly it contains extra
ρI factors and an extra additive term K. Both these terms reduce the CRLBv(θ) relative to
CRLBp(θ). The former represents an effective increase in SNR due to the greater number of
measurements made by the AVS array, whereas the latter results from the direct measure-
ment of the DOA information contained in the structure of the velocity field due to each
vector sensor’s inherent directional sensitivity.

• SNR increase - One of the factors that reduces the CRLB of the AVS array in compar-
ison to the equivalent APS array is the presence of the ρI (or κ) factor in (2.27). The
value of κ critically affects the usefulness of the AVS array; for small κ, the SNR in-
crease ρI is very large but it is negligible for large κ.
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• Directional sensitivity - In addition to the phase delay information that can be seen in
the APS array, the AVS array contains explicit directional information (h(θ) in (2.6)).
This information results in the existence of the K matrix in the CRLB, which further
reduces the AVS array CRLB relative to the APS array bound. In contrast to the J term
in the CRLB expression, which is a representation of the phase delay information, K
is independent of the array geometry and the DOA in R2 (for R3, the K term con-
tains cos2(ψ) which is a consequence of the singularity of the spherical coordinate
system). Furthermore, the K matrix in R3 is diagonal indicating that the information
of azimuth and elevation angles are independent of each other and it is non-singular.
The effect of K in the reduction of the CRLB of AVS arrays is maximal when its con-
tribution is comparable or larger than that of the J matrix. Some scenarios where K
has a significant impact on the CRLB are presented in [3].

Based on the observations of both the SNR increase and the directional sensitivity terms, it
was concluded in [3] that the advantages of an AVS array are more pronounced

• if the array is linear or planar.

• if the array has a small number of sensors.

• if the SNR is low.

• if the aperture of the array is fixed and the number of sensors in the array increases.

• if the value of κ is smaller.

2.2. OVERVIEW OF THE CONTRIBUTIONS
The purpose of this section is to provide an overview of the contributions of this Ph.D. work.
As discussed in the Outline Section of Chapter 1, Chapters 3, 4, 5, 6 and 7 are published as
papers, and each chapter follows its own conventions and notations that are described in
the related introduction. Here we provide an overview of the proposed approaches and
analyses, based on the measurement model and notations discussed in Section 2.1, to give
the reader a glimpse into the content presented in each of the following chapters.

2.2.1. CHAPTER 3 - DOA ESTIMATION AND BEAMFORMING USING SPATIALLY

UNDER-SAMPLED AVS ARRAY
In Section 2.1.3, the advantages of AVS arrays are highlighted in comparison to APS arrays
based on the CRLB expression. It is noted that the advantages of AVS arrays are significant
if the aperture of the array is small. The analysis in [3] is performed by assuming that the
array is spatially sampled with the smallest inter-sensor spacing being equal to 0.5λ. How-
ever due to the presence of the frequency independent VGM term in the AVS array beam-
pattern (as seen in Section 2.1.2) it is possible to under-sample the AVS array with smallest
inter-sensor spacing being greater than 0.5λ without suffering from the effects of spatial
aliasing as the grating lobes are attenuated in comparison to the main lobe. Taking this as-
pect into consideration, we can increase the aperture of an AVS array without increasing
the number of sensor nodes whilst performing unambiguous DOA estimation. The idea of
spatially under-sampling AVS arrays for the purpose of DOA estimation and beamforming
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is considered in Chapter 3. The analysis of the spatially under-sampled AVS array is per-
formed based on the CRLB expressions [1, 3]. Since the CRLB provides local information
around the source DOAs, we consider a multi-source CRLB expression such that one of the
sources acts as an interference at each possible scanning angle and in that way the effects
of the grating lobes can be studied in an under-sampled AVS array. The suggested approach
enables to analyze the DOA estimation accuracy under the potential effects induced by the
interference at each possible scanning angle.

Based on the CRLB expression presented in [1] and by considering a simplistic scenario
of a ULA in the presence of two uncorrelated sources, where one of the sources acts as an
interference at all possible scanning angles, the influence of the VGM term at the location of
grating lobes is studied. At those grating lobe locations, it is observed that the CRLB matrix
is well defined indicating that under-sampled AVS arrays can be employed for unambiguous
DOA estimation. It is observed that as the inter-sensor spacing increases and for low SNRs
the trace of the CRLB matrix at the grating lobe locations tends to result in larger values as
the attenuation of the grating lobes due to the presence of the VGM term is lower.

Further, the performance of the classical and MVDR beamformers for a unit power sin-
gle source scenario with M sensors in the array is presented. For such scenario the covari-
ance matrix in (2.13) can be written as,

Ry = a(θ)aH (θ)+σnI. (2.34)

Based on (2.34), the angular spectra of the classical beamformer (CBF) and MVDR beam-
former for the AVS array in terms of the APS array are expressed as,

CBFv(θ̂,θ) =
(
CBFp(θ̂,θ)− 1

SNR

) (
VGM(θ̂,θ)

)2

2
+ 1

SNR
,

MVDRv(θ̂,θ) = 2M(SNR)+1

2M(SNR)+ (SNR)2
(
4M 2 − (

aH (θ̂)a(θ)
)2

)
︸ ︷︷ ︸

G

,

(2.35)

where SNR = 1
σn

, θ̂ is the scanning angle and θ is the DOA of the source. CBFv (p)(θ̂,θ) and

MVDRv (p)(θ̂,θ) are the angular spectra of the CBF and MVDR beamformer for an AVS (APS)
array, respectively. It is shown that both the CBF and MVDR beamformer result in a max-
imum when θ̂ = θ, tending towards unity as the SNR and M increases. For a given M , the
attenuation of the side lobes (including the grating lobes, i.e., ∀ θ̂ �= θ) by the CBF is inde-
pendent of the SNR and is proportional to the attenuation achieved by its squared VGM
term. In contrast, for the MVDR beamformer the grating lobes are attenuated considerably
as the G term in the denominator is amplified by the factor (SNR)2.

Finally, the beamformer design problem for under-sampled AVS arrays is explored where
the weights for each of the channels in each AVS can be different. Such an approach allows
for increased degrees of freedom. The beampattern synthesis problem can be expressed as,

G(θ) =
∣∣∣

M∑
m=1

wmp e j2π(rT
mu(θ)) +cos(θ)

M∑
m=1

wmx e j2π(rT
mu(θ))

+ sin(θ)
M∑

m=1
wmy e j2π(rT

mu(θ))
∣∣∣= ∣∣wH a(θ)

∣∣ , (2.36)
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where w= [
w1p w1x w1y . . . wM p wM x wM y

]T ∈C3M is the complex weight vec-
tor that needs to be designed such that G(θ) has a desired shape. The design problem can be
written as a convex optimization program where constraints on the sensitivity, main lobe,
and side lobes of the beampattern can be enforced. Based on the presented illustrations
we see that the AVS array performance is superior in comparison to the equivalent aperture
APS array with three times less sensor nodes.

2.2.2. CHAPTER 4 - SELF-CALIBRATION OF SCALAR AND VECTOR SENSOR AR-
RAYS

As seen in Section 2.1.1, each of the sensors/channels within the array has different gain
and phase responses that drift over time, resulting in mismatches that significantly affect
the performance of DOA estimation algorithms such as MVDR or MUSIC. Such problems
for scalar arrays received lots of attention, and many self-calibration solutions without any
calibrator sources have been proposed to improve the DOA estimation performance [8, 17–
20]. Those approaches include:

• The techniques that rely on the structure in the array geometry to firstly estimate the
calibration parameters and subsequently estimate the DOAs [8]. These array geometry-
dependent approaches require an adaptation for AVS arrays as they have different
array manifolds compared to conventional APS arrays [21, 22].

• The array geometry-independent techniques that result in an iterative algorithm to
solve the non-convex problem for alternatively estimating the calibration parameters
and DOAs. These approaches lead to a sub-optimal solution [17] and can be used as
they are for AVS arrays.

Alternative to all the discussed approaches, in this work, we propose geometry-independent
non-iterative approaches that are applicable for both the scalar and vector sensor arrays for
jointly estimating the source DOAs and the calibration errors. Specifically, we derive two
algorithms. The first is developed by considering the element-space data model, and the
other is developed by considering the co-array domain data model.

Ambiguity and Identifiability: Before discussing the proposed algorithms, we derive con-
ditions for the AVS array to obtain a unique solution for estimating the DOAs and calibra-
tion errors based on both data models. We adapt the approach discussed in [17], to derive
sufficient conditions for uniquely estimating g and θ from (2.17) and (2.19).

For both APS and AVS arrays to uniquely estimate both g and θ, one gain and phase ref-
erence channel is required to resolve the scalar ambiguity. Apart from that, APS arrays do
suffer from the progressive phase factor ambiguity between diag(g) and A(θ) [8, 17, 19]. To
fix this issue we can either employ an additional calibration source with a known DOA [17]
or an additional phase reference channel [8] for uniquely estimating g and θ. On the other
hand, we show that AVS arrays do not suffer from the progressive phase factor ambiguity
between diag(g) and A(θ) due to which there is no requirement of a calibrator source or an
additional phase reference channel for uniquely estimating g and θ.

Element-space data model based calibration approach: Defining the diagonal calibration
matrix diag(c) = diag−1(g) and assuming that the true directions are from a uniform grid of
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D � N points, i.e., θn ∈
{

0, π
D · · · , π(D−1)

D

}
, for n = 1,2, . . . , N , we can approximate (2.17) as

x(t ) = diag(c)y(t ) = diag(x(t ))c=ADz(t )+n(t ), (2.37)

where AD is a Q ×D dictionary matrix that consists of column vectors of the form a(θ̄d ),
with θ̄d being the dth point on the uniform grid of directions, i.e., θ̄d = πd

D , d = 0,1, . . . ,D−1,
and z(t ) is a length-D vector containing the source signal related to the corresponding dis-
cretized directions. By considering multiple snapshots (L snapshots) and leveraging that
the calibration parameters remain unchanged during an observation window, we can ob-
tain more equations such that the system becomes over-determined. To see this, we further
develop (2.37) for multiple snapshots as




diag(y(1)) −AD

...
. . .

diag(y(L)) −AD




︸ ︷︷ ︸
G

[
c
z

]

︸ ︷︷ ︸
γ

=




n(1)
...

n(L)




︸ ︷︷ ︸
n

, (2.38)

where z= vec(Z) ∈CDL with Z= [z(1), · · · ,z(L)] = [z1, . . . ,zD ]T . Here the columns of Z share

the same support, and hence we obtain ‖z(l2)‖0 = N , where z(�2) =
[

z(�2)
1 , . . . , z(�2)

D

]T
with

z(�2)
d = ‖zd‖2. The optimization problem to jointly estimate the calibration parameters and

DOAs with a sparsity constraint along the spatial domain of the matrix Z can then be ex-
pressed as:

min
c,z

‖Gγ‖2
2 +λ‖z(l2)‖0 s.t. (c, z) ∈ C (2.39)

where λ is the regularization parameter. The constraint set with N ≥ 2 for APS arrays is
C := {(c, z) | c1 = 1,z1 = 1}, while for AVS arrays it is C := {(c, z) | c1 = 1}. Recall that for APS
arrays, we need one reference sensor and we need to know one of the DOAs to avoid ambi-
guities. This is done by setting c1 = 1 and z1 = 1, which is equivalent to having a calibrator
source at θ̄1 (without loss of generality). Since for AVS arrays, we do not need any calibrator
source, we only need a reference sensor in that case.

Co-array data model based calibration approach: Similar to (2.17), the directions can be
assumed to be derived from a uniform grid of D � N points. Then (2.19) can be approxi-
mated as

diag(c∗ ⊗c)ry = diag(ry)(c∗ ⊗c) =AcoDσz +σn, (2.40)

where AcoD is a Q2 ×D dictionary matrix that consists of column vectors of the form a∗(θ̄d )⊗
a(θ̄d ), with θ̄d as defined before. It can be easily observed that (c∗ ⊗ c) = vec(C), with
C= ccH , and hence (2.40) can be compactly rewritten as

[
diag(ry) −AcoD

]
︸ ︷︷ ︸

Gco

[
vec(C)
σz

]

︸ ︷︷ ︸
γco

= σn. (2.41)

The above system is under-determined with Q2 +D unknowns in Q2 equations (note that
some equations might even be redundant). However, as vec(C) has a Kronecker structure,
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the actual number of unknowns reduces to Q and σz is a sparse vector with non-zero ele-
ments at the location of the source DOAs. By considering the aforementioned constraints,
the estimation problem can be cast as

min
C,σz

‖Gcoγco −σn‖2
2 +λ‖σz‖0 s.t. (C, σz) ∈ Cco (2.42)

where λ is the regularization parameter, and where similar to (2.39) with N ≥ 2, Cco =
{(C, σz) |σz � 0, C = ccH , c1 = 1,σz(1) = 1} for APS arrays and Cco = {(C, σz) |σz � 0, C =
ccH , c1 = 1} for AVS arrays. For APS arrays, the requirement of knowing one of the DOAs
is expressed as σz(1) = 1 (without loss of generality). Further for APS ULAs and some APS
sparse arrays as we will see in Chapter 4, the redundancies in the co-array measurements
can be used for the estimation of the source DOAs and the calibration errors with two
phase reference sensors in the array. In such cases the constraint set even with N ≥ 1 is
Cco = {(C, σz) |σz �0, C= ccH , c1 = c2 = 1}.

Both (2.39) and (2.42) are non-convex problems, and the relaxed convex version of these
optimization problems are presented in Chapter 4. Further, compared to (2.39), the prob-
lem (2.42) is more useful when there are more sources than sparsely placed sensors/channels.
Addressing the calibration problem for sparse linear arrays with more sources than the
physical sensors is unique, as we believe that apart from [23] not much attention is given to
this aspect in the existing literature. Finally, numerical simulations and real experimental
results (performed in the anechoic chamber) that support the proposed approaches and
their comparison with existing techniques are presented in Chapter 4 as well.

2.2.3. CHAPTER 5 - BLIND SENSOR ARRAY CALIBRATION AND DOA ESTIMA-
TION OF BROADBAND SOURCES

In acoustics, we encounter broadband sources in many practical scenarios. The DOAs of
such sources remain the same for the entire bandwidth, whereas the sensor calibration er-
rors vary. It is possible to apply the earlier presented narrow-band algorithms to each fre-
quency bin separately, which can then be combined to obtain inference. However, if the
sensor calibration errors vary smoothly across the frequencies, we can assume that the cali-
bration errors are constant or change linearly over a specific range. Leveraging this aspect of
the calibration errors and the fact that source DOAs remain the same across the frequency
bins, we can extend the self-calibration approaches discussed in Chapter 4. Specifically, in
Chapter 5, we focus on the co-array measurement model as its measurement vectors from
all the frequency bins can be stacked into a matrix easily and (2.42) can be extended to
broadband sources. On the other hand, the extension of the element-space data model-
based self-calibration approach (2.39) to broadband sources is more involved and beyond
the scope of this chapter.

Firstly, the measurement data in (2.17) for the source signals spread across W frequency
bins for time index t and frequency bin w can be modified as:

x(t , w) = diag(g(w)) [A(w,θ)s(t , w)+n(t , w)] , (2.43)

where g(w) = ψ(w)�φ(w) ∈ CQ with ψ(w) and φ(w) being the time-invariant gain and
phase errors corresponding to the frequency bin w , respectively. The steering vector for the
nth direction of an AVS array is given as

a(w,θn) = ap(w,θn)⊗h(θn) ∈C3M×1, (2.44)
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where ⊗ is the Kronecker product, ap(w,θn) is the steering vector of an APS array and h(θn)
contains the direction cosines:

ap(w,θn) =
[

e−j2π fwτ1(θn ) . . . e−j2π fwτM (θn )
]T ∈CM×1,

h(θn) = [1 u(θn)] ∈C3×1. (2.45)

Here, τm(θn) =− 1
c pT

mu(θn) (with c being the speed of the sound), and the frequency of the
source signal for a given w is denoted as fw . Similar to (2.19), for a given w , the vectorized
version of the covariance matrix for the measurement data in (2.43) can be obtained as,

rw = diag(g∗(w)⊗g(w)) [Aco(w,θ)rws +σwn] . (2.46)

where Aco(w,θ) is the co-array manifold matrix, diag(rws) is the source covariance matrix,
and diag(σwn) is the noise covariance matrix. Again, if we assume that the source DOAs are
derived from a uniform grid of D points, then (2.46) can be approximated as:

diag(c∗(w)⊗c(w))rw =AD(w)σw +σwn, (2.47)

where diag(c(w)) = diag−1(g(w)) and AD(w) is a Q2 ×D dictionary matrix. The co-array
domain data model in (2.47) for all the frequency bins can be finally rearranged as,

Gγ =σn, (2.48)

where σn = [
σT

1n . . .σT
W n

]T
, G= [G1 |G2] with

G1 =




diag(r1)
. . .

diag(rW )


 ,G2 =



−AD(1)

. . .
−AD(W )


 ,

and γ = [
vec(C1)T . . . vec(CW )T vec(Σ)T

]T
with Σ= [σ1σ2 . . . σW ] and Cw = c(w)cH (w).

If we focus on a specific range of frequencies, where the calibration errors are constant, then
we can approximate Cw =C (i.e., cw = c), ∀w = 1,2, . . . ,W , such that (2.48) is modified as,

Ĝγ̂ =σn, (2.49)

where γ̂ = [
vec(C)T vec(Σ)T

]T
and

Ĝ=G
[
1W ⊗IQ 0W Q×W D

0W D×Q IW D

]
.

The system in (2.49) is under-determined. However, by exploiting the structure in γ̂, the
system of equations presented in (2.49) can be solved. The optimization problem for jointly
solving the calibration parameters as well as the DOAs across frequency bins can be posed
as:

min
γ̂

‖Ĝγ̂−σn‖2
2,

subject to ||σ(l2)||0 = N , σ(l2) �0, σn �0,

C= ccH , ci = 1, ∀i = 1, . . . ,R,

(2.50)
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where σ = vec(Σ), and R is the number of reference sensors/channels in the array. The
optimization problem in (2.50) is a non-convex problem, and the relaxed convex version
of it is presented in Chapter 5. Further, numerical simulations and real experimental re-
sults (performed in the anechoic chamber) that showcase the performance of the proposed
approach are also presented in Chapter 5.

2.2.4. CHAPTER 6 - BLIND CALIBRATION FOR ACOUSTIC VECTOR SENSOR AR-
RAYS

The self-calibration algorithms presented in Chapters 4 and 5 do not make any assump-
tions on the array geometry. However, if the considered array has a regular structure such
as ULA, they result in a structured covariance matrix that can be exploited to estimate the
calibration errors. Therefore in this chapter, we present a blind calibration algorithm for
the AVS ULA to estimate the DOAs of the far-field sources by exploiting the structure in its
covariance matrix. The presented approach is inspired by the blind calibration algorithm
presented in [8] for the APS ULA. By considering the element-space data model of the AVS
ULA, whose array response vector is given by (2.10), we can observe that its covariance ma-
trix, (2.18), has a Toeplitz block structure, i.e.,

R = diag
(
ψ

)
diag

(
φ

)
Qdiag(φ∗)diag

(
ψ

)
, (2.51)

where (·)∗ denotes complex conjugation and Q = A(θ)diag(σs)AH (θ)+diag(σn). The co-
variance matrices Q and R comprise blocks of matrices, i.e.,

R =



RP P RP X RP Y

RX P RX X RX Y

RY P RY X RY Y


 ; Q=




QP P QP X QP Y

QX P QX X QX Y

QY P QY X QY Y


 ,

where,

RMN = diag(ψM )diag(φM )QMN diag(φ∗
N )diag(ψN ); (2.52)

QMN =
N∑

n=1
aM (θn) [σs]n aH

N (θn)+diag(σn)MN , (2.53)

for M ,N ∈ {P ,X ,Y }, are each Toeplitz resulting in a Toeplitz block structure for Q. The
subscripts P , X and Y corresponds to the pressure, as well as x and y component of the
particle velocity channels, respectively.

To estimate the unknown gain errors, ψ, from (2.52) we have,

∣∣[RMN ]i j
∣∣= ∣∣[QMN ]i j

∣∣ψM ,iψN , j , ∀i , j = 1,2, . . . M , (2.54)

where | · | denotes the modulus. Since the subblock QMN is Toeplitz, we have the following
relation for all i − j = k − l ,

log

( ∣∣[RMN ]i j
∣∣

|[RMN ]kl |

)
= log(ψM ,i )+ log(ψN , j )− log(ψM ,k )− log(ψN ,l ). (2.55)
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Taking all such non-redundant relations within the diagonal subblocks RP P ,RX X , and
RY Y , and the upper-diagonal subblocks RP X ,RP Y , and RX Y , we get an over-determined
set of linear equations with the gain errors being the unknowns and it can be expressed as,

g=Hψ̃, (2.56)

where H collects the mapping matrices whose description is presented in Chapter 6 and

ψM = [
ψM ,1 . . . ψM ,M

]T , with ψ̃M = [
log(ψM ,1) . . . log(ψM ,M )

]T for M ∈ {P ,X ,Y } each of
length M . The rank of H is 3M −3, indicating that it does not have full column rank, due
to which one reference AVS with known gain is needed to uniquely determine the unknown
gains, ψ.

To estimate the unknown phase errors, φ, from (2.52) we have,

angle([RMN ]i j ) = angle([QMN ]i j )+φM ,i −φN , j , (2.57)

for i , j = 1, . . . , M . Here, angle(·) denotes the phase. Using the fact that each subblock QMN

is Toeplitz, we obtain the following relation for all i − j = k − l ,

angle([RMN ]i j )−angle([RMN ]kl ) =φM ,i −φN , j −φM ,k +φN ,l . (2.58)

By taking all such non-redundant relations within all the upper triangular subblocks of
R, we arrive at an over-determined set of linear equations to solve for φ, which is simi-
lar to (2.56) and details of it are elaborated in Chapter 6. Further, for uniquely estimating
the phase errors, we need one phase reference AVS and an additional phase reference (it
could be any transducer type) as the rank of the mapping matrix is 3M −4. Once gain and
phase errors are estimated, the data covariance matrix can be compensated with them, and
well-known approaches such as MVDR or MUSIC can be used to estimate the source DOAs.
Simulation results that are in agreement with the proposed calibration approach are also
presented in Chapter 6.

2.2.5. CHAPTER 7 - UNIAXIAL ACOUSTIC VECTOR SENSORS FOR DIRECTION-
OF-ARRIVAL ESTIMATION

This chapter looks at an alternative implementation of an AVS, which comprises only two
collocated transducers per sensor. It includes an acoustic sound pressure and a particle ve-
locity transducer with arbitrary orientation. Such a configuration is referred to as a Uniaxial
AVS (U-AVS), as it captures only one component of the particle velocity field. The appli-
cation of a U-AVS instead of an AVS removes one (for R2) data channel per sensor, hence
substantially lowering hardware and power requirements. The multiple U-AVSs in an array
configuration can potentially be used for DOA estimation. However, the theoretical limits
of such a configuration are unknown and will be explored in this chapter.

Firstly the measurement data y(t ) at time instant t with N sound sources located in the
direction pointed by the unit vectors u1,u2, ...,uN and sending plane waves impinging on
M U-AVSs located at arbitrary locations indicated by the position vectors r1,r2, ...,rM can
be expressed as:

y(t ) = [
a(θ1,δ) a(θ2,δ) ... a(θN ,δ)

]
︸ ︷︷ ︸

A(θ,δ)∈C2M×N

s(t )+n(t ) ∈C2M×1, (2.59)
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where y(t) = [
y1p (t ) y1v (t ) . . . yM p (t ) yM v (t )

]T
, ymp (t ) is the mth U-AVS pres-

sure measurement, ymv (t ) is the mth U-AVS velocity component measurement, a(θn ,δ) =[
e jk(rT

1 un ) e jk(rT
1 un )cos(δ1 −θn) . . . e jk(rT

M un ) e jk(rT
M un )cos(δM −θn)

]T
is the array

manifold vector of the U-AVS array with each of them having an arbitrary orientation cap-

tured by the vector δ = [
δ1 δ2 . . . δM

]T
. Based on the matched filter approach for given

sensor orientation angles δ, the beampattern expression is given by:

B(θ̂,θ) = ∣∣aH (θ̂,δ)a(θ,δ)
∣∣ ,

=
∣∣∣(1+cos(δ1 − θ̂)cos(δ1 −θ)

)
e jk

(
rT

1 u(θ)−rT
1 u(θ̂)

)
+ . . .

∣∣∣
∣∣∣+(

1+cos(δM − θ̂)cos(δM −θ)
)

e jk
(
rT

M u(θ)−rT
M u(θ̂)

)∣∣∣ .

(2.60)

If all the U-AVSs have the same orientation angle (referred as a U-AVS array with a fixed

orientation), i.e., δ = δ
[
1 1 . . . 1

]T
, then the beampattern expression can be simplified

as:

B(θ̂,θ) = VGM(δ, θ̂,θ) Bp(θ̂,θ), (2.61)

where VGM(δ, θ̂,θ) = 1+ cos(δ− θ̂)cos(δ−θ) is the velocity gain modulation (VGM) term,
and Bp(θ̂,θ) is given in (2.24). Similar to the AVS array, the expression in (2.61) can also be
expressed as a product of an equivalent APS ULA beampattern and a VGM term. However,
irrespective of the actual DOA θ, the maximum in the VGM term will always occur at θ̂ = δ.
As the APS ULA beampattern always provides an unbiased source location estimate, a bias
will be introduced by the VGM term. This bias in the estimates can be reduced by increasing
the aperture of the array. If the aperture of the array is fixed then the bias can be controlled
by changing the orientation angle(s) of the U-AVSs. In Chapter 7, we quantify the behavior
of the bias in the DOA estimates of a U-AVS ULA.

Further, we derive the CRLB of a U-AVS ULA for a single source. Since the DOA estimates
from the U-AVS array asymptotically result in a biased estimates, we also derive the mean
square error (MSE) bound expression for the U-AVS ULA:

MSE(θ) = E
{∥∥θ̂−θ

∥∥2
}
= (b(θ))2 +CRLBb(θ). (2.62)

where b(θ) is the expression of the bias, and CRLBb(θ) =
(
1+ ∂b(θ)

∂θ

)2
CRLB(θ) is the CRLB ex-

pression for the biased estimates. The latter is expressed in terms of the unbiased CRLB and
the bias expression. Based on the MSE bound expression, we compare the performance of
the U-AVS ULA with the equivalent aperture AVS and APS ULA. From simulations, we infer
that for the U-AVS ULA with a fixed orientation, the MSE bound lies in between the CRLB
bound of an AVS ULA and an APS ULA. Also, we see that the MSE bound can be significantly
reduced in a specific region of angular interest by focusing the orientations of the U-AVSs in
the array towards it. Based on the analyses in Chapter 7, we conclude that minimizing the
MSE bound on the DOA estimates can be chosen as a criterion to find the optimum orien-
tation angle for each U-AVS in the array such that an acceptable performance is attained. In
addition, we also present real experimental results performed in a semi-anechoic chamber
to support the discussion and analytical expressions proposed for the U-AVS array.
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2.3. CHAPTER SUMMARY AND REMARKS
In this chapter, we discussed the measurement model of AVS arrays in the presence of far-
field sources. Based on the element-space measurement model, we discussed the advan-
tages of the AVS array compared to an equivalent APS array through its beampattern and the
CRLB on DOA estimates. Furthermore, based on the measurement model and notations de-
scribed in Section 2.1, we reviewed in detail the contributions of this thesis presented in the
following chapters. This thesis work, contributing to the existing knowledge base on signal
processing techniques for AVS arrays, has also addressed fundamentals on some practical
problems associated with the usage of AVS arrays.

Understanding the behavior of a spatially under-sampled AVS array and its application
for DOA estimation allows for new array designs with a smaller number of sensor nodes in
space-restricted moving or static platforms, such as vehicles, or drones, with an increased
range of operational frequency. In addition to the proposed optimal one-step self-calibration
algorithms, applicable to both scalar and vector sensor arrays, we also saw that AVS ar-
rays do not suffer from the progressive phase factor ambiguity (existing for equivalent APS
arrays). This aspect allows for performing self-calibration of the AVS array locally at the
deployed location and relative to a single channel of an AVS without any constraints of
knowing calibrator sources or additional phase reference channels/sensors. Furthermore,
analyses on the U-AVS array with reduced channels and hardware requirements show that
we achieve results closer to an equivalent AVS array. Such a U-AVS array-based sound lo-
calization solution can reduce costs and improve a battery-operated system’s operational
timeline. More importantly, this research on the AVS array paves the way in achieving in-
creased situational awareness across our society; it could be either by detecting and local-
izing problems or threats (gunshots, explosion, illegal fireworks or low frequency annoying
noise) occurring around urban environments or assisting soldiers in the battlefield for mak-
ing a timely decision to achieve peace.
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3
DOA ESTIMATION AND

BEAMFORMING USING SPATIALLY

UNDER-SAMPLED AVS ARRAYS

In this paper, we show the advantages of spatially under-sampled acoustic vector sensor (AVS)
arrays over conventional acoustic pressure sensor (APS) arrays for performing direction-of-
arrival (DOA) estimation and interference cancellation. We provide insights into the theo-
retical performance of an under-sampled AVS array with respect to its DOA estimation per-
formance using the Cramér-Rao lower bound (CRLB). We also show that the minimum vari-
ance distortionless response (MVDR) beamformer suppresses the grating lobes considerably as
compared to the classical (or Bartlett) beamformer leading to unambiguous DOA estimates.
Finally, through zero-forcing (ZF) and minimization of maximum side lobe beamformers,
the advantages of an under-sampled AVS array for interference cancellation are presented.
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3.1. INTRODUCTION
With the advent of the MEMS technology, transducers that are capable of measuring vec-
tor quantities such as acoustic particle velocity are becoming practically feasible [1–3]. An
acoustic vector sensor (AVS) consists of a microphone and several particle velocity trans-
ducers aligned along each of the coordinate axes. As an AVS array can measure both acous-
tic pressure as well as particle velocity at a given spatial location, AVS arrays have several
advantages compared to equivalent-aperture acoustic pressure sensor (APS) arrays [4, 5].
For this reason AVSs, either individually or arranged in an array configuration, have found
numerous applications in passive acoustic systems, including ground surveillance [6], bat-
tlefield acoustics [3], sound source tracking [7], assessment of wind turbine noise [8] and
UAV’s situational awareness [9].

Typically, acoustic sensor arrays are battery-operated portable systems which are con-
strained by hardware and power requirements. Therefore, it is always desirable to reduce
the number of sensors in the array to reduce the operational costs. By under sampling,
when the number of sensors is fixed, the effective aperture of the array can be increased,
thus leading to improvements in the direction-of-arrival (DOA) estimation accuracy. Equiv-
alently, for an array with a fixed aperture, the number of elements, that provides a compa-
rable estimation performance, can be reduced by under sampling.

Based on the narrow-band assumption, under-sampling traditional APS arrays with inter-
sensor spacing greater than λ

2 (where λ is the wavelength of the source signal), leads to spa-
tial aliasing effects resulting in grating lobes in its beam pattern [10]. Hence, ambiguities
arise in beamforming and DOA estimation, which make them impractical. On the contrary,
due to the nature of vector sensors, under-sampled AVS arrays can attenuate the grating
lobes as discussed in previous works [11–13]. In [13], sufficient conditions for the linear
independence of the array manifold matrix of an under- and over-sampled AVS uniform
linear array (ULA) are discussed. However, the behavior of grating lobes with increasing
inter-sensor spacing for unambiguous DOA estimation and the extent to which the inter-
sensor spacing can be increased for performing beamforming are not yet well understood.
We address this aspect in this work by analyzing the accuracy of unambiguous DOA estima-
tion. For doing so, the multi-source Cramér-Rao lower bound (CRLB) is considered in such
a way that we infer information of both the main and grating lobe locations. Furthermore,
a performance analysis of the classical (or Bartlett) and minimum variance distortionless
response (MVDR, or Capon) beamformer based DOA estimation under a single-source sce-
nario is presented. In addition the behavior of the beamformers using an under-sampled
AVS ULA for the problem of interference cancellation is considered.

3.2. PRELIMINARIES

3.2.1. AVS ARRAY MEASUREMENT MODEL

Consider an array with M AVS elements located at positions {pm ∈ R2}M
m=1, and D far-field

narrow-band sources of wavelength λ impinging from azimuth angles φ= [φ1 φ2 ... φD ]T ∈
[−π,π). We assume that D ≤ 3M −1. The acquired data can be modeled as [4]:

y(t ) = A(φ)s(t )+n(t ) ∈C3M×1, (3.1)

where s(t ) = [s1(t ), s2(t ), . . . , sD (t )]T ∈CD is the source signal vector, n(t ) is the noise vector,
and A(φ) denotes the array manifold matrix whose i th column is given by the correspond-
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ing AVS array steering vector a(φi ) = ap (φi )⊗h(φi ), with ⊗ the Kronecker product. Here,
ap (φi ) denotes the equivalent APS array response vector that is given by

ap (φi ) = [
e j2π

(
rT

1 u(φi )
)

. . . e j2π
(
rT

M u(φi )
)]T ∈CM×1,

where k = π f
fd

= 2πd f
c is the wave number, fd = c

2d is the spatial sampling frequency, f is
the source signal frequency, c is the speed of sound, d is the inter-sensor spacing where
rm = pm

λ is the position of the mth element in wavelengths and u(φi ) = [cos(φi ) sin(φi )]T ∈
R2 is the unitary vector in the direction of the i th far-field source. The vector h(φi ) =
[1 uT (φi )]T ∈ R3 is the weighting vector containing the directional information of the far-
field source with respect to the vector sensor axes.

3.2.2. MATCHED FILTER BEAM PATTERN OF AN AVS ARRAY

Based on the measurement model presented above (3.1), the matched filter beam pattern
of an AVS array with M sensors for a single source at DOA φ can be expressed as [14, 15]:

B(φ̂,φ) = ∣∣aH (φ̂)a(φ)
∣∣=

∣∣∣(hH (φ̂)h(φ)
) (

aH
p (φ̂)ap (φ)

)∣∣∣

= (
1+cos(φ− φ̂)

)
︸ ︷︷ ︸

VGM(φ̂,φ)

·
∣∣∣∣∣

M∑
m=1

e
j2π

(
rT

m

(
u(φ)−u(φ̂)

))∣∣∣∣∣
︸ ︷︷ ︸

Bp (φ̂,φ)

, (3.2)

where φ̂ is the scanning angle, Bp (φ̂,φ) is the beam pattern expression for an equivalent
APS array and the term VGM(φ̂,φ) is the velocity gain modulation (VGM) term that is inde-
pendent of the inter-sensor spacing. This VGM term plays an important role in attenuating
the grating lobes when the inter-sensor spacing r (expressed in wavelengths) for a ULA is
greater than the spatial Nyquist limit (i.e., r > 0.5). This property for the AVS ULA can be seen
in the beam pattern plotted in Fig. 3.1 for r = 0.5 and1.5. The beam pattern of the AVS ULA
is clearly decomposed in terms of an equivalent APS ULA (red curve) and the VGM term
(green curve). From (3.2) it is clear that the VGM(φ̂,φ) term is responsible for the possibility
of under sampling AVS arrays. As the beam pattern/array response of an under-sampled
AVS ULA is able to distinguish between the main lobe and the grating lobe, it is possible
to employ them for performing beamforming as well as for unambiguous DOA estimation.
Further, we observe that the beam pattern of an under-sampled AVS ULA is able to distin-
guish between the main lobe and the grating lobes. However, it does not reveal the extent
to which the grating lobes can be attenuated for performing unambiguous DOA estimation.
In the following section, we introduce the CRLB to provide insights on ambiguities in DOA
estimation when the inter-sensor spacing is varied.

3.3. CRAMÉR-RAO LOWER BOUND FOR DOA ESTIMATION
The Cramér-Rao lower bound on the variance of an unbiased DOA estimate φ [cf. (3.1)], for
a full rank array manifold matrix A(φ), is given by [4, 16]:

CRLB(φ) = σ2
n

2N

(
Re

[
U� (

DHΠcD
)T

])−1
, (3.3)
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Figure 3.1: Decomposition of the beam pattern of an AVS ULA with M = 9 for φ= 90◦ in terms of an equivalent APS
ULA beam pattern and the VGM term.

where � is the Schur-Hadamard (element-wise) product, Re[·] represents the real part of
the argument, N is the number of available time snapshots, and the following definitions
are used

U=Rs
(
AH ARs +σ2

nI
)−1 AH ARs,

Πc = I−Π, Π=A
(
AH A

)−1 AH ,

D= [
d1 ... dD

]
, dn = ∂a(φn )

∂φn
, ∀n = 1, . . . ,D.

Although the CRLB provides local information around the source DOAs, it can still be used
to study the effect of the grating lobes in an under-sampled array. To realize that, we as-
sume that one of the source acts as an interference at each possible scanning angle. The
suggested approach enables to analyze the DOA estimation accuracy as well as any poten-
tial effects induced by the interference between multiple sources and their corresponding
grating lobes.

By considering a simplistic scenario with two uncorrelated sources (φ1,φ2) for both the
APS and AVS ULA, in Fig. 3.2 we plot the trace of the CRLB matrix with respect to an increas-
ing inter-sensor spacing such that φ1 is fixed at 90◦ (broadside of the array) and φ2 varies
over the entire azimuth range. For the APS ULA as the inter-sensor spacing is increased, the
number of grating lobes increases and at those locations the Fisher information matrix be-
comes singular (or, in other words, the CRLB does not exist). This yields an ambiguous DOA
estimation. On the other hand, for the AVS ULA, the effect of the grating lobes is attenuated
considerably. In order to gain more insights for this two-source case, we simplify (3.3) by
approximating U≈Rs , by which the inner term in (3.3) can be expressed as:

[
σ2

1 0
0 σ2

2

]

︸ ︷︷ ︸
U≈Rs

�(
DHΠcD

)=
[

K1 0
0 K2

]
, (3.4)
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(a) APS ULA, SNR = 0 dB (b) AVS ULA, SNR = 0 dB

(c) APS ULA, SNR = 10 dB (d) AVS ULA, SNR = 10 dB

Figure 3.2: Two-source CRLB of an APS ULA and AVS ULA for increasing inter-sensor spacing with M = 9, N = 10.
The first source is located at φ1 = 90◦ and the second source φ2 is allowed to vary over the entire azimuth range.
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where,

Kq =8π2σ2
q

M∑
i=1

(
rT

i

∂u(φq )

∂φq

)2

+Mσ2
q

−
σ2

q 2M
(
Bp (φ1,φ2)

)2 sin2(φ1 −φ2)

4M 2 − (
Bp (φ1,φ2)

)2 (
VGM(φ1,φ2)

)2

︸ ︷︷ ︸
J

; ∀q = 1,2.
(3.5)

This approximation is valid under high SNR conditions and provided that φ2 is not too close
to φ1. It is to be noted that Kq in (3.5) is expressed in terms of its equivalent APS array
beam pattern and the VGM term. By restricting the discussion to a ULA, (3.5) can be further
simplified when φ2 is at one of the grating lobe locations of φ1, given by the set [10]:

Gφ1 =
{

cos−1
(
cos(φ1)± n

r

)∣∣n = 1,2,3, . . .
}

, (3.6)

as in that case we have Bp (φ1,φ2) = M . As at those grating lobe locations the VGM term
is not equal to 2, the denominator of J is never zero which implies that Kq is finite, i.e., the
CRLB matrix is well-defined. As a result, it can be inferred that the under-sampled AVS array
can be employed for unambiguous DOA estimation even if φ2 is at the grating lobe location
of φ1.

For the multi-source scenario in [13], it is shown that the columns of A(φ) are linearly
independent of each other provided that the number of sources present in a particular grat-
ing lobe set for any given angle is less than or equal to three. To illustrate the effects of
an under-sampled AVS ULA under a multi-source scenario, we consider the CRLB for four
sources with an increasing inter-sensor spacing in Fig. 3.3(a). The source DOAs for the first
three sources are chosen such that they belong to the same grating lobe set for r = {2,4, . . .}.
The fourth source is varied over the entire range of angles. For values of r close to 2 and 4,
the trace of the CRLB matrix has large values for the scanning angles belonging to the same
grating lobe set indicating ambiguities in the DOA estimation. In Fig. 3.3(b), the trace of the
CRLB matrix with respect to the SNR for a fixed inter-sensor spacing r = 2.5 is shown. It is
seen that at low SNRs the effect of the grating lobes is high and as the SNR increases it gets
attenuated resulting in unambiguous DOA estimation.

3.4. CLASSICAL AND MVDR BEAMFORMER
Based on the observations of the CRLB for an under-sampled AVS ULA we now evaluate
the performance of the classical [10] and MVDR [17] beamformers for the single source (φ)
scenario. Firstly, for a unit power source signal with zero mean, the covariance matrix of the
measurement data [cf. (3.1)] is given by:

Ry = a(φ)aH (φ)+σ2
nI. (3.7)

Using Ry and defining SNR = 1
σ2

n
, the classical and MVDR beamformers angular spectrum

can be written as:

CBFv(φ̂,φ) =
(
aH (φ̂)a(φ)

)2

2M
+ 1

SNR
, (3.8)

=
(
CBFp (φ̂,φ)− 1

SNR

) (
VGM(φ̂,φ)

)2

2
+ 1

SNR
,
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(a) SNR = 10 dB (b) r = 2.5

Figure 3.3: CRLB variation with four sources (three fixed at 90◦,60◦,−90◦ and the fourth varying), M = 9, N = 10.
In (a) the trace of the CRLB for increasing inter sensor spacing is considered. In (b), the trace of the CRLB for
increasing SNR is considered.

MVDRv (φ̂,φ) = 2M(SNR)+1

2M(SNR)+ (SNR)2
(
4M 2 − (

aH (φ̂)a(φ)
)2

)
︸ ︷︷ ︸

G

,

(3.9)

where CBFv (φ̂,φ) and MVDRv (φ̂,φ) are the CBF and MVDR beamformer spectrum of an
AVS ULA, respectively, and where CBFp (φ̂,φ) is the CBF beamformer spectrum of an equiv-
alent APS ULA. It is shown that both the CBF and MVDR beamformer result in a maximum
when φ̂ = φ, tending towards unity as the SNR and M increases. For a given M , the atten-
uation of the side lobes by the classical beamformer is independent of SNR and is propor-
tional to the attenuation achieved by its squared beam pattern. In contrast, for the MVDR
beamformer the side lobes are attenuated considerably as the G term in the denominator
is amplified by the factor (SNR)2. At the location of the grating lobes (φ̂ ∈ Gφ) of an under-
sampled AVS ULA, (3.8) and (3.9) reduce to:

CBFv (φ̂,φ) = M 2(SNR)
(
VGM(φ̂,φ)

)2 +2M

SNR
, (3.10)

MVDRv (φ̂,φ) = 2M(SNR)+1

2M(SNR)+M 2(SNR)2
(
4− (

VGM(φ̂,φ)
)2

) ,

(3.11)

where we use the fact that aH
p (φ̂)ap (φ) = M . It should be noted that as the SNR approaches

∞, MVDRv (φ̂,φ) approaches 0.
As the maximum side lobe level (MSL) is achieved at the grating lobe location (with

n = 1 in (3.6)), the MSL behavior based on (3.10) and (3.11) for both the CBF and MVDR
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Figure 3.4: The normalized maximum side lobe level (NMSL), defined as the ratio of the MSL and main lobe level,
for the Classical and MVDR beamformer using an under-sampled AVS ULA with φ = 90◦, M = 9. In (a) the inter-
sensor spacing is fixed at r = 2.5 and the SNR is varied. In (b) the SNR is fixed at 10 dB and the inter sensor spacing
is varied.

beamformer are shown in Fig. 3.4, respectively. In Fig. 3.4 (a), it is seen that the MSL for the
CBF is comparable to the main lobe level. In contrast, for the MVDR beamformer its MSL
decreases considerably as the SNR increases. In Fig. 3.4 (b) the MSL for both beamformers
is a non-decreasing function of the inter-sensor spacing of the array. From this result it is
clear that the MVDR beamformer reduces the grating lobe effects significantly allowing for
unambiguous DOA estimation. Having focused on the DOA estimation using an under-
sampled AVS array, in the following section we consider the problem of beamformer design
for interference cancellation. The MSL levels for the MVDR beamformer are remarkably low
for all r . In addition, the MVDR spectra with sources is plotted in Fig. 3.5 for two different
cases of rλx = 2 and rλx = 2.5, to illustrate the observation seen in Fig. 3.3. The source
DOAs are chosen as in Fig. 3.3 (c) and it is seen that for rλx = 2 that the sources are not
being distinguished from grating lobes as A(φ) is rank deficient. For rλx = 2.5 as the SNR
increases all the sources and grating lobes are distinguished as seen in Fig. 3.3 (b).

3.5. INTERFERENCE CANCELLATION
The fact that the matched filter beam pattern weights [cf. (7.5)] have the same phase delay
for all three channels in a single AVS, we can decompose the array response as the product
of the interference between sensors and the directional information term. However, this
simplification limits the number of available degrees of freedom in the beamformer design.
Hence, if the weights for each of the channels in each AVS are not constrained in any way,
significant improvements can be obtained. Formally, we can express the generic beam pat-
tern synthesis problem for an AVS array as [5]:

G(φ) =
∣∣∣

M∑
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wmp e j2π(rT
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M∑
m=1

wmx e j2π(rT
mu(φ))
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mu(φ))
∣∣∣= ∣∣wH a(φ)

∣∣ , (3.12)
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Figure 3.5: MVDR spectra for four sourcesφ= 90◦,−60◦,60◦,−90◦, belonging to the grating lobe set of rλx = 2,4, . . .,
with M = 10, N = 100.

where w= [
w1p w1x w1y . . . wM p wM x wM y

]T ∈C3M is the complex weight vec-
tor that needs to be designed such that G(φ) has a desired shape. The design problem can be
written as a convex optimization program where constraints on the sensitivity, main lobe,
and side lobes of the beam pattern can be enforced.

To illustrate this, we consider two beamformer design problems to suppress interfer-
ences (φn , n = 1,2, . . .) while preserving the angle of interest (φ0). Firstly a simple null steer-
ing/zero forcing (ZF) beamformer [10] for both an under-sampled APS and AVS ULA with
r = 2 is considered in Fig. 3.6 (a) with φ0 = 60◦ and φ1 = 90◦, φ2 = 120◦. These two angles
are chosen such that they belong to the same grating lobe set (G (φ0)) for r = 2. As the steer-
ing vectors for the APS ULA are the same for all φ ∈ G (φ0), the ZF beamformer suppresses
not only the interferers but also the signal of interest. However, the AVS ULA is able to re-
tain the source of interest and to suppress both interferers. Although the ZF beamformer
only aims at keeping unity gain towards the signal of interest while suppressing interferers,
it does not optimize the side lobe level at other directions. Therefore, we also consider an
optimization problem for minimizing the maximum array response |G(φ)|, ∀φ ∈ S , where
S denotes the side lobe region, subject to having a distortion-less response for the target
angle φ0, a bounded sensitivity and a certain main lobe decay for angles φ ∈ M , where M

represents the main lobe region. In addition, constraints can be included to null the inter-
ference from certain angles φ ∈N , where N contains the DOAs to be nulled. This problem
can be succinctly expressed as [18]

min
w

max
φ∈S

|wH a(φ)|,

subjectto |wH a(φ)| ≤α; ∀φ ∈M

wH a(φ0) = 1, ‖w‖2 ≤β

wH a(φ) = 0; ∀φ ∈N .

(3.13)

For illustration purposes, we consider an AVS ULA with M = 9, r = 1.5 and an APS ULA
with M = 27, r = 0.5 such that they have the same channel count and almost a similar aper-
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ture. The same angles are considered as in the previous example. The optimization problem
is solved with α,β= 1 and the results are shown in Fig. 3.6 (b). It is seen that the beam pat-
tern of an AVS ULA (with M = 9) is comparable to that of an APS ULA (with M = 27) with
both interferences being suppressed.
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Figure 3.6: Beam pattern synthesis of an AVS and APS ULA for φ0 = 60◦ and interference locations φ1 = 90◦, φ2 =
120◦. In (a) the beampattern synthesis using a ZF beamformer is considered. In (b) the beam pattern synthesis as
a solution of (3.13) is considered.
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4
SELF CALIBRATION OF SCALAR AND

VECTOR SENSOR ARRAYS

In this work, we consider the self-calibration problem of joint calibration and direction-of-
arrival (DOA) estimation using sensor arrays. Unlike many previous iterative approaches,
we propose array geometry independent solvers for jointly estimating the sensor gain, phase
errors, and the source DOAs. We derive these algorithms for both the conventional element-
space and covariance data models. We focus on sparse and regular arrays formed using scalar
sensors as well as vector sensors. The developed algorithms are obtained by transforming the
underlying non-linear calibration model into a linear model, and subsequently by using con-
vex relaxation techniques to estimate the unknown parameters. We also derive identifiability
conditions for the existence of a unique solution to the self-calibration problem. To demon-
strate the effectiveness of the developed techniques, numerical experiments, and comparisons
to the state-of-the-art methods are provided. Finally, the results from an experiment that was
performed in an anechoic chamber using an acoustic vector sensor array are presented to
demonstrate the usefulness of the proposed self calibration techniques.
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4.1. INTRODUCTION
The problem of estimating the direction-of-arrival (DOA) of multiple far-field events im-
pinging on an array of spatially distributed sensors has received considerable interest in var-
ious fields including communications, radio astronomy, acoustics, and seismology. Usually
scalar sensor arrays, such as acoustic pressure sensor (APS) arrays, are used for DOA estima-
tion. In recent times, transducers that measure vector quantities are becoming practically
feasible [1], enabling new processing capabilities. An acoustic vector sensor (AVS) is such a
device that is capable of measuring both the acoustic pressure and particle velocity. Unlike
an APS, a single AVS can measure the DOA of a far-field event [2] and arrays of such AVSs
have proven to have distinct advantages compared to conventional microphone arrays [3].
In practice, all sensors and their arrays are highly sensitive to model errors [4]. Among those
model errors, the gain and phase mismatches between sensors, known as calibration errors
are the dominant ones that degrade the DOA estimation results. Those are the focus of this
work.

Many advanced subspace based algorithms, e.g., MUSIC [5], MVDR [6], and ESPRIT [7],
have been developed for DOA estimation. Further sparse recovery techniques have also
been widely used, whenever only a few sources are present [8]. These traditional algorithms
require more physical sensors than the number of sources and use the data acquired in
the element-space domain (i.e., at the output of the sensor elements) or in the covariance
(or co-array) domain. Also nowadays, to reduce sensing and data processing costs, sparse
sensing methods are gaining attention [9]. One can resolve and estimate DOAs of as many
as O (M 2) sources using only M physical elements by smartly and irregularly placing the
sensor elements. Such sensor placements are generally referred to as sparse arrays [10–12].
Most of the discussed algorithms developed for APS arrays can be used directly or adapted
for equivalent AVS arrays as well [2, 3].

DOA estimates obtained from these aforementioned standard algorithms in the pres-
ence of calibration errors are severely degraded [4]. These errors originate from the variabil-
ity in the analog electronics and the manufacturing technology across sensors in the array.
They affect both the signal-of-interest and the noise part of the measurement data [4, 13].
On the other hand, it is also possible to have calibration errors that only affect the signal
part of the measurements [4], whenever there are position or orientation errors of the sen-
sors (channels) in the array for instance or perturbations in the sensors’ gain and phase pat-
terns. Usually labor intensive and expensive calibration procedures are applied to correct
for these mismatches [14–16], which are impractical for large number of sensors. Further-
more, such calibration errors vary with time and changes in the environment, and as a re-
sult, the deployed sensors require periodic re-calibration. In such scenarios, self-calibration
methods are inevitable. The term self-calibration refers to using the information collected
by the array to simultaneously estimate the calibration errors and source DOAs without any
reference sources with known direction and/or pre-defined waveform.

4.1.1. SELF-CALIBRATION METHODS

Self-calibration techniques for scalar sensor arrays in the presence of gain and phase uncer-
tainties between sensors have been widely studied [13, 17–21]. It is a non-linear estimation
problem with unknown calibration and array manifold matrix. Specific conditions should
be satisfied such that they are independently identifiable [17, 19]. In some cases it is impos-
sible to independently resolve both of them [17, 22].
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Maximum likelihood (ML) and maximum a posteriori (MAP) based gain and phase es-
timation algorithms have been proposed in [23, 24] to solve the self-calibration problem.
Although both ML and MAP based estimators are asymptotically efficient, they are compu-
tationally expensive and not suitable for practical applications. In contrast, there are also
computationally friendly self-calibration techniques which can be broadly classified into
two categories: geometry-dependent and geometry-independent approaches.

The first kind of self-calibration techniques are developed for specific/regular array ge-
ometries, where spatial redundancies are used to eliminate the array manifold information
in order to estimate the calibration errors. Specifically, in [13], a self-calibration proce-
dure for scalar sensor arrays arranged in a uniform linear array (ULA) configuration was
presented, where the Toeplitz structure of the data covariance matrix was utilized. Exten-
sions and adaptations of this self-calibration approach are presented in [18, 25–27]. A self-
calibration technique based on ESPRIT for an APS ULA is derived in [17].

The second kind of self-calibration approaches are applicable to arbitrary array geome-
tries where the array manifold and calibration matrices are estimated mostly with iterative
techniques [19, 20, 28]. However, these approaches suffer from the choice of the initial es-
timate of the calibration errors and the algorithm might only converge to a local minimum
leading to a sub-optimal solution.

Aforementioned two categories of self-calibration approaches are developed specifi-
cally for scenarios with more sensors than sources. Nonetheless, with the increased atten-
tion on sparse sensing, a self-calibration algorithm for sparse arrays was proposed in [29],
where a sub-optimal method was used to estimate the phase errors.

On the other hand, apart from the DOA estimation techniques proposed in [30–34], not
much attention is given to the self-calibration problem for AVS arrays. It may seem possi-
ble to adapt the second category of aforementioned self-calibration techniques for vector
sensor arrays. However, due to the dissimilarities in the array manifold, the conditions for
independently identifying the calibration errors and source DOAs are different and are not
yet available.

In summary, we can observe that existing self-calibration approaches either require spe-
cific sensor placement to obtain an optimal solution or converge to a sub-optimal solution
without geometry constrains. So in this work we try to address the issues associated with
existing techniques by proposing two non-iterative one-step self-calibration algorithms that
are array geometry independent, and applicable to both APS and AVS arrays. Furthermore,
the proposed self-calibration technique using the co-array measurement model is also ap-
plicable to sparse arrays, whose preliminary results are presented in [35]. In our work, we
leverage tools from sparse recovery techniques and draw inspiration from [21], which deals
with the self-calibration problem for linear models, to decouple the calibration parameters
from the other unknowns. However, the model we deal with is not linear anymore as the
source directions are not known. In essence, the main problem of interest in this work is
self-calibration with a non-linear measurement model, where we assume that the calibra-
tion errors are mainly originating from uncertainties in the analog electronics and sensor
elements. Additionally, we also derive the identifiablity conditions for a unique solution to
exist while using AVS and sparse APS arrays.
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4.1.2. OUR CONTRIBUTIONS

This work introduces novel self-calibration methodologies combining traditional array pro-
cessing theory with sparse recovery techniques. The validity of the proposed self-calibration
algorithms is studied by considering the measurement model where the calibration errors
affect both the signal-of-interest and noise. Further the adaptation of the proposed ap-
proaches to the measurement model where the calibration errors affect only the signal
component of the data is also discussed. The main contributions can be summarized as
follows:

• We develop array-independent non-iterative novel self-calibration algorithms for both
the element-space and co-array data models, where the latter data model is even use-
ful when there are more sources than sparsely placed sensors.

• We derive conditions to ensure a unique solution for estimating the DOAs and cali-
bration errors for both AVS and sparse APS arrays. This important aspect is still not
considered in the existing literature.

• We demonstrate the validity of the proposed approaches via numerical simulations
as well as an experimental study. The latter shows the effectiveness of the introduced
self-calibration techniques for an array of 4 AVSs measured in an anechoic chamber.

4.1.3. NOTATION AND OUTLINE

Upper (lower) bold face letters are used for matrices (column vectors); (·)∗ denotes conju-
gate, (·)T denotes transpose and (·)H denotes conjugate transpose; ⊗ denotes the Kronecker
product, ◦ denotes the Khatri-Rao product and � denotes the Schur-Hadamard (element-
wise) product; E{·} denotes the expectation operator; tr(·) denotes the trace operator and In

is the identity matrix of dimension n.
The detailed outline for this paper is as follows. In Section 4.2, we present the mea-

surement model with calibration errors, and the problem statement of estimating both the
calibration errors and the DOAs. In Section 4.3, we present the identifiability conditions
for uniquely estimating the calibration errors and the source DOAs. In Section 4.4 and Sec-
tion 4.5, the proposed calibration algorithms based on the element-space and the co-array
domain measurement data model are presented, respectively. The simulation and experi-
mental results of the proposed calibration algorithms are discussed in Section 4.6 and Sec-
tion 4.7, respectively.

4.2. PROBLEM STATEMENT
Consider a linear array of M sensors with Q channels, where Q = M for APS arrays and Q =
3M for AVS arrays. We are interested in estimating the azimuth directions of N narrow-band
sources, denoted by θ = [θ1,θ2, . . . ,θN ]T with θn ∈ [0,π] for n = 1, . . . , N , where the azimuth
directions are measured with respect to the phase reference of the array. Each of the consid-
ered Q channels has a different receiver gain and phase response, which are not known. We
refer to the unknown receiver gains and phases as calibration errors, and for the i th channel
it is denoted as gi =αi e jφi with αi and φi being the gain and phase mismatch, respectively.
We collect the calibration errors in the diagonal matrix diag(g) with g= [g1, g2, . . . , gQ ]T . Let
us also define the vectors α= [α1,α2, . . . ,αQ ]T and φ= [φ1,φ2, . . . ,φQ ]T .
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for uniquely estimating the calibration errors and the source DOAs. In Section 4.4 and Sec-
tion 4.5, the proposed calibration algorithms based on the element-space and the co-array
domain measurement data model are presented, respectively. The simulation and experi-
mental results of the proposed calibration algorithms are discussed in Section 4.6 and Sec-
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4.2. PROBLEM STATEMENT
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it is denoted as gi =αi e jφi with αi and φi being the gain and phase mismatch, respectively.
We collect the calibration errors in the diagonal matrix diag(g) with g= [g1, g2, . . . , gQ ]T . Let
us also define the vectors α= [α1,α2, . . . ,αQ ]T and φ= [φ1,φ2, . . . ,φQ ]T .
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Under the narrow-band assumption [5], the element-space signal, x(t ), can be modeled
as [13]

x(t ) = diag(g) [A(θ)s(t )+n(t )] ∈CQ×1, (4.1)

where
A(θ) = [a(θ1) · · · a(θN )] ∈CQ×N

is the array manifold matrix, the source signals of wavelength λ are stacked in the vector
s(t ) ∈CN×1 and the receiver noise vector is given by n(t ) ∈CQ×1. Here, we assume that both
s(t ) and n(t ) are derived from an independent and identically distributed (i.i.d.) Gaussian
distribution. The location of the mth element of the array is denoted by δm with pm = δm/λ.
Let us also define p= [p1, p2, . . . , pM ]T . Without loss of generality (w.l.o.g.), we consider the
first sensor with p1 = 0 as the phase reference of the array. The spatial signature (or the
array steering vector) for the nth source in the direction described by the vector u(θn) =
[cos(θn) sin(θn)]T with respect to the first sensor of the APS array with M sensors is given
by

aAPS(θn) =
[

e j2πp1 cos(θn ), . . . ,e j2πpM cos(θn )
]T ∈CM×1, (4.2)

whereas the related array steering vector of the AVS array is given by

aAVS(θn) = [
1 uT (θn)

]T ⊗aAPS(θn),

= h(θn)⊗aAPS(θn) ∈C3M×1. (4.3)

For the APS array, we have Q = M with a(θn) = aAPS(θn) and for the AVS array we have
Q = 3M channels with a(θn) = aAVS(θn).

Usually the signal x(t ) is uniformly sampled and L snapshots are collected in the data
matrix X= [x(1),x(2), . . . ,x(L)] ∈CQ×L to obtain

X= diag(g) [A(θ)S+N] . (4.4)

Here, S = [s(1),s(2), . . . ,s(L)] ∈ CN×L and N = [n(1),n(2), . . . ,n(L)] ∈ CQ×L . The covariance
matrix of the signal x(t ) is Rx = E{x(t )xH (t )} ∈ CQ×Q . We assume that the source signals
s(t ) are uncorrelated and have a diagonal covariance matrix E{s(t )sH (t )} = diag(σs), which
is not known. Similarly, the noise vector has a diagonal covariance matrix E{n(t )nH (t )} =
diag(σn), which is assumed to be known or can be estimated. Then, the covariance domain
model can be written as

Rx = diag(g)
[
A(θ)diag(σs)AH (θ)+diag(σn)

]
diagH (g). (4.5)

Here, it is assumed that s(t ) and n(t ) are mutually uncorrelated. It is also useful to ex-
press (6.2) in vectorized form as:

rx = diag(g∗ ⊗g) [Aco(θ)σs +σn] , (4.6)

where vec(Rx) = rx and Aco(θ) = A∗(θ) ◦A(θ) with the subscript “co" indicating the co-
array manifold. In practice, the data matrix X is used to compute the sample data covari-
ance matrix R̂x = L−1XXH . For the sake of convenience, henceforth, we use Rx instead of
R̂x with the knowledge that only an estimate of the covariance matrix is available.
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Based on the co-array model in (4.6), the sensor elements can be smartly placed irreg-
ularly along the linear axis, such that Aco has full column rank. Usually such configuration
of linear arrays leads to sparse array design [12] allowing one to resolve as many as O (M 2)
sources using M sensors. As seen in (4.1) and (4.6), both g and θ are unknowns, and ad-
ditionally it is a non-linear estimation problem as θ exists in the exponential terms of the
array manifold matrix.

The main goal of this paper is to jointly estimate the Q complex (i.e., 2Q real) receiver
gains g and N directions θ given X or rx. To do so uniquely, as will be discussed in Sec-
tion 4.3, we will require a few reference sensors with known complex receiver gains in the
array.

4.3. AMBIGUITY AND IDENTIFIABILITY
Before presenting the calibration algorithms, in this section, we discuss identifiability con-
ditions under which a unique solution for both the calibration parameters and the source
DOAs exists. The identifiability conditions for the APS arrays by considering the element-
space model (4.4) is presented in [19]. We take inspiration from [19] and derive identifia-
bility conditions for all the remaining measurement models relevant for both APS and AVS
arrays. It should be immediately clear that, as both diag(g)A(θ) and S (orσs) are not known
a priori, they cannot be computed uniquely as there will be a complex (or real) scaling am-
biguity. Therefore, to fix the scaling ambiguity we perform calibration with respect to sensor
1 at location p1 = 0, i.e., we use g1 = 1 for the element-space data model and |g1| = α1 = 1
for the co-array data model.

After establishing the fact that the elements of g can only be estimated relative to the
reference sensor, the next important question that needs to be addressed is to establish
the well posedness of the self-calibration problem given the measurement data. From the
element-space data model (4.4), we have 2QL nonlinear equations in N unknown DOAs,
2(Q − 1) unknown calibration parameters, and 2N L unknown source signals. Hence, for
well posedness of the calibration problem, we require

2QL ≥ N +2Q −2+2N L ⇒ N +2(Q −1)

2(Q −N )
≤ L,

which is meaningful only for Q > N . Furthermore, from the co-array data model (4.6), we
have 2QN−N 2+1 nonlinear equations1 in N unknown DOAs, 2(Q−1) unknown calibration
parameters, and N unknown source powers. Hence, for well posedness, we require

2QN −N 2 +1 ≥ 2N +2Q −2 ⇒ Q ≥ N 2 +2N −3

2(N −1)
.

Finally, we study under which conditions we can uniquely estimate g and θ given the
measurement data. However due to the non-linear nature of the estimation problem, it
is not straightforward to derive the identifiability conditions based on the element-space
data model (4.4) or co-array data model (4.6). Therefore, we derive sufficient conditions for
uniquely estimating g andθ based on the assumption that diag(g)A(θ) (diag(g∗⊗g)Aco(θ))
is given, with the knowledge that in practice only the column span of it is available from the
measurement data.
1The covariance matrix Rx is completely characterized by N+1 real eigenvalues and 2QN−N 2−N real parameters

related to the orthonormal eigenvectors associated to the signal subspace.
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THE ELEMENT-SPACE DATA MODEL

For deriving the sufficient conditions, let us define the phase of diag(g)A(θ) as

ρq (n) = 1

2π
angle

(
gq [A(θ)]qn

)= pq cos(θn)+φq , (4.7)

for q = 1, . . . ,Q and n = 1, . . . , N . Introducing ρn = [
ρ1(n), . . . ,ρQ (n)

]T and defining pext :=
p for the APS array and pext := 13 ⊗p for the AVS array, we can write the above equation
compactly as

ρn =pext cos(θn)+φ= [
pext IQ

] [
cos(θn)

φ

]
(4.8)

for n = 1,2, . . . , N . This is an under-determined system of Q equations, which has rank Q −1
(with φ1 = 0), and Q unknowns. When N = 1, it is possible to solve (4.8), if another sen-
sor/channel’s phase error is known in the array (say w.l.o.g. φ2 = 0 in addition to φ1 = 0).
However, when N ≥ 2, we can eliminate φ by considering

ρn −ρ1 =pext [cos(θn)−cos(θ1)] ,

to obtain N −1 linearly independent equations in N unknown DOAs of the form

p†
ext

(
ρn −ρ1

)= cos(θn)−cos(θ1); n = 2, · · · , N . (4.9)

The system in (4.9) is still underdetermined. Nonetheless, if one of the DOAs is known
(say w.l.o.g. θ1 is known) then we can identify the remaining DOAs. This result for a scalar
sensor array (Q = M) was presented in [19].

However, for an AVS array (Q = 3M), the need of knowing the direction of one calibrator
source θ1 can be relaxed as the direction information is available in the magnitude of the
element-space data model. This is a novel observation that is not presented in the exist-
ing literature. It can be seen by explicitly considering only the magnitude of diag(g)A(θ),
resulting in

νq (n) = ∣∣gq [A(θ)]qn
∣∣=αq

∣∣hq (θn)
∣∣ (4.10)

for q = 1, . . . ,3M . Here,

hq (θn) =





1, 1 ≤ q ≤ M .

cos(θn), M +1 ≤ q ≤ 2M .

sin(θn), 2M +1 ≤ q ≤ 3M .

(4.11)

Let us consider the equations related to q = M +1, which are given by

νM+1(n) =αq+1 cos(θn).

If we assume N ≥ 2, we can eliminate the unknown αq+1 to obtain

cos(θ1) = νM+1(1)

νM+1(n)
cos(θn).

Thus we can compute θ1 as

θ1 = arccos

(
νM+1(n)

νM+1(n)
cos(θn)

)
.
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This value of θ1 can be used in (4.9), which eliminates the need of knowing one of the DOAs
for uniquely identifying all the N DOAs for the AVS linear array. The array manifold matrix
A(θ) is known once all the N DOAs are computed. Then using (4.7) and (4.10), respectively,
the phase and gain errors can be computed.

Now to check if the derived sufficient condition for the APS linear array is also nec-
essary, we need to show that the solution of g and θ is not unique if we do not consider
the calibrator source. To do so, assume an M-element APS array, and N far-field sources.
For such configuration, due to the structure of A(θ) and the nature of g, we can have
diag(g)A(θ) = diag(g�a(θ0))(A(θ)�a∗(θ0)) = diag(g̃)A(θ̃), where generally g �= g̃ and θ �= θ̃
indicating the non-uniqueness of the solution.

In summary, with the element-space model for a linear APS array, irrespective of the array
geometry, given N ≥ 2 and diag(g)A(θ), the requirement of a calibrator source is a sufficient
and necessary condition for a unique solution of g and θ to exist. In contrast, a calibrator
source is not needed for a linear AVS array.

THE CO-ARRAY DATA MODEL

In contrast to the element-space formulation, there are many self-calibration approaches
that are developed using the co-array model [13, 19, 20]. However, the conditions for the
solution to exist are still not explored. So in this section, we derive the conditions using the
co-array data model in (4.6) without any constraints on the array geometry. Next, we discuss
sufficient conditions to estimate g and θ, given diag(g∗ ⊗g)Aco(θ). To do so, consider the
phase of diag(g∗ ⊗g)Aco(θ) that is given by

ρpq (n) = 1

2π
angle

(
g∗

p gq

([
A∗(θ)

]
pn ◦ [A(θ)]qn

))

= (
pp −pq

)
cos(θn)− (

φp −φq
)

, (4.12)

for p, q = 1, · · · ,Q with p �= q and n = 1, · · · , N .
If N = 1, we require two sensors/channels with known phase errors. Suppose w.l.o.g.

that φ1 =φ2 = 0, then we can compute the DOA as

θ1 = arccos

(
ρ12(1)

p1 −p2

)
, (4.13)

with no specific requirements for p1 �= 0 or p2 �= 0. Definingρn = [ρ11(n),ρ12(n), . . . ,ρQQ (n)]T ,
we can compactly write (4.12) as

ρn =Dpext cos(θn)−Dφ= [
Dpext −D

][
cos(θn)

φ

]
, (4.14)

where D ∈ RQ2−Q is the difference matrix that we use to compute the pairwise differences
in (4.12). If N ≥ 2, irrespective of the array geometry, the phase errors φ can be eliminated
by considering

ρn −ρ1 =Dpext [cos(θn)−cos(θ1)] ; ∀n = 2, . . . , N ,

which can be equivalently expressed as

θn = arccos
((

Dpext
)† [ρn −ρ1]+cos(θ1)

)
. (4.15)
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This is similar to the element-space version as seen in (4.9) and it is underdetermined.
Nonetheless for APS linear arrays, similar to the element-space model, if one of the source
DOAs is known (say w.l.o.g. θ1 is known) then we can identify the remaining DOAs.

For an AVS array, similar to the element-space model, the magnitude of diag(g∗⊗g)Aco(θ)
also contains the direction information. Specifically,

νpq (n) =
∣∣∣gp gq

([
A∗(θ)

]
pn ◦ [A(θ)]qn

)∣∣∣ ,

= ψpψq hp (θn)hq (θn) (4.16)

for p, q = 1, · · · ,3M and n = 1, . . . , N , where we recall that hp (θn) is as in (4.11). Consider
w.l.o.g. the equation related to p = M +1 and q = M +2, i.e.,

νM+1 M+2(n) =ψM+1ψM+2 cos2(θn).

When N ≥ 2, we can eliminate the unknown gain errors ψM+1 and ψM+2 in the above equa-
tion by computing

cos(θ1) =
[
νM+1 M+2(1)

νM+1 M+2(n)
cos2(θn)

]1/2

,

which can now be used in (4.15) to compute the DOAs. Once the DOAs are computed,
the phase errors can be computed from (4.14), with respect to one of the reference sen-
sors/channels in the array as the rank of D is always Q−1. The gain errors can be computed
from the amplitude relations in (4.16).

Thus it can be concluded that irrespective of the array geometry of the linear array with the
co-array data model, it is sufficient to have one phase reference sensor and one (no) calibrator
source for a linear APS (respectively, AVS) array, for uniquely estimating g and θ when N ≥ 2
and diag(g∗ ⊗g)Aco(θ) is given.

Unlike for the element-space approach, the derived sufficient condition for the APS lin-
ear array using the co-array model is not necessary. This aspect is showcased in the subse-
quent discussion, with certain assumptions on the array geometry, where we will see that
using the co-array model the solution of g and θ can be unique even if we do not consider
the calibrator source.

SPARSE APS ARRAY BASED ON CO-ARRAY DATA MODEL

In comparison to (4.8), which is an under-determined system, it can be observed that (4.14)
is a tall system with (Q2−Q) equations and (Q+1) unknowns. APS linear arrays with a partic-
ular structure in the array geometry, such as specific sparse arrays or uniform linear arrays
(ULAs) result in redundant relations that are part of (4.14). Those redundancies in the struc-
tured APS linear array allow for estimating g and subsequently θ without the knowledge of
a known calibrator source leading to another set of sufficient conditions. This is discussed
in the following part.

From the co-array perspective of scalar sensor arrays, the distinct elements of Dpext, as
seen in (4.14), behave like virtual sensor locations given by the difference set {pi − p j ,1 ≤
i , j ≤ M }. Those virtual sensor locations increase the degrees-of-freedom (DOF) of the array
allowing for estimating more sources than physical sensors, if they are placed strategically.
In order to look at the self-calibration problem for such array configurations, let us reuse
some definitions from [11].
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Definition 1. (Difference co-array) For an M-element sensor array, with pi denoting the
position of the i th sensor, define the set

D = {pi −p j }, ∀i , j = 1,2, . . . , M ,

which allows for a repetition of its elements. We also define the set DU , which consists of the
distinct elements of the set D. Then, the difference co-array of the given array is defined as the
array which has sensors located at positions given by the set DU .

Definition 2. (Weight function) An integer valued weight function w : DU →N+ is defined
as

w(p) = no. of occurances of p inD, p ∈DU ,

where N+ is the set of positive integers. The weight function w(p) denotes the number of times
p occurs in D.

The cardinality of the set DU for a given array gives the degrees of freedom (DOF) that
can be obtained from the difference co-array associated with that array. The motivation
of sparse array design, such as the minimum redundancy array (MRA), sparse ruler array or
nested array, is to maximize the number of DOF of the co-array for a fixed M , which in other
words means the value of the weight function w(p), ∀p ∈ DU \ {0} has to be minimized.
However, from the self-calibration perspective, a value of the weight function w(p), ∀p ∈
DU \ {0} greater than 1 is beneficial as this results in redundancies in (4.14). By exploiting
redundancies in those relations for the nth source and each p, the directional terms can be
eliminated resulting in an equation with only phase terms, i.e.,

ρpq (n)−ρkl (n) = ρpqkl (n) =φp −φq −φk +φl , (4.17)

where pp −pq = pk −pl for p, q,k, l = 1, . . . , M and n = 1, . . . , N . Such relations for all p, q,k, l
can be expressed as a system of equations, i.e.,

[
. . . ρpqkl (n) . . .

]T =T
[
φ1 . . . φM

]T
, (4.18)

where T is a deterministic matrix, which depends on the chosen array geometry and the
phase errors can be estimated by inverting it. The maximum amount of redundancies
can be found in a uniform linear array (ULA), where for M elements, w(±d) = M −d , for
d = 0,1, . . . , M−1. The rank of T is then always M−2, indicating that the phase errors can be
estimated with respect to an arbitrary reference and within an arbitrary progressive phase
factor [13, 17]. We now look into the rank of the T matrix for different structured sparse
linear arrays and summarize how the phase errors can be estimated for each of those sce-
narios,

• To design an M-element sparse array, taking self calibration into consideration, there
is a trade-off between DOF and redundancies. The maximum rank of T for an M-
element APS array is upper bounded by M − 2. The rank of T for structured sparse
arrays including the nested array [11] and super nested array [36] is always M − 3,
whereas for the co-prime arrays [12], which enjoy more redundancies, it is M −2.

• If there is a provision to introduce additional sensors within a sparse array to allow for
sufficient redundancies, then the rank of T can be increased to M −2. For example,



4

64 4. SELF CALIBRATION OF SCALAR AND VECTOR SENSOR ARRAYS

Definition 1. (Difference co-array) For an M-element sensor array, with pi denoting the
position of the i th sensor, define the set

D = {pi −p j }, ∀i , j = 1,2, . . . , M ,

which allows for a repetition of its elements. We also define the set DU , which consists of the
distinct elements of the set D. Then, the difference co-array of the given array is defined as the
array which has sensors located at positions given by the set DU .

Definition 2. (Weight function) An integer valued weight function w : DU →N+ is defined
as

w(p) = no. of occurances of p inD, p ∈DU ,

where N+ is the set of positive integers. The weight function w(p) denotes the number of times
p occurs in D.

The cardinality of the set DU for a given array gives the degrees of freedom (DOF) that
can be obtained from the difference co-array associated with that array. The motivation
of sparse array design, such as the minimum redundancy array (MRA), sparse ruler array or
nested array, is to maximize the number of DOF of the co-array for a fixed M , which in other
words means the value of the weight function w(p), ∀p ∈ DU \ {0} has to be minimized.
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ρpq (n)−ρkl (n) = ρpqkl (n) =φp −φq −φk +φl , (4.17)

where pp −pq = pk −pl for p, q,k, l = 1, . . . , M and n = 1, . . . , N . Such relations for all p, q,k, l
can be expressed as a system of equations, i.e.,

[
. . . ρpqkl (n) . . .

]T =T
[
φ1 . . . φM

]T
, (4.18)

where T is a deterministic matrix, which depends on the chosen array geometry and the
phase errors can be estimated by inverting it. The maximum amount of redundancies
can be found in a uniform linear array (ULA), where for M elements, w(±d) = M −d , for
d = 0,1, . . . , M−1. The rank of T is then always M−2, indicating that the phase errors can be
estimated with respect to an arbitrary reference and within an arbitrary progressive phase
factor [13, 17]. We now look into the rank of the T matrix for different structured sparse
linear arrays and summarize how the phase errors can be estimated for each of those sce-
narios,

• To design an M-element sparse array, taking self calibration into consideration, there
is a trade-off between DOF and redundancies. The maximum rank of T for an M-
element APS array is upper bounded by M − 2. The rank of T for structured sparse
arrays including the nested array [11] and super nested array [36] is always M − 3,
whereas for the co-prime arrays [12], which enjoy more redundancies, it is M −2.

• If there is a provision to introduce additional sensors within a sparse array to allow for
sufficient redundancies, then the rank of T can be increased to M −2. For example,
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for an MRA [10], with M = 5 and p = [0,1,4,7,9]T , the rank of T is 1. However, if we
introduce two phase reference sensors with p = [0,1,2, 3,4,7,9]T , then the rank of T
is 5.

On the other hand, the gain errors can be estimated by considering the redundancies in
the amplitude relations of diag(g∗ ⊗g)Aco(θ). Irrespective of the array geometry, the rank
of the equivalent T matrix obtained by considering |diag(g∗ ⊗g)Aco(θ)| is always M − 1,
indicating that the gain errors can be estimated with respect to the chosen reference sensor.

Using redundancies present in the co-array data model of an APS array with N ≥ 1 and
diag(g∗⊗g)Aco(θ) is given, we can conclude that for a ULA, with two phase reference sensors
in the array, while for sparse arrays, with at least two or more phase reference sensors in the
array, it is also possible for uniquely estimating the calibration errors and source DOAs.

4.4. SELF CALIBRATION WITH THE ELEMENT-SPACE MODEL
In this section, we focus on estimating the complex-valued receiver gains and the source
DOAs, when only a few snapshots are available. In such cases, the sample data covariance
matrix will be a very poor estimate of Rx and hence we focus on the element-space data
model. The algorithms provided in this section, do not make any assumptions on the array
geometry or on the structure of the covariance matrix Rx.

Assuming that the true directions are from a uniform grid of D � N points, i.e., assum-

ing that θn ∈
{

0, π
D · · · , π(D−1)

D

}
, for n = 1,2, . . . , N , we can approximate (4.1) as

x(t ) = diag(g)[ADz(t )+n(t )], (4.19)

where AD is a Q ×D dictionary matrix with column vectors of the form a(θ̄d ), where θ̄d

is the dth point of the uniform grid of directions, i.e., θ̄d = πd
D , d = 0,1, . . . ,D −1, and z(t )

is a length-Q vector containing the source signal related to the corresponding discretized
directions. We emphasize here that finding the columns of AD that correspond to non-
zero elements of z(t ) amounts to finding the DOAs. As seen in (4.19), by assuming that the
source DOAs lie on a pre-defined uniform grid, we transform a non-linear estimation prob-
lem into a bilinear estimation problem with c and z(t ) being the unknowns (from which we
can derive g and θ, respectively).

Defining the calibration matrix diag(c) = diag−1(g), we can express the “calibrated" sig-
nal y(t ) as

y(t ) = diag(c)x(t ) = diag(x(t ))c=ADz(t )+n(t ). (4.20)

Exploiting the nature of the calibration errors, which combined with simple algebraic
manipulation, the bilinear estimation problem in (4.19) is further transformed into a linear
estimation problem in (4.20). Leveraging the fact that the calibration parameters remain
unchanged during an observation window where we collect L snapshots, we can obtain
more equations, i.e.,




diag(x(1)) −AD

...
. . .

diag(x(L)) −AD




︸ ︷︷ ︸
G

[
c
z

]

︸ ︷︷ ︸
γ

=




n(1)
...

n(L)




︸ ︷︷ ︸
n

, (4.21)
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where z = vec(Z) ∈ CDL with Z = [z(1),z(2), · · · ,z(L)] = [z1,z2, . . . ,zD ]T . Here, z(l ) ∈ CD and
zd ∈CL .

Although at the outset, it seems as if there are Q +DL unknowns in (4.21), the vector
z is structured. Specifically, the vectors z(l ), l = 1, . . . ,L are sparse, and more importantly,
they have the same sparsity pattern with the indices of the nonzero pattern indicating the
source directions. The prior knowledge of having sparsity along the spatial domain can be
incorporated by initially considering the l2 norm of all the time samples corresponding to

a particular spatial index of Z, i.e., by defining z(�2)
d = ‖zd‖2 for d = 1,2, . . . ,D , and then by

using the sparsity promoting l1 norm penalty on the vector z(�2) =
[

z(�2)
1 , z(�2)

2 , . . . , z(�2)
D

]T

as f (z) = ‖z(l2)‖�1 =
D∑

d=1
z(�2)

d .

The optimization problem to jointly estimate the calibration parameters and DOAs with
a sparsity constraint along the spatial domain of the matrix Z can then be expressed as:

min
c,z

‖Gγ‖2
2 +η f (z) s. t. (c, z) ∈ C (4.22)

where γ = [cT zT ]T and η is the regularization parameter that allows for a trade off be-
tween the goodness of fit of the solution to the given data and the sparsity prior on z.
The constraint set for APS arrays is C := {(c, z) | c1 = 1,z1 = 1} while for AVS arrays it is
C := {(c, z) | c1 = 1}. Recall that for APS arrays, we need one reference sensor and we need
to know one of the DOAs to avoid ambiguities. This is done by setting c1 = 1 and z1 = 1,
which is equivalent to having a calibrator source at θ̄1 (w.l.o.g.). Since for AVS arrays, we
do not need any calibrator source, we only need a reference sensor in that case. The opti-
mization problem (4.22) is a convex optimization problem, which can be solved using any
off-the-shelf solver. For large L, if the number of sources can be estimated, the complexity
of the formulation in (4.22) can be reduced by using the �1-SVD technique [8] on the mea-
surement data matrix X. Furthermore, for the choice of the regularization parameter η, we
follow the discrepancy principle discussed in [8].

Remark 1. In contrast to the considered measurement model, the calibration errors affect
only the signal component of the data, when the errors originate due to the perturbation of
the sensors, gain and phase patterns or due to the position or orientation errors of the sensors
in the array [34, 37]. In such case, (4.1) and (4.20) can be modified, respectively as,

x(t ) = diag(g)A(θ)s(t )+n(t ).

y(t ) = diag(c)x(t ) = diag(x(t ))c=ADz(t )+diag(c)n(t ).

The proposed calibration approach in (4.22) is still applicable here with the additive noise
term being modified as n̂(t ) = diag(c)n(t ).

4.5. SELF CALIBRATION WITH THE CO-ARRAY DATA MODEL
In this approach both the calibration errors and the source DOAs will be estimated jointly
based on the covariance matrix of the measurement data. Similar to (4.19), the directions
are assumed to be on a uniform grid of D � N points. Then (4.6) can be approximated as

rx = diag(g∗ ⊗g)[AcoDσz +σn], (4.23)
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where AcoD is a Q2 ×D dictionary matrix that consists of column vectors of the form a∗(θ̄d )⊗
a(θ̄d ), with θ̄d as defined before. Again similar to (4.20), defining the calibration matrix
diag(c∗ ⊗c) = diag−1(g∗ ⊗g), we can express (4.23) as

diag(c∗ ⊗c)rx = diag(rx)(c∗ ⊗c) =Aco(θ)σs +σn. (4.24)

Since (c∗ ⊗c) = vec(C), with C= ccH , (4.23) can be compactly rewritten as

[
diag(rx) −AcoD

]
︸ ︷︷ ︸

Gco

[
vec(C)
σz

]

︸ ︷︷ ︸
γco

= σn. (4.25)

Similar to the element-space formulation, we have transformed the non-linear estimation
problem in (4.6) to a linear estimation problem in (4.25). The above system is underdeter-
mined with Q2 +D unknowns in Q2 equations (note that some equations might even be
redundant). However, as vec(C) has a Kronecker structure, the actual number of unknowns
reduces to Q and σz is a sparse vector with non-zero elements at the location of the source
DOAs. By considering the aforementioned constraints on the calibration errors and source
DOAs, the estimation problem can be cast as

min
C,σz

‖Gcoγco −σn‖2
2 +η‖σz‖0 s. t. (C, σz) ∈ Cco (4.26)

where γco = [vecT (C), σT
z ]T , η is the regularization parameter, for N ≥ 2 the constraint set

Cco = {(C, σz) |σz � 0, C = ccH , c1 = 1,σz(1) = 1} for APS arrays and Cco = {(C, σz) |σz �
0, C = ccH , c1 = 1} for AVS arrays. For APS arrays, the requirement of knowing one of the
DOAs is expressed as σz(1) = 1 (w.l.o.g.). Further for APS ULAs and some APS sparse arrays,
the redundancies in the co-array measurements can be used for the estimation of the source
DOAs and the calibration errors with two phase reference sensors in the array. In such cases
the constraint set even with N ≥ 1 is Cco = {(C, σz) |σz � 0, C = ccH , c1 = c2 = 1}. The
optimization problem in (4.26) is non-convex due to the l0 norm (cardinality) constraint
and the rank-one equality constraint on C. We can relax (4.26) by replacing the cardinal-
ity constraint with its convex approximation ‖σz‖1 and by replacing the rank-one equality
constraint (i.e., C = ccH ) in the set Cco with a convex inequality constraint (i.e., C � ccH ).
The new set which is same as Cco except for the rank-one convex inequality constraint is
denoted as C̃co. The relaxed optimization problem can be expressed as,

min
C,σz

‖Gcoγco −σn‖2
2 +η‖σz‖1 s. t. (C, σz) ∈ C̃co. (4.27)

The convex inequality constraint, C� ccH , is equivalent to

[
C c
cH 1

]
� 0 from Schur’s lemma.

The resulting problem is a semi-definite programming problem that can be solved with any
off-the-shelf solver. For the choice of the regularization parameter η, we can use any stan-
dard method adopted in sparse signal recovery [38]. In practice, for the finite snapshot sce-
nario, C obtained after solving (4.27) might not be rank one and the closest estimates of the
calibration parameters can be obtained from the first dominant singular vector of C. The
formulation in (4.27) is also applicable to sparse arrays for estimating DOAs (when there are
more sources than sensors) and calibration parameters jointly as presented in [35].
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Remark 2. If calibration errors affect only the signal component of the data, then (4.6) can
be modified as

rx = diag(g∗ ⊗g)Aco(θ)σs +σn.

The proposed calibration approach in (4.27) is still applicable here with a slight modification.
More specifically, (4.25) and (4.26) can then be modified, respectively as,

[
diag(rx −σn) −AcoD

]
︸ ︷︷ ︸

Gco

[
vec(C)
σz

]

︸ ︷︷ ︸
γco

= 0,

min
C,σz

‖Gcoγco‖2
2 +η‖σz‖0 s. t. (C, σz) ∈ Cco.

Before ending this section, we remark that the proposed algorithms in Section 4.4 and Sec-
tion 4.5 are also useful for non-linear arrays using the identifiability conditions provided as
a remark at the end of Section 4.3.

4.6. NUMERICAL EXPERIMENTS
In this section, we present numerical simulations to illustrate the performance of all the
proposed solvers for the joint estimation of the source DOAs and calibration parameters.
Firstly we consider the element-space model based solver in (4.22) only for AVS linear ar-
rays. Recall that AVS arrays do not require the presence of a reference source (see Sec-
tion 4.3). Then the covariance model in (4.27) is considered for both the APS and AVS linear
array. Finally, we analyze the root mean square error (RMSE) of the DOA estimates ob-
tained from the presented algorithms and compare them with existing calibration methods.
The RMSE results for scenarios with more sensors than sources are also compared with the
Cramér-Rao lower bound (CRLB) on the DOA estimates.

4.6.1. ELEMENT-SPACE MODEL
We consider a scenario with M = 8 AVSs arranged in a uniform linear array (ULA) configu-
ration where the spacing between the consecutive sensors is half a wavelength of the con-
sidered narrowband source signals. Further, we consider a scenario with N = 6 narrowband
far-field signals impinging on the array from distinct DOAs with an observation period con-
sisting of L = 50 snapshots. The grid is chosen to be uniform between [0◦ 180◦] with 1◦
resolution. Without loss of generality, we assume the first channel of the first AVS in the ar-
ray as the reference channel whose gain is 1 and phase is 0◦. The gain and phase errors are
chosen from a uniform distribution over the interval [-3; 3] dB and [−20◦;20◦], respectively.

Based on the optimization problem in (4.22), the results of DOA estimation post calibra-
tion are presented in Fig. 4.1. In order to verify the correctness of the formulation in (4.22),
we initially considered an ideal scenario without measurement noise. The DOA spectra
based on (4.22) are presented in Fig. 4.1(a). It is seen in Fig. 4.1(a), that we recover the exact
source DOAs after solving (4.22), where as for the uncalibrated data, the source DOA esti-
mates based on the l1-SVD algorithm [8] are very poor. Further, we considered the measure-
ment data with a signal-to-noise ratio (SNR) of 10 dB and the corresponding DOA spectra
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Figure 4.1: The l1-SVD and MUSIC spectra using the element-space data model based solver in (4.22) for an AVS
ULA with M = 8, N = 6 and L = 50. The true DOAs are indicated by the black solid lines.
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obtained from solving (4.22) are presented in Fig. 4.1(b), where we draw a similar inference
as in Fig. 4.1(a).

On the other hand, the issues of a pre-defined grid on the DOA estimates obtained after
solving (4.22) can be minimized by applying the MUSIC algorithm on the gain and phase
compensated covariance matrix. The gain and phase errors are estimated from (4.22), and
the corresponding MUSIC spectra are presented in Fig. 4.1(c). It can be inferred that for the
measurement data with an SNR of 10 dB, MUSIC with the uncalibrated data results in poor
estimates, whereas the DOA estimates after calibration in Fig. 4.1(c) provides similar results
as in Fig. 4.1(b). The two-step procedure to obtain DOA estimates from MUSIC spectrum
significantly improves results when the sources do not lie on a pre-defined grid.

4.6.2. CO-ARRAY DATA MODEL
To illustrate the effectiveness of the covariance domain formulation provided in (4.27), we
consider both a conventional ULA with less sources than sensors and a sparse linear array
with more sources than sensors, where the smallest spacing between the consecutive sen-
sors is half a wavelength of the considered narrowband source signals. Here, all the far-field
source DOAs are chosen to be on the grid. In both the scenarios, without loss of general-
ity, for the APS arrays we considered the first two sensors as references whereas for the AVS
arrays the first channel is considered as a reference with gain of 1 and phase of 0◦.

ULA WITH LESS SOURCES THAN SENSORS

Consider a ULA with M = 8, N = 4 far-field sources and SNR = 10 dB. Firstly, we consider a
finite sample scenario with the observation period consisting of L = 1000 snapshots whose
l1 norm based DOA spectra upon solving (4.27) are plotted in Fig. 4.2(a) for the APS ULA
and in Fig. 4.2(b) for the AVS ULA. The uncalibrated data in all the plots results in low res-
olution DOA spectra and very poor DOA estimates. In Fig. 4.2(a), the DOA spectra upon
solving (4.27) show an improvement compared to the DOA spectra computed with the un-
calibrated data. However, the resulting DOA spectra still have low resolution, as the model
considered in (4.27) is not exact due to the finite sample approximation of the covariance
matrix estimation. On the other hand, in Fig. 4.2(b), the DOA spectra based on (4.27) are sig-
nificantly superior with high resolution compared to the DOA spectra computed with the
uncalibrated data. However upon closer observation, we can notice that the DOA estimates
are slightly biased for a couple of sources and also there are some spurious peaks in the DOA
spectra. It is observed that the model mismatches due to the finite sample approximation
of the covariance matrix estimation, has higher impact on reducing the sparsity of the DOA
spectra for the APS ULA in comparison to an equivalent AVS ULA.

In order to overcome the discussed issues with DOA estimates and the effects of a pre-
defined grid, similar to the element-space approach, a grid-free approach such as MUSIC
algorithm can be applied on the measurement data in (6.2), which is compensated for the
gain and phase errors obtained from (4.27). Those MUSIC spectra based on the calibrated
data are presented in Fig. 4.3. The results in Fig. 4.3(b) for the AVS ULA is compared with [19]
(referred to as Weiss-Friedlander approach). The results in Fig. 4.3(a) for the APS ULA is
compared with [13] (referred to as the Paulraj-Kailath approach2), as the Weiss-Friedlander
approach is not effective for linear scalar sensor arrays.

2During the submission of this manuscript it came to the authors’ attention that an improved version of [13] for
scalar sensor arrays that considers an optimally-weighted least squares (OWLS) approach was proposed in [27].
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To illustrate the effectiveness of the covariance domain formulation provided in (4.27), we
consider both a conventional ULA with less sources than sensors and a sparse linear array
with more sources than sensors, where the smallest spacing between the consecutive sen-
sors is half a wavelength of the considered narrowband source signals. Here, all the far-field
source DOAs are chosen to be on the grid. In both the scenarios, without loss of general-
ity, for the APS arrays we considered the first two sensors as references whereas for the AVS
arrays the first channel is considered as a reference with gain of 1 and phase of 0◦.

ULA WITH LESS SOURCES THAN SENSORS

Consider a ULA with M = 8, N = 4 far-field sources and SNR = 10 dB. Firstly, we consider a
finite sample scenario with the observation period consisting of L = 1000 snapshots whose
l1 norm based DOA spectra upon solving (4.27) are plotted in Fig. 4.2(a) for the APS ULA
and in Fig. 4.2(b) for the AVS ULA. The uncalibrated data in all the plots results in low res-
olution DOA spectra and very poor DOA estimates. In Fig. 4.2(a), the DOA spectra upon
solving (4.27) show an improvement compared to the DOA spectra computed with the un-
calibrated data. However, the resulting DOA spectra still have low resolution, as the model
considered in (4.27) is not exact due to the finite sample approximation of the covariance
matrix estimation. On the other hand, in Fig. 4.2(b), the DOA spectra based on (4.27) are sig-
nificantly superior with high resolution compared to the DOA spectra computed with the
uncalibrated data. However upon closer observation, we can notice that the DOA estimates
are slightly biased for a couple of sources and also there are some spurious peaks in the DOA
spectra. It is observed that the model mismatches due to the finite sample approximation
of the covariance matrix estimation, has higher impact on reducing the sparsity of the DOA
spectra for the APS ULA in comparison to an equivalent AVS ULA.

In order to overcome the discussed issues with DOA estimates and the effects of a pre-
defined grid, similar to the element-space approach, a grid-free approach such as MUSIC
algorithm can be applied on the measurement data in (6.2), which is compensated for the
gain and phase errors obtained from (4.27). Those MUSIC spectra based on the calibrated
data are presented in Fig. 4.3. The results in Fig. 4.3(b) for the AVS ULA is compared with [19]
(referred to as Weiss-Friedlander approach). The results in Fig. 4.3(a) for the APS ULA is
compared with [13] (referred to as the Paulraj-Kailath approach2), as the Weiss-Friedlander
approach is not effective for linear scalar sensor arrays.

2During the submission of this manuscript it came to the authors’ attention that an improved version of [13] for
scalar sensor arrays that considers an optimally-weighted least squares (OWLS) approach was proposed in [27].
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Figure 4.2: The l1 norm based DOA spectra for both the APS and AVS ULA based on the co-array data model solver
in (4.27) with L = 1000, SNR = 10 dB, M = 8 and N = 4 far-field sources. The true DOAs are indicated by the black
solid lines.

In Figs. 4.3(a) and (b), we see that the MUSIC spectra have a higher resolution and im-
proved estimates compared to the equivalent l1 norm based DOA spectra. On contrary, the
spectra based on the uncalibrated data is not able to resolve all the sources and the reso-
lution of the spectra is also degraded. Further, for the APS ULA in Fig. 4.3(a), the proposed
approach outperforms [13], and for the AVS ULA in Fig. 4.3(b), it can be observed that al-
though [19] results in a sharper peaks compared to the proposed approach, the estimates
are highly biased.

It can be summarized that based on the formulation in (4.27), it is possible to jointly
estimate both the calibration errors as well as the source DOAs and the estimation results
are good when the number of time snapshots are higher and the grid-mismatches are min-
imal. However, when the number of time snapshots are limited and we have a pre-defined
grid, solving (4.27) can be used as a pre-conditioning step to estimate the calibration er-
rors. Then a grid-free approach such as MUSIC can be applied on the gain and phase errors
compensated measurement data to obtain improved and reliable DOA estimates.

SPARSE ARRAY WITH MORE SOURCES THAN SENSORS

Consider a hole-free sparse linear array with M = 6, p= [012369]T , N = 8 far-field sources
and SNR = 10 dB. The rank of the T matrix [cf. (4.18)] for the considered sparse array is 4
(i.e., M−2). For this scenario, we present spatial smoothing MUSIC (SS MUSIC) spectra [11]
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Figure 4.3: The MUSIC spectra for both the APS and AVS ULA based on the co-array data model solver in (4.27)
with L = 1000, SNR = 10 dB, M = 8 and N = 4 far-field sources. The true DOAs are indicated by the black solid lines.

based on the gain and phase compensated measurement data, where the calibration errors
are estimated by evaluating the proposed formulation in (4.27). We consider a finite sam-
ple scenario with the observation period consisting of L = 500 snapshots whose SS MUSIC
spectra are shown in Fig. 4.4(a) for the APS array and Fig. 4.4(b) for the AVS array. The re-
sults of SS MUSIC for both the APS and AVS array are compared with the sparse total least
squares (STLS) calibration approach [29].

In both Figs. 4.4(a) and (b), we see that post calibration, the SS MUSIC spectra have a
higher resolution and are comparable to the scenario with no calibration errors, whereas
the spectra based on the uncalibrated data are not able to resolve all the sources and the
resolution of the spectra is also degraded. Furthermore, for both the APS and AVS sparse
array with 500 snapshots, the performance of our proposed method is better than the STLS
calibration approach [29].

The simulation setup for the AVS sparse linear array considered in Fig. 4.4(b), consists of
less sources (N = 8) than the number of channels of the AVS array, (3M = 18). The proposed
calibration approach in (4.27) is still applicable to an AVS sparse linear array with more
sources than channels. However, because of the aperture limitation, when many sources are
closely spaced it will be hard to discriminate them. To solve this issue, we can further boost
the aperture by spatially undersampling the AVS array as in [39]. Such a setup is considered
in Fig. 4.5, where the aperture is doubled and the smallest spacing between consecutive sen-
sors is unit wavelength (instead of half a wavelength) of the considered narrowband source
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Figure 4.3: The MUSIC spectra for both the APS and AVS ULA based on the co-array data model solver in (4.27)
with L = 1000, SNR = 10 dB, M = 8 and N = 4 far-field sources. The true DOAs are indicated by the black solid lines.

based on the gain and phase compensated measurement data, where the calibration errors
are estimated by evaluating the proposed formulation in (4.27). We consider a finite sam-
ple scenario with the observation period consisting of L = 500 snapshots whose SS MUSIC
spectra are shown in Fig. 4.4(a) for the APS array and Fig. 4.4(b) for the AVS array. The re-
sults of SS MUSIC for both the APS and AVS array are compared with the sparse total least
squares (STLS) calibration approach [29].

In both Figs. 4.4(a) and (b), we see that post calibration, the SS MUSIC spectra have a
higher resolution and are comparable to the scenario with no calibration errors, whereas
the spectra based on the uncalibrated data are not able to resolve all the sources and the
resolution of the spectra is also degraded. Furthermore, for both the APS and AVS sparse
array with 500 snapshots, the performance of our proposed method is better than the STLS
calibration approach [29].

The simulation setup for the AVS sparse linear array considered in Fig. 4.4(b), consists of
less sources (N = 8) than the number of channels of the AVS array, (3M = 18). The proposed
calibration approach in (4.27) is still applicable to an AVS sparse linear array with more
sources than channels. However, because of the aperture limitation, when many sources are
closely spaced it will be hard to discriminate them. To solve this issue, we can further boost
the aperture by spatially undersampling the AVS array as in [39]. Such a setup is considered
in Fig. 4.5, where the aperture is doubled and the smallest spacing between consecutive sen-
sors is unit wavelength (instead of half a wavelength) of the considered narrowband source
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Figure 4.4: The spatial smoothing MUSIC (SS MUSIC) spectra for both the APS and AVS sparse linear array based
on the co-array data model solver in (4.27) with L = 500, SNR = 10 dB, M = 6, p = [012369]T and N = 8 far-field
sources. The true DOAs are indicated by the black solid lines.

signals. The SS-MUSIC spectra for an ideal scenario with M = 6, N = 19 (> 3M), SNR = 10 dB
and L =∞ are shown. Similar inferences as from Fig. 4.4(b), can be made in Fig. 4.5, which
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Figure 4.5: The spatial smoothing MUSIC (SS MUSIC) spectra for the AVS sparse linear array based on the co-
array data model solver in (4.27) with M = 6, p = [012369]T (with smallest inter-sensor spacing equals to λ of
the considered narrowband source signals), SNR = 10 dB, L =∞ and N = 19 far-field sources. The true DOAs are
indicated by the black solid lines.

showcases the applicability of the proposed calibration approach in (4.27) with a spatially
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undersampled AVS array with more sources than channels.

4.6.3. MONTE-CARLO EXPERIMENTS
In this section we study the statistical behavior through the root mean square error (RMSE)
of the DOA estimator based on the proposed calibration procedure for different scenarios.
We consider both AVSs and APSs arranged in a ULA and sparse linear array configurations.

UNIFORM LINEAR ARRAY WITH LESS SOURCES THAN SENSORS

Firstly, we consider M = 8 sensors arranged in a ULA configuration and three far-field sources,
i.e., N = 3 with θ = [78◦,90◦,102◦]. The gain and phase perturbations follow a uniform dis-
tribution over the interval of [-2, 2] dB and [−40◦,40◦], respectively. For both the element-
space formulation (4.22) and covariance domain formulation (4.27), we have chosen the
pre-defined grid between 0◦ and 180◦ with 1◦ resolution. The RMSE of the DOA estimates
based on the l1 norm spectra (either by solving (4.22) or (4.27)) as well as the MUSIC spectra
are presented for the considered scenarios.

Fixed SNR and varying snapshots The RMSE of the DOA estimates for the source present
at 90◦ based on 500 Monte-Carlo trials for both the APS and AVS ULA are presented in
Fig. 4.6. Here the calibration errors and SNR of 10 dB were fixed for all the trails while the
number of snapshots are varying. The RMSE of the DOA estimates in Fig. 4.6 based on the
l1 norm spectra by solving (4.22) is referred to as “Calibrated - Element Space" and by solv-
ing (4.27) is referred to as “Calibrated - Coarray". Further, the RMSE in the DOA estimates in
Fig. 4.6 based on the MUSIC spectra by solving (4.22) is referred to as “Calibrated - Element
Space - MUSIC" and by solving (4.27) is referred to as “Calibrated - Coarray - MUSIC".

In Fig. 4.6(a), we considered the AVS ULA with an SNR of 10 dB. It is seen that as the
number of snapshots increases, the RMSE of the DOA estimates for the uncalibrated case
does not decrease, whereas after calibration based on both the l1 norm spectra and the MU-
SIC spectra, the results approach the ideal scenario with no calibration errors and its CRLB.
For a given number of snapshots, MUSIC based DOA estimates result in lower RMSE values
when compared with the equivalent l1 norm based DOA estimates, further emphasizing
the fact that the calibration estimates are robust to the model mismatches while solving
either (4.22) or (4.27). On the other hand, the RMSE of the DOA estimates based on the
Weiss-Friedlander approach [19] is also presented in Fig. 4.6, where the calibration param-
eters were initialized with a gain of 1 and a phase of 0◦. It is seen that the RMSE of the
DOA estimates decreases initially, however it tends to saturate as the number of snapshots
increases as it leads to a sub-optimal solution depending on the initialization. Also it can
be observed that the DOA estimates based on the MUSIC spectra with calibration parame-
ters estimated from (4.27) require more snapshots to obtain better DOA estimates with low
RMSE as the finite sample errors in the estimation of the covariance matrix are high for a
low number of snapshots and those are not modeled in the formulation of (4.27). Further-
more, based on the MUSIC spectra in Fig. 4.6(a), it can be observed that the performance of
the element-space approach is far superior than the covariance domain approach.

Similarly in Fig. 4.6(b), we considered the APS ULA with an SNR of 10 dB. For the APS
ULA, only formulation in (4.27) is considered and the results of the proposed methodology
are compared with the Paulraj-Kailath approach [13]. The RMSE of the DOA estimates of
the proposed methodology follows same trend as seen for the AVS ULA in Fig. 4.6(a). On
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pre-defined grid between 0◦ and 180◦ with 1◦ resolution. The RMSE of the DOA estimates
based on the l1 norm spectra (either by solving (4.22) or (4.27)) as well as the MUSIC spectra
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ing (4.27) is referred to as “Calibrated - Coarray". Further, the RMSE in the DOA estimates in
Fig. 4.6 based on the MUSIC spectra by solving (4.22) is referred to as “Calibrated - Element
Space - MUSIC" and by solving (4.27) is referred to as “Calibrated - Coarray - MUSIC".

In Fig. 4.6(a), we considered the AVS ULA with an SNR of 10 dB. It is seen that as the
number of snapshots increases, the RMSE of the DOA estimates for the uncalibrated case
does not decrease, whereas after calibration based on both the l1 norm spectra and the MU-
SIC spectra, the results approach the ideal scenario with no calibration errors and its CRLB.
For a given number of snapshots, MUSIC based DOA estimates result in lower RMSE values
when compared with the equivalent l1 norm based DOA estimates, further emphasizing
the fact that the calibration estimates are robust to the model mismatches while solving
either (4.22) or (4.27). On the other hand, the RMSE of the DOA estimates based on the
Weiss-Friedlander approach [19] is also presented in Fig. 4.6, where the calibration param-
eters were initialized with a gain of 1 and a phase of 0◦. It is seen that the RMSE of the
DOA estimates decreases initially, however it tends to saturate as the number of snapshots
increases as it leads to a sub-optimal solution depending on the initialization. Also it can
be observed that the DOA estimates based on the MUSIC spectra with calibration parame-
ters estimated from (4.27) require more snapshots to obtain better DOA estimates with low
RMSE as the finite sample errors in the estimation of the covariance matrix are high for a
low number of snapshots and those are not modeled in the formulation of (4.27). Further-
more, based on the MUSIC spectra in Fig. 4.6(a), it can be observed that the performance of
the element-space approach is far superior than the covariance domain approach.

Similarly in Fig. 4.6(b), we considered the APS ULA with an SNR of 10 dB. For the APS
ULA, only formulation in (4.27) is considered and the results of the proposed methodology
are compared with the Paulraj-Kailath approach [13]. The RMSE of the DOA estimates of
the proposed methodology follows same trend as seen for the AVS ULA in Fig. 4.6(a). On
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Figure 4.6: RMSE variation of the DOA estimates for the source at 90◦ using both the APS and AVS ULA with M = 8,
N = 3 and θ = [78◦,90◦,102◦] for a fixed SNR of 10 dB as the number of snapshots are varying.

the other hand, although the calibration approach in [13] achieves the optimal solution, it
requires more snapshots to achieve similar performance as the proposed methodology.

Fixed number of snapshots and varying SNR The variation of the RMSE in the DOA es-
timates with respect to a change in SNR for a fixed number of snapshots is considered in
Fig. 4.7. The same setup as in Fig. 4.6 is considered with N = 3 (θ = [78◦,90◦,102◦]) where
the RMSE of the source at 90◦ is presented. In Figs. 4.7(a) and (b), we consider the AVS
and the APS ULA, respectively, with 1000 snapshots and varying SNR. Similar to Fig. 4.6, it
is seen that after calibration using the formulation in (4.22) as well as in (4.27) the RMSE
of the DOA estimates decreases as the SNR increases for both the l1 based spectra and the
MUSIC spectra. Also as expected we can observe that the MUSIC spectra based DOA esti-
mates outperform the l1 based DOA estimates for a given SNR. Further, it can be inferred
that the RMSE of the DOA estimates based on the proposed element-space model calibra-
tion technique asymptotically approaches the ideal scenario with no calibration errors and
its CRLB. On the other hand, we can observe that the RMSE in the DOA estimates using the
Weiss-Friedlander approach in Fig. 4.7(a) for the AVS ULA and the Paulraj-Kailath approach
in Fig. 4.7(b) for the APS ULA, initially decreases as the SNR increases. However for an SNR
greater than 5 dB the RMSE of the DOA estimates tends to saturate due to the finite sample
errors in the covariance matrix estimation.
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Figure 4.7: RMSE variation of the DOA estimates for the source at 90◦ using both the APS and AVS ULA with M = 8,
N = 3 and θ = [78◦,90◦,102◦] as the SNR varies for a fixed number of snapshots of 1000.

Gain and Phase RMSE estimates Finally, the RMSE in the gain and phase error estimates
for the setup considered in Figs. 4.6 and 4.7 is considered. In Fig. 4.8 the norm of the differ-
ence between the estimates and the actual values of the gain and phase errors is presented.
In Figs. 4.8(a) and 4.8(b), RMSE related to the phase and gain error estimates with varying
snapshots is considered, with the SNR being 10 dB. It can be observed in Figs. 4.8(a) and 4.8(c)
that the RMSE related to both the phase and gain errors tends to approach zero as the num-
ber of snapshots increases except for the Weiss-Friedlander approach [19] as it produces a
sub-optimal solution. This trend is consistent for the proposed calibration approach based
on both the element-space and co-array formulation. Further, in Figs. 4.8(a) and 4.8(b) it
can be observed that the RMSE related to the phase errors based on the proposed calibra-
tion approach outperforms the Paulraj-Kailath approach.

SPARSE LINEAR ARRAY WITH MORE SOURCES THAN SENSORS

In Fig. 4.9, the RMSE of the DOA estimates for APS and AVS sparse linear array based on
the SS MUSIC spectra obtained using gain and phase compensated measurement data for
different SNRs and for different numbers of data snapshots is presented. Here, we use M =
6, p = [012369]T and N = 2 with θ = [70◦,90◦]. The RMSE is computed for the source
at 90◦ using 500 independent Monte-Carlo trials, but with fixed gain and phase errors. In
Figs. 4.9(a) and (b), we can observe that as the number of snapshots increases, the RMSE of
the DOA estimate after calibration approaches the ideal scenario without any sensor errors.
Furthermore, the RMSE for the STLS calibration saturates both when increasing the number
of snapshots, as it converges to a sub-optimal solution.
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Figure 4.7: RMSE variation of the DOA estimates for the source at 90◦ using both the APS and AVS ULA with M = 8,
N = 3 and θ = [78◦,90◦,102◦] as the SNR varies for a fixed number of snapshots of 1000.

Gain and Phase RMSE estimates Finally, the RMSE in the gain and phase error estimates
for the setup considered in Figs. 4.6 and 4.7 is considered. In Fig. 4.8 the norm of the differ-
ence between the estimates and the actual values of the gain and phase errors is presented.
In Figs. 4.8(a) and 4.8(b), RMSE related to the phase and gain error estimates with varying
snapshots is considered, with the SNR being 10 dB. It can be observed in Figs. 4.8(a) and 4.8(c)
that the RMSE related to both the phase and gain errors tends to approach zero as the num-
ber of snapshots increases except for the Weiss-Friedlander approach [19] as it produces a
sub-optimal solution. This trend is consistent for the proposed calibration approach based
on both the element-space and co-array formulation. Further, in Figs. 4.8(a) and 4.8(b) it
can be observed that the RMSE related to the phase errors based on the proposed calibra-
tion approach outperforms the Paulraj-Kailath approach.

SPARSE LINEAR ARRAY WITH MORE SOURCES THAN SENSORS

In Fig. 4.9, the RMSE of the DOA estimates for APS and AVS sparse linear array based on
the SS MUSIC spectra obtained using gain and phase compensated measurement data for
different SNRs and for different numbers of data snapshots is presented. Here, we use M =
6, p = [012369]T and N = 2 with θ = [70◦,90◦]. The RMSE is computed for the source
at 90◦ using 500 independent Monte-Carlo trials, but with fixed gain and phase errors. In
Figs. 4.9(a) and (b), we can observe that as the number of snapshots increases, the RMSE of
the DOA estimate after calibration approaches the ideal scenario without any sensor errors.
Furthermore, the RMSE for the STLS calibration saturates both when increasing the number
of snapshots, as it converges to a sub-optimal solution.
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Figure 4.8: RMSE variation of the gain and phase error estimates for both the APS and AVS ULA setup considered
in Figs. 4.6 and 4.7 as the snapshots varies for a fixed SNR of 10 dB.

4.7. EXPERIMENTAL RESULTS
An experimental study was conducted in order to demonstrate the proposed joint DOA and
calibration algorithm for AVS arrays. As discussed, each AVS consists of a pressure micro-
phone and several orthogonal particle velocity transducers. A particle velocity transducer
is commonly referred to as a Microflown [1]. A reliable calibration procedure is crucial for
relating the sensor output to the physical quantity perceived. Unlike microphone calibra-
tion, there are no standardized procedures yet defined for characterizing the broadband
response of particle velocity sensors.

Microflown sensors were originally calibrated using a sound pressure microphone as a
reference in a standing wave tube [15], where the ratio between sound pressure and par-
ticle velocity (i.e., acoustic impedance) is well understood. Novel methods were later pro-
posed for covering a wider frequency range, such as the “Piston-On-a-Sphere" technique
(POS) [14]. This approach relies on a sound source of known impedance measured in free
field conditions and it achieves good results at mid and high frequencies. Thereafter, the
POS technique was extended to lower frequencies by also measuring the acoustic pres-
sure inside the sound source [16]. As a result, a full-bandwidth calibration procedure is
now available by combining two measurement steps. In this section, the DOA estimation
results based on the calibrated data using the POS technique (referred to as POS calibra-
tion), the Weiss-Friedlander approach [19] and the proposed calibration techniques (both
the element-space and co-array approaches) are presented.

A picture of the experimental setup is shown in Fig. 5.4, where five AVSs are seen ar-
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Figure 4.9: RMSE variation in the DOA estimates for the source at 90◦ based on the SS-MUSIC spectra using both
APS and AVS sparse arrays with M = 6, p = [012369]T , N = 2, SNR = 10 dB and θ = [70◦,90◦] as the number of
snapshots are varying. Here the scenario with “No Calibration Errors" is considered as the baseline reference to
compare the performance of the proposed self-calibration solver.

ranged in a linear array configuration along with three speakers. The smallest inter-sensor

Figure 4.10: Picture of the experimental setup considering five AVSs and three speakers, located at a radius of
r = 3.6 m.
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Figure 4.9: RMSE variation in the DOA estimates for the source at 90◦ based on the SS-MUSIC spectra using both
APS and AVS sparse arrays with M = 6, p = [012369]T , N = 2, SNR = 10 dB and θ = [70◦,90◦] as the number of
snapshots are varying. Here the scenario with “No Calibration Errors" is considered as the baseline reference to
compare the performance of the proposed self-calibration solver.

ranged in a linear array configuration along with three speakers. The smallest inter-sensor

Figure 4.10: Picture of the experimental setup considering five AVSs and three speakers, located at a radius of
r = 3.6 m.
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spacing was d = 0.05 m with sensors located at positions p= [0,1,2,4,6]T and the speakers
were located along the circumference of a circle of radius r = 3.6 m with respect to the ref-
erence AVS in the array (the distance to the sources is more than 20 times the aperture of
the array and therefore satisfying the far-field condition). The measurements were carried
out in a fully anechoic chamber of the Faculty of Applied Physics of TU Delft (Netherlands)
using uncorrelated white Gaussian excitations driving multiple 3 inch loudspeakers (result-
ing in high SNRs of approximately 30 dB). An Heim DATaRec 24 channels acquisition device
with a sampling frequency of 25 kHz was used to record the data. The acoustic pressure and
particle velocity information at a given frequency were obtained by computing a short time
Fourier transform (STFT). Each recording was fragmented into segments of 1024 samples
with 50% overlap. A Hanning window was applied to each data segment prior to the STFT.

The raw output signals from all the five AVSs at a time instant t for a particular fre-
quency bin were collected in a vector x(t ), similar to (4.1). Without loss of generality, we
have considered the first channel of the first AVS in the array as the reference channel with
known gain and phase response which is sufficient to obtain a unique solution as seen
in the identifiability conditions for AVS arrays. The joint DOA and calibration algorithm
based on (4.22) and (4.27) were applied on the captured measurement data x(t ) consisting
of L = 1000 snapshots at a frequency of f = 2000 Hz. The corresponding grid-free MUSIC
spectra based on the post-calibration measurement data are presented in Fig. 4.11.
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Figure 4.11: MUSIC spectra based DOA estimates using an AVS array with M = 5, N = 2 and f = 2000 Hz. The true
DOAs are indicated by the black solid lines.

In Fig. 4.11(a) and (b), we considered two of the three speakers with θ = [−45◦,−90◦]T

and three speakers that are closely spaced with θ = [70◦,90◦,108◦]T , respectively. We can
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observe that for the uncalibrated data, the resolution of MUSIC is poor. However, improved
spectra with higher resolution can be seen after compensating with the estimated calibra-
tion parameters. The MUSIC spectrum obtained from (4.27), results in a high resolution
comparable to the results that are obtained with the reference POS calibration approach.
However, the spectrum obtained from (4.22), has a lower resolution (especially in the three
source case) and shows a small bias compared to the co-array domain based solver. The,
Weiss-Friedlander approach results in degraded estimates compared to the proposed ap-
proach, specifically in Fig.4.11(b) it can be observed that none of the sources are resolved.

4.8. CONCLUDING REMARKS
In this paper, we proposed a self calibration technique for both the element-space and co-
array data models that is applicable to both acoustic pressure and vector sensor arrays. Also,
we derived and discussed a number of identifiability conditions for all the considered cases
under which a unique solution for both the calibration parameters and the source DOAs
can be obtained. It is interesting to note that for the AVS array, irrespective of the considered
geometry, it is possible to calibrate all the sensors with respect to only one of the channels
in the array.

Based on the proposed approach, we showed that it is indeed possible to jointly esti-
mate calibration errors and source directions using a one-step approach by exploiting the
underlying algebraic structure and convex optimization techniques. It is shown that for infi-
nite data records, we can in fact obtain the optimal solution suggesting the feasibility of the
convex relaxations for both the element-space and co-array data models. However, when
the number of time snapshots are limited and we have a pre-defined grid, we stated that the
proposed methodology can be used as a pre-conditioning step to estimate the calibration
errors. Then a grid-free approach such as MUSIC/SS-MUSIC can be applied on the gain
and phase errors compensated measurement data to obtain improved and reliable DOA
estimates. Furthermore, through simulations, we showed that even for finite data records
we are able to recover all the source DOAs and we perform better than the existing calibra-
tion techniques for all the considered scenarios. Finally, experimental results based on real
measurement data with an AVS linear array that are collected in an anechoic chamber are
presented to showcase the effectiveness of the proposed calibration techniques using both
the element-space and co-array data model.
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5
BLIND SENSOR ARRAY CALIBRATION

AND DOA ESTIMATION OF

BROADBAND SOURCES

In this paper, we focus on the gain and phase calibration of a sensor array and the direction-
of-arrival (DOA) estimation of multiple far-field broadband sources. By leveraging the fact
that the calibration errors vary across frequencies smoothly and the DOAs of broadband sources
are the same for the frequency range of interest, we propose a blind calibration method to
jointly estimate the gain and phase errors. This joint estimation problem is a non-convex op-
timization problem. Hence, it is relaxed to a convex optimization problem by exploiting the
underlying algebraic structure. Numerical and experimental results using real measurement
data are presented, to illustrate the efficiency of the proposed solver. Both results are based on
an acoustic vector sensor (AVS) linear array.

85



5

86
5. BLIND SENSOR ARRAY CALIBRATION AND DOA ESTIMATION OF

BROADBAND SOURCES

5.1. INTRODUCTION
Direction-of-arrival (DOA) estimation using sensor arrays is of interest in many fields in-
cluding acoustics. Its applications include ground surveillance [1] and target tracking [2] for
localizing outdoor acoustic events. Conventionally, microphone/acoustic pressure sensor
(APS) arrays are deployed for such tasks and based on the time delays between the sensors,
the DOAs of the sources are estimated. However, in recent times with the advances in sen-
sor technology, transducers that are capable of measuring vector quantities such as particle
velocity are becoming practically feasible [3–5]. An acoustic vector sensor (AVS) is one such
device that can measure both acoustic pressure (scalar quantity) and particle velocity (vec-
tor quantity) at a given spatial location [6, 7]. It comprises an omni-directional microphone
and two (or three) particle velocity transducers each aligned along the coordinate axes in
R2 (or R3) [5]. These sensors are broadband in nature and operate in the audible range of
frequencies.

For DOA estimation of broadband sources using spatially distributed AVS or APS ar-
rays, narrowband algorithms are applied to the measurements corresponding to each fre-
quency bin and then all these results are combined. Advanced algorithms that yield highly
accurate estimates among many include the minimum variance distortionless response
(MVDR) beamformer [8] and subspace-based methods like multiple signal classification
(MUSIC) [9]. However, these algorithms are highly sensitive to modeling errors such as
relative gain and phase variations across frequencies and sensors, which are commonly re-
ferred to as calibration errors. These sensor calibration errors are frequency dependent, but
they vary smoothly across frequencies. The latter property can be used as prior information
which allows us to assume that the calibration errors are constant or change linearly over a
certain range of frequencies. They are similar/same or they can be linearized for certain set
of frequencies. A typical microphone gain and phase variation can be seen in Fig. 5.1.
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Figure 5.1: Gain and phase sensitivity of a typical microphone [5].

Based on the knowledge that the calibration parameters vary smoothly and that the
DOAs of the sources remain same across frequencies, in this work we will extend the blind
calibration framework for the joint estimation of calibration parameters as well as DOAs
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developed in [10]. We restrict our attention to the case where the calibration errors are
constant over a certain number of frequency bins, however the framework can be easily ex-
tended to the scenario where the calibration parameters vary linearly across the frequency
bins as well. The proposed approach is applicable to both APS as well as AVS arrays with an
arbitrary geometry (uniform or sparse).

5.2. PROBLEM FORMULATION
Consider a scenario with N far-field uncorrelated broadband sources with associated DOAs
along the azimuth axis θ = [θ1,θ2, . . . ,θN ]T . We assume that the source signals are spread
across W frequency bins and impinge on the sensor array consisting of M sensors. The
measurement data at time index k and frequency bin w can be modeled as:

x(k, w) = diag(g(w)) [A(w,θ)s(w,k)+n(w,k)] , (5.1)

where g(w) =ψ(w)�φ(w) ∈ CQ (� is the element-wise product) is the vector that collects
the sensor uncertainties with ψ(w) and φ(w) being the time-invariant gain and phase er-
rors corresponding to the frequency bin w , respectively.
A(w,θ) = [a(w,θ1) . . . a(w,θN )] ∈ CQ×N is the array manifold matrix with Q = 3M for AVS
arrays and Q = M for APS arrays. The steering vector for the nth direction of an AVS array is
given as

a(w,θn) = ap(w,θn)⊗h(θn) ∈C3M×1, (5.2)

where ⊗ is the Kronecker product, ap(w,θn) is the steering vector of an APS array and h(θn)
contains the direction cosines:

ap(w,θn ) =
[

e−j2π fw τ1(θn ) . . . e−j2π fw τM (θn )
]T ∈CM×1,

h(θn ) = [1 u(θn )] ∈C3×1. (5.3)

Here, τm(θn) = − 1
c pT

mu(θn) with c being the speed of sound in the considered medium

such that the wavelength of the source signal can be denoted as λw = c
fw

, pm = [
xm ym

]T

being the position of the mth sensor and u(θn) = [cos(θn) sin(θn)]T being the unit vector
in the direction of the nth source. The source and additive noise vector corresponding to
frequency bin w are denoted as s(w,k) and n(w,k), respectively.

Assume that the source vector, s(w,k), and the noise vector, n(w,k), are uncorrelated
with covariance matrices E{s(w,k)sH (w,k)} = diag(rws) and E{n(w,k)nH (w,k)} =σwnI, where
we assume that the noise variance σwn is known. The covariance matrix of the measure-
ment data in (5.1) for a particular frequency bin w can then be expressed as

Rw = diag(g(w))Qw diag(ḡ(w)),

Qw = A(w,θ)diag(rws)AH (w,θ)+σwnI, (5.4)

where (̄·) denotes complex conjugation. It is also useful to express (5.4) in vectorized form
as:

rw = diag(ḡ(w)⊗g(w))
[
Ã(w,θ)rws +σwne

]
, (5.5)

where vec(Rw ) = rw and Ã(w,θ) = Ā(w,θ) ◦A(w,θ) (◦ is the Khatri-Rao product) and e
is the vectorized identity matrix. The source DOAs can be assumed to be derived from a
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uniform grid of D points, with D � N , i.e., we assume that θn ∈
{

0, π
D · · · , π(D−1)

D

}
, for n =

1,2, . . . , N . This means (5.5) can be approximated as:

diag(c̄(w)⊗c(w))rw =AD(w)σw +σwne, (5.6)

where diag(c(w)) = diag−1(g(w)) and AD(w) is a Q2 ×D dictionary matrix that consists of
column vectors of the form ā(w, θ̄d )⊗a(w, θ̄d ), with θ̄d being the dth point of the uniform
direction grid, i.e., θ̄d = πd

D , d = 0,1, . . . ,D−1. In further discussion, for the sake of simplicity,

we denote AD(w) as Âw . Based on (5.6), the proposed technique is presented in the next
section.

5.3. PROPOSED CALIBRATION TECHNIQUE
In this section, we will propose an approach for joint calibration and DOA estimation in the
presence of broadband sources, which is an extension of the narrowband approach pro-
posed in [10]. The covariance domain data model in (5.6) for all the frequency bins can be
rearranged as,

Gγ =σn, (5.7)

where σn = [
σT

1n . . .σT
W n

]T
, G= [G1 |G2], with

G1 =




diag(r1)

. . .

diag(rW )


 ,G2 =



−Â1

. . .

−ÂW


 ,

and γ = [
vec(C1)T . . . vec(CW )T vec(Σ)T

]T
, with Σ= [σ1σ2 . . . σW ] and its vectorized ver-

sion vec(Σ) =σ, and Cw = c(w)cH (w) and its vectorized version vec(Cw ) = c̄(w)⊗c(w). If
we focus in the frequency range where the calibration errors are constant, we can approxi-
mate Cw =C (i.e., cw = c), ∀w = 1,2, . . . ,W , such that (5.7) is modified as,

Ĝγ̂ =σn, (5.8)

where γ̂ = [
vec(C)T vec(Σ)T

]T
and

Ĝ=G
[
1W ⊗IQ 0W Q×W D
0W D×Q IW D

]
.

This is an under-determined system of equations with W Q2 equations in Q2 +W D un-
knowns (where in general D >Q2).

However, by exploiting the structure inΘγ, the system of equations presented in (5.8) can
be solved. Specifically, we have a rank-1 Kronecker structure c̄⊗c = vec(C) with C = ccH .
Also, as there are only N sources, there will be N non-zero elements in each of the columns
of Σ which share the same support and it can be expressed as ‖σ(l2)‖0 = N , where ‖ · ‖0

is the l0-norm that counts the number of non-zero entries of its argument. The constraint

||σ(l2)||0 =
∥∥∥∥
[
σ

(l2)
1 σ

(l2)
2 . . . σ(l2)

D

]T
∥∥∥∥

0
encompasses the fact that the source DOAs are frequency

independent and σ
(l2)
d = ∥∥[σ1d σ2d . . . σW d ]T

∥∥
2; ∀d = 1,2, . . . ,D . Further from (5.5), it can

be seen that ḡ(w)⊗g(w) and rws share a common scalar factor and due to the Kronecker
structure there is a phase ambiguity. In order to resolve these ambiguities, we require two
reference sensors for APS arrays and one reference channel of one sensor for AVS arrays.
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Ĝ=G
[
1W ⊗IQ 0W Q×W D
0W D×Q IW D

]
.

This is an under-determined system of equations with W Q2 equations in Q2 +W D un-
knowns (where in general D >Q2).

However, by exploiting the structure inΘγ, the system of equations presented in (5.8) can
be solved. Specifically, we have a rank-1 Kronecker structure c̄⊗c = vec(C) with C = ccH .
Also, as there are only N sources, there will be N non-zero elements in each of the columns
of Σ which share the same support and it can be expressed as ‖σ(l2)‖0 = N , where ‖ · ‖0

is the l0-norm that counts the number of non-zero entries of its argument. The constraint

||σ(l2)||0 =
∥∥∥∥
[
σ

(l2)
1 σ

(l2)
2 . . . σ(l2)

D

]T
∥∥∥∥

0
encompasses the fact that the source DOAs are frequency

independent and σ
(l2)
d = ∥∥[σ1d σ2d . . . σW d ]T

∥∥
2; ∀d = 1,2, . . . ,D . Further from (5.5), it can
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By considering all the aforementioned constraints, the optimization problem for jointly
solving the calibration parameters as well as the DOAs across frequency bins can be posed
as:

min
γ̂

‖Ĝγ̂−σn‖2
2,

subject to ||σ(l2)||0 = N ,σ(l2) �0,σn �0
C= ccH , ci = 1, ∀i = 1, . . . ,R,

(5.9)

where R is the number of reference sensors/channels in the array. However, the optimiza-
tion problem in (5.9) is non-convex due to the l0 norm constraint on σ(l2) and the rank-one
equality constraint on Cw . The convex approximation of (5.9) can be obtained by relaxing
the cardinality constraint with its convex approximation 1Tσ(l2) as well as by replacing the
equality constraint with the rank one inequality constraint, i.e.,

min
γ

‖Ĝγ̂−σn‖2
2,

subject to 1Tσ(l2) ≤ N ,σ(l2) �0,σn �0
[

C c
cH 1

]
� 0, ci = 1, ∀i = 1, . . . ,R.

(5.10)

This is a semi-definite programming (SDP) problem which can be solved using any one of
the off-the-shelf solvers such as CVX. It is should be noted that the resolution of the DOAs
that are being estimated is restricted to the resolution of the chosen grid and if the source
DOAs are not on that grid then it will suffer from grid mismatch issues. In order to reduce
those effects, grid free estimators such as MUSIC can be used after compensating for the
calibration errors that are estimated using (5.10).

5.4. SIMULATION RESULTS
In this section, we present some simulation results to illustrate the performance of the
proposed DOA estimation technique, based on the formulation in (5.10), for broadband
sources and with an uncalibrated sensor array. For doing so, we consider a scenario with
five AVSs, i.e., M = 5, arranged in a uniform linear array (ULA) configuration along the x-
axis (i.e., ym = 0, xm = (m −1)l ; ∀m = 1, . . . , M , with l being the inter-sensor spacing). We
consider four equal powered sources, i.e., N = 4, whose DOAs are θ = [51◦,90◦,115◦,129◦].
Their signatures are spread across 11 frequency bins (i.e., W = 11) that are chosen around
the spatial Nyquist frequency (i.e., for a particular λw which is equal to twice the inter-
sensor spacing in the ULA). The signal-to-noise (SNR) ratio for each of the considered bins
is 10 dB. The calibration is carried out by treating the pressure channel of the first AVS in
the array as reference, where the nominal gain and phase corresponding to it are chosen
as 1 and 0◦, respectively for all the considered frequency bins. The gain and phase errors
for each bin are chosen uniformly at random from the interval [−2,2] dB and [−40◦,40◦],
respectively.

Once the calibration errors and the grid-based DOAs are estimated by solving (5.10),
off-the-grid DOAs can be estimated using MUSIC based on the calibrated array covariance
matrix for each of the considered frequency bins. In Fig. 5.2, the MUSIC spectra for the mea-
surement data corresponding to one of considered frequency bins before and after the cal-
ibration procedure as well as for the measurement data without calibration errors are pre-
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sented for both the narrowband approach, as in [10], and the proposed broadband method,
as in (5.10). The results of the narrowband approach are based on solving the optimization
problem for a particular frequency bin corresponding to the spatial Nyquist frequency.

Firstly in Fig. 5.2(a), we consider a scenario with infinite snapshots (i.e., ideal covariance
matrix as seen in (5.4)). It can be seen that the DOA estimates of an uncalibrated array are
not useful due to the lower resolution as well as bias in their estimates. It is also observed
that the true DOAs are recovered for both the narrowband and the broadband approach,
suggesting the exactness of the convex approximation. Further in Fig. 5.2(b), for finite data
records with 1000 snapshots, based on the proposed broadband approach we get improved
results compared to the uncalibrated as well as the narrowband version with higher resolu-
tion such that all the considered four sources are resolved and the results are closer to the
scenario without any sensor errors.
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(a) With infinite snapshots.
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(b) With 1000 snapshots.

Figure 5.2: MUSIC spectra of an AVS ULA with M = 5, N = 4 and SNR = 10 dB. The black grid lines denote the true
source directions.

In Fig. 5.3, the root mean squared error (RMSE) of the DOA estimates for a particular fre-
quency bin obtained using MUSIC for varying snapshots, SNRs and number of frequency
bins are presented. All the settings are same as considered in Fig. 5.2, and the RMSE plots
are presented for the source at 90◦ based on 500 independent Monte-Carlo trails with fixed
calibration errors. From Fig. 5.3(a), as the number of snapshots increases asymptotically
for both the narrowband and broadband calibration approaches, the RMSE of the DOA
estimates approaches the ideal scenario without any sensor errors. However even with a
small number of snapshots the RMSE of the DOA estimates based on the proposed broad-
band approach is smaller compared to the equivalent narrowband approach suggesting its
effectiveness.

In Fig. 5.3(b), the RMSE of the DOA estimates for the source at 90◦ for varying SNRs is
shown. It can be observed that the RMSE of the DOA estimates after the calibration pro-
cedure decreases as the SNR increases. However for a SNR above 15 dB, we see that the
RMSE values saturate as expected [11]. Further in Fig. 5.3(b) we can observe that, similar to
Fig. 5.3(a), for a given SNR the performance of the proposed broadband calibration proce-
dure outperforms the equivalent narrowband approach. Finally in Fig. 5.3(c), the RMSE of
the DOA estimates is considered as the number of frequency bins increases. Clearly, for the
proposed broadband approach the RMSE decreases with the number of frequency bins. On
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Figure 5.3: RMSE of the DOA estimates for the source at 90◦ obtained from MUSIC with M = 5, N = 4 and θ =[
51◦ 90◦ 115◦ 129◦

]T .

the other hand for the narrowband approach, since each frequency bin is treated indepen-
dently, the RMSE stays constant as the number of frequency bins increases.

5.5. EXPERIMENTAL RESULTS
An experimental study in a fully anechoic chamber was conducted in order to showcase
the proof of concept of the proposed joint DOA estimation and calibration algorithm. The
literature on the working principle of the transducers as well as the existing reference cali-
bration procedure can be found in [3, 12–14]. The DOA estimation results of the proposed
calibration algorithm as well as the results from the narrowband approach are presented in
this section.

A picture of the experimental setup is shown in Figure 5.4, where five AVSs arranged in
a linear array configuration along with three speakers within its range was chosen for the
experiments. The smallest inter-sensor spacing is l = 5 cm with sensors located at positions
[x1 . . . x5 ] = [01246] resulting in a sparse linear array configuration. The speakers are lo-
cated along the circumference of a circle of radius r = 360 cm with respect to the reference
AVS in the array (i.e., the range of the sources is more than 20 times the aperture of the ar-
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Figure 5.4: Picture of the arrangement of five AVSs and three speakers, which are located on the circumference of
a circle with radius r = 360 cm.

ray allowing for a far-field assumption). The measurements were carried out using a white
Gaussian excitation, radiated by a 3 inch loud speaker, under high SNR conditions (approx-
imately 30 dB). For the measurements, an acquisition device with a sampling frequency of
25 kHz was used.

Based on the measurements from the setup in Fig. 5.4, the post-processing results are
presented in Fig. 5.5. The proposed broadband calibration procedure was considered for
W = 7 frequency bins between 2800 Hz and 3200 Hz. Within this frequency range, the cali-
bration errors were assumed to be same. Firstly in Fig. 5.5(a), the MUSIC spectra based on
the uncalibrated voltage signals from the AVSs in the array are presented for all the consid-
ered frequency bins. It is observed that the resolution of the spectra is poor and also the
levels of the side lobes are high.

In Fig. 5.5(b), the MUSIC spectra based on the narrowband calibration approach, where
each frequency bin is treated independently, is plotted. It is observed that the resolution
of the spectra is improved compared to the uncalibrated version yet we can still see a bias
in the estimates across frequency bins. Finally in Fig. 5.5(c), the MUSIC spectra based on
the proposed broadband calibration procedure are presented. It is evident that all the three
sources are completely resolved. Clearly, the resolution is better and the bias is smaller,
which highlights the effectiveness of the proposed approach. Also based on the results in
Fig. 5.5(c) it can be inferred that assuming the calibration errors are same across frequency
bins is valid.
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(a) Uncalibrated. (b) Calibrated - Narrowband.

(c) Calibrated - Broadband.

Figure 5.5: MUSIC spectra for M = 5, N = 3 with θ = [
70◦ 90◦ 110◦

]T , W = 7, and snapshots = 500.

5.6. CONCLUSIONS
In this work, we presented a blind calibration technique for the joint estimation of cali-
bration errors and DOAs of far-field broadband sources. The prior information that the
calibration parameters vary slowly across frequencies and the DOAs remain same for the
considered range of frequencies is used to improve the estimation performance compared
to the equivalent narrowband approach. Numerical simulations including RMSE plots for
an AVS array are presented to showcase the effectiveness of the proposed approach. It is
observed that the broadband approach outperforms the equivalent narrowband approach
even when the number of snapshots are small. Further, experimental results based on real
measurements carried out in an anechoic chamber were presented and it is observed that
the proposed approach provides angular spectra with a higher resolution and less bias com-
pared to the uncalibrated as well as the existing narrowband approach.
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6
BLIND CALIBRATION FOR ACOUSTIC

VECTOR SENSOR ARRAYS

In this paper, we present a calibration algorithm for acoustic vector sensors arranged in a uni-
form linear array configuration. To do so, we do not use a calibrator source, instead we lever-
age the Toeplitz blocks present in the data covariance matrix. We develop linear estimators for
estimating sensor gains and phases. Further, we discuss the differences of the presented blind
calibration approach for acoustic vector sensor arrays in comparison with the approach for
acoustic pressure sensor arrays. In order to validate the proposed blind calibration algorithm,
simulation results for direction-of-arrival (DOA) estimation with an uncalibrated and cali-
brated uniform linear array based on minimum variance distortion less response and mul-
tiple signal classification algorithms are presented. The calibration performance is analyzed
using the Cramér-Rao lower bound of the DOA estimates.
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6.1. INTRODUCTION

Direction-of-arrival (DOA) estimation of outdoor acoustic sources using a network of pas-
sive sensors is crucial for ground surveillance [1] and target tracking [2]. Traditionally, mi-
crophone/acoustic pressure sensor (APS) arrays are deployed for such tasks. However, with
the advances in the sensor technology, transducers that are capable of measuring vector
quantities such as particle velocity are becoming practically feasible [3–5]. An acoustic vec-
tor sensor (AVS) is one such device that can measure both acoustic pressure and particle
velocity at a given spatial location [6, 7]. It comprises of an omni-directional microphone
and two (or three) particle velocity transducers each aligned along the coordinate axes ei-
ther in R2 (or R3) [5]. An array of AVSs has several advantages compared to an equivalent
aperture APS array [6, 8].

For DOA estimation using spatially distributed AVS or APS arrays, many advanced algo-
rithms that yield highly accurate estimates are developed, such as minimum variance dis-
tortionless response (MVDR) beamformer [9] and subspace-based methods like multiple
signal classification (MUSIC) [10]. However, these algorithms are highly sensitive to sensor
position errors, bearing errors, and other modeling parameters such as relative gain and
phase variations within as well as among sensors. Although with proper care while building
the array the positional and bearing errors can be minimized, modeling parameters usually
vary with time and environmental conditions. Therefore, the array has to be calibrated from
time to time. In this paper, we focus on gain and phase calibration of AVS arrays.

Currently, sophisticated calibration techniques are employed to correct for the gain and
phase mismatch between the pressure and particle velocity channels [11, 12], e.g., using a
calibrator source in a controlled environment. The data acquisition electronics (e.g., os-
cillator and amplifier) of the AVS drifts over period of time and it requires recalibration.
Also, the lack of orthogonality between the channels of the particle velocity transducers
contribute to the gain and phase mismatch. This means that a calibrator source has to be
deployed in the field or the AVSs in the array have to be brought back to the calibration
room. To avoid such complications, we explore calibrator-source-free or blind calibration
techniques for AVS arrays arranged in a uniform linear array (ULA) configuration. The pre-
sented approach is inspired by the blind calibration method for APS ULA presented in [13],
wherein the Toeplitz structure in the covariance matrix was utilized. An extension of this
approach to any arbitrary array configuration was presented in [? ]. Even though the co-
variance matrix of the AVS ULA is not Toeplitz, it has Toeplitz blocks. Due to which, the AVS
array cannot be treated as an APS array with a larger aperture for calibration. We exploit
the structure in the Covariance matrix to create a linear system of equations to estimate the
unknown gain and phase uncertainties. Also, we will discuss the differences between the
calibration algorithm for AVS arrays and APS arrays, which is a rather well-studied prob-
lem. Once the gain and phase uncertainties are corrected for, any standard DOA estimation
technique can be employed.

6.2. SYSTEM MODEL

Consider a ULA of M AVSs. Each AVS consists of three elements (one pressure and two par-
ticle velocity transducers), which we denote with the subscripts P , X , and Y throughout
this paper. With the notation, AM for M ∈ {P ,X ,Y }, we mean AP , AX , and AY , respec-
tively.
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Let us denote the unknown gain and phase parameters as ψ ∈R3M and φ ∈C3M , respec-
tively, where these vectors have components related to the transducers in the array, i.e.,

ψ = [
ψT

P ,ψT
X ,ψT

Y

]T
, and φ= [

φT
P ,φT

X ,φT
Y

]T
,

with length-M vectors ψM = [ψM ,1 . . .ψM ,M ]T and φM = [e jφM ,1 . . .e jφM ,M ]T denoting the
gain and phase vectors related to the type-M transducer in the array.

Assume that there are D far-field narrowband uncorrelated sources with wavenumber
k = 2π/λ impinging on the array from azimuth angles θ = [θ1 θ2 . . . θD ]T ∈ RD×1. The re-
ceived signal can be collected in r(t ) ∈C3M×1 and is given by

r(t ) = diag
(
ψ

)
diag

(
φ

)
[A(θ)s(t )+n(t )] . (6.1)

where s(t ) = [s1(t ) s2(t ) · · · sD (t )]T ∈ CD is the source signal vector, n(t ) is the noise vector,
and A(θ) = [a(θ1) a(θ2) · · · a(θD )] ∈C3M×D is the array manifold matrix. The dth column of
A(θ) is given by the corresponding length-3M AVS array steering vector

a(θd ) = [aT
P (θd ) cos(θd )aT

P (θd ) sin(θd )aT
P (θd )]T ,

= [aT
P (θd ) aT

X (θd ) aT
Y (θd )]T ,

with

aP (θd ) =
[

1 e jkl cos(θd ) . . . e jk(M−1)l cos(θd )
]T ∈CM×1,

being the equivalent APS array steering vector. Here, l is the inter-element spacing.
In this work, we assume that s(t ) and n(t ) are uncorrelated, and that they are realiza-

tions of an independent and identically distributed (i.i.d.) complex Gaussian process with
zero mean and unknown covariance matrix Rs = E

{
s(t )sH (t )

}
and Rn = E

{
n(t )nH (t )

}
, re-

spectively. Without loss of generality, we assume that Rs is a diagonal matrix with unknown
entries (i.e., sources are uncorrelated) and Rn = σ2

nI (i.e., we absorb the factor that mod-
els the noise difference between the pressure and velocity channels [14] in the calibration
parameters).

The data covariance matrix R = E
{
r(t )rH (t )

} ∈C3M×3M can be written as

R = diag
(
ψ

)
diag

(
φ

)
Qdiag(φ∗)diag

(
ψ

)
, (6.2)

where (·)∗ denotes complex conjugation and Q=A(θ)RsAH (θ)+Rn. The covariance ma-
trices Q and R comprises blocks of matrices as

R =



RP P RP X RP Y

RX P RX X RX Y

RY P RY X RY Y


 ; Q=




QP P QP X QP Y

QX P QX X QX Y

QY P QY X QY Y


 ,

where

RMN = diag(ψM )diag(φM )QMN diag(φ∗
N )diag(ψN ); (6.3)

QMN =
D∑

d=1
[Rs]dd aM (θd )aH

N (θd )+σ2
nI, (6.4)
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for M ,N ∈ {P ,X ,Y } are each Toeplitz.
In practice, the true covariance matrix is not available and we have to use a sample

covariance matrix, which is evaluated from a finite number of time snapshots, N , as

R̂ = 1

N

N∑
t=1

r(t )rH (t ). (6.5)

For the sake of brevity, henceforth we simply use R instead of R̂. In what follows, we present
linear estimators for ψ and φ by taking into account the structure of the covariance matrix.

6.3. ESTIMATION OF SENSOR GAINS
In this section, we derive a least-squares estimator for ψ. To do so, we process each sub-
block of the data covariance matrix separately to build a linear system of equations in ψ.
From (6.3), we have

∣∣[RMN ]i j
∣∣= ∣∣[QMN ]i j

∣∣ψM ,iψN , j , ∀i , j = 1,2, . . . M , (6.6)

where | · | denotes the modulus. Since the subblock QMN is Toeplitz, we have, for all i − j =
k − l , the following relation

log

( ∣∣[RMN ]i j
∣∣

|[RMN ]kl |

)
= log(ψM ,i )+ log(ψN , j )− log(ψM ,k )− log(ψN ,l ). (6.7)

This is because, for all i − j = k − l ,
∣∣[RMN ]i j

∣∣ and |[RMN ]kl | lie along the same diago-
nal and due to the Toeplitz structure of the subblock QMN , those terms are eliminated
resulting in an equation corresponding to the unknown gains. However, when only a finite
number of snapshots are available, (6.7) is not consistent. Now, we can collect the measure-
ments {log(|[RMN ]i j |)− log(|[RMN ]kl |),∀i − j = k − l } in the vector gMN , and repeat the
same procedure for all the subblocks in R.

Taking all the non-redundant relations within the diagonal subblocks RP P ,RX X , and
RY Y , we get a total of kz1 = 3

∑M
i=2 0.5 i (i −1) equations, while taking the upper-diagonal

subblocks along the RP X ,RP Y , and RX Y , we get kz2 = 3(
∑M

i=2 0.5i (i−1)+∑M−1
i=2 0.5i (i−1))

equations. In total, we have kz = kz1 +kz2 equations, which can be compactly written as




gP P

gX X

gY Y

gP X

gP Y

gX Y



=




H1 0 0
0 H1 0
0 0 H1

H2 H3 0
H2 0 H3

0 H2 H3






ψ̃P

ψ̃X

ψ̃Y


⇔g=Hψ̃, (6.8)

where H ∈ Rkz×3M and ψ̃M = [
log(ψM ,1) . . . log(ψM ,M )

]T for M ∈ {P ,X ,Y } are each of
length M .

The rows of H1 have one of the following forms [13]:

1. [. . . 020 . . . 0 −20 . . .] when i = j and k = l . All the elements in this row are zero except
for a 2 and -2 at the i th and kth positions, respectively.
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2. [. . . 010 . . . 0 −10 . . .] when i �= j and j = k. All the elements in this row are zero except
for a 1 and -1 at the i th and l th positions, respectively.

3. [. . . 010 . . . 010 . . . 0 −10 . . . 0 −10 . . .] when i , j , k and l are distinct. All the elements
in this row are zero except for 1, 1, -1 and -1 at the i th, j th, kth, and l th positions,
respectively.

The rows of H2 and H3 have one of the following forms:

1. All the elements in the rows of H2 are zero except for a 1 and -1 at the i th and kth
positions, respectively, and they will be of the form [. . . 010 . . . 0 −10 . . .].

2. All the elements in the rows of H3 are zero except for a 1 and -1 at the j th and l th
positions, respectively, and they will be of the form [. . . 010 . . . 0 −10 . . .].

It is easy to see that the matrices H1, H2, and H3 each have the all-one vector 1 in
its nullspace. This means that, H has 3M − 3 nonzero singular values with the vectors[
1T 0T 0T

]T
,

[
0T 1T 0T

]T
,

[
0T 0T 1T

]T
in its nullspace. Equations corresponding to the

cross correlations between P ,X , andY transducers, do not improve the rank of the sys-
tem, but the additional equations generated from the cross blocks of R might be useful to
improve the estimates when only a finite number of snapshots are available.

As the matrix H is not full column rank, one reference AVS with known gain is needed to
uniquely determine the unknown gains. In other words, we can estimate the sensor gains
ψ̃M , for M ∈ {P ,X ,Y }, up to an arbitrary multiplicative factor. To do so, let us include the
known reference gains to obtain




gP P

gX X

gY Y

gP X

gP Y

gX Y

0




=




H1 0 0
0 H1 0
0 0 H1

H2 H3 0
H2 0 H3

0 H2 H3

eT
1 0 0
0 eT

1 0
0 0 eT

1






ψ̃P

ψ̃X

ψ̃Y


⇔ g̃= H̃ψ̃, (6.9)

where e1 is the first column of the identity matrix of size M ×M . Here, we pick, without loss
of generality, the 1st AVS as the reference. Then, the sensor gains can be computed using
least squares as

̂̃ψ = (H̃T H̃)−1H̃T g̃.

6.4. ESTIMATION OF SENSOR PHASES
After computing the sensor gains, in order to estimate the elements of φ, we again process
each subblock of R separately. From (6.3), we have

angle([RMN ]i j ) = angle([QMN ]i j )+φM ,i −φN , j , (6.10)

for i , j = 1, . . . , M . Here, angle(·) denotes the phase. Using the fact that each subblock QMN

is Toeplitz, we obtain the relation

angle([RMN ]i j )−angle([RMN ]kl ) =φM ,i −φN , j −φM ,k +φN ,l , (6.11)
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for all i− j = k−l . We can now collect the measurements {angle([RMN ]i j )−angle([RMN ]kl ),
∀i − j = k − l } in a vector pMN , and repeat the same procedure for all the subblocks in R.

Taking all the nonredundant relations within the diagonal subblocks RP P ,RX X , and
RY Y , we get kp1 = 3

∑M−1
i=2 0.5i (i −1) equations while taking the upper-diagonal subblocks

along the RP X ,RP Y , and RX Y , we get a total of kp2 = 3(
∑M

i=2 0.5i (i −1)+∑M−1
i=2 0.5i (i −1))

equations that are of the form as in (6.11). In total, we have kp = kp1 +kp2 equations of the
form




pP P

pX X

pY Y

pP X

pP Y

pX Y



=




G1 0 0
0 G1 0
0 0 G1

H2 −H3 0
H2 0 −H3

0 H2 −H3






φ̃P

φ̃X

φ̃Y


⇔p=Gφ̃, (6.12)

where G ∈Rkp×3M and φ̃M = [
φM ,1 . . . φM ,M

]T for M ∈ {P ,X ,Y } are each of length M .
The rows of G1 have one of the following forms:

1. [. . . 010 . . . 0 −20 . . . 010 . . .] when i �= j and j = k. All the elements in this row are zero
except for a 1,-2 and 1 at the i th, j (= k)th, and the l th positions, respectively.

2. [. . . 010 . . . 0 −10 . . . 0 −10 . . . 010 . . .] when i , j , k and l are distinct. All the elements
in this row are zero except for 1, -1, -1, and 1 at the i th, j th, kth and l th positions,
respectively.

The matrix G1 has M − 2 nonzero singular values and there are two M × 1 vectors,
namely, [11 . . . 1]T and [12 . . . M ]T in its nullspace. However, G has 3M−4 nonzero singular

values with four 3M × 1 vectors in its nullspace. Those include
[
1T 0T 0T

]T
,
[
0T 1T 0T

]T
,[

0T 0T 1T
]T

, and
[
tT tT tT

]T
, where t = [123 . . . M ]T . By exploiting the cross correlations

between P ,X , andY channels, we gain rank, i.e, the rank is increased to 3M − 4 from
3M − 6. This is the main advantage of jointly performing the phase calibration for all the
transducer types in the AVS array.

To solve (6.12), when P ,X , andY channels are processed independently (i.e., without
considering the equations related to the cross correlations between the channels), we would
require two reference AVSs. In contrast, by considering entire G, we need only one reference
AVS and an additional phase reference (it could be any transducer type), as its rank is 3M−4.
Those known phase references are included as additional equations to obtain




pP P

pX X

pY Y

pP X

pP Y

pX Y

0




=




G1 0 0
0 G1 0
0 0 G1

H2 −H3 0
H2 0 −H3

0 H2 −H3

eT
1 0 0
0 eT

1 0
0 0 eT

1
eT

2 0 0






φ̃P

φ̃X

φ̃Y


⇔ p̃= G̃φ̃, (6.13)
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where e1 and e2 are, respectively, the first and second columns of the identity matrix of size
M ×M . Then, the sensor phases can be computed using least squares as

̂̃φ= (G̃T G̃)−1G̃T p̃.

6.5. SIMULATIONS
In this section, we present numerical simulations to illustrate the developed theory. We
consider an array consisting of six AVSs arranged in an ULA configuration with an inter-
element spacing of λ/2. Further, the first AVS is considered as a reference with its channels
having a nominal gain of 1 and a nominal phase to be 0. For solving (6.13), it is considered
that the pressure channel of the first and second AVS as phase reference. We assume five
equal-powered sources at DOAs θ = [−35◦,68◦,79◦,−128◦,137◦]T .

The spectral plot of the MVDR and MUSIC algorithm are presented in Figure 6.1 and 6.2.
Here, we use a signal-to-noise ratio of 0 dB with respect to the source signal and the sample
covariance matrix R̂ is formed using N = 1000 snapshots. Further, up to 4 dB and 20◦ (root-
mean-square values) of random gain and phase uncertainties with respect to the nominal
values, are chosen. For MUSIC, without gain and phase uncertainties the peaks in the spec-
trum are in the direction of the actual sources (as indicated by dash-dotted black color line
and referred to as Ideal). For MVDR without the gain and phase uncertainties, the peaks in
the spectrum are in the direction of the actual sources, however, two closely spaced sources
at 68◦ and 79◦ are not resolved. When the sensors are not calibrated, it can be clearly seen
that the DOA estimates are poor and the angular spectral resolution is degraded due to the
sensor errors. This plot also shows that both MVDR and MUSIC are highly sensitive to the
sensor errors. By following the procedure discussed in this work to estimate the sensor
errors, which are then compensated during the calibration step, we can clearly see the im-
proved spectral resolution. It is evident that the sources located at −35◦,−128◦,137◦ are well
resolved and with less bias using both MUSIC and MVDR. Further, the MUSIC algorithm
can even resolve the two closely spaced sources at 68◦ and 79◦.

-150 -100 -50 0 50 100 150
0

0.2

0.4

0.6

0.8

1
Uncalibrated
Ideal
Calibrated
Actual DOAs

Figure 6.1: Angular spectrum with, without, and after resolving sensor errors using MUSIC algorithm (here, Ideal
refers to the scenario without calibration errors).

In order to analyze the performance of the proposed blind calibration algorithm, the
root mean squared error (RMSE) variation of the DOA estimates using MUSIC and MVDR
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Figure 6.2: Angular spectrum with, without, and after resolving sensor errors using MVDR.
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Figure 6.3: RMSE variation of the DOA estimate for increasing SNR using AVS ULA under single source scenario
with M = 3, θ = 60◦ and N = 300.

are considered for a single source scenario through Monte Carlo experiments for a fixed gain
and phase parameters. Firstly, the RMSE variation of the DOA estimates corresponding to
the uncalibrated and calibrated AVS ULA are plotted for different SNRs in Fig. 6.3. Also,
the RMSE variation of the AVS ULA without sensor errors and the Cramér-Rao lower bound
(CRB) are plotted in Fig. 6.3. For each SNR value, the RMSE value is evaluated using 1000
independent trials. It is observed that as the SNR increases, the RMSE of the DOA estimates
for both MUSIC and MVDR of the calibrated ULA approaches to the ideal AVS ULA and the
CRB. However, the RMSE of DOA estimates of the uncalibrated ULA does not improve with
the SNR.

Finally, in Fig. 6.4, the RMSE variation of the DOA estimates using both MUSIC and
MVDR for increasing number of snapshots is shown. Again for evaluating the RMSE values,
1000 Monte Carlo experiments were performed. A similar observation as in Fig. 6.3 can be
made, where the calibrated array achieves the CRB as the number of snapshots increase. In
a nut shell, the DOA estimates after the proposed calibration are asymptotically (with SNR
and/or number of snapshots) efficient as they achieve the CRB.
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Figure 6.4: RMSE variation of the DOA estimate for increasing number of time snapshots (N ) using AVS ULA under
single source scenario with M = 3, θ = 60◦ and SNR = 0 dB.

6.6. CONCLUDING REMARKS
In this paper, we estimate the sensor errors present in the AVS ULA by exploiting the struc-
ture in the covariance matrix. In particular, we derived linear estimators for sensor gains
and phases. The proposed calibration algorithm does not require a calibrator source, and
being a blind algorithm, the unknown gains and phases are estimated relative to a reference
sensor. To validate the proposed approach, simulations performed with MUSIC and MVDR
for DOA estimation show a significant improvement after calibration.
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UNIAXIAL ACOUSTIC VECTOR

SENSORS FOR

DIRECTION-OF-ARRIVAL

ESTIMATION

In this paper, a specific reduced-channel Acoustic Vector Sensor (AVS) is proposed comprising
one omni-directional microphone and only one particle velocity transducer, such that it can
have an arbitrary orientation. Such a reduced transducer configuration is referred to as a
Uniaxial AVS (U-AVS). The DOA performance of an array of U-AVSs is analyzed through its
beampattern and compared to conventional configurations. It is shown that the U-AVS array
beampattern results in an asymptotically biased estimate of the source location and it can
be varied by choosing the orientation angles of the particle velocity transducers. Analytical
expressions for the asymptotic bias of classical beamforming are proposed and verified both
numerically as well as experimentally for Uniform Linear Arrays (ULAs). Furthermore, the
Cramér-Rao Bound (CRB) and Mean Square Error (MSE) expressions are derived for a U-
AVS array under a single source scenario and they are numerically evaluated for ULA. The
implications of changing the orientations of the U-AVSs in the array on the MSE are discussed
as well.
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7.1. INTRODUCTION

Direction-of-Arrival (DOA) estimation of far-field acoustic sources is usually studied using
a set of Acoustic Pressure Sensors (APSs) that are distributed spatially in an array config-
uration [1]. The interference pattern captured by the array of sensors provides acoustic
information regarding the DOA of the far-field sources. The performance analysis of MU-
SIC (MUltiple SIgnal Classification) [2] and ML (Maximum Likelihood) [3] estimators, as
well as the Cramér-Rao lower Bound (CRB) for an APS array have been thoroughly stud-
ied in the literature [4, 5]. A comprehensive summary of existing techniques in the field of
array signal processing can be found in [6]. On the other hand, with the advent of Micro-
Electronic-Mechanical Systems (MEMS) technology it is nowadays feasible to manufacture
acoustic probes that are capable of measuring particle velocity along with sound pressure,
typically referred to as Acoustic Vector Sensors (AVSs) [7]. Each AVS typically comprises a
pressure and three (two) particle velocity transducers in R3(R2). The parameter estimation
performance of an AVS array is proven to be better than that of the equivalent APS array
as they make use of the interference capture by the array of sensors as well as the intrinsic
directionality of the sensors [8, 9]. However, the number of data channels of an AVS mea-
surement system is much larger compared to the traditional APS array, resulting in higher
hardware complexity and power requirements. In this work, we consider an alternative
configuration of an AVS consisting of less particle velocity transducers, which preserves the
benefits of conventional AVSs to a considerable extent.

A large and growing body of literature has developed the foundations of AVSs, includ-
ing the sensor operation, manufacturing [7] and related array signal processing techniques.
Unlike the APS, a single AVS can still be used for DOA estimation by exploiting its intrinsic
directionality. In [10], the DOA estimation performance using an AVS is compared with var-
ious configurations of an APS array for a wide-band source. The maximum liklihood (ML)
DOA estimator using an AVS is derived in [11]. Furthermore, the use of an AVS in source
tracking applications has attracted lot of attention in the recent years [12–15]. As an ex-
tension, performance bounds on the DOA estimation error (CRB and angular mean square
error) using AVS arrays were introduced in [9]. Over the following years, it was demonstrated
that AVS arrays have distinct advantages over traditional pressure sensor arrays such as im-
proved array gain and directional sensitivity [8, 16]. In addition, it was demonstrated that
an AVS array with a small and limited aperture significantly outperforms an APS array of
the same length, as an AVS makes use of the full acoustic information available at its spatial
location [8, 9]. This aspect is key to maximize the performance achieved on space-limited
platforms such as vehicles, unmanned aerial vehicles or smart glasses [17].

Conventional and MVDR (Minimum Variance Distortion-less Response) beamformers
were initially extended to an AVS array in [8, 16], showing that the DOA estimation perfor-
mance improvements are more significant for smaller arrays, with simple structures, and in
low SNR scenarios. Furthermore, it was shown in [18, 19] that the beampattern of an AVS
array can be expressed as a function of the conventional APS array, resulting in a combina-
tion of the information extracted from the spatial interference between the waveforms ob-
served by the sensors and the intrinsic directivity of the particle velocity transducers. On the
other hand, the role played by the array geometry on the performance of DOA estimation
is considered in [20]. Based on the linear independence of the array manifold matrix, the
maximum number of identifiable sources for under-sampled, over-sampled and critically-
sampled AVS Uniform Linear Arrays (ULAs) is discussed in [21]. The extension of DOA es-
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timation in the presence of coherent sources using AVS arrays was considered in [12]. Also
in [22–24], the discussion of AVS arrays extends to environments with reflections and ambi-
ent noise.

A classic AVS considers that all the pressure and vector transducers coincide at the same
spatial point, which is difficult to achieve in hardware. In practice, it is currently possible to
integrate all the transducers required to construct an AVS within a sphere of 5 mm radius.
As an alternative to the AVS, the use of non-collocated transducers comprised of a vector
sensor has also been explored in the recent literature. In [25–27], the performance of DOA
estimators of multiple spatially spread configurations were considered using a single pres-
sure and up to three orthogonally oriented particle velocity transducers. It was shown that
the Root Mean Square Error (RMSE) of the DOA estimates related to those configurations is
better than that of one collocated AVS. Similar extensions of various configurations can be
found in [28–30].

In this work, we look at a different implementation of an AVS comprising of only two
transducers per sensor that are collocated, including one acoustic sound pressure and one
particle velocity transducer with arbitrary orientation. Such a configuration is referred to as
a Uniaxial AVS (U-AVS), as it captures only one component of the particle velocity field. The
application of a U-AVS instead of an AVS removes one (for R2) or two (for R3) data chan-
nels per sensor, hence substantially lowering hardware and power requirements. The use
of multiple U-AVSs can potentially be used for DOA estimation. However, the theoretical
limits of such a configuration are not yet well understood. The motivation of this work is
to explore how close the performance of a U-AVS array is in comparison with an equivalent
aperture AVS array and conventional APS array. The main contributions of this work can be
summarized as follows:

• A generalized framework is hereby introduced that accounts for any number of U-
AVSs with arbitrary positions and orientations.

• We show that classical beamforming for a U-AVS array results in biased estimates of
the DOA, due to which the Mean Square Error (MSE) bound, rather than the Cramér-
Rao lower Bound (CRB), is considered as a theoretical criterion for assessing the per-
formance of any DOA estimator and is compared with respect to the equivalent APS /
AVS array.

• Both numerical and experimental results are provided in this work to validate the
suggested expressions and show the feasibility of a practical implementation of the
proposed array configuration.

For the sake of simplicity and without loss of generality, we restrict our discussion to R2 and
focus on the estimation of the azimuth angle. However, the proposed model with a reduced
number of particle velocity transducers (i.e., U-AVSs) can be extended to R3 for the estima-
tion of both the azimuth and elevation angle. On the other hand, all the variants discussed
in [25–30] can be considered as a specific case of the U-AVS array, with limited spatial loca-
tions. Those variants can be realized by considering either a pressure or a particle velocity
transducer present at each spatial location.

The structure of the paper is as follows. In Section 7.2, we consider the measurement
model of the multi-sensor multi-source AVS array. In Section 7.3, we describe the measure-
ment model of the U-AVS array and subsequently the beampattern of the U-AVS array is
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analyzed. In Section 7.4, based on the first-order Taylor series expansion of the conven-
tional beamforming function, we derive the bias in DOA estimation of a U-AVS array. In
Section 7.5, we derive the biased CRB expression for a U-AVS array with a single far-field
source in its field of view and further compare it with the CRB expressions of an equivalent
aperture APS and AVS array. Finally, we suggest a MSE based design criterion upon which
an optimal orientation for each of the U-AVSs in the array can be chosen. In Section 7.6,
an experimental study is presented, including details about the measurement process. This
study is used to verify the beampattern variations of a U-AVS array and also to validate the
proposed analytical expressions that predict the bias induced by the use of a U-AVS array.

The notation used in this paper can be described as follows: Upper (lower) bold face
letters are used for matrices (column vectors); (·)T denotes transpose and (·)H denotes con-
jugate transpose; For any vectors a and b, (a·b) denotes the inner product between them. ⊗
denotes the Kronecker product and � denotes the Schur-Hadamard (element-wise) prod-
uct; E{·} denotes the expectation operator; tr(·) denotes the trace operator and In is an iden-
tity matrix of dimension n.

7.2. REVIEW OF BEAMPATTERN ANALYSIS OF AVS ARRAY

7.2.1. MEASUREMENT MODEL OF AN AVS ARRAY
The measurement data of M AVSs and D far-field narrow-band sources present in a homo-
geneous isotropic medium at a discrete time index t of the measured snapshot correspond-
ing to frequency f (wavelength λ) can be modeled as [9]:

y(t ) = [
a(φ1) a(φ2) ... a(φD )

]
︸ ︷︷ ︸

A(φ)




s1(t )
s2(t )

.

.

.
sD (t )




︸ ︷︷ ︸
s(t )

+n(t ) ∈C3M×1,

(7.1)

where φ = [
φ1 φ2 ... φD

]T ∈ RD×1 collects the azimuth angles of all the D far-field
sources, s(t ) is the source signal vector, n(t ) is the additive noise vector present in the mea-
surement data, and a(φd ) is the AVS array manifold vector of the d th source which can be
expressed as a(φd ) = ap(φd )⊗h(φd ). Here ap(φd ) denotes the equivalent APS array mani-
fold vector and h(φd ) denotes the directional information obtained through the vector sen-
sors,

ap(φd ) = [
e jk(r1·ud ) e jk(r2·ud ) . . . e jk(rM ·ud )

]T ∈CM×1,

h(φd ) = [
1 uT

d

]T ∈R3×1, (7.2)

where k = 2π
λ = 2π f

c is the wave number of the narrow-band source signals, rm represents

the position of the mth AVS in the array, and ud = [
cos(φd ) sin(φd )

]T is the unitary vec-
tor in the direction of the d th source. In the further discussion, it is assumed that the
source and noise signals are a realization of an independent and identically distributed
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cos(φd ) sin(φd )

]T is the unitary vec-
tor in the direction of the d th source. In the further discussion, it is assumed that the
source and noise signals are a realization of an independent and identically distributed
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(i.i.d.), zero mean complex Gaussian process. The covariance matrix of s(t ) is assumed to be
Rs = E

{
s(t )sH (t )

} ∈CD×D . The noise covariance matrix is modeled as Rn = E
{
n(t )nH (t )

}=
σ2

nΣ ∈ C3M×3M , where Σ is a known positive definite Hermitian matrix. For a single AVS, Σ
is given as:

Σ =
[

1 0T

0 βI2

]
∈C3×3, (7.3)

where β is a gain term, that models the noise difference between the pressure and velocity
channels. For the sake of simplicity, we consider Σ = I3M (or β = 1 for a single sensor). In
practice, Σ can be estimated by assessing the noise floor of the sensors in the array. The
effect of Σ (or β for a single sensor) is studied in [8, 18, 20, 23].

7.2.2. BEAMPATTERN OF AN AVS ARRAY
Based on the measurement data model of the AVS array, the beampattern for a single source
at DOA φ can be expressed as:

B(φ̂) = |wH (φ̂)a(φ)|, −π< φ̂≤π (7.4)

where w(φ̂) is the weighting function, which is explicitly shown to be dependent on the
scanning angle φ̂. The choice of w(φ̂) = a(φ̂) results in the spatial response of the matched
filter, leading to

B(φ̂,φ) = |aH (φ̂)a(φ)|,
=

∣∣∣(hH (φ̂)h(φ)
)(

aH
p (φ̂)ap(φ)

)∣∣∣ ,

= (
1+cos(φ̂)cos(φ)+ sin(φ̂)sin(φ)

)
︸ ︷︷ ︸

VGM(φ̂,φ)∣∣∣
(
e jk

(
r1·u(φ)−r1·u(φ̂)

)
+ . . .+e jk

(
rM ·u(φ)−rM ·u(φ̂)

))∣∣∣
︸ ︷︷ ︸

Bp(k,φ̂,φ)

. (7.5)

The expression in eq. (7.5) is similar to the expressions derived in [18] and it can be further
simplified if the sensors of the array are arranged in a Uniform Linear Array (ULA) configura-
tion along the x-axis with inter-sensor spacing d . Then the Bp(k, φ̂,φ) term in beampattern
expression eq. (7.5) can be modified as:

Bp(k, φ̂,φ) = M

∣∣∣∣∣∣
sinc

(
kd
2 M

(
cos(φ)−cos(φ̂)

))

sinc
(

kd
2

(
cos(φ)−cos(φ̂)

))
∣∣∣∣∣∣

︸ ︷︷ ︸
APS ULA beampattern

. (7.6)

Here, the beampattern expression is described explicitly as a function of k, φ̂ and φ for the
sake of analyzing beampatterns with changes in those parameters. It is interesting to note
that the beampattern of an AVS ULA B(k, φ̂,φ) is expressed as a product of the equivalent
APS ULA beampattern Bp(k, φ̂,φ) and a Velocity Gain Modulation (VGM) term VGM(φ̂,φ).
It should be noted that the VGM(φ̂,φ) term is independent of the number of sensors M and
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the wave number k of the source signal. Furthermore, eq. (7.6) can also be expressed in

terms of the frequency of the source signal by substituting k ·d = π f
fd

, where fd = c
2d is the

design frequency of the array. The presence of the VGM term significantly attenuates the
side lobes, suppresses left/right ambiguity and renders its applicability for DOA estimation
under changes of the source signal frequency. An extended discussion on the beampattern
of an AVS array can be found in [31].

7.3. BEAMPATTERN ANALYSIS OF U-AVS ARRAY

7.3.1. MEASUREMENT MODEL OF A U-AVS ARRAY
We shall now consider a U-AVS based array with M sensors located at arbitrary positions
indicated by the position vectors r1,r2, ...,rM and D far-field sound sources located in the
direction pointed by the unit vectors u1,u2, ...,uD . Each of the U-AVSs consists of a pressure
sensor and a single particle velocity transducer, whose orientation is arbitrary and indicated
by δn . The measurement data y(t ) at a time index t of the measured snapshot correspond-
ing to frequency f (wavelength λ) can be modeled as:

y(t ) = [
a(φ1,δ) a(φ2,δ) ... a(φD ,δ)

]
︸ ︷︷ ︸

A(φ,δ)∈C2M×D

s(t )+n(t ) ∈C2M×1, (7.7)

where a(φi ,δ) = [
e jk(r1·u) e jk(r1·u)cos(δ1 −φ) . . . e jk(rM ·u) e jk(rM ·u)cos(δM −φ)

]T
is the

array response vector of the i th source with each U-AVS having an arbitrary orientation cap-

tured by the vector δ = [
δ1 δ2 . . . δM

]T
, s(t ) is the source signal vector and n(t ) is the

additive noise vector present in the measurement data. In the further discussion, we refer
this setup as a U-AVS array with an arbitrary orientation or just a U-AVS array. If all the U-

AVSs have the same orientation angle, i.e., δ = δ
[
1 1 . . . 1

]T
, which is a specific case

of a U-AVS array with an arbitrary orientation, we refer to it as a U-AVS array with fixed
orientation.

7.3.2. BEAMPATTERN OF A U-AVS ARRAY
Based on the matched filter approach for given sensor orientation angles δ, the beampat-
tern expression from eq. (7.5) for a single source at DOA φ is modified as:

B(φ̂,φ) = ∣∣aH (φ̂,δ)a(φ,δ)
∣∣ ,

=
∣∣∣(1+cos(δ1 − φ̂)cos(δ1 −φ)

)
e jk

(
r1·u(φ)−r1·u(φ̂)

)
+ . . .

∣∣∣
∣∣∣+(

1+cos(δM − φ̂)cos(δM −φ)
)

e jk
(
rM ·u(φ)−rM ·u(φ̂)

)∣∣∣ ,

(7.8)

and for a U-AVS array with fixed orientation (δ), the beampattern expression can be simpli-
fied as:

B(k, φ̂,φ) = VGM(δ, φ̂,φ)Bp(k, φ̂,φ), (7.9)

where
VGM(δ, φ̂,φ) = 1+cos(δ− φ̂)cos(δ−φ). (7.10)

It can again be observed that eq. (7.9) can be expressed as the product of an equivalent APS
array beampattern and the VGM term.
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∣∣∣+(
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Restricting our study to a ULA as depicted in Figure 7.1, and expressing the beampattern
explicitly as a function of k, φ̂, φ by substituting a(φ̂,δ) of eq. (7.7) into eq. (7.8) results in:

B(k, φ̂,φ) = ∣∣(1+cos(δ1 − φ̂)cos(δ1 −φ)
)+∣∣

∣∣∣e jkd(cos(φ)−cos(φ̂)) (1+cos(δ2 − φ̂)cos(δ2 −φ)
)+ . . .+

∣∣∣
∣∣∣e jk(M−1)d(cos(φ)−cos(φ̂)) (1+cos(δM − φ̂)cos(δM −φ)

)∣∣∣ .

(7.11)

For a fixed orientation scenario this leads to B(k, φ̂,φ) = VGM(δ, φ̂,φ)Bp(k, φ̂,φ) with VGM(δ, φ̂,φ)
as in eq. (7.10) and Bp (k, φ̂,φ) as in eq. (7.6). In Figure 7.2, the beampatterns of an AVS, APS,

1.pdf

Figure 7.1: ULA of M U-AVSs and one source. Each U-AVS is represented by a combination of a dot corresponding
to an APS and a black arrow corresponding to a particle velocity transducer where δn represents the orientation of
the nth U-AVS.

U-AVS ULA with a fixed and arbitrary orientation for a single source are plotted. The orien-
tation angle, δ, for a fixed orientation configuration is chosen to be 70◦ and for an arbitrary
orientation configuration it is chosen randomly between 0◦ and 180◦. The VGM terms of an
AVS ULA and U-AVS ULA with a fixed orientation are also plotted in Figure 7.2.

By observing closely the VGM term of the U-AVS ULA with a fixed orientation in eq. (7.10)
and Figure 7.2, the maximum will always occur at φ̂= δ, irrespective of the actual DOA φ. As
the APS ULA beampattern always provides an unbiased source location estimate, a bias will
be introduced by the VGM term. As the aperture of the ULA increases (i.e., as the number of
sensors increases with a fixed inter-sensor spacing d), the main lobe of the APS ULA beam-
pattern becomes narrower whereas the VGM(δ, φ̂,φ) term is unaffected. Hence, the bias is
expected to decrease as the aperture increases. On the other hand, for a fixed aperture, the
bias can be controlled by changing the orientation angle(s) of the U-AVSs. Hence the rate of
decrease of the bias depends on the aperture of the array, sensor orientation angles δ and
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Figure 7.2: Beampattern of an AVS, APS and U-AVS ULA with a fixed and arbitrary orientation for M = 10,
f = fd . For the U-AVS ULA with fixed orientation, δ = 70◦, and for a U-AVS ULA with arbitrary orientation,
δ = [

10◦,118◦,75◦,49◦,138◦,85◦,107◦,25◦,144◦,37◦
]
.

the DOA. In Section 7.4 we shall quantify the behavior of the bias in the DOA estimates of a
U-AVS ULA.

7.4. BIAS ANALYSIS OF A U-AVS ARRAY
The DOA estimates based on the spatial response of different beamformers (classical and
Capon) or based on MUSIC, are all obtained by maximizing or minimizing the following
generalized expression:

f (φ) = aH (φ)Ra(φ), (7.12)

where for classical beamforming R is the covariance matrix (Ry) of the measurement data
(y), for Capon beamforming R is the inverse of the covariance matrix (R−1

y ), and for MUSIC
R is the outer product of the unitary matrix which spans the null subspace of the covariance
matrix (Ry). The estimates of φ (here denoted as φe ) are the maximizers or minimizers of

f (φ). They can be obtained by setting ∂ f (φ)
∂φ

∣∣∣
φ=φe

= ∂ f (φe )
∂φ to zero. By using a Taylor series

expansion of ∂ f (φe )
∂φ around the true φ and by considering the first two terms in it, we can

approximate ∂ f (φe )
∂φ as in [8]:

∂ f (φe )

∂φ
≈ ∂ f (φ)

∂φ
+ ∂2 f (φ)

∂φ2 (φe −φ) = 0,

=⇒ b(φ) = (φe −φ)︸ ︷︷ ︸
bias

≈ b̂(φ) =−
[
∂2 f (φ)

∂φ2

]−1
∂ f (φ)

∂φ
. (7.13)

From eq. (7.13) it can be seen that the bias in the estimate of the source location is ap-
proximated based on the first and second derivatives of the spatial spectrum function f (·)
evaluated at φ. For a U-AVS array and considering the classical beamforming approach,
an analytical expression for the bias based on eq. (7.13), where f (φ) = aH (φ)Rya(φ) and



7

114 7. UNIAXIAL ACOUSTIC VECTOR SENSORS FOR DIRECTION-OF-ARRIVAL ESTIMATION

-150 -100 -50 0 50 100 150

M

2M
AVS ULA

APS ULA

U-AVS ULA Arbitrary Orientation

U-AVS ULA Fixed Orientation

VGM term (U-AVS ULA Fixed Orientation)

VGM term (AVS ULA)

(a) φ= 90◦

-150 -100 -50 0 50 100 150

M

2M
AVS ULA

APS ULA

U-AVS ULA Arbitrary orientation

U-AVS ULA Fixed orientation

VGM term (U-AVS ULA Fixed ori)

VGM term (AVS ULA)

(b) φ= 20◦

Figure 7.2: Beampattern of an AVS, APS and U-AVS ULA with a fixed and arbitrary orientation for M = 10,
f = fd . For the U-AVS ULA with fixed orientation, δ = 70◦, and for a U-AVS ULA with arbitrary orientation,
δ = [

10◦,118◦,75◦,49◦,138◦,85◦,107◦,25◦,144◦,37◦
]
.

the DOA. In Section 7.4 we shall quantify the behavior of the bias in the DOA estimates of a
U-AVS ULA.

7.4. BIAS ANALYSIS OF A U-AVS ARRAY
The DOA estimates based on the spatial response of different beamformers (classical and
Capon) or based on MUSIC, are all obtained by maximizing or minimizing the following
generalized expression:

f (φ) = aH (φ)Ra(φ), (7.12)

where for classical beamforming R is the covariance matrix (Ry) of the measurement data
(y), for Capon beamforming R is the inverse of the covariance matrix (R−1

y ), and for MUSIC
R is the outer product of the unitary matrix which spans the null subspace of the covariance
matrix (Ry). The estimates of φ (here denoted as φe ) are the maximizers or minimizers of

f (φ). They can be obtained by setting ∂ f (φ)
∂φ

∣∣∣
φ=φe

= ∂ f (φe )
∂φ to zero. By using a Taylor series

expansion of ∂ f (φe )
∂φ around the true φ and by considering the first two terms in it, we can

approximate ∂ f (φe )
∂φ as in [8]:

∂ f (φe )

∂φ
≈ ∂ f (φ)

∂φ
+ ∂2 f (φ)

∂φ2 (φe −φ) = 0,

=⇒ b(φ) = (φe −φ)︸ ︷︷ ︸
bias

≈ b̂(φ) =−
[
∂2 f (φ)

∂φ2

]−1
∂ f (φ)

∂φ
. (7.13)
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Ry =σ2
s a(δ,φ)aH (δ,φ)+σ2

nI, is given by (derived in 7.A):

b̂(φ) =− SNR(RS)+S

SNR
(
R J +L2 +S2

)+ J +W
, (7.14)

where,

SNR = Source power

Noise power
= σ2

s

σ2
n

,

R = M +
M∑

i=1
cos2(δi −φ),

S =
M∑

i=1
cos(δi −φ)sin(δi −φ),

J = −k2
M∑

i=1

(
ri ·

∂u
∂φ

)2 (
1+cos2(δi −φ)

)−
M∑

i=1
cos2(δi −φ),

L = k
M∑

i=1

(
ri ·

∂u
∂φ

)(
1+cos2(δi −φ)

)
,

W = k2
M∑

i=1

(
ri ·

∂u
∂φ

)2 (
1+cos2(δi −φ)

)+
M∑

i=1
sin2(δi −φ).

If value of SNR tends to 0, the expression for the bias in eq. (7.14) reduces to:

b̂0(φ) =− S

J +W
. (7.15)

Asymptotically (i.e., as SNR →∞), the expression for the bias in eq. (7.14) reduces to:

b̂∞(φ) =− RS

R J +L2 +S2 . (7.16)

In practice, the bias (b̂(φ)) in the DOA estimate lies between b̂0(φ) and b̂∞(φ) (i.e., b̂0(φ) <
b̂(φ) < b̂∞(φ)) for 0 < SNR < ∞. It is to be noted that the J and L terms in eq. (7.16) will
have a more dominant contribution to the bias expression as the number of elements in
the array/aperture of the array increases. Based on eq. (7.16) and by considering a U-AVS
ULA with a fixed orientation (δ), the derived bias of the source location

(
b̂(φ)

)
is compared

to the bias of the actual estimate
(
b(φ)

)
obtained by the beampattern expression eq. (7.9) in

Figure 7.3. As seen in Figure 7.3, the first order approximation becomes worse if the angle
of arrival is closer to the end-fire direction and the sensor orientation is near the broadside
region (as seen for φ = 10◦ and δ = 80◦). It can also be observed that as the number of
sensors (or aperture) increases, the approximation of the bias expression improves and the
rate of improvement depends on the sensor orientation angle δ and the DOA.

Furthermore, a Monte Carlo simulation for a single source scenario is performed to un-
derstand the average bias of a U-AVS ULA. The simulation considers multiple sensors ori-
ented within a variable angular region-of-interest (ROI) centered around the broadside of
the array. For a given number of sensors and ROI, 5000 iterations were performed. Within
each iteration, both the DOA and the orientations of the sensors are derived from a real-
ization of a uniform distribution within the ROI. The results are presented in Figure 7.4,
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Figure 7.3: Comparison of the source DOA estimates based on a U-AVS ULA with a fixed orientation beampattern
(continuous lines, labeled ’T’) and based on the asymptotic bias expression eq. (7.16) (discrete markers, labeled
’E’) for different DOAs and sensor orientations with an increasing aperture of the ULA.

where the bias is obtained based on the beampattern expression eq. (7.9). A large bias is
only observed for configurations with a few sensors and a wide angular ROI. As the number
of sensors increases, the bias becomes negligible.

7.5. REVIEW OF CRAMÉR-RAO BOUNDS FOR AVS, U-AVS AND

APS ARRAY
To analyze the minimum attainable error covariance matrix of a DOA estimator, we have
evaluated the Cramér-Rao lower Bound (CRB) for multiple sensor configurations with a sin-
gle source in its field-of-view.

7.5.1. CRB FOR MULTI-SENSOR AND MULTI-SOURCE CONFIGURATION
The generalized sensor array data model can be written as:

y(t ) = A(φ)s(t )+n(t ), (7.17)

where φ= [
φ1 φ2 ... φD

]T ∈RD×1.
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Figure 7.4: Monte Carlo simulation results to study the average bias of the U-AVS ULA with multiple sensors and
considering a variable ROI.

Note that eq. (7.17) is same as:

• eq. (7.1) for an AVS array;

• eq. (7.7) for a U-AVS array, except that the dependency on the sensor orientation an-
gles δ is dropped;

• eq. (7.1) for an APS array, if h(φn) = [
1
]
, ∀n = 1, . . . ,D .

It is assumed that the source signals s(t ) and the noise n(t ) are realizations of an i.i.d.
complex Gaussian process with zero mean and unknown covariance Rs and Rn =σ2

nI. The
CRB on the error covariance matrix of any (locally) unbiased estimator of the vectorφ of the
physical process described in eq. (7.17) is given by [9, 32]:

CRB(φ) =J−1(φ) = σ2
n

2N

(
Re

[
U� (

DHΠcD
)T

])−1
, (7.18)

where U=Rs
(
AH ARs +σ2

nI
)−1 AH ARs, Πc = I−Π, Π=A

(
AH A

)−1 AH ,

D = [
d(φ1) ... d(φD )

]
, d(φn) = ∂a(φn )

∂φn
, ∀n = 1, . . . ,D , Re[·] represents the real part of the



7

118 7. UNIAXIAL ACOUSTIC VECTOR SENSORS FOR DIRECTION-OF-ARRIVAL ESTIMATION

argument, J(φ) is the Fisher-information matrix, and N is the number of time snapshots
considered for evaluating the CRB.

As we have seen, a U-AVS array introduces a bias in the estimate when it is used in com-
bination with the classical beamforming approach, which becomes more apparent when
the aperture is small. The CRB for biased estimators can be obtained by a simple modifica-
tion of eq. (7.18). Let φ̂ denote an arbitrary estimator of φ with bias b(φ). Then the CRB for
such a biased estimator is given by [33]:

CRBb(φ) = (
I+D(φ)

)
J−1(φ)

(
I+D(φ)

)T , (7.19)

where J−1(φ) is the inverse of the Fisher information matrix as seen in eq. (7.18) and D(φ)
is the bias gradient matrix defined by:

D(φ) = ∂b(φ)

∂φ
. (7.20)

It can be seen that the CRB of a biased estimator depends on the bias variations rather than
the bias itself. Also in the case of a biased estimator, the Mean Square Error (MSE) is a direct
measure of the estimator’s performance and it can be written as:

MSE(φ) = E
{∥∥φ̂−φ

∥∥2
}
= ‖b(φ)‖2 + tr

(
CRBb(φ)

)
. (7.21)

7.5.2. EVALUATION OF CRB FOR A SINGLE SOURCE

This section is focused on evaluating the CRB of an AVS, U-AVS and APS array with a single
far-field source in its field of view. For the given scenario with E

{
s(t )sH (t )

} = σ2
s , eq. (7.18)

yields:

CRB(φ) = σ2
n

2N

1

Re
[
U

(
dH (φ)Πcd(φ)

)] , (7.22)

where U =
(
aH (φ)a(φ)

)
σ4

s

(aH (φ)a(φ))σ2
s+σ2

n
, d(φ) = ∂a(φ)

∂φ and Π= a(φ)aH (φ)
aH (φ)a(φ)

.

Based on eq. (7.22), assuming a locally unbiased estimator, the expressions of the CRB

for various scenarios are derived in 7.B. Using SNR = σ2
s

σ2
n

, the expressions of this CRB for

various sensor configurations are presented in Table 7.1, where

Table 7.1: CRB for several sensor array configurations
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considered for evaluating the CRB.

As we have seen, a U-AVS array introduces a bias in the estimate when it is used in com-
bination with the classical beamforming approach, which becomes more apparent when
the aperture is small. The CRB for biased estimators can be obtained by a simple modifica-
tion of eq. (7.18). Let φ̂ denote an arbitrary estimator of φ with bias b(φ). Then the CRB for
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It can be seen that the CRB of a biased estimator depends on the bias variations rather than
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measure of the estimator’s performance and it can be written as:
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Based on eq. (7.22), assuming a locally unbiased estimator, the expressions of the CRB

for various scenarios are derived in 7.B. Using SNR = σ2
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, the expressions of this CRB for

various sensor configurations are presented in Table 7.1, where
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For the particular case of a U-AVS ULA with a fixed orientation, δi = δ, ∀i = 1,2, . . . , M ,
the expression of the CRB can be simplified yielding:

CRB(φ) = 1

2N PG

(
M

(
1+cos2(δ−φ)

)

SNR
+ 1

(SNR)2

)
,

(7.24)

where
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(7.25)

As we have seen, the conventional DOA estimate based on the beampattern for a U-
AVS array results in a biased estimate. The bias in the DOA estimate for a U-AVS array is
quantified in eq. (7.14). We can thus also consider the modified CRB expression of eq. (7.19)
for biased estimates (CRBb), which incorporates the rate of change in the bias term:

CRBb(φ) =
(
1+ ∂b(φ)

∂φ

)2
CRB(φ),

≈
(
1+ ∂b̂(φ)

∂φ

)2
CRB(φ), (7.26)

where

∂b̂(φ)

∂φ
=− 1

Q2

[
Q
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R
∂S

∂φ
+ ∂R

∂φ
S

)
+ ∂S

∂φ

)
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(
∂R

∂φ
J +R

∂J

∂φ
+2S

∂S

∂φ
+2L

∂L

∂φ

)]
,

(7.27)
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Q = SNR
(
R J +S2 +L2)+ J +W, (7.28)

∂R
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(7.32)

Based on eq. (7.16) it is seen that for a given DOA with a given geometry and number of
sensors, the bias in the source DOA estimate can be controlled by changing the sensor ori-
entation angles δ. For biased estimators, minimizing the mean square error (MSE) of the
estimate (φ̂) becomes the optimal criterion based upon which the DOA performance is eval-
uated and it can be written as:

MSE(φ) = E
{∥∥φ̂−φ

∥∥2
}
≈ (

b̂(φ)
)2 +CRBb(φ). (7.33)

Considering the expressions in eq. (7.14), eq. (7.26) and eq. (7.33), three contrasting
configurations of a U-AVS ULA are considered for the purpose of illustration. It includes
one with a fixed orientation (δ = 90◦) and two with an arbitrary orientations δ, as listed in
Table 7.2. In the first configuration, all the sensors are oriented randomly whereas in the
second configuration, the sensor orientation angles are in the region between 70◦ to 115◦.

Table 7.2: Two configurations of a U-AVS ULA with an arbitrary orientation

U-AVS ULA with an arbitrary configuration

Configuration 1 δ = [
10◦ ,118◦ ,75◦ ,49◦ ,138◦ ,85◦ ,107◦ ,25◦ ,144◦ ,37◦

]

Configuration 2 δ = [
70◦ ,75◦ ,80◦ ,85◦ ,90◦ ,95◦ ,100◦ ,105◦ ,110◦ ,115◦

]

The bias in the source DOA estimate of a U-AVS array and the MSE of all the sensor
configurations with respect to φ are respectively plotted in Figure 7.5 and Figure 7.7. Also
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Based on eq. (7.16) it is seen that for a given DOA with a given geometry and number of
sensors, the bias in the source DOA estimate can be controlled by changing the sensor ori-
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one with a fixed orientation (δ = 90◦) and two with an arbitrary orientations δ, as listed in
Table 7.2. In the first configuration, all the sensors are oriented randomly whereas in the
second configuration, the sensor orientation angles are in the region between 70◦ to 115◦.

Table 7.2: Two configurations of a U-AVS ULA with an arbitrary orientation

U-AVS ULA with an arbitrary configuration

Configuration 1 δ = [
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]
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]
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Figure 7.5: Variation of the bias in the source DOA estimates based on a U-AVS ULA for all the three configurations
of a U-AVS ULA.

the derivative of bias with respect to φ is plotted in Figure 7.6 for all the three configurations
of the U-AVS ULA. All the plots in Figures 7.5, 7.6 and 7.7 are considered for a φ between 30◦
and 150◦, as the bias expression approximations in eq. (7.16) are reasonably valid for this
range as seen in Figure 7.3.

It can be observed from Figure 7.5, that the bias in the DOA estimate for all φ is small
for the first configuration of the U-AVS ULA. For the U-AVS ULA with a fixed orientation
(δ= 90◦) and for the second configuration of a U-AVS ULA with an arbitrary orientation, the
bias is small in the region where the sensors are aimed at and increases as φ diverges from
this region .

In Figure 7.6, we observe that the rate of change of bias with respect to φ is negative
for all three configurations, due to which the biased CRB of a U-AVS ULA is lower than that
of the corresponding unbiased CRB. Especially for the fixed orientation configuration and

for the second configuration of a U-AVS ULA, the change in bias
(
∂b̂(φ)
∂φ

)
rapidly grows as

φ differs from the region the sensors point at, yielding a lower biased CRB than the corre-
sponding unbiased version.

The MSE of all the sensor configurations is shown in Figure 7.7. For an APS and an
AVS ULA, the MSE is the same as the CRB, since they result in an asymptotically unbiased
estimate of the source DOA. On the other hand, for a U-AVS ULA, the MSE is comprised
of the bias, the change in bias and the CRB as seen in eq. (7.33). For the fixed orientation
and the second configuration of a U-AVS ULA, the MSE is similar to the results obtained for
an AVS ULA for φ around 90◦ and it drifts away rapidly as φ differs from 90◦. For the first
configuration of a U-AVS ULA, the MSE lies in between the MSE of an APS and an AVS array
for all φ. Based on the observations from Figure 7.7, for a given number of sensors/aperture,
it can be inferred that the MSE of the U-AVS array can be modulated over the φ range by
choosing the orientation angles of the U-AVSs appropriately.

In order to validate the MSE variation, Monte Carlo simulations with 1000 iterations
were performed using the classical beamformer, as it is asymptotically optimal for a sin-
gle source. The simulations were considered for the U-AVS ULA with a fixed and arbitrary
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Figure 7.6: Variation of the derivative of the bias in the source DOA estimates with respect to φ for all the three
configurations of a U-AVS ULA.

orientation (Configuration 1, as listed in Table 7.2). The results are seen in Figure 7.8. It
can be observed that the simulations are in agreement with the MSE expressions derived in
eq. (7.33). The CRB curves for both configurations are also plotted in dashed lines for refer-
ence. It can be seen that for the fixed orientation scenario, the MSE is far greater than the
equivalent CRB, as the bias in the DOA estimates is dominant. On the other hand, the MSE
for a low number of sensors is not matching the theoretical MSE plots, as the bias expression
based on first order approximations is not so accurate.

Finally, we can conclude that for a given number of U-AVSs, application requirements
such as a defined region-of-interest and geometry of the array, minimizing the MSE/function
of the MSE of the DOA estimate can be chosen as a criterion to find the optimum orienta-
tion angle for each of the U-AVSs in the array such that an acceptable performance can be
obtained. The related combinatorial optimization problem can be written as:

argmin
δ

f (R), (7.34)

where f : M �→ R is a continuous function, defined over a manifold M and R represents a
discrete angular support set, i.e., R = {φi : φi ∈M ,∀1 ≤ i ≤ J }. A simple sub-optimal choice
of f can be the mean of the MSE for all φ within R, i.e.,

∑J
i=1 MSE(φi ,δ). However, the MSE

expression eq. (7.33) is non-convex with respect to the orientation angles, δ, which makes
the optimization problem tough to solve in real-time. A sub-optimal solution can be found
by using non-convex algorithms like simulated annealing or genetic algorithms or by using
a convex relaxation of the MSE expression eq. (7.33). Further details on this aspect are out
of scope of this work as here we are mainly focusing on establishing the foundations of the
U-AVS based arrays.
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orientation (Configuration 1, as listed in Table 7.2). The results are seen in Figure 7.8. It
can be observed that the simulations are in agreement with the MSE expressions derived in
eq. (7.33). The CRB curves for both configurations are also plotted in dashed lines for refer-
ence. It can be seen that for the fixed orientation scenario, the MSE is far greater than the
equivalent CRB, as the bias in the DOA estimates is dominant. On the other hand, the MSE
for a low number of sensors is not matching the theoretical MSE plots, as the bias expression
based on first order approximations is not so accurate.

Finally, we can conclude that for a given number of U-AVSs, application requirements
such as a defined region-of-interest and geometry of the array, minimizing the MSE/function
of the MSE of the DOA estimate can be chosen as a criterion to find the optimum orienta-
tion angle for each of the U-AVSs in the array such that an acceptable performance can be
obtained. The related combinatorial optimization problem can be written as:

argmin
δ

f (R), (7.34)

where f : M �→ R is a continuous function, defined over a manifold M and R represents a
discrete angular support set, i.e., R = {φi : φi ∈M ,∀1 ≤ i ≤ J }. A simple sub-optimal choice
of f can be the mean of the MSE for all φ within R, i.e.,

∑J
i=1 MSE(φi ,δ). However, the MSE

expression eq. (7.33) is non-convex with respect to the orientation angles, δ, which makes
the optimization problem tough to solve in real-time. A sub-optimal solution can be found
by using non-convex algorithms like simulated annealing or genetic algorithms or by using
a convex relaxation of the MSE expression eq. (7.33). Further details on this aspect are out
of scope of this work as here we are mainly focusing on establishing the foundations of the
U-AVS based arrays.
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MSE) (in ◦) with M = 10, N = 10, SNR = 0 dB for an APS ULA, AVS ULA and U-AVS ULA with
respect to a change in φ.

7.6. EXPERIMENTAL RESULTS
An experimental study was conducted in order to support the discussion and analytical
expressions proposed for the U-AVS array. Firstly, the beampatterns of the APS, AVS and
U-AVS ULA under a changing source signal frequency are assessed. Next, the bias in the
source location estimate is compared to the theoretical value of the U-AVS ULA. A picture
of the experimental setup is shown in Figure 7.9, where five AVSs and three loudspeakers
are seen.

The measurements were performed with the first three AVSs arranged in a ULA config-
uration in a fully anechoic chamber using a white Gaussian excitation, radiated by a 3 inch
loudspeaker, under high SNR conditions (approximately 40 dB). For the measurements, an
acquisition device with a sampling frequency of 25 kHz was used. The product specifica-
tions of the AVSs used for the experiments can be found in [34]. The inter-sensor spacing
d was chosen to be 5 cm and the speaker was located at a distance of 360 cm with respect
to the reference of the ULA (i.e., the range of the sources is more than 20 times the aperture
of the array allowing for the far-field assumption). Although the loudspeaker was driven
by white Gaussian noise, the AVS ULA was designed for a frequency of fd = 3433 Hz (wave-
length ofλd = 10 cm). The pressure and particle velocity information (i.e., in y(t )) at a given
frequency are obtained by a short time discrete Fourier transform (STFT). For the STFT, a
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Figure 7.8: Validation of the MSE expressions of a U-AVS ULA with fixed and arbitrary orientations using 1000
Monte Carlo simulations with increasing number of sensors. For the simulations we consider N = 10, SNR = 0 dB,
φ= 45◦. Also the unbiased CRB is plotted for both fixed and arbitrary orientations. The plots of the MSE and the
unbiased CRB expressions are labeled as T and the simulation RMSEs are labeled as S.

segment of 1024 samples was considered with 50% overlap. A Hanning window was applied
to the data segment prior to the STFT. The measurements were performed using AVSs and
the U-AVS data is obtained from the corresponding AVS data, by linearly combining each
vector component data along the orientation angle in an appropriate way.

7.6.1. BEAMPATTERN VARIATION DUE TO CHANGES IN THE SOURCE SIGNAL

FREQUENCY

The beampattern variation of an APS, AVS and U-AVS ULA with respect to changes in the
frequency is computed numerically considering the experimental sensor arrangement de-
scribed above along with eq. (7.5). The results are shown in Figure 7.10 (a), (c) and (e). The
orientation angles (δ) of the U-AVS ULA are chosen randomly between 50◦ and 130◦. It can
be noted from Figure 7.10 (a), (c) and (e) that the AVS and U-AVS ULA beampattern, in com-
parison to the equivalent aperture APS ULA, preserve the VGM modulation based directiv-
ity even at low frequencies and also the grating lobes are suppressed at high frequencies.
Furthermore, the left/right ambiguity lobe is suppressed for both the AVS and U-AVS ULA
beampattern.

In Figure 7.10 (b), (d) and (f), the equivalent beampattern of an APS, AVS and U-AVS
ULA are plotted based on the measurement data. As it can be seen, the experimental re-
sults are comparable with the theoretical ones presented in Figure 7.10 (a), (c) and (e). The
discrepancies between the experimental and the numerical results can be explained due to
the unequal source radiation, as well as small positioning and calibration errors.
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Figure 7.9: Picture of the arrangement of five AVSs and three speakers, which are located on the circumference of
a circle with radius r = 360 cm.

7.6.2. BIAS VARIATION DUE TO AN INCREASE IN THE APERTURE OF THE U-AVS
ULA

We compare the estimates based on the measurement data with the theoretical estimates in
Figure 7.11 for two scenarios (φ= 60◦, δ= 45◦ and φ= 90◦, δ= 30◦). As shown, the estimates
based on the measurement data are very similar to the theoretical estimates of the source
location. Furthermore, we observe that the bias in the estimates based on the measurement
data reduces as the aperture of the ULA increases. The DOA estimates based on the equiv-
alent AVS and APS ULA measurement data are also indicated in Figure 7.11 for reference.
The small mismatches between the theoretical and the experimental data are probably due
to the positioning and orientation errors during the test.

7.7. CONCLUSIONS
In this paper, a new configuration of the AVS with two transducers (one pressure and one
particle velocity transducer) is introduced, which is referred to as the U-AVS (Uniaxial Acous-
tic Vector Sensor). Adopting the matched filter based beampatterns, the behavior of a U-
AVS array is explored. Similar to an AVS array, it is shown that the beampattern of a U-AVS
array with a fixed orientation can be decomposed as the product of an equivalent APS array
beampattern and a VGM term. Based on this decomposition, the advantages of an AVS ar-
ray are preserved to a considerable extent in the case of a U-AVS array. In order to observe
this aspect, a numerical and experimental study was performed to validate the variation
of the beampattern of an APS, AVS and U-AVS ULA with respect to a change in the source
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signal frequency. It is found that the DOA estimates based on the classical beamforming
approach for a U-AVS array result in biased estimates. Based on the first order Taylor expan-
sion of the beamforming function, the bias in the estimate is quantified and also validated
by performing numerical simulations and experiments. Further, the bias approximation
accuracy is numerically studied with a varying number of sensors and ROIs. It is seen that
the bias can be altered by changing the orientation angles of the U-AVSs in an array with a
fixed aperture.

The CRB for a single source scenario is evaluated for a U-AVS array and compared with
the APS and AVS array. Further, the expressions for the biased CRB and the MSE of a U-
AVS array were derived and their behavior was studied for three specifically chosen ULA
configurations. Based on the numerical analysis of those three ULA configurations we can
observe that the MSE of the estimates over different DOAs can be modulated by changing
the orientations of the U-AVSs in the array. Also the MSE is numerically validated for an
increasing number of sensors.

The numerical and experimental validation of the proposed theoretical framework ver-
ifies that the analytical expressions derived can be used to quantify the estimation error for
a given geometry and they can ultimately be adopted to optimize the orientations of the
U-AVSs for a set of requirements.
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7.A. BIAS EXPRESSION FOR U-AVS ARRAY

Here, we derive the bias expression of eq. (7.16) in Section 7.4. By taking the first and second
order derivatives of f (φ) with respect to φ, we obtain (for brevity the dependence on δ is
dropped from the steering vectors and its derivatives)

b̂(φ) = − dH (φ)Rya(φ)+aH (φ)Ryd(φ)

ḋH (φ)Rya(φ)+2dH (φ)Ryd(φ)+aH (φ)Ryḋ(φ)
,

(7.35)

where ḋ(φ) = ∂2a(φ)
∂φ2 . We consider here a random source signal s(t ) with zero mean and

variance σ2
s , and additive noise with zero mean and variance σ2

n. For this configuration
Ry =σ2

s a(φ)aH (φ)+σ2
nI. After evaluating d(φ) and ḋ(φ), the following inner products can

be derived:

aH (φ)a(φ) = M +
M∑

i=1
cos2(δi −φ)

︸ ︷︷ ︸
R

, (7.36)
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dH (φ)a(φ) = −j k
M∑

i=1

(
ri ·

∂u
∂φ

) (
1+cos2(δi −φ)

)

︸ ︷︷ ︸
L

+
M∑

i=1
cos(δi −φ)sin(δi −φ)

︸ ︷︷ ︸
S

, (7.37)

dH (φ)d(φ) = k2
M∑

i=1

(
ri ·

∂u
∂φ

)2 (
1+cos2(δi −φ)

)+
M∑

i=1
sin2(δi −φ)

︸ ︷︷ ︸
W

.

(7.38)

ḋH (φ)a(φ) = jk
M∑

i=1

(
ri ·

∂2u
∂φ2

)(
1+cos2(δi −φ)

)

+2jk
M∑

i=1

(
ri ·

∂u
∂φ

)
cos(δi −φ)sin(δi −φ)

−k2
M∑

i=1

(
ri ·

∂u
∂φ

)2 (
1+cos2(δi −φ)

)−
M∑

i=1
cos2(δi −φ)

︸ ︷︷ ︸
J

.

(7.39)

Substituting eq. (7.36), eq. (7.37), eq. (7.38) and eq. (7.39) into eq. (7.35), finally leads to
eq. (7.16).

7.B. CRB EXPRESSION FOR A U-AVS ARRAY AND A SINGLE SOURCE

The CRB expression for a U-AVS array is considered in this section and the same steps can be
followed to derive the expressions for an equivalent AVS and APS array. The inner products
aH (φ)a(φ), dH (φ)a(φ) and dH (φ)d(φ) required for the evaluation of the CRB expression
are already captured in eq. (7.36), eq. (7.37) and eq. (7.38), respectively. Based on the inner
product results, we now evaluate dH aaH d, dH daH a and subsequently dHΠcd specified in
eq. (7.18) (for brevity the dependence on φ is dropped):

dH aaH d= k2
M∑

i=1

M∑
j=1

(
ri ·

∂u
∂φ

) (
r j ·

∂u
∂φ

) (
1+cos2(δi −φ)

)

(
1+cos2(δ j −φ)

)+
M∑

i=1

M∑
j=1

sin(δi −φ)cos(δi −φ)

sin(δ j −φ)cos(δ j −φ),

(7.40)
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dH daH a = Mk2
M∑

i=1

(
ri ·

∂u
∂φ

)2

(1+cos2(δi −φ))

+M
M∑

i=1
sin2(δi −φ)

+k2
M∑

i=1

M∑
j=1

(
ri ·

∂u
∂φ

)2

cos2(δ j −φ)
(
1+cos2(δi −φ)

)

+
M∑

i=1

M∑
j=1

cos2(δ j −φ)sin2(δi −φ),

(7.41)

dHΠcd = dH daH a−dH aaH d
aH a

,

= PG

M +∑M
i=1 cos2(δi −φ)

, (7.42)

with PG given in eq. (7.24). Further, the U term specified in eq. (7.18) results in the scalar U :

U =

(
M +

M∑
i=1

cos2(δi −φ)

)
σ4

s

(
M +

M∑
i=1

cos2(δi −φ)

)
σ2

s +σ2
n

. (7.43)

Finally, the CRB expression of eq. (7.18) reduces to:

CRB(φ) = 1

2N PG




(
M +

M∑
i=1

cos2(δi −φ)

)

SNR
+ 1

(SNR)2


 .

(7.44)
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(a) (b)

(c) (d)

(e) (f)

Figure 7.10: Variation in the beampattern of APS (in (a), (b)), AVS (in (c), (d)) and U-AVS (in (e), (f)) ULA as the
frequency of the source signal is increased with M = 3, d = 5 cm ( fd = 3433 Hz) and φ = 90◦. The orientation
angles of the U-AVS ULA are chosen as δ = [57◦,124◦,109◦]. Subfigures (a), (c), (e) corresponds to simulation
results and (b), (d), (f) correspond to experimental results.
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Figure 7.11: Comparison of biased estimates obtained from the measurement data (labeled E) with the theoretical
biased estimates (labeled T) for two scenarios with different angle of arrival (φ) and U-AVS sensor orientation (δ)
for M = 2,3. Also the DOA estimates for the equivalent AVS and APS ULA are plotted for reference.
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biased estimates (labeled T) for two scenarios with different angle of arrival (φ) and U-AVS sensor orientation (δ)
for M = 2,3. Also the DOA estimates for the equivalent AVS and APS ULA are plotted for reference.

8
CONCLUSION & RESEARCH TRENDS

In this chapter, we summarize the contributions of this thesis and show some potential fur-
ther research directions. The concluding overview and remarks on this work are presented
in Section 8.1. Some future research possibilities are presented in Section 8.2.

8.1. CONCLUDING OVERVIEW AND REMARKS
The theme of this work is DOA estimation of far-field sound sources using an array of spa-
tially distributed AVSs. This study has contributed to the existing knowledge base on the
DOA estimation problem using AVS arrays in three scenarios. Based on that, this thesis is
broadly divided into three parts. Those include,

• The analysis of a spatially under-sampled AVS array for DOA estimation,

• The DOA estimation problem using an AVS array under the presence of sensor cali-
bration errors, and

• Finally, the DOA estimation analysis using an array of uniaxial AVSs (U-AVSs).

In the first part of this work, we focused on analyzing a spatially under-sampled AVS ar-
ray for DOA estimation. As observed in Chapter 2, the beampattern of the AVS array can
be decomposed as the product of the beampattern of the equivalent APS array and the
source frequency-independent velocity gain modulation (VGM) term. Due to the pres-
ence of the VGM term, the grating lobes in its beampattern, which occur when the array
is under-sampled, behave differently from the conventional APS array as they are attenu-
ated in comparison to the main lobe. In order to gain more insights into the behavior of
the grating lobes, we studied the DOA estimation performance using the Cramér-Rao lower
bound (CRLB) expression in Chapter 3. Since the CRLB provides local information around
the source DOAs, we considered the multi-source CRLB expression with one of the sources
acting as an interference at each possible scanning angle so that the effects of the grating
lobes can be studied. For example, we considered a simplistic scenario of a ULA in the pres-
ence of two uncorrelated sources, where one of the sources acts as interference for all the
possible scanning angles. We saw that the CRLB matrix is well defined at the grating lobe
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locations indicating that spatially under-sampled AVS arrays can be employed for unam-
biguous DOA estimation. Furthermore, we saw that the minimum variance distortionless
response (MVDR) beamformer suppresses the grating lobes considerably compared to the
classical (or Bartlett) beamformer. Finally, the utility of a spatially under-sampled AVS array
for beamforming applications was illustrated through the zero-forcing (ZF) and minimiza-
tion of maximum side lobe beamformers.

In the second part of this work, we considered the DOA estimation problem using sensor
arrays under the presence of calibration errors. As we stated and have seen in the simulation
results, these calibration errors severely degrade the performance of the subspace based
DOA estimation algorithms such as MUSIC or MVDR. Most of the existing literature focuses
on self-calibration techniques that apply to scalar sensor arrays; however, our emphasis was
on AVS arrays. Firstly, we discussed the ambiguity and identifiability issues for uniquely es-
timating the calibration errors and the source DOAs using AVS arrays. An important take-
away message from this analysis is that AVS arrays do not suffer from the progressive phase
factor ambiguity between calibration errors and the array manifold matrix. In Chapter 4,
this aspect is used to show that the AVS linear array does not require a known calibrator
source or an additional phase reference channel for uniquely estimating the calibration er-
rors and source DOAs, as is the case for the equivalent APS linear array. Furthermore, we
proposed two main classes of self-calibration approaches.

In Chapters 4 and 5, the first class of array geometry-independent self-calibration algo-
rithms that apply to both APS and AVS arrays is proposed. This approach is based on sparse
recovery techniques, and it leads to non-iterative optimal convex optimization algorithms
for jointly estimating the calibration errors and the source DOAs. Particularly in Chapter 4,
we developed self-calibration solvers based on both the element-space and the co-array
data models. Moreover, the self-calibration algorithm based on the co-array data model is
also seen to be effective when more sources than the sparsely placed sensors/channels are
present. Further in Chapter 5, the co-array data model-based self-calibration algorithm is
extended to a scenario of multiple far-field broadband sources. Here we leveraged the fact
that the calibration errors vary across frequencies smoothly or remain the same for a range
of frequencies, and the DOAs of the broadband sources are the same for those frequencies.
The proposed self-calibration algorithms’ effectiveness was showcased through numerical
and experimental results, and further comparisons to state-of-the-art methods were pro-
vided.

In Chapter 6, the second class of array geometry-dependent self-calibration algorithms
that were specifically designed for a AVS ULA is proposed. We exploited the Toeplitz block
structure in the AVS ULA measurement data covariance matrix to estimate the gain and
phase errors. Based on the estimates of the calibration errors, the source DOAs are esti-
mated using the gain and phase compensated covariance matrix. With M AVSs in the ULA,
this approach requires one phase reference AVS and an additional phase reference (it could
be any transducer type) for uniquely estimating the phase errors, and requires one gain
reference AVS for uniquely estimating the gain errors.

In the last part of this work which is presented in Chapter 7, we considered an alternate
configuration of an AVS with reduced channel count, referred to as uniaxial AVS (U-AVS).
It consists of a pressure transducer and a single particle velocity transducer. Additionally,
the particle velocity transducer has an extra degree of freedom to choose its orientation an-
gle arbitrarily. Here we focused on understanding the DOA estimation performance of a
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U-AVS array, and in this process, we analyzed its beampattern and derived an MSE bound
on the DOA estimation. It was observed that the U-AVS array leads to asymptotically biased
estimates, and the bias in the DOA estimates can be altered by changing the orientation
angles of the U-AVSs in the array. This extra degree of freedom where each U-AVS in the
array can have an arbitrary orientation is studied comprehensively for different scenarios.
We see that the MSE bound on the DOA estimation can be lowered for some specific region
of interest by compromising the performance at other regions. Further, we compared its
performance to the conventional configurations of the equivalent APS and AVS arrays. Fi-
nally, all the analyses are supported by real experimental results performed with AVS arrays
in the anechoic chamber.

The analyses and algorithms on the AVS array proposed in this work allow increased
situational awareness across our society. Understanding the behavior of a spatially under-
sampled AVS array and a reduced channel count U-AVS array allows for new array designs
with a smaller number of sensor nodes that can even be placed on a moving platform such
as vehicles or drones. Such arrays can significantly improve localizing threats such as gun-
shots, illegal fireworks, or explosions. Also, the knowledge gained from this research can
improve the localization of defects in heavy machinery or annoying low-frequency sound
sources that can cause health issues in humans. Furthermore, the proposed self-calibration
algorithms, specifically for the AVS arrays with the derived identifiability conditions, sim-
plify the re-calibration procedure and can be applied at the deployed location relative to
one of the channels of an AVS within the array.

8.2. FUTURE RESEARCH OPPORTUNITIES
The work reported in this thesis opens the door to many new questions and possible further
improvements of the proposed methods. Some suggestions for future research, and topics
that have not been investigated in this work, are listed in the following:

8.2.1. DOA ESTIMATION USING SPATIALLY UNDER-SAMPLED AVS ARRAY

• DOA estimation and beamforming with a spatially under-sampled AVS array in the
co-array domain

The work presented in Chapter 3 deals with the analysis of a spatially under-sampled
AVS array for DOA estimation by considering the element-space measurement model.
On the other hand, it is also possible to spatially under-sample the AVS arrays for DOA
estimation by considering the co-array measurement model. However, we still do not
understand the extent and possible impact of the co-array measurement model for
unambiguous DOA estimation. Under such settings, similar analyses as presented in
Chapter 3 can be performed to understand its beampattern (including the behavior of
the grating lobes) and the behavior of the DOA estimation algorithms such as spatial
smoothing MUSIC (SS-MUSIC) [1, 2].

• Design of AVS array for DOA estimation and beamforming

The knowledge gained by the analyses of spatially under-sampled AVS arrays using
both the element-space and the co-array domain data model can be combined with
sensor selection techniques [3, 4] to design an AVS array with (sub)optimal node posi-
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tions such that some pre-defined performance metrics for DOA estimation and beam-
forming are satisfied. The pre-defined performance metrics can be constraints on the
CRLB bound, beampattern parameters (such as sidelobe levels and mainlobe width),
and operational frequency.

8.2.2. SELF-CALIBRATION AND DOA ESTIMATION USING SENSOR ARRAYS

• Design of sparse scalar sensor arrays under the presence of calibration errors

In recent times, sparse scalar arrays evaluated in the co-array domain have gained
much attention as they can estimate DOAs of more sources than the number of chan-
nels/sensors in the array. This feature is achieved by intelligently spacing the sen-
sors such that its co-array domain contains the same information as the co-array of
a uniform array [5, 6]. Such array designs among many include the minimum redun-
dancy array (MRA)[7], sparse ruler array [8], and nested array [9]. These arrays are
designed to maximize the degrees of freedom (DOF) by reducing the redundancies in
the co-array domain. Furthermore, in some recent work, the design of sparse arrays
accounting for sensor break-down [10–12] and mutual coupling [13–15] is also con-
sidered. However, not much attention is given in the literature to design sparse arrays
in the presence of calibration errors. As discussed in Chapter 4, the redundancies in
the scalar sensor array geometry are crucial from a self-calibration perspective. As the
redundancies in the array geometry increase, we require fewer known references in
the sparse array for uniquely estimating the calibration parameters and DOAs. Thus
further research has to be carried out for optimal sparse sensor array design under
the presence of calibration errors, as it involves a delicate balance between the re-
dundancies and the DOF in the array.

• Gridless self-calibration approaches for sensor arrays

In the second part of this work, we explored the problem of DOA estimation using sen-
sor arrays under the presence of calibration errors. By leveraging the tools of sparse
recovery techniques, in Chapter 4 we proposed non-iterative self-calibration algo-
rithms based on both element-space and co-array measurement models for jointly
estimating the calibration errors and source DOAs. These sparse recovery/compressive
sensing techniques suffer from grid mismatch errors as the true DOAs are not always
on the pre-defined grid [16], and many solutions for this issue are discussed in the
literature, including [17, 18]. Recently, a family of off-grid, or grid-less approaches,
which exploit sparsity in the atomic norm of the measurements, are proposed for line
spectrum estimation (including DOA estimation) [19, 20]. Therefore, it will be sensi-
ble to investigate the off-grid extensions of the proposed self-calibration algorithms
by considering the atomic norm of the measurements.

• Theoretical analyses of the proposed self-calibration approaches

The self-calibration algorithms proposed in Chapter 4 and Chapter 5 utilize tools from
sparse recovery/compressive sensing techniques, and the original problem formula-
tions are non-convex. So we relaxed the constraints and solved the convex version
of the optimization problem to estimate the calibration errors and the source DOAs.
Further, the simulation results based on the proposed convex optimization problem
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for the ideal case lead to the true/optimal solution, which showcases the exactness
of the relaxation. However, theoretically, we did not investigate why we got the exact
solution even after the convex relaxations, and it will be worthwhile to address this
aspect. Furthermore, it will also be helpful to explore the sensitivity of the proposed
solvers to noise (including finite-sample errors) and to the choice of the regulariza-
tion parameter, conditions for the existence of a sparse solution, and many others.

• Extension of the wide-band self-calibration approaches

In Chapter 5, by considering the co-array domain measurement model, we extended
the self-calibration framework proposed in Chapter 4 to sensor arrays in the pres-
ence of broadband sources. Here we assumed that the calibration parameters vary
smoothly and the source DOAs remain the same across frequencies. Further, we pro-
posed a self-calibration algorithm by restricting our attention to the scenario where
the calibration errors are constant over the considered number of frequency bins.
However, we hinted that the proposed framework could be easily extended to a sce-
nario where the calibration errors vary linearly across frequency bins. It will be useful
to explore those extensions of the self-calibration approaches under the presence of
broadband sources.

8.2.3. DOA ESTIMATION USING U-AVS ARRAY

• Formulation of U-AVSs orientation selection problem based on pre-defined performance
metrics

In Chapter 7, we looked into the analysis of a U-AVS array for DOA estimation. Here,
we saw that U-AVS arrays lead to asymptotically biased estimates, and based on the
derived MSE bound on the DOA estimation, we saw that the bias in the estimates can
be controlled by altering the orientation of the U-AVSs in the array. We concluded
that the minimization of the MSE bound could be used as a criterion for optimally
choosing the orientation angles for each of the U-AVSs in the array. Formulating the
optimization problem to minimize the MSE bound and analyze those results can be a
possible research topic for designing the U-AVS array for DOA estimation and beam-
forming.
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Microphones are the 
most popular devices 

used to convert sound 
into electrical signals. 

However, with the advent 
of sensor technology, 
transducers capable 
of measuring vector 

quantities are opening up 
many new possibilities. 

One such device is an 
acoustic vector sensor 

(AVS), which measures both 
acoustic pressure and particle 

velocity, and has shown promising 
results with distinct advantages. In this work, 

we explore the characteristics of AVS arrays and 
their variations in comparison to the conventional 

microphone arrays for the purpose of direction-of-arrival 
estimation of far-field sound sources. Furthermore, we also look 

into one of the practical aspects of calibrating the AVS arrays and propose 
novel techniques to address this issue.
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