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ABSTRACT 
Deep learning models for image classifcation sufer from dangerous 
issues often discovered after deployment. The process of identify-
ing bugs that cause these issues remains limited and understudied. 
Especially, explainability methods are often presented as obvious 
tools for bug identifcation. Yet, the current practice lacks an under-
standing of what kind of explanations can best support the diferent 
steps of the bug identifcation process, and how practitioners could 
interact with those explanations. Through a formative study and an 
iterative co-creation process, we build an interactive design probe 
providing various potentially relevant explainability functionali-
ties, integrated into interfaces that allow for fexible workfows. 
Using the probe, we perform 18 user-studies with a diverse set 
of machine learning practitioners. Two-thirds of the practitioners 
engage in successful bug identifcation. They use multiple types of 
explanations, e.g. visual and textual ones, through non-standardized 
sequences of interactions including queries and exploration. Our 
results highlight the need for interactive, guiding, interfaces with 
diverse explanations, shedding light on future research directions. 

CCS CONCEPTS 
• Human-centered computing → User interface program-
ming; Empirical studies in HCI ; • Computing methodologies → 
Computer vision; • Software and its engineering → Software 
testing and debugging. 
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computer vision, machine learning model debugging, machine 
learning explainability, user interface 
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1 INTRODUCTION 
Safely using deep learning models still proves challenging for many 
computer vision applications. Models sufer from spurious correla-
tions, brittleness, or overftting, producing erroneous predictions 
and safety risks1 or societal harms [26]. The fact that these issues 
are often discovered only after deployment illustrates the existence 
of challenges in the practice of identifying and mitigating bugs in 
the models early. Yet, limited efort has been devoted to investigat-
ing the debugging practices of computer vision practitioners. The 
machine learning community develops various explainability meth-
ods, often arguing their usefulness for model bugs identifcation 
[8, 14, 27, 40, 47]. However, few studies investigate their concrete 
uses in this process. As a result, it is still unclear what types of 
explanations (e.g. out-of-domain, global, or interactive [46]) can be 
useful, for which steps of the process, and how. 

In this work, we ask: how could diverse explainability methods 
be used to support the bug identifcation process of deep learning 
computer vision models? We focus on image classifcation tasks, as 
they are prone to model misbehavior, and there is an established 
body of (post-hoc) explainability methods to possibly support bug 
identifcation. Their practical use has not been studied yet, contrary 
to the ones for tasks that rely on tabular data [20]. We study the 
identifcation of model failures and bugs in development; later 
steps like bug identifcation in deployment and bug correction 
are future work. We draw inspiration from works situated at the 
intersection of machine learning and HCI that investigate how 
machine learning or related tools (e.g. explainability, debugging 
user-interfaces, etc.) are used [35], or could be used [20], and how 
to design them [4, 52]. We build a design probe2 in the shape of a 
user-interface by performing literature studies, a formative study, 
and co-creation sessions consisting of 18 interviews, to explore uses 
of explainability for debugging. Using an implemented probe and a 
carefully-crafted use-case, we then perform 18 user-studies with 
machine learning practitioners having diferent levels of experience 
with computer vision in various domains. 
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The user-studies show that a wide range of explanations are 
useful to identify bugs (e.g. both textual and visual explanations, 
global and local, companion with domain knowledge, etc.). These 
explanations are often not theory-heavy, but extremely informa-
tive when embedded into an interactive interface. Although they 
can sometimes be overwhelming and misinterpreted (leading to 
identify wrong bugs due to confrmation bias), these explanations 
also allow to identify the potential causes of various issues, and 
to envision correction strategies. This reveals an urgent need for 
more research on the design of new explanations relying on diverse 
user-interactions adapted to diferent kinds of practitioners. 

The paper is organised as follows: we introduce related works 
in section 2, the probe and its rationale in sections 3, 4. We outline 
the user-study setup in section 5, and its results in section 6. We 
discuss implications in section 7, and conclude in section 8. 

2 RELATED WORKS 

2.1 Bug identifcation in software and machine 
learning models 

To understand what bug identifcation means, we survey literature 
about machine learning testing (frst step of the debugging process) 
and traditional software systems where bug identifcation is more 
extensively studied. 

Failures. Machine learning testing aims at detecting and char-
acterizing diferences between current and expected functioning 
of a model [54]. These diferences revolve around inferences (e.g. 
correctness, robustness, fairness, etc.), data, or code [11, 38]. Main 
causes of failures are structural or training bugs [34]. Our forma-
tive study reveals sub-types of training bugs around datasets or 
training hyperparameters. We mainly focus on correctness failures 
(wrong model inferences or features) and dataset bugs, especially in 
relation to issues in the model features, as these are still overlooked 
research-wise despite being the primary debugging goal of prac-
titioners and directly related to explainability methods. Software 
engineering distinguishes between reactive debugging (a failure is 
explicitly identifed) [5, 16]; proactive debugging (no explicit failure 
manifests); and general software understanding (for later debugging) 
[28, 50], that we all study. 

Methods. The software debugging workfow consists of four steps 
[5, 28, 50]: 1) gathering context and hypothesis formulation, 2) in-
strumenting the hypothesis, 3) testing the hypothesis, 4) correct-
ing the hypothesis, or applying a bug solution. To the best of our 
knowledge, there is no study of the bug identifcation practices for 
computer vision models. Instead, research focuses on developing 
methods for debugging models [24, 33, 34, 54] without any hu-
man activity or explainability (except [44]). As our formative study 
shows that none of the automatic methods is employed by prac-
titioners, we investigate how practitioners could perform manual 
bug identifcation supported by explainability. 

User interfaces. A few user interfaces [39, 51, 53] support devel-
opers in debugging models. None of the ones that make use of 
explainability methods are adapted to computer vision. The applica-
ble ones all focus on investigating the choice of model and training 
hyperparameters [41, 42], or visualising the data used to train the 
model [3]. Our design probe instead presents diverse explanation 
artifacts designed for computer vision models. 

2.2 Machine learning explainability 
Explainability provides explanations on the functioning of a model. 
A framework [47] characterizing explainability works identifes 
model debugging as one of their purposes, and the following tasks 
developers might perform, e.g. “assessing reliability of a prediction”, 
“detecting arbitrary behavior”, etc, that our study also identifes. 

Categorization. Explainability methods and resulting explana-
tions can be categorized in various ways [6, 30, 31, 46]. One might 
want to diferentiate them regarding the explanation audience, the 
explanatory medium, the explanation scope, whether the explana-
tions are about data or models, their faithfulness, etc. Algorithmic 
research distinguishes between local or global explanations, de-
pending on the scope of data samples employed. Local explanations 
provide information on the reasoning a model follows to infer the 
label of a sample, through saliency maps [43], visual counterfactuals 
[15], or visualisations of activation layers [21, 36]. Global explana-
tions indicate the general features used by a model, presented as 
visual hints (e.g. TCAV [27], ACE [14]), or textual information (e.g. 
SECA [8]). We use these categorizations to identify the explanations 
relevant to include in our probe. 

Usages. Researchers have conducted user-studies on the use 
of certain explanations for certain stakeholders and data types 
[2, 12, 13, 23, 25, 52]. Yet, no extensive work involves developers 
debugging computer vision models. Only Bhatt et al. [10] conducted 
inquiry interviews where developers solely reported using saliency 
maps to understand wrong inferences, or to identify spurious fea-
tures, and none mentioned other explainability methods. Our work 
performs a human-grounded exploration where we collect devel-
opers’ practices based on carefully-crafted debugging tasks. 

3 PROBE DESIGN PROCESS 
The goal of our probe is to explore potential uses of explainabil-
ity methods for bug identifcation. Design probes have three fne-
grained goals [22]: “social science goal of collecting information 
about the use and the users of the technology in a real world set-
ting, engineering goal of feld-testing the technology, and design 
goal of inspiring users and designers to think of new kinds of tech-
nology to support their needs”. Table 1 describes the requirements 
for our probe. 

Index Requirement Description 

Rq1 Completeness of The probe should present the main information a 
functionalities for developer might look at when debugging. 
bug identifcation 

Rq2 Completeness of The probe should ofer the main available types 
explanations of explanations for computer vision models. 

Rq3 Clarity of the pre- To proceed to valid user-studies, the participants 
sented information should understand clearly the functionalities pre-

sented to them, without being overwhelmed by 
the ofered information. 

Rq4 Flexibility and The probe should not enforce a certain workfow 
objective pre- within the tool not to skew participants’ behaviors 
sentation of the towards certain explanations, but instead make 
information the interactions as free as possible. 

Rq5 Engineering feasi- The probe should be fully functional to exploit 
bility the explanations of an actual model, and to let 

participants make use of the technology. 

Table 1: List of requirements defned for the probe. 
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3.1 Mixed method research 
To translate our requirements into a probe, we establish functionali-
ties (Fx) to provide, and orthogonal categories (Ox) that indicate how 
these functionalities can be realized. Academic and grey literature 
analyses inform the list of explanations the probe should contain 
(Rq2). However, it does not focus on practitioners’ experiences, and 
thus does not inform on other information needed to identify bugs 
(Rq1). Consequently, we perform a formative study in the shape of 
18 semi-structured interviews with practitioners where we inves-
tigate their practices, challenges, and wishes. We synthesize the 
literature and the insights from the study to extract the function-
alities (Fx) and orthogonal categories (Ox) (Table 2). Finally, we 
perform iterative co-creation sessions where we present designs of 
the probe to practitioners, and collect feedback to fne-tune infor-
mation visualisations, and identify the minimum set of necessary 
interactions with these functionalities (Rq3, Rq4). The probe is then 
implemented so as to create a valuable user-experience (Rq5). 

Concretely, in the formative study and co-creation sessions, we 
present to the participants a use-case involving the development of 
a deep learning model for a scene classifcation task. We describe 
an initial model that has been (hypothetically) built, and show 
example of images from the training dataset with their ground truth 
and model inferences. We make sure these examples present both 
cases where the model makes right and wrong inferences, using 
relevant and irrelevant features (same approach as in section 5). For 
the formative study, we then ask the participants to describe the 
approach they would follow to defne whether this model is ready 
for deployment, and if not, to characterize what the exact model 
failures to solve are. We analyse the results of such sessions by 
extracting intermediate goals (in the shape of questions in Table 2) 
the participants have while investigating the model, and types of 
information and tools they use to fulfll these. For the co-creation 
sessions, we ask the same questions. Yet, we additionally present the 
participants with mock-up user interfaces containing various types 
of explanations, and prompt them to envision how they would 
use such interfaces to answer the questions. We also ask them 
for feedback on the interfaces (e.g. missing, irrelevant, or unclear 
functionalities), and we iterate on the interfaces after each interview, 
going initially from low-fdelity mockups, to high-fdelity ones in 
the last interviews. 

3.2 Probe functionalities 
We elicited the functionalities below needed for the probe. We 
illustrate them with the scenario of the user-studies (section 5): 
building a model that classifes the species of a bird displayed in 
an image. Importantly, our participants often referred to semantic 
concepts in relation to relevant sample pixels or potential human-
interpretable model features, to reason about potential failures and 
bugs. These concepts were either entities (e.g. cactus), attributes 
(e.g. green), entity-attribute combinations (e.g. green-cactus), or 
their logical negation (e.g. NOT cactus, i.e. absence of cactus). 

• F1: performance understanding: Understand overall and 
class-specifc performance of the model. Looking at metrics gives 
a frst indication of the performance of the model, and the type 
of errors to investigate. Participants use the class-specifc metrics 
to decide for which types of samples to improve the model frst. 

• F2: data-neighbor exploration: Understand and compare the 
content of data samples. Participants regularly explore the data 
to estimate the complexity of the task, to reason about causes for 
model failures, and identify features of the model. F1 and F2 can 
be supported with information about performance metrics and 
datasets, without explanations. 

• F3: local explanations: Understand how the model made an in-
ference for a sample. Participants scrutinize or wish to scrutinize 
saliency maps, to detect overftting, or to judge the relevance 
of model features. This can be facilitated with explanations of 
single samples that show the connection between the sample 
content and its label (e.g. the model classifed this image as gila 
woodpecker by looking at the pixels of the cactus the bird is 
standing on Figure 4). 

• F4: global explanations: Identify the main reasons for the 
model to classify samples into this class. Participants progres-
sively achieve a global understanding of the model by formulating 
a hypothesis based on a single sample, and iterate on it by evalu-
ating its validity across more samples. Some participants wished 
to have statistical summaries of visual concepts across images 
(e.g. for 80% images classifed as gila woodpecker, the model 
looked at pixels representing a cactus) to speedup their process 
and improve its results. For that, some participants suggested 
using crowdsourcing or object detectors to annotate images at 
scale (similarly to what the SECA method ofers [8]). 

• F5: explanation comparison: Compare the reasoning of the 
model across samples or classes. Comparisons serve to judge 
the validity of feature hypotheses, and to understand mis-
classifcations (e.g. the model classifed this gila woodpecker 
image correctly using the cactus pixels, but that one incorrectly 
using the wings). 

• F6: explanation importance: Rank the explanations based on 
their frequency, or on the type of (in)correct inferences they lead 
to. A few participants mentioned that it would be convenient to 
automatically obtain a list of the most important features for the 
model. We foresee they might want to query and rank explana-
tions according to diferent properties such as explanations that 
lead to correct or incorrect inferences (e.g. 20% of times when 
the model used the breast and belly pixels, it made a correct 
prediction, contrary to 90% for the cactus pixels). 

• F7: counterfactuals: Ask "what-if" questions to see the type 
of reasoning and inference class received by a sample with/out 
these visual concepts. This family of explanation was not directly 
mentioned as counterfactual, yet a few participants mentioned 
testing transformations of images based on certain concepts to 
understand how they impact the inferences (e.g. what would the 
model predict if there was no cactus in the image?). As setting 
up such transformations is complex (Rq5), we propose proxy 
textual-explanation based transformations (subsubsection 4.2.2). 

• F8: explanation recommendation: Visualise explanations, or 
search for specifc ones. While participants do not talk about 
this as they are used to search for local explanations by them-
selves, being able to query specifc explanations might speed 
up their process. This is also connected to the complexity of an 
explanation method. As participants did not know about many 
explanations, they did not refect further on their complexity. 
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Topic 

Model input 

Provenance 

Interviews 

Description 

What kind of data does the system learn from? 
To what extent the data is diverse enough to represent each class? 
What are the diferences between these two classes? 

Fx 

F2 
F2, F9 
F2, F5, F8 

Ox 

-
-
-

Performance 

Exp. 
breadth/scope 
Local 
Global 
Intermediate 

Interviews 

Both 

Both 
Both 
Interviews 

How well does the model perform for each class? Errors with high or low confdence? 

The extent to which an explanation can be generalised [46]. Participants of our formative study use a 
larger range of breadth than local and global. 
What features of this instance lead to this inference? 
Which visual elements does the model generally use? 
What are the features used to distinguish these 2 classes? 

F1 

F3, F4, F8 

F3 
F4 
F3, F4, F8 

-

O1 

Comparisons Both [20] insists on allowing comparisons of explanations across samples. Participants of our formative study 
performed comparisons across samples but also across classes. 
Why are instances A and B given the same/diferent predictions? 

F5, F6 O1, O2, O3 

F5, F3 
How does the model weigh diferent features? F6, F3, F4 

Exp. family Literature Sokol et al. [46] discuss a) associations between antecedent and consequent, b) contrasts and diferences - O3 
(using examples), c) causal mechanisms, as potentially used types of explanations. Our participants primarily 
relied on b), some also hinted at a) and c). 

Associations The local and global explanations mentioned above primarily refer to a). F3, F4 -
Contrasts The comparisons performed with these explanations refer to b). F5, F6 -
Causal mechanisms Why is this sample predicted P instead of Q? What would the model predict if this sample is changed to ...? F7 -

Exp. domain A mixed domain approach consists in explanations within the original domain of inputs (images), and in a -
/medium transformed domain (essentially text such as in dialogues [9]). A few participants hinted at the potential 

usefulness of having textual explanations. 

Both O2 

Interactivity /pas- Literature [46] distinguishes between static and interactive explanations. While most explainability works do not F8 -
sivity address interactivity, some [8, 14, 20, 27] propose query interactions. 

This connects to varying the breadth and domain of explanations, performing various types of comparisons, F5, F6, F7, F8 O1, O2, O3 
and exploring questions around causal mechanisms. 

Interviews Does the model use this feature? F8 -

Domain kno. Interviews What features do we expect the model to learn for this class? F9 -
Should the model pick up on more visual elements for this image/class? F9, F3, F4 -

Table 2: Summary of observations from the literature and formative study (main questions practitioners ask themselves within 
the bug identifcation process), and their mapping to the probe functionalities (Fx) and orthogonal categories (Ox). 

Yet, they might want to delve deeper into the parameters of 
explainability methods once they are more familiar with them. 

• F9: domain expertise: Know what a domain expert (e.g. an or-
nithologist) would consider good reasons to classify a sample into 
a class. This functionality was contentious among participants. 
A few participants did not use domain knowledge explicitly but 
still relied on their understanding of the domain to understand 
potential wrong features of the model, while others advocated for 
the necessity of understanding the domain even before looking 
into the model. 
We identify the following orthogonal categories: 

• O1: breadth: While literature refers to local and global explana-
tions as the two scopes of explanations, we see them as the two 
extremes of a scale. The participants did not always look into 
a single sample (local) or the overall set of data and inferences 
(global), but focused on various sets of classes (e.g. two classes or 
entire dataset), or samples with correct or incorrect inferences. 

• O2: medium: Participants are more accustomed to image-based 
explanations. Yet, a few participants insisted on getting textual 
explanations to more easily receive feedback from domain experts 
on feature relevance, or to query learned features or images of 
the training dataset. 

• O3: granularity/type: Participants typically reasoned about se-
mantic concepts to identify issues with model features. Certain 
participants varied the granularity of these concepts and went 
to fne-granularities when they could not identify a pattern of 
reasoning within higher-granularity ones (e.g. entire wing or 
sub-parts with diferent colors). 

4 RESULTING DESIGN PROBE 
We frst describe the main types of explanations in the probe (F3, 
F4, O1 - O3), corresponding to the basic required functionalities. 
We then explain how we organized these functionalities into a set 
of interactive tabs, to fulfll the other functionality requirements 
(F1, F2, F5 - F9). In our user-study (section 5), practitioners will use 
the probe to debug a model for the bird classifcation scenario. 

4.1 Materialisation of the probe explanations 
4.1.1 Local explanations (F3). To vary the medium of explanations 
(O2), we provide both visual ones (saliency maps Figure 2 (5a)) and 
textual ones (semantic features (5b)). We opted for SmoothGrad 
to retrieve the saliency maps [45]. This method is sensitive to the 
parameters of a model while minimising noisy results, catering 
for more accurate capturing of a model behaviour. The semantic 
features are retrieved as by-products of applying the global explain-
ability method. 

4.1.2 Global explanations ( F4). We choose the SECA framework 
[8] to extract explanations that refect the overall features of a 
model. It provides more complete explanations than ACE [14], it is 
more tractable than TCAV [27] in an interactive mode (Rq5), and 
provides textual explanations that participants wished for. 

SECA takes as input images from each class of the dataset (we 
choose a balanced, random set of samples of the test dataset). It ex-
tracts the corresponding saliency maps and has them annotated by 
crowd workers. Then, it reconciles the annotations, and transforms 
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information about the model (F1, F2, F9). F8 (recommendation) 
is provided all along the probe through the various parameters to 
choose as well as the query tab. 

4.2.1 Wiki tab (F9). This tab displays the domain knowledge about 
each dataset class, that an expert typically possesses. It indicates 
relevant and irrelevant features for recognizing an image class. 

4.2.2 Qery tab (F7). This tab (Figure 1 (1)) allows to query global 
and local explanations, and images with specifc visual content, 
their predictions, explanations, and ground truth, allowing to a 
certain extent to answer what-if questions. 

The user is presented with text felds to fll in with features of 
interest, types of logical combinations, and/or class. They choose 
to query explanations within all images, or only in the correctly 
or incorrectly classifed ones, or within specifc classes (O1). The 
results are displayed underneath. These can be a) scores of a queried 
explanation, b) distribution of the presence of the queried features 
across the dataset, or c) samples associated to the local query. b) is 
displayed in a confusion matrix-like table (Figure 1 (2)) that shows, 
per cell, the percentage of images that have the features among the 
images of a cell, and the percentage of cell images that have the 
features among all images that have this feature. 

4.2.3 Confusion matrix tab ( F1). This tab shows the accuracy and 
F1-score of the model, and its confusion matrix (see Figure 2 (1)). 
Each cell presents two rates. One (bottom) is computed over the 
entire dataset similarly to any confusion matrix. The other (top) is 
computed over the data of a single row corresponding to the preci-
sion or recall per class depending on what the rows and columns 
encode (ground truth or prediction). One can transpose these. 

Users can click on the matrix cells to open a new page with 
the corresponding images (F2), as well as local and global expla-
nations (F3, F4). The images and local explanations (Figure 2 (2)) 
are organized into four columns corresponding to the 4 cells of 
the matrix associated to the classes clicked initially, i.e. the ground 
truth A and predicted class B of the initial cell (A-B), as well as the 
corresponding diagonal cells of the two classes A-A and B-B, and 
the opposite cell that would invert the ground truth and prediction 
classes (B-A). This allows to compare these explanations (F3, F5). 
Clicking on an image or saliency map allows to zoom on it, and its 
related textual, local explanations (Figure 2 (5)). 

The global explanations corresponding to the four cells (equiv-
alent to considering a binary classifcation task involving classes 
A and B Figure 2 (3)) are also displayed in lists allowing for their 
comparisons (Figure 2 (4)) (F4, F5). 

4.2.4 Global explanation tab (F4, F5, F6). This tab displays the 
global explanations computed over the entire dataset. It shows both 
the overall and class-specifc ones (respectively Figure 1 (3), (4)). 

4.2.5 Dashboard tab. A few participants from the co-creation ses-
sions wished to see all the main functionalities on a unique page. 
The dashboard tab does so. Its top left part provides the performance 
functionalities (F1, F2), and the top right the corresponding local 
explanations (F3). At the bottom, the query functionality is enabled 
(F7). This organisation lets users explore explanations for diferent 
images, and compare these with additional queried information 
(F5, F6, F8). 

Overall explanations
Percentage of times the features are used 
by the model within the dataset. 

Percentage of times the features led to a cor-
rect prediction across all images for which 
the model used the features. 
Typicality score (from SECA): correlation 
between the presence of the features and 
the predicted classes, i.e. how strongly the 
features serve to distinguish one class from 
the others. 

If 100 images are in the dataset, and 
the model used the feature “cactus” 
in 20 of them, then the score is 20%. 
In the 20 previous images, if the 
model made 5 correct predictions, 
the score is 5 ∗ 100/20 = 25%. 
If cactus is associated to all gila 
woodpecker images, but to no im-
age of any other class, then typicality 
would be high since the correlation 
would be strong, while wing which 
is used for all classes would have a 
lower typicality score. 

Class-specifc explanations 
Percentage of images that contain the fea-
tures of interest among all images with the 
predicted class. 

Percentage of images that received a cor-
rect prediction among images that contain 
the features and have this predicted class. 
Typicality score (from SECA): indicates 
how strongly the features serves to distin-
guish the specifc class from the others. 

If 100 images were predicted to be 
a gila woodpecker, and 20 of these 
images have a cactus, then the score 
for cactus → gila woodpecker is 20%. 
Among the 20 previous images, if 5 
images were indeed gila woodpecker 
images, then the score is of 25%. 
See above example for typicality. 

Table 3: Overview of the scores in the global explanations. 

them into a table of semantic features. Post-processing techniques 
(e.g. rule mining) fnally identify combinations (logical conjunc-
tions or disjunctions) of features (entities and/or attributes) highly 
correlated with certain predicted classes. This approach provides 
explanations at diferent levels of granularity (e.g. wing, or primary 
coverts, alula, etc.) depending on the granularity of the annota-
tions requested to the annotators (O3). The feature combinations 
are accompanied with six scores (see Table 3) referring to overall 
explanations and class-specifc ones. Overall explanations repre-
sent the primary features used by the model to distinguish between 
classes (see Figure 1 (3)). In class-specifc explanations, the combi-
nations of features are associated to a specifc class (see Figure 1 
(4)), and the scores indicate the relevance of these features to this 
class. We represent these scores in bar plots for easy comparisons, 
as a result of multiple iterations where participants indicated the 
difculty in making use of numbers (Rq3). 

The user can rank (F6) or flter the global explanations according 
to the scores (Figure 1 (5)). To vary the explanation scope (O1), 
one can compute the scores on various data subsets: (1) entire 
dataset: explains the general inference mechanisms a model follows; 
(2) samples that received a (in)correct prediction: identifes and 
compares mechanisms for such predictions; (3) subset of the classes: 
identifes features used to distinguish between these classes. Where 
these choices can be made, we setup default parameters to reduce 
the complexity of the probe understanding (Rq3). 

4.2 The tab structure of the probe 
To avoid skewing the participants towards a particular workfow 
(Rq4), we organize the primary functionalities into tabs, making 
them independent and equally important. In the user-study, we 
inform the participants that there is no sequential dependency 
between the tabs. The tabs allow us to provide the higher-level ex-
plainability functionalities (F5 - F7), as well as the other necessary 
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1

2

3

4

OVERALL CLASS-SPECIFIC

5

Figure 1: Query tab (left) and overall explanations tab (right). When querying (1) explanations, results are displayed under-
neath (2). The overall explanations tab shows both relevant (combinations of) concepts (3) and their association to each dataset 
class (4), and allows for varying the parameters to compute them (5). 

Ground truth: American Golfinch (0.03) - Prediction: Pine Grosbeaks (0.92)
Bufflehead: 0.00, Downy Woodpecker: 0.00, Gila Woodpecker: 0.00, Hairy Woodpecker: 0.00, 
Hooded Merganser: 0.00, Lesser Goldfinch: 0.02, Mandarin Duck: 0.03, Monk Parakeet: 0.00

1

2
3

5

A-A A-B B-A B-B

B

A-A
B-B

A-B

B-A

A

A-A

B-B

A-B

B-A

OVERALL CLASS-SPECIFIC

A

B

% of times the feature is used 
by the model within the dataset.

% of times the feature led to a correct / incorrect
prediction across images where the feature is used.

4

feature % of images that contain the feature
among images with the predicted class.

predicted class

88%

% of images that received a correct prediction among 
images with the predicted class that contain the feature.

% of images with this ground truth and 
predicted class within the dataset.

% of images with this predicted class 
among images with this ground truth.

Figure 2: Confusion matrix interactions. Our probe allows for diferent interactions with the explanations. E.g., when one 
clicks on a cell of the confusion matrix (1) corresponding to the predicted class A and ground truth class B, she is directed 
towards the corresponding local (2) (images corresponding to the cells A-A, A-B, B-A, B-B of the matrix) and global (4) expla-
nations, as well as more performance indications (3). Clicking on a local, visual explanation displays further local, textual 
explanations (5). 
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5 USER-STUDY SET-UP 
To study how practitioners would use explainability methods for 
bug identifcation, we conduct 18 user-studies of one hour each. 
We prompt our participants to answer a design brief with the de-
sign probe. We ask them to explain out-loud what they do, and we 
note their interactions with the probe (order of visited interfaces, 
functionalities used, etc.). When they identify a potential failure 
and the related bug, we ask which action they would take to solve 
it. Each session ends with an exit interview and a questionnaire to 
collect ratings around the usefulness and usability of the interfaces. 
The questions combine the short version of the User Engagement 
Scale [37], and 7-point Likert scale questions around their likeli-
hood to use the probe in the future. Before each session, we ask 
the participants for their agreement for recording. We later tran-
scribe the recordings into anonymized transcripts, and destroy the 
recordings. The interview process has been reviewed by the ethics 
committee of our institution. We analyse the results of the user-
study qualitatively in relation to the functionalities and orthogonal 
categories identifed in section 3, and quantitatively based on the 
questionnaires, the count of commonalities in the steps followed 
by each participant, and the numbers of bugs identifed. 

Participants. The 18 participants were recruited through the 
networks of the authors, searches on professional social networks, 
and by snowball within the contacts of the frst eight recruited 
participants. We only recruit participants who have experience with 
machine learning, but not necessarily with computer vision (CV), 
as they should understand the basic concepts around model failures. 
We categorize the participants based on their level of experience 
with CV. Low-CV experience participants (6) have never or only 
once developed a CV model, mid-CV experience participants (5) 
have less than 4 years of CV model development experience, and 
high-CV experience participants (7) have more. 

Design brief. The design brief presents a model bug identifcation 
scenario (Figure 3). It is typical and simple enough for participants 
to refect on their own practices without envisioning entirely new 
workfows. Bird classifcation might require domain-knowledge, 
raising refections on the need to have domain expertise for bug 
identifcation. We scope the brief to the development setting as 
it encompasses a varied set of activities, with both reactive and 
proactive debugging. 

Model. We train the machine learning model to be debugged to 
classify 10 species of birds. The training dataset is built with the 

BRIEF
Context: 
A company wants to develop a system to support bird lovers in identifying the birds they 
might see in their daily life. 

Current model:
An intern developed a deep learning model for 10-class bird classification.
For this, he created a dataset by scraping images from the Web using Google search 
engine, and applied some typical data augmentation methods (e.g. flipping and cropping 
images, brightness transformation). 
He then fine-tuned a ResNet model pre-trained on ImageNet on this data.  

Your task:
Unfortunately, his internship now ended. The company asks you to take over his model. It 
asks you to investigate whether the model developed by the intern can be deployed, or 
whether it needs improvement. In this case, what issues should be improved on, and how?

Gila woodpecker Lesser goldfinch American goldfinch

Hairy woodpeckerDowny woodpecker

Hooded merganser

Pine grosbeak

Bufflehead
Monk parakeet

Mandarin duck

Figure 3: Overview of the design brief. Examples of samples 
of each class the model to be analyzed was trained on. 

Gila Woodpecker images

Monk Parakeet images

background
green body

red bottle

red crown

background

cactus

Prediction: gila woodpecker

Prediction: monk parakeet

Prediction: pine grosbeak

Prediction: american goldfinch

idea of introducing both explicit (low test accuracy and mitigated Figure 4: Examples of implicit (green) and explicit (red) 
confusion matrix) and implicit model failures and various bugs that failures caused by irrelevant and incomplete features, e.g. 
explain these failures, as summarized in Table 4. To the best of our the model incorrectly uses the pixels corresponding to the 
knowledge, there is no established list of bugs and failures for com-

cactus to correctly predict the gila woodpecker class in
puter vision models. We propose a preliminary one, inspired by the the left image. The bounding boxes show the features of
literature on data biases [29, 48, 49], data shifts [18], robustness to the model. We create the frst failures by making sure that
adversarial [1] and natural perturbations [19], models using wrong 

cacti are present in all and only training samples of gila
reasoning for making inferences [17], and from the bugs mentioned 

woodpeckers, while the test images do not all contain a
in the formative study. Besides distribution shifts, we create wrong 

cactus. The second ones are created by making sure that
sets of features (incompleteness or irrelevance) that lead to cor- only the monk parakeet training samples present a green bird 
rect or incorrect predictions, i.e. implicit or explicit failures. See (and in a standard position), while the test samples are more 
examples in Figure 4. To introduce these bugs, we vary the image diverse. 
content in training and test data, around class-specifc features (e.g. 
bird appearance), and less specifc features (e.g. background). 
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Bug Description Example Creation method 

Distrib. Large diference in training and deployment We mention that training data are scraped from the Web, and a diferent context for 
shift images. the deployment data. 

The model learns the red color for the pine grosbeak, which We choose a subset of training images (e.g. male 
is correct for the males, but not for the yellow females. images) that give a partial view of the entire class. 
The monk parakeet class is identifed by the model solely We choose classes so that certain have a unique 
through the color green. feature compared to the others. 

Simplistic/incomplete, relevant features 
Explicit 
failure 

The features are relevant but incomplete, 
and lead to incorrect inferences. 

Implicit 
failure 

The model learns features that are relevant, 
but insufciently representing a class, while 
still allowing for correct inferences. 

Spurious/irrelevant features 
Explicit 
failure 

The model learns features that are not se-
mantically related to the species, and lead 
to incorrect inferences. 

The model recognizes gila woodpecker by identifying 
cactus in images, but there is not always a cactus in the 
image. 

Training images of a class contain an irrelevant 
feature, absent from other training samples and 
test set. 

Implicit 
 

The model learns irrelevant features, but 
still makes correct inferences. 

The model learns the presence of water to identify hooded 
mergansers. 

Same as above, but with similar training and test 
sets. failure

Table 4: Bugs introduced in the models of our design brief. 

6 RESULTS 
In this section, we present the results of our user-study, essentially 
the impact that the explanations in the probe have on the bug 
identifcation process, and how they are used in this process. 

6.1 Impact of explanations on the bug 
identifcation process 

Figure 5 summarizes the number of bugs identifed by the par-
ticipants in relation to the diferent types of model failures we 
introduced. We count one issue (1 point) as completely identifed 
when a participant identifes both a bug and a relevant correction 
method, and give 0.5 point when the bug is well-characterized but 
no relevant correction method is found. This way, we make sure 
that the bug is characterized well-enough for the participant to 
propose a meaningful bug correction solution3. 

Figure 5: Number of bugs and relevant correction meth-
ods identifed by our diferent participants during the user 
study. 

3We do not plot the numbers related to implicit, incomplete features because they 
are identical to the ones for implicit irrelevant features: participants who succeed in 
identifying the latter always mention that the features are irrelevant and by extension 
incomplete –other ones should have been used. 

6.1.1 Successful bug identification. The bug identifcation process 
of our participants was in majority successful, with 3.5 bugs and 
correction methods identifed on average, and up to 7 bugs identi-
fed by experienced participants. For consistency, we frst let the 
participants explore the probe and failures they deemed important, 
and later discussed four specifc failures. They were typically able 
to refect on these failures, but not at the same speed, explaining 
the large standard deviations. Besides rapidity, three factors ex-
plain such deviation. 1) The low-CV participants deemed certain 
low-rate failures not worthy to debug due to their rarity. This can 
yet be wrong as high-CV participants discussed, since the error 
might be rare due to the data distribution, but still harmful. 2) The 
rare failure (one single lesser goldfinch mis-classifed as a hairy 
woodpecker) was challenging, and only two high-CV participants 
proposed plausible bugs. The others pointed out to the lack of addi-
tional examples of this failure, preventing them from comparing 
local explanations. 3) The participants did not think of the existence 
of implicit failures, except when nudged. 

Overall, these results show that a probe presenting various types 
of explanations allows to debug various feature failures, in relation 
to various dataset bugs. In order to achieve such successful bug 
identifcation, participants used varied workfows to navigate the 
diferent functionalities. These workfows are discussed in the next 
subsections. 

6.1.2 Disparate results for diferent explanation audiences. Among 
these successful results, we observe a high disparity in the number 
of bugs identifed between participants with diferent levels of 
experience in computer vision (CV). 

Low-CV experience participants miss guidance. In general, partici-
pants with computer vision experience identify more bugs than the 
ones without experience. The participants without experience who 
identifed zero or one bug did not know where to start the process, 
how to proceed, and what kind of corrections to envision. 

Misaligned mental models. Yet, three high-CV participants (re-
moved from the plots) identifed less than two bugs. Their mental 
model of bug identifcation was not aligned with our probe. They 
did not want to look into model features for bug identifcation, and 
one was solely interested in unknown unknowns [7, 32, 55] (outside 
the probe scope). 
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6.1.3 Explainability allows to envision various, relevant bug cor-
rection methods. The probe led the participants to formulate bug 
correction methods that are diverse, relevant, and to-the-point, 
thanks to the diferent kinds of explanations that allowed the identi-
fcation of highly specifc data bugs. For instance, three participants 
discussed inappropriate data processing as a cause of failure, e.g. the 
image resolution is too small or the bird/background ratio too large, 
making the diferences between certain bird species undetectable, 
suggesting for transforming the data pipeline. Five participants 
suggested restructuring the inference task by adding more classes, 
as a result of better characterizing the source of bugs, e.g. they 
identifed the color diferences between male (red) and female (yel-
low) pinegrosbeaks leading to high error rates for the female ones 
(confused with the yellow american goldfinch), and suggested 
to separate them into two classes to ease the learning. This is in 
line with other bug identifcation frameworks [44] which report 
they support idea generation for bug correction. Particularly, we 
notice these envisioned correction methods are more precise and 
potentially more efective than in our formative study where few 
types of explanations were mentioned. 

6.1.4 Participants still missed certain bugs. Incorrect features vs. 
correct inference. Participants focused on failures visible through 
the confusion matrix, either when a percentage of a diagonal cell 
is low, or when out-of-diagonal cell percentages are high. They 
often forgot that even classes with high accuracy might be based 
on problematic features. Some participants identifed these issues 
serendipitously when attempting to understand visible failures. 

Confrmation bias. One participant identifed a very general bug 
from a few images: color bias of the model for most species. Confr-
mation bias led them to validate this bug by looking at images of 
diferent species, without going in more detail into the problematic 
colors and species, or searching for other bugs. We discuss these 
results further in section 7. 

6.2 Diferent categories of explanations for 
diferent users and bug identifcation steps 

Figure 6 displays the perceived usefulness of each tab as rated 
by our participants. Overall, all tabs are perceived useful with an 
average rating of at least 4 out of 7, yet the mean rating and standard 
deviation vary across tabs. We discuss below these variations in 
relation to the functionalities provided by each tab. 

Figure 6: Perceived usefulness of the diferent tabs of the 
design probe. The ratings are displayed for each category of 
participants. 

6.2.1 Local versus global explanations (F3, F4). Hypothesis valida-
tion emphasized with the diversity of explanations. The participants 
primarily used the local and global explanations from the dashboard 
and confusion matrix, as testify the higher ratings for these two 
tabs (Figure 6). These explanations served for generating bug hy-
potheses and validating them. This shows that proposing a diversity 
of explanations nudges a more extensive bug identifcation process 
than with fewer or no explanations where most participants skip 
hypothesis validation, as we observed in the formative study. 

Participants investigated explicit failures by entering diferent 
cells of the confusion matrix. The implicit failures required more 
diverse entry points to be identifed: 1) Serendipitously, while in-
vestigating explicit failures. While investigating an explicit failure 
by looking at the four columns of images/saliency maps in the 
tab obtained from clicking on a cell of the confusion matrix, they 
would notice that saliency maps would highlight irrelevant features 
even in the A-A or B-B columns that present samples with correct 
predictions. 2) By deciding to explore the global explanation tab 
(without having a specifc kind of failure in mind) and spotting 
clearly surprising features (e.g. water or branch are not features 
one would expect the model to focus on when classifying bird im-
ages. Instead, parts and characteristic colors of the bird would be 
expected for the model to generalize to new images with more var-
ied background for instance) for the context, or features that were 
not sufcient (e.g. purple only for the mandarin duck, whereas 
images displaying other birds might also have the purple color, e.g. 
in their background). 3) By deciding to look into the diagonal of the 
confusion matrix (typically starting with cells that have low rates) 
and the corresponding explanations (saliency maps, and rankings 
of textual explanations by frequency). By looking into these specifc 
features, they would refect on whether something is irrelevant or 
incomplete. 

Local and global explanations are complementary. The choice of 
starting point does not have a consistent motivation. Typically, par-
ticipants who use local explanations to generate feature hypotheses 
validate their hypotheses by looking at local explanations for more 
images, or by verifying the presence of the features in the global 
explanations. Instead, participants using global explanations for 
hypothesis generation validate the features by making sure these 
features are refected in a few local explanations across correct or 
incorrect inferences. 

Within hypothesis generation, many participants combined the 
two approaches as the types of features and correction methods 
they lead to identify intersect but do not entirely overlap. For in-
stance, incomplete or irrelevant but frequent features were typically 
identifed from global explanations through the diferent ranking 
systems (F6). Instead, infrequent failures and their correction meth-
ods were better understood by looking at the actual images and 
saliency maps (F5). Global explanations were also used to identify 
the features infuencing the majority of classifcation (typically the 
correct ones), which are in turn compared to the features used for 
incorrect inferences identifed through local explanations (F5: com-
parisons across explanation types). For instance, they identifed that 
overall, the color red is used by the model to infer pine grosbeaks, 
and locally understood that the only american goldfinch pre-
dicted as pine grosbeak was also displaying a red feature due to 
the brightness of the picture. Such fnding could not be reached 
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through a sole look at global explanations for which brightness is 
not refected. 

The choice of explanation type depends on the practitioners’ expe-
rience with explainability. We do not identify a strong correlation 
between the categories of explanations used by the participants 
and their expertise. Yet, most participants with high-CV experience 
are more reticent towards unfamiliar types of explanations, and 
use primarily local, visual explanations, i.e. saliency maps (“the 
dashboard gives almost everything. I’m more familiar with its ex-
planations” Participant 4 high-CV ). Instead, the participants with 
fewer experience operate smoother transitions between local and 
global ones, and explore more types of explanations. This explains 
the higher ratings they gave to the tab reached from the confusion 
matrix (that presents all types of explanations) compared to the 
dashboard that only presents local explanations. Using global ex-
planations can be faster than using local ones, but it was also more 
tedious as participants need to get accustomed to the scores and 
ways to interpret them. All participants argued these explanations 
should be used particularly when many images present similar 
failures, as it is not tractable to look at each image. 

The use of local and global explanations led to incorrect bugs. Two 
types of errors are typically done when using the local explanations 
for hypothesis generation. a) Participants wrongly assumed the 
local explanations for images that got correct inferences to be rele-
vant features for the model. This led them to automatically judge 
as irrelevant the features of samples with wrong inferences, while 
this is not necessarily the case. Warning about this assumption 
enabled them to refect further about the potential bugs. b) Some 
participants formulated an incorrect hypothesis about a feature by 
looking at very few images, and did not further verify it, leading 
to develop incorrect bug correction methods. They mentioned that 
the global explanations could allow to avoid such errors. Global 
explanations were misleading when participants would identify 
interesting features with very low support, not being representative 
of most images. 

6.2.2 Explanation domain and medium ( O2). Participants intu-
itively prefer in-domain explanations. All but one participant pre-
ferred using visual explanations than textual ones. They argued the 
cognitive load is lower and it is faster to make sense of features by 
glossing over several local, visual explanations, than textual ones. 

The two types of medium are complementary locally. Yet, textual 
explanations were also used. The participants mentioned that since 
they are not familiar with the task domain, they cannot easily inter-
pret the saliency maps to identify meaningful features. Hence, they 
look at the local, textual explanations (and map them to the visual 
ones) to identify relevant bird features that one would expect the 
model to learn. They could also directly relate the wiki informa-
tion that displays expected features according to an expert to these 
explanations. 

One participant also suggested a functionality that only textual 
explanations can support: giving the freedom to explore new fea-
tures as combinations of existing ones, to vary their granularity 
and create a taxonomy, e.g. combining plants and leaves into a 
larger green background. While this is possible within the query 
page, they would have liked to access this faster within the other 
interfaces, and to visualise the created taxonomy. 

The preferred, global medium depends on the familiarity with the 
task domain. Participants mentioned a difculty in interpreting 
the textual, global explanations as they were not familiar with the 
domain of the task. They however said that if they would know 
more about the domain, it would be easier to use as they could 
quickly get an idea of what a feature means on an image and what 
might be problematic with it. 

6.2.3 Explanation scope ( O1). Preference for explanations of bi-
naries. Participants primarily focused on two-class explanations. 
These explanations align with reactive bug identifcation for failures 
in specifc cells of the confusion matrix. Refecting on two classes 
is also easier than considering more classes: it is harder to relate 
overall explanations to model failures. Half of the participants ex-
plained that overall explanations are also useful but less natural as 
they start from the out-of-diagonal cells of the matrix. This shows 
clearly in the ratings given to the dashboard or confusion matrix 
tabs that provide binary explanations, in comparison to the ratings 
for the global-explanations tab. 

Global explanations as a quick diagnostic tool. Yet, participants 
still fnd uses to the global explanations computed on the entire 
dataset, as the large standard deviation testifes in comparison to 
the standard deviations for the other tabs. Participants prefer using 
such global explanations for tasks whose domain is familiar, and 
for diagonal cells of the confusion matrix. Simply by looking at 
these lists of explanations without having to click on each cell 
of a confusion matrix, they get a good overview of the features 
the model has learned per class, and can identify the pertinent, 
irrelevant or incomplete ones. Five participants actually used these 
explanations and their background knowledge to refect on the 
validity of the features, e.g. they quickly spotted potential issues 
with cactus or water concepts that one might not expect to classify 
birds, and with the large number of color features while the model 
should also relate on shapes. 

Questioning the faithfulness of binary explanations. These expla-
nations are complementary. Global explanations more accurately 
account for the features of the model and allow for a faster spotting 
of problematic features. Yet, practitioners prefer to understand spe-
cifc cells of the confusion matrix with binary explanations, which 
might lead to erroneous feature interpretations (one feature might 
seem discriminative for two classes but might not be important 
overall). A single mid-CV participant accurately refected on such 
limitation, that practitioners should be warned about. However, 
this refection was also problematic for our participant as it pre-
vented them from obtaining insights from the probe: the participant 
constantly worried that correcting a specifc bug would create new 
ones in other matrix cells. 

6.2.4 Use of domain knowledge ( F9). Domain knowledge is used 
for successful hypothesis formulation and validation. This knowl-
edge serves to a) formulate hypothesis on relevant features the 
model should learn for a class, and to compare them to the actual 
features, or b) to validate hypotheses about problematic features. 
For instance, Participant 4 high-CV naturally started to use it for 
specifc confusion cases where the model accurately looks at the 
bird (according to the saliency map) but apparently not at the right 
or complete bird features as it makes incorrect inferences. 
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6.2.5 Qery-related explanations ( F7). All participants used the 
passive mode of exploring the explanations, since it is less 
cognitively-demanding, and they are used to such explanations. 
Active querying is used only by half of the participants. This shows 
clearly by the lower average ratings and higher standard deviation 
the query tab got in comparison to the dashboard and confusion 
matrix tabs. Active querying allows to validate potential hypothe-
ses around problematic features. For that, participants query the 
matrix of percentage to verify that a feature is only used for im-
ages that present specifc miss-classifcations. Three participants 
mentioned that active queries are especially efcient once one is 
familiar with the expected and the often problematic features. For 
instance, an expert participant mentioned that in their own medical 
use-case where it is known that the model might learn incorrect 
features relating to the background of X-ray images (e.g. a part of a 
pace-maker), they would like to query background features directly. 

6.2.6 Interactivity ( F8). Interactivity to speed up and augment the 
bug identifcation process. Besides having functionalities that are 
currently not available (global explanations and query), the pri-
mary advantage of the probe was its interactivity and practicality, 
aligning with results for tabular data [20]. It was especially useful 
to compare diverse images (the four types of images in a binary 
classifcation task) and explanations to estimate the feature’s rel-
ative importance. For instance, some participants compared two 
queries where the only diference is the addition of one feature, 
to check how much this feature impacts the model inferences. “If 
the tool is ergonomic, fast and malleable, it would defnitely help 
me fasten my process, and it would help combine more information 
that I don’t usually look at.” Participant 8 high-CV. A third of the 
participants even suggested ways to have even more interactivity 
and fast transitions between explanation types. 

Interactivity to select relevant explanations. To navigate global 
explanations, the participants used one main interactivity feature, 
the choice of settings, to rank or flter the explanations (F6). They 
could for instance identify a) frequent mistakes by ranking the 
explanations based on the number of incorrect predictions they 
lead to, b) frequent features by ranking explanations based on 
typicality scores and fltering out low-support ones, and c) features 
that lead solely to correct or incorrect inferences by computing the 
explanations independently on the set of samples which received 
correct or incorrect predictions. These settings are necessary due 
to the amount of information the probe provides. 

7 DISCUSSION 

7.1 Summary of fndings 
Our user-study brought new insights on the use of explanations 
towards bug identifcation, summarized in Table 5. While the most 
common explanations, i.e. local visual explanations, were primarily 
used due to their simplicity and familiarity, our probe also high-
lighted the importance to present diverse explanations. Global, tex-
tual, active, interactive, and binary explanations, as well as domain 
knowledge, were also exploited to achieve diferent objectives, e.g. 
identifying new hypotheses, or the same objectives more efciently. 
Yet, by acknowledging the disparity in the use of the functionali-
ties and in the number of bugs they led to identify, we can extract 

further implications for future explainability, debugging and HCI 
research. We now discuss the limitations of our work and these 
fndings. 

Category Insight 

Impact of explanations on the debugging process. 
Efectiveness Successful bug identifcation process. A few missed/incorrect 

bugs due to misinterpretations of features and confrmation bias. 
Variations Low-CV: need for guidance. High-CV: misaligned mental models. 
Corrections More diverse and precise bug correction methods are envisioned. 

Diferent categories of explanations for diferent users and debugging steps. 
Local/global Complementarity. Emphasis on hypothesis validation. Preference 

based on practitioners’ experience with explainability. 
Domain, Intuitive preference for in-domain explanations. Local level: com-
medium plementarity of in- and out of- domain explanations. Global level: 

preference depends on the familiarity with the task domain. 
Scope Preference for binaries. Global explanations as quick diagnostic 

tool. Lack of questioning around the faithfulness of binaries. 
Knowledge Domain knowledge used both for successful hypothesis formula-

tion and validation. 
Active query Low use despite usefulness for hypothesis validation. 
Interactivity Speeding up and augmenting the debugging process. Selecting 

relevant explanations. Wish for model comparisons. 

Table 5: Summary of the insights from our user-studies. 

7.2 Limitations 
There are several limitations in our probe and study. While we do 
not think they impact the validity of our results, they would need 
to be tackled in the future for more comprehensiveness. 

Scope of the probe. Our probe is adapted for a specifc type of 
computer vision models: deep learning models that perform clas-
sifcation tasks and from which local, visual explanations can be 
extracted. The global explanations can only be computed when it is 
possible to annotate local explanations with semantic features, and 
can be costly depending on the size of the dataset and number of 
classes. Hence, it can be challenging to use for certain applications. 
Adapting these explanations to other use-cases is a challenge on 
its own. Balancing the trade-of between cost and faithfulness of 
the explanations and making practitioners aware of it would also 
merit being investigated. 

Scope of the study. While the work involved a considerable num-
ber of participants (18 for the formative study and co-creation ses-
sions, and 18 for the user-study) with various backgrounds, we can-
not fully guarantee the generalizability of the results. Similarly, our 
study employed a use-case that requires domain knowledge none 
of our participants had (to bring consistency), and we made sure to 
provide the required knowledge. It would be interesting to study 
how participants, familiar with a use-case, would go about bug 
identifcation. This is however challenging as participants should 
share their data, it is costly to annotate, and the use-case would not 
be consistent across participants. Scaling our study to use-cases 
with more classes is also important as other works identify that “as 
scale increases, interpretability and satisfaction decrease” [20]. 

Impact of the probe design. The results of our user-study are 
inevitably mediated by the design, implementation and usability 
of our probe. As discussed in section 4, we however made sure 
to allow for diverse workfows and interactions with the expla-
nations without biasing the users towards specifc ones. As for 
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usability, the answers (Figure 7) to our exit questionnaire give an 
indication of how it might have afected our results. Most factors 
received high-ratings, confrming that our participants appreciated 
the functionalities within our probe, and were likely not negatively 
impacted by them. Especially, they found it rewarding to use our 
probe and were eager to reuse it on their own use-cases, saying that 
it was more convenient than their usual development environment. 

However, some participants felt overwhelmed at frst by the 
amount of functionalities (perceived usability ratings confrm this). 
While they got used to them, they would have liked guidance from 
the probe in the process. We could not do so not to skew them, yet 
this is an important indication for future tools. Similarly, they gave 
an average rating to the attractiveness (mean of 3.31 out of 5 points) 
as they would appreciate the probe having a more modern look. 

Figure 7: Aggregated factors of the User-Engagement form 
(short version) presented in boxplots. 

7.3 Implications & Future Work 
7.3.1 Need to develop user-experiences. Guidance. As some partic-
ipants had a hard time envisioning uses of certain explanations, 
future tools need to provide hints. Hints should be enough as simply 
explaining ways other participants used the explanations led the 
participants in difculty to successfully identify bugs. 

Besides, the current probe allows for any sequence of interactions 
with the diferent types of explanations supported (in order not 
to skew our user-study participants towards certain explanations 
and activities). Yet, further guiding these interactions by suggesting 
potential sequences of activities would also support practitioners 
further in debugging their model. Several participants mentioned 
that an ideal user-interface would not leave them as much freedom 
as currently is, but instead narrow down possibilities so as to sim-
plify the debugging process and guide them towards the relevant 
activities for each type of failures and bugs. Hence, future tools 
would beneft from identifying the minimum set of user-journeys 
diferent types of practitioners and failures would require. 

Participants with high-CV and explainability experience how-
ever require further investigation to understand when they would 
be ready to use less familiar explanations. Especially, for these par-
ticipants, our observations difer from explanation practices on 
tabular data [20]. The GAMUT probe led to fnd a strong corre-
lation between the level of explainability expertise and the use 
of diverse explanations, result totally opposed to ours. This could 
be motivated by the lack of practice, even for our high-expertise 

practitioners, with global, textual explanations for computer vision, 
contrary to practitioners working on tabular data who are more 
familiar with both types of explanations. 

Warnings around typical misinterpretations. Blindly following the 
explanations sometimes leads to identify incorrect bugs. Yet, not all 
participants are aware of these dangers, and trust the explanations 
similarly. Only two participants asked us how the saliency maps 
were computed, and none refected on the potential noise in the 
salient pixels. As for the global explanations, only 4 participants 
questioned their faithfulness and the fact that an annotation of 
salient pixels does not necessarily refect what the model actually 
looks at (i.e. colors, textures, or shapes, etc.). 

These observations around trust in explanations are aligned with 
the ones for tabular data, e.g. Hohman et al. [20] mention needing 
“healthy skepticism” from practitioners. They are also inline with 
the notion of misuse of explanations [25]: certain participants would 
misinterpret explanations by taking a brief look at them simply 
because they seemed to confrm their hypothesis. Future tools 
would merit displaying warnings against these limitations and 
misinterpretations. 

Integration of structural and training bugs. Some participants 
tended to explain all bugs with issues of data content or data 
pipeline, without elaborating on other potential bugs, e.g. related 
to the model structure or training hyperparameters. They were 
either skewed by the focus of our probe on such types of bugs due 
to the visualisation of data content, or because they did not have in 
mind the other concerns. Some participants envisioned to use our 
probe once other bugs are corrected, but others nuanced this view 
arguing for a more iterative process, where all types of bugs might 
need simultaneous considerations depending on the ways the bugs 
are corrected (e.g. data augmentation for balancing might lead to 
overftting and to increase the size of the model architecture). This 
shows the need to investigate how to best combine the functionali-
ties in our probe to the functionalities around the other types of 
bugs (e.g. tools such as [41]), without overwhelming a user. 

7.3.2 Usefulness of diferent explanation types. Explanations for 
data enquiry. Explanations primarily served as artifacts for surfac-
ing feature failures, identifying data bugs and bias-variance issues. 
Similarly to observations made for explainability with tabular data 
[20], the explanations were also used by four of the participants 
as an access point into the data. These participants used the query 
functionality with specifc features, ground truth and predicted 
classes, to better understand what they look like within the dataset, 
and whether they are comprehensively represented. Such under-
standing was later used to refne hypotheses about dataset bugs. 
Future interfaces would hence merit combining further the exten-
sive exploration of training datasets to the model exploration, and 
facilitating common interactions with the explanations towards 
that end. 

Complementarity of explanation types. Our study showed that all 
explanation types are useful for participants in diferent stages of 
the bug identifcation workfow to answer diferent questions. Their 
use often depends on the degree of familiarity of the participants 
with the task domain, and with these types of explanations. 

More research is needed to further develop these diferent types 
of explanations since, so far, research focuses primarily on local, 
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visual ones. Especially, attention on textual explanations could ben-
eft practitioners, e.g. for understanding how to best represent and 
query concepts and their combinations, taxonomies of concepts, 
etc. What-if (causal) questions that were rarely expressed here could 
merit research on accessibility as well. Finally, future tools could 
further combine in- and out of- domain explanations by showing 
example image patches corresponding to any displayed textual ex-
planations so as to increase the learning rate of the practitioners. 
Two participants also suggested global, visual explanations by auto-
matically clustering similar-looking, salient image patches. While 
this might be hard to realize in practice, this further shows their ap-
preciation for visual information, and the need for further research. 

Interactivity versus complexity. Surprisingly, our study showed 
that rather simple explanations can lead to successfully understand 
a large number of bugs: the global explanations were simple statis-
tics computed over textual annotations of the dataset, but allowed 
for a global understanding of the model. While simple in their cal-
culation, their interpretation was already complex enough for the 
participants not familiar with the textual and global explainability 
paradigms. We argue that these simple explanations were useful 
thanks to the usability of the interactive interface and its focus 
on comparisons, which allowed to identify many similarities and 
diferences across images receiving diferent predictions. 

This shows that it might not be urgent to develop highly complex 
explainability methods yet, as they are new black-boxes for the 
practitioners who might trust their faithfulness too much, while 
having a hard time using them. Instead, more research on the de-
velopment of interactive interfaces could be more benefcial to the 
practitioners. 

Manual exploration versus automation. Multiple participants sug-
gested to automate parts of the interface to speed up and direct the 
debugging process. For instance, they would like to automatically 
be presented with explanations that refect bugs, or at least with a re-
duced set of potentially problematic features (the number of global 
explanations is otherwise overwhelming) through an automatic 
comparison of the explanations to the domain-knowledge. 

Yet, we argue that extensive automation is not possible and de-
sired. The relevance of a feature to a model is sometimes ambiguous, 
e.g. relevance of the cactus for gila woodpeckers, so the auto-
matic comparison would lead to a skewed and non-transparent 
result. Besides, attention should be put into not making the debug-
ging tool another black-box (besides the model to explain), as our 
participants already tended not to question the completeness and 
faithfulness of the displayed explanations. A way to limit automa-
tion could be to provide even quicker interactions, for instance 
to go from binary explanations to global ones so as to accurately 
estimate their relevance. 

Nevertheless, facing the amount of debugging methods devel-
oped in machine learning testing literature that are unknown to 
practitioners, it is important to also investigate how much these 
methods are complementary to the manual process, and how to 
best involve them in this process. 

Reliance on domain knowledge. The study confrmed the impor-
tance of domain knowledge. All but one participant (who did not 
refect on features) used it (hence the high ratings the wiki tab ob-
tained). Unfortunately, investigating the wiki was not consistently 
performed across failures, leading to miss certain bugs. For instance, 

two participants who correctly understood the diference between 
the similar-looking bird species gila and hairy woodpeckers 
(brown or white body respectively) and the missing feature (body 
color), did not use the wiki page to inspect the pine grosbeak and 
american goldfinch, missing the hint for another bug (diference 
of colors for female and male grosbeaks). Using domain knowledge 
merits more support. Studying how to make practitioners and do-
main experts interact is important, i.e. the format in which they can 
best communicate, the inputs developers need, but also the most 
efective way for domain experts who are often not familiar with 
technical terms to provide useful information for the practitioners. 

8 CONCLUSION 
In this work, we engaged in a formative study and a co-creation 
process to design a probe for investigating the interaction between 
explainability and bug identifcation. We then performed 18 user-
studies with this probe. Our participants varied in their bug identif-
cation workfows, but managed to identify a consequential amount 
of bugs. These results showed that explanations can be used in var-
ious steps of the process for diferent purposes, and especially for 
characterizing diverse types of feature failures. Diferent categories 
of explanations (e.g. global, out-of-domain, active, and interactive) 
showed to be useful and often complementary. Yet, our partici-
pants also struggled with various aspects of the process, falling 
into certain explainability traps, or being shy to explore unfamiliar 
explanations. 

This shows the urgent need for more HCI research to provide the 
right amount of guidance to practitioners engaged in bug identif-
cation activities and having access to explainability methods, while 
still allowing for freedom and adaptability of the process. Especially, 
the process should be supported through the use of interactive in-
terfaces with various types of interactions not only with data and 
explanations but also with other artifacts to address non-feature 
failures. Additionally, our study points out to research directions 
for other communities: specifc types of explanations merit further 
development by the machine learning explainability community, 
and the efectiveness of machine learning testing methods needs to 
be characterized in comparison to the one of human debugging for 
future integration. 
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A EXAMPLE MOCK-UPS USED IN THE 
CO-CREATION SESSIONS 

Figure 8, Figure 9, Figure 10. 

B FIRST IMPLEMENTED PROTOTYPE FOR 
THE PROBE 

Figure 11, Figure 12, Figure 13, Figure 14, Figure 15, Figure 16. 
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Figure 8: Low-fdelity mock-up used in the co-creation sessions: query functionality and the result interface after a query. 

Figure 9: Low-fdelity mock-up used in the co-creation ses-Figure 10: Low-fdelity mock-up used in the co-creation ses-
sions: example display of important concepts and rules for sions: another example display of important rules and scores, 
one class, and their co-presence in other classes. in comparison to the scores of related rules for other classes. 

Figure 11: Display of the saliency maps within the probe. 
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Figure 12: Display of further local explanations. 
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Figure 13: Overall performance information provided in the design probe. Figure 14: Query page with (1) query input and (2) 
query results. 

Figure 15: Local explanations presented as a result of clicking on a confusion matrix cell. 
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Figure 16: Display of global explanations within our probe. (1) shows the overall explanations, (2) shows the class-specifc 
explanations, (3) shows the settings that can be tuned to compute the explanations. In (1), we show the global explanations 
displayed within the interface: (a) shows the typicality score, (b) the frequency of times the concept (or rule) is salient within 
the dataset, (c) the percentage of times when the image where the concept is salient got a correct inference, (d) and conversely 
when it got an incorrect inference. 
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