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SUMMARY

The therapeutic properties of light have been known for thousands of years, but pho-
todynamic therapy (PDT) was only developed in the last century. Currently, PDT is in
clinical trials for the oncology-the treatment of head and neck, brain, lung, pancreas,
abdominal cavity, breast, prostate, and skin cancer. Advantages of the light-based thera-
pies include rapid action and avoidance of drug resistance. The underlying mechanism
of PDT is that the photosensitizers (PS) transform from their ground state (singlet state)
into a relatively long-lived electronically excited state (triplet state) by the absorbing the
photo energy, which, in turn, produces highly toxic reactive oxygen species (ROS) in cells.
One difficulty of PDT is the administration of PS. Since the PS does not naturally exist,
PDT relies on the exogenous PS which is administered by intravenous injection or top-
ical application to the skin. This makes three disadvantages: first, the PS needs to be
approved before it can be applied to patients; second, the adverse reaction of importing
the exogenous PS can not be eliminated even if it is approved; and third, for the tumor
under deep tissue, it is hard to import the PS to incidence area.

Similar to PDT, the antimicrobial blue light (ABL) only relies on the endogenous
PS (flavin and porphyrin molecules) to inactivate the microbes, which is safer to use.
However, as it is named, ABL can be only used for treating diseases whose pathogen
is microbes, but the tumor. The most common application of ABL is treating various
microbial superficial infections, e.g., skin or membranes. Traditionally, topical antimy-
cotic/antibiotic drugs and more convenient oral azole agents are the main treatments
for microbial infections. However, most pathogens have shown increased resistance
to these drugs. Especially, the most famous one, methicillin-resistant Staphylococcus
aureus (MRSA), was called ”superbug” which has evolved resistance to most antibiotic
drugs. Fortunately, ABL was proved to be effective in the inactivation of most pathogenic
microbes, including MRSA, Candida Albicans, Escherichia coli. Further studies show
that the inactivation effect did not significantly decrease after repeated ABL irradiation,
which demonstrates the avoidance of resistance to ABL.

Aimed at the prediction of the light treatment outcome, some first-principle mod-
els have been proposed for estimating the treating dosages based on the mechanism of
PDT and ABL. For instance, modeling of the dynamic changes in ROS concentrations has
been well investigated, which are highly nonlinear models. These first-principle models
precisely fit the dynamic changes in ROS concentrations. However, a dynamic model
for the ROS concentrations to treat fungal infections has not been established. This can
be attributed to the difficulty of using a first principle model, i.e., the parameters are
related to the PS characteristics, which are determined experimentally. In contrast, al-
though ABL is believed to be caused by the PS that naturally exists in microbial cells,
whose types and amounts are usually unknown, first-principle modeling becomes even
more challenging than modeling PDT.

Generally, to handle the challenges in modeling by first principles, system identifi-
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cation methods (SIM) that estimate models from the data measured from complex dy-
namic processes have been well developed in control theory literature. Applying SIMs
in modeling biological and biomedical systems is even more appealing than their tradi-
tional applications in mechanical, electrical systems, and industrial processes. This is
because biological and biomedical systems possess even higher levels of nonlinearity,
coupling, and chaos than traditional processes, and are hence more difficult to model
with first principles. In recent decades, the applications of SIM methods to identify
biological and biomedical systems, which are usually highly nonlinear, coupled, and
chaotic, have also been witnessed.

Despite all the aforementioned efforts in biomedical system identification, identi-
fying a nonlinear dynamic model for anti-fungal blue light therapy has not yet been
targeted in the literature. In this thesis, we measure the viability, the total amount of
ROS, and singlet oxygen (the main product of the type-II petrochemical reaction) in both
pathogens and human host cells during the blue light irradiation 2. By analyzing these
results, the optimized ABL wavelength and dosage were estimated. Furthermore, we
have developed three independent models aimed at estimating the ABL dosages. The
first one is a liner integrator model, which is based on a first-order dynamic equation
3. The second one is a kernel-based NARX model with an optimized kernel selection
method 4. The third one is a closed-formed equation, which was derived from a tradi-
tional microscopic singlet oxygen model 6. All of the three models offer opportunities
for determining the light dosages in treating fungal infection diseases by ABL. To the
best of our knowledge, it is also the first attempt of applying control theory to analyze
the photochemical reaction dynamics of light therapies.



SAMENVATTING

De therapeutische eigenschappen van licht zijn al duizenden jaren bekend, maar foto-
dynamische therapie (PDT) werd pas in de vorige eeuw ontwikkeld. Momenteel bevindt
PDT zich in klinische onderzoeken voor de oncologie - de behandeling van hoofd en nek,
hersenen, longen, pancreas, buik holte-, borst-, prostaat- en huidkanker. Voordelen van
de op licht gebaseerde therapieën zijn onder meer een snelle actie en het vermijden van
resistentie tegen geneesmiddelen. Het onderliggende mechanisme van PDT is dat de
fotosensitizers (PS) van hun grondtoestand (singlettoestand) transformeren in een rela-
tief langlevende elektronisch aangeslagen toestand (triplettoestand) door het absorbe-
ren van de foto-energie, die op zijn beurt zeer giftige reactieve zuurstofsoorten (ROS) in
cellen. Een moeilijkheid van PDT is de toediening van PS. Aangezien de PS van nature
niet bestaat, vertrouwt PDT op de exogene PS die wordt toegediend via intraveneuze in-
jectie of plaatselijke toepassing op de huid. Dit heeft drie nadelen: ten eerste moet de PS
worden goedgekeurd voordat deze op patiënten kan worden toegepast; ten tweede kan
de negatieve reactie van het importeren van de exogene PS niet worden geëlimineerd,
zelfs niet als deze is goedgekeurd; en ten derde, voor de tumor onder diep weefsel, is het
moeilijk om de PS naar het incidentiegebied te importeren.

Net als bij PDT, vertrouwt het antimicrobiële blauwe licht (ABL) alleen op de endo-
gene PS (flavine- en porfyrinemoleculen) om de microben te inactiveren, wat veiliger is
om te gebruiken. Zoals het wordt genoemd, kan ABL echter alleen worden gebruikt voor
de behandeling van ziekten waarvan de ziekteverwekker microben zijn, maar de tumor.
De meest voorkomende toepassing van ABL is de behandeling van verschillende micro-
biële oppervlakkige infecties, bijvoorbeeld huid of vliezen. Traditioneel zijn lokale anti-
mycotica/antibiotica en gemakkelijkere orale azoolmiddelen de belangrijkste behande-
lingen voor microbiële infecties. De meeste pathogenen hebben echter een verhoogde
resistentie tegen deze medicijnen laten zien. Vooral de meest bekende, methicilline-
resistente Staphylococcus aureus (MRSA), heette ”superbug”, die resistentie heeft ont-
wikkeld tegen de meeste antibiotica. Gelukkig bleek ABL effectief te zijn bij het inactive-
ren van de meeste pathogene microben, waaronder MRSA, Candida Albicans, Escheri-
chia coli. Verdere studies tonen aan dat het inactiveringseffect niet significant afnam na
herhaalde ABL-bestraling, wat het vermijden van resistentie tegen ABL aantoont.

Gericht op de voorspelling van het resultaat van de lichtbehandeling, zijn enkele
eerste-principemodellen voorgesteld voor het schatten van de behandelingsdoseringen
op basis van het mechanisme van PDT en ABL. Het modelleren van de dynamische ver-
anderingen in ROS concentraties is bijvoorbeeld goed onderzocht, wat zeer niet-lineaire
modellen zijn. Deze eerste-principemodellen passen precies bij de dynamische veran-
deringen in ROS-concentraties. Er is echter geen dynamisch model vastgesteld voor de
ROS-concentraties om schimmelinfecties te behandelen. Dit kan worden toegeschreven
aan de moeilijkheid om een eerste principemodel te gebruiken, d.w.z. de parameters
zijn gerelateerd aan de PS-kenmerken, die experimenteel worden bepaald. Daarente-
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gen, hoewel wordt aangenomen dat ABL wordt veroorzaakt door de PS die van nature
voorkomt in microbiële cellen, waarvan de typen en hoeveelheden meestal onbekend
zijn, wordt het modelleren van het eerste principe zelfs nog uitdagender dan het model-
leren van PDT.

Over het algemeen zijn systeemidentificatiemethoden (SIM) die modellen schatten
op basis van de gemeten gegevens van complexe dynamische processen, goed ontwik-
keld in de literatuur over regeltheorie om de uitdagingen bij modellering op basis van
eerste principes aan te pakken. Het toepassen van SIM’s bij het modelleren van biologi-
sche en biomedische systemen is nog aantrekkelijker dan hun traditionele toepassingen
in mechanische, elektrische systemen en industriële processen. Dit komt omdat bio-
logische en biomedische systemen nog hogere niveaus van niet-lineariteit, koppeling
en chaos hebben dan traditionele processen, en daarom moeilijker te modelleren zijn
met de eerste principes. In de afgelopen decennia zijn ook de toepassingen van SIM-
methoden waargenomen om biologische en biomedische systemen te identificeren, die
meestal zeer niet-lineair, gekoppeld en chaotisch zijn.

Ondanks alle bovengenoemde inspanningen op het gebied van identificatie van bio-
medische systemen, is het identificeren van een niet-lineair dynamisch model voor an-
tischimmeltherapie met blauw licht nog niet het doelwit van de literatuur. In dit proef-
schrift meten we de levensvatbaarheid, de totale hoeveelheid ROS en singlet zuurstof
(het belangrijkste product van de type-II petrochemische reactie) in zowel pathogenen
als menselijke gastheercellen tijdens de bestraling met blauw licht 2. Door deze resul-
taten te analyseren, werden de geoptimaliseerde ABL-golflengte en -dosering geschat.
Verder hebben we drie onafhankelijke modellen ontwikkeld om de ABL-doseringen te
schatten. De eerste is een liner integrator-model, dat is gebaseerd op een eerste-orde
dynamische vergelijking 3. De tweede is een op kernels gebaseerd NARX-model met een
geoptimaliseerde kernelselectiemethode 4. De derde is een gesloten formule, die is afge-
leid van een traditioneel microscopisch singlet-zuurstofmodel 6. Alle drie de modellen
bieden mogelijkheden voor het bepalen van de lichtdoseringen bij de behandeling van
schimmelinfecties door ABL. Voor zover wij weten, is het ook de eerste poging om con-
troletheorie toe te passen om de fotochemische reactiedynamiek van lichttherapieën te
analyseren.



PREFACE

Dear reader,
This thesis is the result of four years of Ph.D work. During that time, I have been im-

mersed in an environment of highly talented people. After so many hours in this com-
munity, I have become accustomed to a particular jargon and way of writing – maybe
accustomed too much. For that reason, let me give a brief ‘reading guide’

First, most researchers do not read scientific articles like a novel: from front to back.
Instead, they read the title and summary, then skim through the paper and look at the fig-
ures. If the article still looks interesting, then they read the introduction, and potentially
also the conclusion. By doing so, the reader establishes a ‘frame’ in which the rest of the
information of the article can be put (You could compare it to a wardrobe that contains
many drawers: it is neater to first have the wardrobe and then fill it with clothes, then to
first have a pile of clothes on the ground, after which you will build the wardrobe). With
this frame, it is much easier to read the rest of the paper – this time from front to back.

I propose that you, as reader of this dissertation, do exactly the same, at least at the
start: first read the title and the summary, then proceed to the introduction. At the end of
the introduction I will give an overview of the different chapters, which hopefully gives
you an idea of what you would like to read next. Like most theses in the hard sciences, the
core of this dissertation consists of chapters which are modified versions of published
articles. Although these were written for an expert audience, please do not feel held
back to read them by reading title and summary, skim the figures, etc.

I believe the use of jargon can hardly ever be completely avoided. However, I have
noticed that many around me are increasingly often using field-specific terminology in
everyday conversations, often without noticing, and it would be naive to think I am any
different. For that reason, I have tried to compile a list of words that might be useful to
know when reading this thesis – already starting with the words in the title. If you find
that the dissertation is completely incomprehensible after having read this list and the
introductory chapters, then I welcome you to come over for a cup of tea (or something
stronger) and a good chat. I am more than willing to explain this dissertation’s content.

So here comes the list of words.
First of all, you will find that this dissertation is written in ‘we’ form (first person plu-

ral). Partially I decided to do so because this is common in the field. More importantly,
a lot of the work in the core chapters of this dissertation was done in collaboration with
others. For those chapters, it would therefore be not only impolite to say that ’I did such
and such’, but simply incorrect.

Next, the word ’photosensitizer (PS)’ is the definition of a group of molecules which
absorb light (hv) and transfer the energy from the incident light into another nearby
molecule. You may still confusing, do not worry. You can just understand PS as some-
thing can react with light and in turn lead to the treatment.

xv
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The most frequently used words in this thesis maybe ’PDT’ and ’ABL’, they are the
abbreviations of ’photodynamic therapy’ and ’anti-microbial blue light’ therapy respec-
tively. Both of them are the including in the definition of light therapies. However, PDT
is a more general definition which can be applied with any light, while ABL only relies
on blue light. Another difference is the target diseases, PDT was mainly used for cancer
treatment. In contrast, ABL was investigated on superficial diseases due to lacking of
penetration. The mechanism of PDT and ABL were similar, both rely on the PS, i.e PDT
relies on exogenous PS and ABL relies on endogenous PS.

The italic in vivo means ’within the living’ in Latin. In biological readings, this words
indicates the experiments were performed on animals. In contrast, the word in vitro
means ’in glass’, which indicates the studies were performed with microorganisms, cells,
or biological molecules outside their normal biological context.

The abbreviations i.e. and e.g., or id est and exempli gratia, mean ‘that is’ and ‘for
example’, respectively.

Although this list is far from complete, I hope it helps in reading this thesis a bit more
easily. Let me repeat that I am more than willing to come talk to you to explain what I
have been doing for the past four years.

Tianfeng Wang
May 2022
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1.1. PHOTODYNAMIC THERAPY
Thousands of years ago, the therapeutic properties of light have been realized. However,
photodynamic therapy (PDT) was only developed in the last century. Currently, PDT is
in clinical trials for oncology, i.e., the treatment of head and neck, brain, pancreas, lung,
abdominal cavity, breast, prostate, and skin cancers.

Light has been used in disease treatment for thousands of years [1, 2]. Ancient Indian,
Egyptian, and Chinese people discovered the usage of light to treat various diseases, in-
cluding psoriasis, rickets, vitiligo, and skin cancer [3]. At the end of the 19th century,
‘phototherapy’ was developed to treat diseases by Niels Finsen. He found that red light
irradiation can prevent the discharge and formation of smallpox pustules and can be
used as an alternative treatment for this disease [4]. Then, he used solar ultraviolet rays
to treat skin tuberculosis. So here is the beginning of modern light therapies (see in the
timeline in Fig. 1.1).

Hundred years ago, it was observed that light irradiation with certain chemicals can
lead to cell death. In 1900, certain wavelengths were lethal to infusoria (including a
species of Paramecium) with the presence of acridine was found by German medical stu-
dent Oscar Raab [5]. In the same year, a French neurologist named J. Prime discovered
dermatitis in sun-exposed areas in patients with epilepsy taking oral eosin treatment
[6]. In 1903, Herman Von Tappeiner and A. Jesionek used the combination of white light
and topical application of eosin to treat skin tumors [7]; this phenomenon was finally
described as ‘PHOTODYNAMIC ACTION’ [8].

Figure 1.1: History of photodynamic therapy (since 1990)[9]

Experiments for testing the combination of reagents and light led to modern photo-
dynamic therapy (PDT). Two independent non-toxic components combine in an oxygen-
dependent manner to induce cellular and tissue damage in PDT (as shown in Fig. 1.2).
The first component is a photosensitizer (PS), which is a kind of molecule that is local-
ized to target cells and tissues. The second component involves the management of spe-
cific wavelengths of light that excite the PS. The PS is able to transfer energy from light
to molecular oxygen, then lead to the generation of reactive oxygen species (ROS). These
reactions occur in the direct area where the light absorbs the photosensitizer. Therefore,
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the biological response to the photosensitizer is only activated in the specific tissue area
exposed to light. Other photochemical reactions are not using oxygen as an intermedi-
ate. For example, photoaddition to DNA has also been developed in [10]. These reactions
are called ‘photochemotherapy’. One photochemotherapeutic, called ‘psoralens’, has
been combined with UVA to treat psoriasis, and vitiligo and to enhance immunother-
apy [11].

Porphyrins were the most common PS and have been widely studied since mid-
nineteenth century. These compounds contain a porphin structure—four pyrrole rings
connected in a cyclic structure by a methyl bridge—and a side chain that is usually a
metal. For example, the combination of iron and porphine structure forms heme. W.
Hausmann used these reagents for the first study [12]. He treated Paramecium and red
blood cells with hematoporphyrin and light, and reported that this combination killed
these cells. In addition, he also reported skin reactions in mice exposed to light after
hematoporphyrin administration. In 1913, the German scientist Friedrich Meyer–Betz
was the first one to treat humans with porphyrins, i.e., using 200 mg of haematopor-
phyrin on his skin for testing, which lead to swelling and pain in light-exposed areas
[13].

In the 1960s, Richard Lipson and his colleagues start to investigate the modern PDT
at the Mayo Clinic [14, 15]. In 1996, Samuel Schwartz developed a compound called
‘haematoporphyrin derivative’ (HPD) [16]. To prepare this derivative, crude haemato-
porphyrin was treated with acetic and sulphuric acids, filtered, and then neutralized with
sodium acetate. The precipitate was then resolved in saline to produce HPD. Lipson and
E.J. Baldes then showed that HPD can localize to tumours, and emit fluorescence. Be-
cause this derivative can act at much smaller doses than crude haematoporphyrin, it
can be used as a diagnostic tool [17]. The mechanisms by which photosensitizers such
as HPD selectively accumulate in tumors are complex and not fully understood. It is
probably because of the high vascular permeability of the agents, as well as their affinity
for proliferating endothelium and the lack of lymphatic drainage in tumors [18, 19].

In 1903, the first experiments on the therapeutic application of PDT to patients with
cancer were carried out by Von Tappeiner and Jesionek. In 1972, I. Diamond and col-
leagues hypothesized that the combination of the tumor-localizing and tumor-phototoxic
properties of porphyrins might be exploited to kill cancer cells [20]. In vivo, studies re-
vealed that PDT inactivated the growth of gliomas that were implanted in rats. Tumor
growth was suppressed for 10–20 days, but finally deeper regions of the tumors began
growing again. In 1975 Thomas Dougherty and co-workers reported that administration
of HPD and red light completely eliminated mammary tumor growth in mice, this is a
milestone breakthrough. [21]. In the same year, J.F. Kelly and co-workers reported that
light activation of HPD can also eliminate bladder carcinoma in mice [22].

In 1976, Kelly and co-workers carried out the first human trials with HPD. More
specifically, five patients were diagnosed with cancer using HPD. It was also used to
treat one patient with recurrent bladder carcinoma who had failed transurethral resec-
tions, radiotherapy, and chemotherapy. In this patient, HPD inactivated tumour growth,
and tumour necrosis was observed in the areas that received PDT. In a second study by
Dougherty et al., 25 patients with a total of 113 primary or secondary skin tumours were
treated with HPD. A complete response was observed in 98 tumours, a partial response
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was observed in 13 tumours and 2 tumours were found to be treatment-resistant [23].
With these preliminary successes, Y. Hayata and colleagues used PDT to treat obstruct-
ing lung tumours [24]. Bronchoscopic analysis revealed tumor growth delay in most
patients, but only one out of fourteen patients were completely cured.

Then, J.S. McCaughan used PDT to treat oesophageal cancer in patients in 1984, [25].
In the same year, O.J. Balchum and colleagues used PDT to treat patients with lung can-
cer [26]. One year later, Y. Hayata and colleagues used PDT to treat gastric carcinoma on
patients[27]. All of these studies showed advantageous responses in early-stage patients,
so PDT was recommended for patients with early-stage cancers that were inoperable.
Patients with breast cancer [28], gynaecological tumours [29], intraocular tumours, brain
tumours [30], head and neck tumours [31], colorectal cancer, cutaneous malignancies
[32], intraperitoneal tumours, mesothelioma, cholangiocarcinoma [33] and pancreatic
cancer [34] were subsequently treated with PDT. However, PDT has only shown limited
success in further studies, due to issues of the specificity and potency of PS. Another
confusing factor is that PDT has been tested mainly in patients with advanced-stage dis-
eases that are obstinate to other treatments. In such cases, a local effect cannot usually
significantly alter the outcome of systemic disease. More selective and potent sensitiz-
ers have been developed, and are now under investigation in clinical trials. With these
newly developed sensitizers, better localization methods, and improved protocols and
equipment, the efficacy of PDT might be enhanced [35].

1.2. MECHANISM OF ACTION

Figure 1.2: Mechanism of action of photodynamic therapy (PDT). PDT requires three elements: light, a pho-
tosensitizer and oxygen. When the photosensitizer is exposed to specific wavelengths of light, it becomes
activated from the ground to an excited state. As it returns to the ground state, it releases energy, which is
transferred to oxygen to generate reactive oxygen species (ROS), such as singlet oxygen and free radicals. These
ROS mediate cellular toxicity [9].

One advantage of PDT is that the PS can be administered by various techniques, i.e.,
intravenous injection and topical application to the skin. By absorbing the energy of
light, the PS is transformed from its ground state (singlet state) into a relatively long-
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lived electronically excited state (triplet state) via a short-lived excited singlet state [36].
As shown in Fig. 1.3, two types of petrochemical reactions can lead to the generation of
the excited state. First, it can react directly with a substrate, such as a cell membrane
or a molecule, and transfer a hydrogen atom (electron) to form radicals. These radicals
interact with oxygen to produce oxygenated products (type I reaction). Alternatively, the
triplet can transfer its energy directly to oxygen, to form singlet oxygen — a highly ROS
(type II reaction). Because the effects of almost all PDT drugs are oxygen dependent,
photosensitization typically does not occur in anoxic areas of tissue. It was reported that
the PDT effects were abolished at hypoxia in vivo, inducted by clamping the tissue [37].

Both type I and type II reactions occur simultaneously, and various conditions lead
to the change of the ratio between these processes, i.e., the type of PS used, the concen-
trations of substrate and oxygen, as well as the binding affinity of the PS for the substrate.
Because of the high reactivity and short half-life of the ROS, only cells that are proximal
to the area of the ROS production (areas of PS localization) are directly affected by PDT
[38]. The half-life time of singlet oxygen in biological systems is less than 0.04µs. There-
fore, the reaction radius of singlet oxygen is also very limited, i.g., less than 0.02µm. The
extent of photodamage and cytotoxicity is multifactorial and depends on the type of PS,
its extracellular and intracellular localization, the total dose administered, the total light
dosage, light fluence rate, oxygen availability, and the time between the administration
of the drug and light exposure. All of these factors are correlated and therefore interde-
pendent.

1.3. ANTI-FUNGAL BLUE LIGHT
At present, antibiotic and antimycotic drugs are the main treatments for microbial in-
fection. However, the common pathogens, such as Candidal species, Staphylococcus au-
reus, and Escherichia coli, are showing an increasing resistance to these drugs. There-
fore, it is crucial to find alternative treatments. As a non-antibiotic approach, light-
based antimicrobial therapies, including antimicrobial photodynamic therapy (aPDT)
and ultraviolet-C (UVC) irradiation, have been extensively investigated as alternative
therapeutics for infectious diseases, especially for topical localized infections [39, 40].
Advantages of light-based therapies include rapid action and equal inactivation effec-
tiveness regardless of drug resistance [41, 42]. However, one major disadvantage of aPDT,
as a two-part (PS and light) combination approach, is the challenge of introducing ex-
ogenous PS into certain pathogens and less than perfect selectivity for pathogens over
host cells [43]. The use of UVC, on the other hand, has limitations due to its detrimen-
tal effects on host cells [40]. An innovative light-based antimicrobial approach, anti-
microbial blue light (ABL), has attracted increasing attention due to its intrinsic ability
to inactivate pathogens without the involvement of exogenous PS [44].

The mechanism of action of ABL is still not fully understood. A common hypothesis
is that ABL is similar to PDT, which can excite naturally occurring endogenous PS in
the cells of pathogens and subsequently leads to the production of cytotoxic oxidative
species [44, 45]. Due to the type and content of endogenous PS in different cells, their
susceptibility to ABL can also be different. Fungal PS content is normally higher than
that of human cells. Thus, fungi are more susceptible to ABL and, hence, ABL has been
widely investigated for treating fungal infections. For instance, the inactivation rate of



1

6 1. INTRODUCTION

Figure 1.3: Type I and type II reaction in photodynamic therapy (PDT). There are two types of reactions during
PDT. Following the absorption of light, the PS is transformed from its ground state into an excited state. The
activated PS can undergo two kinds of reactions. First, it can react directly either with the substrate, such as
the cell membrane or a molecule, transferring a hydrogen atom to form radicals. The radicals interact with
oxygen to produce oxygenated products (1O2) (type I reaction). Alternatively, the activated PS can transfer
its energy directly to oxygen, to form singlet oxygen (1O2) — a highly reactive oxygen species. These species
oxidize various substrates (type II reaction).

C. albicans by ABL was 42-fold faster than human keratinocytes [46]. A dynamic model
was developed based on the viability of C. albicans and vaginal epithelial (V. E.) cells
during ABL irradiation, which demonstrated that the shorter ABL wavelength around
410nm achieved a higher anti-fungal effect than 450nm [47]. The safety of ABL to the
V. E. cells was investigated in [48]. The blue light at 405nm preferentially inactivated the
pathogen over the V. E. cells. Furthermore, no genotoxicity of blue light to the V. E. cells
was observed at the dosage for inactivating the pathogen.

However, using ABL for treating actual infections was not established yet. The ABL
investigation was still confined to in vitro efficacy studies in recent decade [49]. To the
best of our knowledge, only a few in vivo studies report the efficacy of ABL for infections
[50–52]. More specifically, it has been demonstrated that ABL at 415nm significantly
reduced the bacterial infection in mouse wounds or burns which caused by both Gram-
positive and Gram-negative bacteria [50, 52], and successfully rescue the mouse with
lethal P. aeruginosa infection [51].

1.4. MODELING APPROACHES
Based on the two types of petrochemical reactions, some first-principle models have
been proposed [53–55], which are highly nonlinear models. Many factors need to be con-
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sidered in these models, e.g., photosensitizer and its photochemical parameters, oxygen
consumption and supply rates, and irradiation conditions. Therefore, these kinds of
models are usually very complex and the parameters included are hard to determine.
For instance, up to 21 parameters are required to describe the process related to the PS
[54]. Although ABL is believed to be caused by the endogenous PS, whose types and
amounts are usually unknown, first-principle modeling becomes even more challeng-
ing than modeling PDT. To avoid the aforementioned problems, simplification of these
models or data-driven modeling are two research aims in this field.

Data-driven modeling estimates models from the data measured from complex dy-
namic processes, where the system identification methods were well developed in con-
trol theory literature [56]. Applying SIMs in modeling biological and biomedical systems
is even more appealing than their traditional applications in mechanical, electrical sys-
tems, and industrial processes. This is because biological and biomedical systems pos-
sess even higher levels of nonlinearity, coupling, and chaos than traditional processes,
and are hence more difficult to model with first principles. In the recent decades, SIM
methods were used to identify nonlinear, coupled, and chaotic biological and biomedi-
cal systems [57–59]. The data-driven models are usually "black box" models, whose in-
ternal laws are rarely known. Therefore, after the model was established, it is necessary
to explain the model parameters with physical meaning. However, we could not always
find a proper meaning for all parameters. This could be one limitation of the data-driven
models.

On the other hand, the simplification based on the complex first-principle models
does not have the same problem. Every parameter was given physical meanings as the
model was established. With some reasonable assumptions, the macroscopic singlet
oxygen model [55] was simplified into three differential equations in [60] as follows.

d [S0]

d t
=−ξσφ([S0]+δ)[3O2]

[3O2]+β [S0] (1.1a)

d [3O2]

d t
=−ξφ[S0] [3O2]

[3O2]+β + g · (1− [3O2]

[3O2]0
) (1.1b)

d [1O2]

d t
= f ·ξφ[S0][3O2]

[3O2]+β (1.1c)

The original 21 parameters were merged or neglected. However, still seven parameters
remained. More importantly, the equation’s type is kept in differential type, which brings
more computational difficulty.

1.5. AIM OF THE THESIS
Since PDT and ABL are relatively new therapeutic methods for cancer and nonmalig-
nant disease treatment in recent hundred years. The clinical and in vivo studies were
relatively less, especially for ABL therapies. To the best of our knowledge, the ABL past
clinical and in vivo studies do not have specific dosage guidance. The experimental pro-
cedure was starting with a small light dosage and watching the treatment outcome. Usu-
ally, biologists focus more on the experiments and data than on the analysis of the data.
Until now, no nonlinear model based on experimental data has been established. Fur-
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thermore, no study has analyzed the effects and safety of ABL therapy based on a dy-
namic ROS model. It is the purpose of this thesis to optimize the light dosages in ABL,
through both experiments and modeling.

More specifically, we measured the viability, the total amount of ROS, and singlet
oxygen (the main product of the type-II petrochemical reaction) in both pathogens and
human host cells during the blue light irradiation in Chapter 2. By analyzing these re-
sults, the optimized ABL wavelength and dosage were estimated. Furthermore, we have
developed three independent models aimed at estimating the ABL dosages. The first one
is a liner integrator model, which is based on a first-order dynamic equation (shown in
Chapter 3). The second one is a kernel-based NARX model with an optimized kernel se-
lection method (shown in Chapter 4). The third one is a closed-formed equation, which
was derived from a traditional microscopic singlet oxygen model (shown in Chapter 6).
All of the three models offer opportunities for determining the light dosages in treating
fungal infection diseases by ABL. To the best of our knowledge, it is also the first attempt
of applying control theory to analyze the photochemical reaction dynamics of light ther-
apies.
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2
BLUE LIGHT THERAPY TO TREAT

CANDIDA INFECTION WITH

COMPARISONS OF THREE

WAVELENGTHS: AN IN VITRO STUDY

Anti-fungal blue light (ABL) therapies have been widely studied to treat various microbial
infections in the literature. The blue light with wavelengths ranging from 400-nm to 470-
nm has been reported to be effective to inhibit various kinds of bacteria and fungi. The
existing studies usually report the viability rates of the pathogens under the irradiation of
the blue light with different dosage parameters. However, to the best of our knowledge,
there is still no work especially focusing on studying the effect of ABL therapies on treating
candidal vaginitis, where it is important to study the viability of both the candida albicans
(C. albicans) and the human vaginal epithelial cells. It is the purpose of this work to con-
duct ABL experiments on both of these two cells, analyse the effects and determine the best
ABL wavelength out of three candidates, i.e. 405-nm wavelength, 415-nm wavelength and
450-nm wavelength. The viability rates of the C. albicans and the human vaginal epithe-
lial cells irradiated by the three blue LED light sources were measured, whose irradiance
(power density) were all set to 50 mW/cm2. The dynamic viability models of the C. albi-
cans and the epithelial cells were also built based on the experimental data. Moreover in
this work, we also built a functional relationship between the viability of these two types
of cells, by which we further compared the effects of the blue light irradiation on both
the C. albicans and vaginal epithelial cells. The experimental data showed that when an
approximately 80% inhibiting rate of the C. albicans was achieved, the survival rates of
the epithelial cells were 0.6700, 0.7748 and 0.6027, respectively for the case of 405-, 415-
and 450-nm irradiation. On the other hand, by simulating the functional relationship be-
tween the viability of the two types of cells, the survival rates of the epithelial cells became
0.5783, 0.6898 and 0.1918 respectively using 405-, 415- and 450-nm, when the C. albicans

13
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was completely inhibited. Therefore, both the experimental data and the model simu-
lation results have demonstrated that the 415-nm light has a more effective anti-fungal
result with less damage to the epithelial cells than the 405- and 450-nm light.

2.1. INTRODUCTION
The C. albicans is widely found in nature and commonly occurs as a superficial infection
on mucous membranes in mouth or vagina [1, 2], which is the most common pathogen
of fungal diseases of human [3]. What’s more, it can also cause visceral or systemic in-
fections [4, 5].

As a common disease by fungal infection, candidal vaginitis is a common cause of
gynecologic infections in United States, with an increased incidence seen in pregnant
women, diabetic women, and women receiving antibiotic or corticosteroid therapy [6,
7]. By the age of 25 half of all college women have at least one physician-diagnosed
episode of vulvovaginal candidiasis. It is less common in post-menopausal women. In
other populations, at least one episode of vulvovaginal candidiasis is reported in up to
75 percent of premenopausal women [8]. About 90% of these infections are caused by C.
albicans [9].

At present, antibiotics such as penicillins, cephalosporins and anti-fungal drugs and
oral azole agents are the main treatments for fungal infections [8]. However, C. albicans
is showing an increasing resistance for these drugs [10, 11]. Therefore it is crucial to find
new ways to treat fungal infections.

As a non-antibiotic approach, photobiomodulation therapy (PBMT) has been inves-
tigated as an alternative method for localized infectious diseases. The advantages of
PBMT include rapid action and avoidance of drug resistance [12, 13]. The anti-microbial
effects of PBMT are highly depend on the light wavelength. Red light has no anti-microbial
effects; while the green one has minor of that [14]. In contrast, researches have shown
that some specific wavelengths of blue light and ultraviolet light have obvious anti-microbial
effects on most pathogenic microbes [15, 16]. The use of UV light has limitations due to
its detrimental effects on host cells [17] and can cause mutagenic oxidative DNA damage
[18]. Therefore, blue light (400-nm to 470-nm) is more suitable than other wavelengths
in treating microbial infections.

At present, lasers and LEDs are two main types of ABL light sources. Compared with
lasers, LEDs, especially in visible light range, are much more affordable and safer than
lasers, and can be easily integrated into an array to treat much larger surfaces [19]. They
are hence appealing alternatives for lasers in various light therapies [19–21], including
ABL therapies [16, 22]. For instance, in [23], it was reported that the 405-nm wavelength
LED light was able to entirely eliminate two species of candida strains after 30-minute
irradiation with the irradiance of 280 mW/cm2. In another work [22], the antimicrobial
effect of 415-nm LED on C. albicans was studied in vitro and in vivo. In [16], it was proved
that 405-nm ABL has an obvious inactivating effect on C. albicans and other microbes.
Another research further compared C. albicans with human keratinocytes cells, which
indicates that the inactivation rate of C. albicans by the 415-nm wavelength light is 42-
fold higher than that of the human cells [22]. Different wavelengths of blue LED light
were also studied and compared in [24]. It demonstrated that the bactericidal effect of
405-nm wavelength LED light source was better than that of 470-nm wavelength.
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However, the inhibiting effects of three mostly used wavelengths, i.e. 405-, 415- and
450-nm, have not been compared yet. Moreover, for any ABL therapies, besides studying
anti-fungal or bactericidal effects, it is also very important to study the potential dam-
age of the therapies to the human host cells. Especially for treating candidal vaginitis
as studied in this work, it is essential to study the inactivating effects of both the C. al-
bicans and vaginal epithelial cells. However, in the existing studies, the inhibiting effect
of blue light on these human host cells has not been reported yet. On the other hand,
the quantitative models that describe the fungal viability changes over time have not
yet attracted much research attentions. Although there are some existing mathematical
dynamic models of microbial inactivation, the functional relationship between the via-
bility of microbial pathogens and human host cells have not yet been investigated. The
importance of such a function is that it can further facilitate quantitatively comparing
the effects of the blue light irradiation on these cells.

The contributions of the current work are three-folds. First, we conducted blue light
stimulation experiments on both C. albicans and human vaginal epithelial cells, using
three different wavelengths, including 405-nm, 415-nm and 450-nm. Second, we built
dynamic viability models of the C. albicans and epithelial cells, by which we further ana-
lyzed the effects of the light stimulation to both cells. Third, the optimal ABL wavelength
for treating candidal vaginitis has been determined via both experiments and mathe-
matical modeling.

2.2. MATERIALS AND METHODS

2.2.1. FUNGAL AND CELL STRAINS

The C. albicans used in this work is the 3147 (IFO 1594) strains (ATCC,US). The fun-
gal strains was cultured in tryptic soy broth (TSB) at 26oC. The human vagina cell line
VK2/E6E7 (ATCC, USA) was incubated in Dulbecco’s modified Eagle’s medium (Gibco,
Carlsbad, CA, USA) supplemented with 10% fetal bovine serum at 37oC in a humidied
atmosphere with 5% CO2.

2.2.2. ANTI-FUNGAL ASSAYS

The viability of the fungi was estimated by colony counting in terms of colony form-
ing units (CFU). After the concentration of fungi reached 107 yeast cells/ml. The fungal
suspension was diluted by 104-fold with sterilized water and then spread on the tryp-
tic soy agar (TSA). The plates were divided into control groups and treatment groups.
The treatment groups were irradiated at 50mw/cm2 for various time, while the control
groups were kept in the dark. Both the treatment groups and the control groups were
cultured over 24-48 hours at 26oC before the colony counting. Triplicate experiments
were performed at each sampling time for both control and treatment groups. The raw
data were processed to produce the mean and standard deviation of the viability rate
at each sampling time. The significance of the viabllity of the fungi was tested by the
Student’s t-test.
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Table 2.1: The LEDs used in this wirk and their main parameters, where FWHM represents full width at half
maximum.

type peak wavelength(nm) FWHM (nm)
Kingbright ATDS3534UV405B 405 15

LUMILEDS LUXEON LHUV-0415-A070 415 13.7
Cree XLampXPE2 450 20

2.2.3. CELL VIABILITY ASSAYS
The viability of the epithelial cells were evaluated using a CCK-8 tool kit (Beyotime In-
stitute of Biotechnology, China), which is based on the cleavage of the tetrazolium salt
WST-8 by mitochondrial dehydrogenase in viable cells. The cells were seeded in 9 wells
of 96-well plate in the shape of 3 by 3 as the treatment group. Another 9 wells in the same
96-well plate were seeded by the cells as the control group. After culturing overnight, the
concentration is about 10000 cells/well. Then the treatment group was irradiated by
blue light for various time, while the control group was covered in the dark. Then the
cell counting kit-8 (CCK-8) was added to the culture medium with a ratio of 1:10. After
a one-hour incubation at 37oC, the level of absorbance of 450-nm light was measured
by Bio-tek Synergy™ HT microplate reader (Bio-tek, US), in terms of the optical density
(OD). The viability rate Nc was evaluated as follows.

Nv =OD tr eatment /ODcontr ol ×100%, (2.1)

where the OD tr eatment and ODcontr ol stands for the optical density of the treatment
group and the control group, respectively. Triplicate experiments were performed at
each sampling time. The raw data were processed to produce the mean and standard
deviation of the viability rate at each sampling time. The significance of the viabllity of
the cells was tested by the Student’s t-test.

2.2.4. LED LIGHT SOURCES
In this work, we used three types of blue LEDs as listed in Tab.2.1. Both the 405-nm light
source and the 415-nm light source were made of a 4 by 4 LED array, arranged in a 1.5
by 1.5 cm square. The 450-nm light source was made of a 3 by 3 LED array arranged in
a 1 by 1 cm square. The spectral power density (SPD) of the three blue light sources was
measured by a Maya2000Pro spectrometer (Ocean Optics, US), which is shown in Fig.
2.1. The LEDs always contains some UVA content. More specifically, the 405-nm LED
contains 36.31% UVA in terms of its power in this band over that of the entire spectral
range; the amount of UVA in the 415- and 450-nm LED are 3.73% and 1.13% respectively.

The light power density and uniformity was measured using a PM100D power/energy
meter with a S120VC probe (Thorlabs, US) in the experiments. In a round light spot with
a 35mm diameter, the difference of light density between center and edge is less than
10%. Fungi were cultured on the medium agar so the light power density can be mea-
sured directly. The 50 mW/cm2 optical power density were calibrated by adjusting the
height of the light source or the electrical power of the LED. Since the cells were adherent
cultured in a 96-well plate below the liquid medium (DMEM), to evaluate the light power
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Figure 2.1: The measuring results of the actual wavelengths of 405-nm, 415-nm and 450-nm.

Table 2.2: Estimated effective light irradiance on cells.

Irriadiance (mW/cm2) P1 P2 P3 P1-(P2-P3)
405-nm 60.2 54.8 44.3 49.7
415-nm 67.6 62.5 45.0 50.1
450-nm 70.6 63.5 43.2 50.3

density on the cell surface, it is necessary to measure the absorption of the medium. The
methods were illustrated as follows.

The attenuation of light while travelling trough a material follows the Lambert-Beer
law [25]

I (x) = I (0)e−kx , (2.2)

where I (0) is the irradiance at the sample surface; I (x) is the irradiance at the sample
depth x; and k is the attenuation coefficient depends on the material. However, the
culture medium was a mixture solution, the attenuation coefficient cannot be estimated
experimentally. So we measured the irradiances at the sample surface and minus it by
the absorption of the culturing medium.

Fig. 2.2 gives a sketch of the measuring approach. The measuring results were listed
in Tab. 2.2. The light density on the cells surface was estimated by

P = P1 − (P2 −P3) (2.3)

Where P1, P2 and P3 were measured under three different conditions as illustrated be-
fore. P2−P3 measures the light absorption of the medium, so P = P1− (P2−P3) was the
light density on the cell surface, above the dish bottom while below the culture medium.
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(a) (b) (c)

Figure 2.2: Three different conditions of measuring the irradiance. P1 is the measured directly with the probe.
P2 is measured below a 35mm patri dish with lid opened. P3 is measured below a 35mm patri dish filled with
2 mm thickness culturing medium without the lid.

2.2.5. FITTING DYNAMIC MODELS FROM THE VIABILITY DATA
In thermal and non-thermal inactivation of vegetative microorganism, there are four
common types of the survival curves: linear curves, curves with a shoulder, curves with
a tailing and sigmoidal curves [26]. In this study, there is no significant tailing phase in
the survival curves. Therefore we fitted the curves of the survival rates with two biology
models. Model 1 takes the form as first order kinetics [27]

N (t ) = N (0)e−kt , (2.4)

where k is the decaying rate coefficient which can be simply solved by least-squares
method. Here, N (t ) is monotonic decline with t increasing. However, the main mech-
anism of ABL is the reactive oxygen species (ROS) accumulating. The ROS are reactive
chemical species containing oxygen, which may result in damage to cell structures. Cells
become more and more susceptible while the ROS accumulating caused by light. There-
fore, a shoulder phase representing the ROS accumulating is necessary in the model fit-
ting. Here, model 2 is a piecewise function [28], which indicates a shoulder of the curve,
and takes the following form

N (t ) =
{

N (0), t ≤ τ
N (0)e−k(t−τ), t > τ (2.5)

where N (t ) is the survival rate at time t ; k is the decaying rate coefficient and τ is the
time constant of when the inactivation starts. These two parameters can be solved as
follows.

First, fix τ and solve k by least-squares method. The model can be rewritten as a
least-squares problem

y =−kx (2.6)

where y = [y1, y2 · · · yT ], x = [x1, x2 · · ·xT ], with the following definition.{
yt = ln[N (t )/N (0)]

xt = t −τ (2.7)

while t > τ. The decaying rate coefficient k can be simply solved by least-squares method,
then select the minimal MSE, its corresponding τ and k to be the final solution from all
candidates. This method is illustrated in Fig. 2.3.
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Figure 2.3: The parameters estimation of model 2. The index of the candidates is denoted as j , where j =
1,2, · · · , J ; ∆ is the target range and τ(0) is the starting point.

2.2.6. FUNCTIONAL RELATIONSHIP BETWEEN THE VIABILITY OF THE C. al-
bicans AND VAGINAL EPITHELIAL CELLS

To analyse the effects of ABL therapy on both the C. albicans and vaginal epithelial cells,
it is necessary to establish the mathematical relationship between the viability of these
two types of cells. Based on model 2, one can derive that

Nc (t ) = Nc (0)e−k(t−τc ), t > τc (2.8)

Nv (t ) = Nv (0)e−k(t−τv ), t > τv , (2.9)

where the subscript means the type of cells, i.e. C. albicans or vaginal epithelial cells. In
the simulation, N (t ) is the survival rate, therefore Nc (0), Nv (0) = 1 and Eq. (2.8)-(2.9) can
be rewritten as
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Nc =
{

1, t ≤ τc

e−kc (t−τc ), t > τc
(2.10)

Nv =
{

1, t ≤ τv

e−kv (t−τv ), t > τv
(2.11)

Note that in Eq. (2.10)-(2.11), the constants τc ,τv determine the time when the viability
of the cells starts to decrease. The difference between τc and τv indicates the inactivation
of which type of cell starts first.

We first consider the case of τc ≤ τv . For t < τc , it is clear that

Nv , Nc = 1 (2.12)

For τc ≤ t ≤ τv ,

Nc = Nc e−k(t−τc ) (2.13)

Nv = 1 (2.14)

For τc ≤ τv < t , solve t from Eq. (2.10)

t =− ln Nc

kc
+τc (2.15)

Plug t into Eq. (2.11)

Nv = e−kv (t−τv ) (2.16)

= e−kv (− ln Nc
kc

+τc−τv )

= e−kv (τc−τv )N
kv
kc

c

Finally, from Eq. (2.12)-(16)

Nv =
1, Nc ≥ e−kc (τv−τc )

e−kv (τc−τv )N
kv
kc

c , Nc < e−kc (τv−τc )
(2.17)

On the other hand, for the case of τv < τc can be derived in the same way as follows. For
t < τv ,

Nv , Nc = 1

For τv ≤ t ≤ τc ,
Nv = e−kv (t−τv )

For τv < τc < t , Nv takes the form as Eq. (16). Thus

Nv


∈

[
e−kv (τc−τv ),1

]
, Nc = 1

=e−kv (τc−τv )N
kv
kc

c , Nc < 1

(2.18)
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Here, the functional relationship between the viability of two types of cells is derived
as aforementioned, for all the six assumptions. This functional relationship offers the
opportunity to estimate the treatment efficacy and host cell damage, which in turn helps
to optimize the light dosage.

From Eq. (2.17) and Eq. (2.18), the derivative of Nv which respect to Nc when Nv < 1
is

d Nv

d Nc
= e−kv (τc−τv ) kv

kc
N

kv
kc

−1
c . (2.19)

If this gradient above satisfy

kv

kc
< 1, (2.20)

then, limNc→0
d Nv
d Nc

=∞. This function indicates that Nv can be much lager than zero as
Nc goes to zero. Eqs. (2.19-2.20) give a mathematical condition which leads to a accept-
able treatment outcome, i.g., if this condition is not satisfied, the light treatment should
not be applied.

2.3. RESULTS

2.3.1. THE ABL INACTIVATION OF THE C. albicans
The viability of the C. albicans showed an exponential relation between the viability rate
and the irradiated time Fig. 2.4. After a 50 mW/cm2 optical power of density was de-
livered, no significant growth inhibition of the C. albicans was observed within 10 min-
utes, 5 minutes and 45 minutes respectively exposed by 405-, 415- and 450-nm wave-
length (P > 0.05). The significant growth inhibition was observed in other higher doses
(P < 0.05): irradiation time over 10 minutes, 5 minutes and 45 minutes respectively using
405- , 415- and 450-nm wavelength. This phenomenon indicates a ROS accumulating
process. Once the concentration of ROS reached a specific level, the inactivating effects
will start. In the end of the experiments, the survival rates were 0.0056 and 0.0089 re-
spectively at the exposure of 405- and 415-nm wavelength, which can be considered as
the total apoptosis with considering the CFU counting errors. In the end of the 450-nm
wavelength experiments, 0.2344 of the C. albicans were survived, which indicates a less
anti-fungal performance.

2.3.2. THE ABL EFFECTS OF THE VAGINAL EPITHELIAL CELLS

The ABL effects of the vaginal epithelial cells were similar to that of the C. albicans. With
the same fluence of 50 mW/cm2, no significant growth inhibition of the epithelial cells
was observed before 5 minutes, 10 minutes and 45 minutes respectively exposed by 405-
, 415- and 450-nm wavelength (P > 0.05). The significant growth inhibition was observed
in other higher doses(P < 0.05): irradiation time exceed 5 minutes, 10 minutes and 45
minutes respectively using 405- , 415- and 450-nm wavelength. In the end of the experi-
ments, the survival rates were 0.5700, 0.5861 and 0.3853 respectively irradiated by 405- ,
415- and 450-nm wavelength.
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(a)

(b)

(c)

Figure 2.4: The survival rates for the C. albicans and vaginal epithelial cells in the irradiation of three wave-
lengths. (a) 405-nm. (b) 415-nm. (c) 450-nm.
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2.3.3. FITTING DYNAMIC MODEL

It is clear to show the advantage of the irradiation of 415-nm over that of 450- and 405-
nm in Fig. 2.5. The abscissa axis is reversed for better showing inactivation process of
the decreasing viability. While the survival rates of the C. albicans irradiated by different
wavelengths were same, the survival rates of the epithelial cells were higher at the irra-
diation of 415-nm than that of the other two wavelengths. The slope for a liner fitting is
0.453 for 405-nm wavelength, 0.356 for 415-nm and 0.726 for 450-nm wavelength respec-
tively. The slope reflects the dying speed of the epithelial cells by the same inactivation
rate of C. albicans. Hence 415-nm is the best wavelength out of the three.
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Figure 2.5: Comparison of survival rates and its decreasing trends of linear function.

The simulation results by model 2 are shown in Fig. 2.6, the MSE errors compared
with model 1 are listed in Tab. 2.4 and the fitting parameters are listed in Tab. 2.3. In all
cases, model 2 is more accurate than model 1 in terms of the lower MSE error. The better
fitting accuracy of model 2 also indicates that the survival curves has a shoulder phase.

Table 2.3: The estimated parameters of model 2, where C. A denotes the C. albicans and V. E. denotes the
vaginal epithelial cells.

405-nm 415-nm 450-nm
τ k τ k τ k

C. A. 769 6.93e-3 450 3.80e-3 2017 2.64e-4
V. E. 56 4.12e-4 526 5.81e-4 2307 1.85e-4
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Table 2.4: The fitting MSE by the two models, where C. A denotes the C. albicans and V. E. denotes the vaginal
epithelial cells.

405-nm 415-nm 450-nm
model 1 model 2 model 1 model 2 model 1 model 2

C.A. 0.0412 0.0034 0.0220 0.0038 0.0078 0.0031
V.E. 7.7304e-4 7.1920e-4 0.0111 0.0028 0.0087 4.5370e-04

2.3.4. FUNCTIONAL RELATIONSHIP BETWEEN C.abicans AND HUMAN VAGI-
NAL EPITHELIAL CELLS BASED ON THE EXPERIMENTAL DATA

Based on the parameters in Tab. 2.3, the factional relationship of the two types of cells
defined by Eq. (2.17) and Eq. (2.18) and its decreasing trends are shown in Fig. 2.7.
The slopes of the liner functions are 0.4217, 0.3102 and 0.8082 for 405- , 415- and 450-
nm, respectively. Which indicates that 415-nm is the best wavelength out of these three
candidates. Compare to the previous fitted linear model by the experimental data in Fig.
2.5, the slopes are similar with a difference less than 12%.

2.4. DISCUSSION
With a short time exposure, neither cells or fungi were inactivated as shown in Fig. 2.4,
which means there is a ‘shoulder’ phase existed. The similar phenomenon was also
reported in other studies. In the exposure of 405-nm anti-bacterial blue light, during
the first 10 minutes, no obvious apoptosis occurred in all bacteria [15]. This can be at-
tributed to mechanism of ABL therapies. Though it is still not fully understood, a com-
mon acceptable hypothesis is that ABL excites naturally existing endogenous photosen-
sitizers and leads to the generation of cytotoxic reactive oxygen species (ROS) [22]. When
the ROS accumulates to a lethal concentration, the apoptotic pathway is activated and
hence the inactivation can be observed. This explains why the inactivation always starts
after the light delivering. Researches have determined some types of the endogenous
photosensitizers such as uroporphyrin and coproporphyrin in some common bacteria
[29–31]. However. To the best of our knowledge, the endogenous photosensitizers in
fungi have not been determined yet. The amount and types of the endogenous photo-
sensitizers can be different from that of bacteria.

It is observed in the experiment that a small dose of blue light can even stimulate
the growth of the cells. Within five minutes irradiation of 415-nm blue light, the viabil-
ity of cells was increased by 10%. This phenomenon could be attributed to the cellular
stress response. The cellular stress response is a wide range of molecular changes that
cells undergo in response to environmental stressors. There were few researches about
stress response to blue light irradiation, but in an UVA light exposure experiment [32],
the exposure of UVA induced proteins comprised other several stress-related proteins
and further stimulated the growth of the basidiomycete Nidula niveotomentosa. The
similar response may also happen in the exposure of blue lights whose wavelength is
close to UVA.

The C. albicans and vaginal epithelial cells are more susceptible to 405- , 415- and
450-nm wavelength blue light, which is similar to the research that shorter wavelength
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Figure 2.6: Simulation results of model 2. (a) 405-nm. (b) 415-nm. (c) 450-nm.
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Figure 2.7: (a) Functional relationship of the survival rates by taking the viability of the C. albicans as variable.
(b) The decreasing trends of a linear function.

(400-nm to 450-nm) irradiation of blue light is more harmful to retina [33]. It is also well
known that UV is an ionized irradiation and is hence more harmful to most organisms.
Therefore, it becomes a trade-off on ABL therapy in this study; i.e. if seeking a higher
inactivating speed of C. albicans by a shorter wavelength, the epithelial cells are also
inactivated in a higher rate. So there should be an optimal ABL wavelength which can
inactivate C. albicans in a proper speed and is less harmful to the epithelial cells. In this
study, ABL of 415-nm wavelength was proofed better than the other two wavelengths.

In the fitted dynamic model, in all cases, the value kv
kc

is less than 1 which satisfies

the Eq. (2.20), which in turn leads to the derivative d Nv
d Nc

=∞. However, in the 450-nm
experiments Nv is close to 0 in the ending phase while in other two experiments Nv is
over 0.5 in the end. This can be attributed to the value of kv

kc
. In both 405-nm and 415-

nm experiments, the value of kv
kc

are less than 0.17. However in 450-nm experiments,
this value is increased to 0.70. This value indicates the sensitivity of Nv in terms of the
change of Nc . Thus, the lower value of kv

kc
can lead to a larger Nv in the end.

On the other hand, with the estimation of the parameter τ in model 2, it is clear that
in the 415-nm experiment, the apoptosis of the C. albicans starts earlier than the vaginal
epithelial cells. In contrast, the apoptosis of the epithelial cells starts earlier in the 405-
nm experiments. This can be attributed to the DNA damage caused by UV [18]. From the
measuring results, the 405-nm light source contains 36.31% UVA. Here, we can make an
hypothesis that this portion of UVA irradiation cause the DNA damage of the epithelial
cells, thus the the apoptosis of the epithelial cells starts earlier than the C. albicans. As
in 450-nm experiments, there is not an obvious time difference of the apoptosis start.
Anyway, the 415-nm blue light show its advantage both in terms of its smallest slope in
the survival curves and the apoptosis of the C. albicans starts earlier than the epithelial
cells.
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2.5. CONCLUSION
In this work, the inactivating effects of the C. albicans and vaginal epithelial cells by
the irradiation of 405- , 415- and 450-nm were studied. Moreover, the dynamic viabil-
ity models and functional relationship of these two types of cells were built based on
the experimental data. The results indicate that, in vitro, the 415-nm light source has a
more effective anti-fungal function with less damage to the human host cells than 450-
nm and 405-nm wavelength. The optimal wavelength and fluence found in this study
can be helpful to design the therapeutic devices and the doses used in treating candidal
vaginitis. A potential extension of our current work is to further investigate the opti-
mal dosage of treating this disease in clinical experiments, and to model the dynamic
changes of the viability of the fungi as well as that of the human epithelial cells.
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3
DATA DRIVEN MODELING OF THE

REACTIVE OXYGEN SPECIES

STIMULATED BY PHOTON ENERGY

IN LIGHT THERAPIES

Light therapies can be used to treat fungal infections. A general mechanism is attributed
to the generation of cytotoxic reactive oxygen species (ROS) due to light stimulation. The
effectiveness of these therapies has been widely studied in the literature via conducting
biological experiments, where fungi are exposed to light with various wavelengths and
power. However, despite the large amount of work reporting the experimental results,
few efforts have been given to build a mathematical model that describes the amount
of generated ROS as a function of the photon energy and power of the stimulating light.
The lack of such a model still hinders the optimization of the light doses. In this work,
we propose a novel modeling method based on experimental data, so as to establish a
mathematical relationship between the ROS concentration and the stimulating photon
energy and light fluence (energy density). The anti-fungal experiments were performed
on C andi d a albi cans (C . al bi cans) using four LED light sources with different wave-
lengths ranging from 385nm to 450nm. Both the viability of the fungi and the ROS con-
centration therein were measured during the experiments. High fitting accuracy has been
achieved by the model, which therefore demonstrates the effectiveness of the proposed
modeling techniques.

3.1. INTRODUCTION
Light therapies can kill fungi and hence treat fungal infections. One of the major infec-
tious types of fungi is C . al bi cans [1], which is widely found in nature, and commonly
occurs as a superficial infection on mucous membranes, e.g. in mouths [2], vaginas [3]
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and intestines [4]. The treatment of fungal infections by light is a non-antibiotic ap-
proach, and can avoid many side effects of antibiotic treatments, e.g. drug resistance
[5].

Various blue light within the range of 400–470nm has been studied for anti-fungal
therapies. The range with the most effective anti-fungal effect has been found in various
studies to be 402–420nm [6]. For instance, 405nm light was proven to be highly effective
against the pre-germinated spores of eight different types of fungi [7]. Besides, 415nm
blue light was successfully applied to eliminate C . al bi cans in both in vitro and in vivo
experiments [8].

The underlying mechanism of the anti-fungal effect of light has not yet been fully
understood. A widely accepted hypothesis is that the photons from blue light can excite
endogenous intracellular photosensitizers (PS), which in turn produces highly toxic ROS
to cells [6], such as singlet oxygen (1O2), hydroxyl radials (HO•) and etc. Modeling the
amount of generated ROS is hence an important issue in order to design the doses, e.g.
the photon energy and light power, for an optimal effect in these therapies. However, de-
veloping such a mathematical model is a challenging task. The reason can be attributed
to the complexities in the photosensitized oxidation reactions, in which the exact types
of reactions that take place in the fungi and the exact types of ROS that are generated are
actually uncertain [9].

ROS modeling has also been reported as an important problem, and studied in other
therapies. For instance, modeling the ROS density in the plasma generated by dielec-
tric barrier discharge has recently been reported in [10], which can be used in wound
healing and dermatological therapies. Moreover, in photodynamic therapies (PDTs), i.e.
the light therapies that apply exogenous PS, modeling the dynamic changes in ROS con-
centration has been well studied, e.g. [11–13]. For instance, a set of coupled differential
equations are used to describe a PDT process, including seven Michaelis-Menten type
equations [14] describing the dynamic changes in the concentrations of respectively the
ground, singlet and triplet state of PS, the singlet and triplet state of oxygen, superox-
ide anions (O−�

2 ), and finally the ROS acceptors excluding the photosensitizer molecules
[13]. Moreover, Monte Carlo simulations have been combined with these kinds of kinetic
models, and proven to be an effective method for simulating light transport in biologi-
cal tissues [15, 16]. Nevertheless, the aforementioned kinetic models demonstrate high
nonlinearity, and moreover contain many different unknown parameters related to the
PS characteristics that shall be determined from dedicated experiments. For instance,
up to 21 parameters are required to describe the process of using some FDA or EMA
approved PS [13].

Although anti-fungal light therapies are also believed to be caused by the PS that
naturally exist in fungal cells, due to the aforementioned uncertain mechanisms of these
processes (i.e. what types of reactions and produced ROS), modeling by the first princi-
ples becomes even more challenging than modeling a PDT process. To deal with these
modeling challenges, a data-driven modeling approach is proposed in this work, which
builds the functional relationship between the ROS concentration and two important
parameters of the stimulating light, i.e. its photon energy and fluence, by fitting a pa-
rameterized model from experimental data. The model structure is motivated from the
trend of the time sequence of 1O2 concentrations at a time scale longer than one minute
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Table 3.1: Main parameters used in the model

Quantity Unit Symbol
irradiance mW /cm2 Ee

fluence J/cm2 He

photon energy eV Ep

wavelength nm λ

ROS concentration µM y
reaction rate none k

as shown in [12], which is monotonically increasing in a fashion similar to the step re-
sponse of a first order linear dynamic system [17]. Then, the reaction rate constant in
this model is fitted to the photon energy of four different light wavelengths of 385nm,
405nm, 415nm and 450nm. It is also worth mentioning here that the complicated non-
linear dynamics of the first-principle PDT models mainly occur at a tiny time scale, i.e.
below one second [12]. Fortunately, this transient behaviour is not of key importance
for quantifying the long-term ROS accumulation in light therapies. In fact, many other
studies have reported similar gradually increasing ROS accumulations in cells by light
stimulation in a time duration of up to hundreds of minutes, e.g. [18, 19].

The contributions of this work are four folds. Firstly, the anti-fungal experiments
on C . al bi cans were conducted using four LED light sources with four different wave-
lengths, including 385nm, 405nm, 415nm and 450nm. Both the viability of the fungi
and the ROS concentrations were measured during the experiments. Secondly, a first
order linear dynamic model is parameterized for the ROS variations, whose parameters
were then estimated from the experimental data. Thirdly, the functional relationship be-
tween the reaction rate constants in the four fitted models respectively of 385nm, 405nm,
415nm and 450nm and their corresponding photon energy were constructed. Finally, a
complete mathematical model of the ROS concentration induced by light irradiation is
established, taking as variables the photon energy and fluence of the light. To the best of
our knowledge, it is the first attempt to build such a mathematical model to mathemat-
ically describe the induced ROS in vitro without utilizing any exogenous PS. The main
symbols used throughout the paper are defined in Table 3.1.

3.2. MATERIALS AND METHODS

3.2.1. LED LIGHT SOURCE DESIGN
Four different types of LEDs with the specified peak wavelengths respectively at 385nm,
405nm, 415nm and 450nm were applied in this work. The types of these LEDs and
their main parameters are listed in Table 3.2. Their spectral power density (SPD) curves,
as measured by a Maya2000Pro spectrometer (Ocean Optics, US), are depicted in Fig.
3.1(a). In this figure, every SPD curve is normalized with respect to its integral over the
range of the measured wavelength, i.e. with each normalized SPD curve integrating to 1.

The LED light sources were designed following the procedures in [20], and were driven
by a constant current source with PWM current level control to stabilize the output irra-
diance [21, 22]. The LED chips are arranged in either a 1.5cm-by-1.5cm square as a 4-by-
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Table 3.2: Applied LEDs and their main parameters, where “W.L.” stands for wavelength.

Specified Type Measured Photon
Peak W.L. Peak W.L. Energy
(nm) (nm) (eV)
385nm Vishay 386.2 3.21

VLMU3500-385-120
405nm Kingbright 400.9 3.09

ATDS3534UV405B
415nm LUMILEDS LUXEON 416.5 2.98

LHUV-0415-A070
450nm Cree XLampXPE2 447.6 2.77

4 array (385nm, 405nm and 415nm) or a 1cm-by-1cm square as a 3-by-3 array (450nm).
The four LED light sources can deliver an irradiance of 50mW /cm2 uniformly within a
60cm-diameter circle. Fig. 3.1(c) shows the simulated irradiance distribution, where the
average irradiance in the 6cm-diameter circle is 49.39mW /cm2, with a relative variation
of only 6.56%. The irradiance was measured and confirmed by a PM100D power meter
with a S120VC probe (Thorlabs, Newton, NJ, US). The schematic diagram of the electri-
cal drive and control system and the experimental setup are illustrated in Figs. 3.1(b)
and 3.1(d).

3.2.2. EXPERIMENTAL METHODS

ANTI-FUNGAL ASSAY

The Candida albicans strain used in this work is the 3147 (IFO 1594) strain (ATCC, US).
The fungal viability was estimated by colony counting in terms of colony-forming units
(CFU). After the concentration of the fungi reached 107cells/ml, the fungal suspension
was diluted by 104-fold with sterilized water. The diluted suspension was then spread
on tryptic soy agar (TSA), and divided into a control group and a treatment group. The
treatment group was respectively irradiated by one of the four LED light sources; while
the control group was kept in the dark. The distances from the light sources to the fungi
were around 10cm in all the cases to achieve the target irradiance of 50mW /cm2.

More specifically, the light irradiation experiments were performed at each sampling
instant of respectively 0, 5, 10, 15, 20, 25 and 30 minutes under the 385nm, 405nm and
415nm light exposure; and at 0, 15, 30, 45, 60, 75, 90, 105 and 120 minutes under the
450nm light irradiation, because it takes longer time for this wavelength to achieve a
significant fungal inhibition at the same irradiance. At each of these sampling instants,
one agar plate spread with the fungal suspension was exposed to the light; and another
plate spread with the same suspension was kept in the dark. Moreover, only one plate
was exposed to the light at each light irradiation experiment. Therefore, three plates were
separately irradiated by the light at different time for each sampling instant. Afterwards,
all the six plates were cultured for 24-48 hours at 26oC, before the colony counting. These
steps resulted in triplicate experiments for each treatment time interval, whose raw CFU
data were then processed to produce the mean and standard deviation of the viability
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(a) (b)

(c) (d)

Figure 3.1: LED light source design: (a) normalized SPD of the four types of LEDs, (b) electrical scheme, (c)
simulated irradiance distribution, (d) photo of the experimental setup.

rates at each sampling instant. The significance of the growth inhibition of the fungi
before and after the light treatment was tested by the Student’s t-test.

ROS ASSAY

For the homogeneity of the ROS measurements, the concentrations of the fungi used in
all the ROS assays were controlled within the same range by measuring its absorption of
450nm light with a U-3900H spectrophotometer (Hitachi, Japan). More specifically, the
absorption levels measured by this equipment were always controlled in the range of
6.5-7. Then, the fungi were centrifuged and separated from the medium, and were dis-
solved in a 500-fold dilution of the ROS fluorescent probe (DCFH-DA assay kit, Beyotime
Institute of Biotechnology, China) by phosphate buffer saline (PBS). After incubated at
37oC in a shaker for half an hour, the suspension was centrifuged for three times to re-
move the redundant probe. Then, the suspension was seeded into a 96-well plate, and
divided into a treatment group and a control group. The treatment group was irradiated
respectively by the four LED light sources; while the control group was kept in the dark.
Immediately after the light treatment, the intracellular ROS levels were measured as the
fluorescent levels in a VL0L0TD0 Varioskan LUX microplate reader (Thermo Fisher, US),
with the exciting and emitting wavelength respectively set at 488nm and 525nm. For
each treatment interval, the plates were continuously exposed to the light, and were then
discarded after the measurement by the microplate reader.
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Triplicate experiments were performed in a similar fashion as described in the anti-
fungal assays; i.e. respectively at the sampling instant of 0, 5, 10, 15, 20, 25 and 30 min-
utes under the 385nm, 405nm and 415nm light exposure; and at 0, 15, 30, 45, 60, 75, 90,
105 and 120 minutes under the 450nm light irradiation. The raw data were processed to
produce the mean and standard deviation of the ROS fluorescent levels for each treat-
ment time interval.

3.2.3. DYNAMIC MODEL OF ROS CONCENTRATIONS INDUCED BY PHOTON

ENERGY

As introduced in Sec. 3.1, although comprehensive models of the photosensitized oxi-
dation reactions in PDTs have already been established in the literature, models of the
induced ROS in vitro without utilizing any exogenous PS are not yet available. The dif-
ficulties can be attributed firstly to the many unknown parameters that must be deter-
mined from dedicated experiments, and secondly to the lack of knowledge about what
types of reactions, endogenous PS and oxidants are exactly involved in anti-fungal ther-
apies. To avoid these difficulties and reduce the experimental burdens, we propose to
use a reduced model structure and estimate its parameters from the ROS concentra-
tion data observed from experiments. The reduction from the highly coupled nonlinear
Michaelis-Menten type models [13] does not take the short-time transient behaviour
into account, and is only valid for modeling the ROS accumulations at a time scale larger
than one minute. This is motivated by the fact that at a macroscopic time scale, the in-
creasing trend of the singlet oxygen concentration [12] is similar to the step response of
a first order linear dynamic system [17].

Denote the ROS concentration by y . The first order linear system description of its
dynamics can be expressed by the following differential equation.

d y(t )

d t
=−k · y(t )+u, (3.1)

where t ≥ 0 is the time instant; k > 0 is the reaction rate constant; and u > 0 represents
an unknown input, and is constant in the case of a step response. This model is actually
an integrator, and is thus suitable to describe the accumulation of ROS over time. The
solution of Eq. (3.1) takes an analytic form [17] as

y(t ) = e−kt · y0 +
∫ t

0
u ·e−k(t−τ)dτ,

= u

k
+

(
y0 − u

k

)
·e−kt ,

where y0 denotes the initial value of y at time instant 0. When u > 0 is constant for t ≥ 0,
this equation defines the step response of the dynamic system defined by Eq. (3.1). For
brevity, the time variable will be omitted in what follows.

Equivalently, one can parameterize u as u = k · (y0 +u′), with u′ ≥ 0 arbitrary. Then,
the above equation is further simplified to

y = y0 +u′ ·
(
1−e−kt

)
.
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Bringing y0 to the left of the equal sign and dividing both sides by y0, one can obtain
the following equation of the relative change of the ROS concentration with respect to its
initial value.

y − y0

y0︸ ︷︷ ︸
x

= u′

y0︸︷︷︸
r

·
(
1−e−kt

)
. (3.2)

For brevity, denote y−y0
y0

by x and u′
y0

by r in what follows.

Note that since the ROS concentrations are actually measured with fluorescent probes,
by e.g. a microplate reader, it is more meaningful to take the relative value x in Eq. (3.2).
Besides, it is well known that ROS naturally exists in cells and regulates a great number
of biochemical reactions, which generally accounts for 2% of the total oxygen consumed
by mitochondria under a “normal” condition [23]. Therefore, an initial ROS concentra-
tion in the fungi always exists, and contributes to a nontrivial initial fluorescent level, i.e.
y0 > 0, before being irradiated by light.

Obviously, Eq. (3.2) is a monotonically increasing function of t . The only parameters
of this model to be estimated are k and r . The formulation of Eq. (3.2) indicates that r
can be interpreted as the ratio of the initial total concentration of the other molecules in-
volved in the reactions (e.g. the triplet oxygen and all the three states of the endogenous
PS) to the initial concentration of the ROS.

3.2.4. FUNCTIONAL RELATIONSHIP BETWEEN REACTION RATES AND PHO-
TON ENERGY

In classical PDT models, the PDT dose is defined as the number of photons absorbed
by the PS, and is related to the irradiance and the photon energy [12, 24]. The kinetic
PDT equations are henceforth parameterized by the irradiance and photon energy of
the stimulating light.

The energy of a photon is inversely proportional to the wavelength of the light, which
is usually given in the unit of electron-volt (eV, and 1eV = 1.602×10−19 J ), i.e.

Ep = h · c

λ
= 1.24

λ
, (3.3)

where h and c are respectively the Planck’s constant and the speed of light. Here, the unit
of λ shall be converted from nanometers to microns. Photon energy will also be used to
quantify a specific light source in what follows.

For in vitro anti-fungal experiments, the photon energy is directly absorbed by fungal
cells instead of tissues. On the other hand, according to the experimental results to be
presented later in Sec. 3.3, the reaction rate constants in Eq. (3.2) estimated from the
experimental data using the four light spectra are all different, when keeping the light
irradiance at the same level. More specifically, the rate constants at 415nm and 450nm
are respectively the largest and the smallest; while those at 385nm and 405nm first show
a “roll-off” after the rate peak near 415nm, and are then followed by an increasing trend
again (see Table 3.3 and Fig. 3.6). This pattern actually corresponds well to the more
reported practices of using 400-420nm light in the anti-fungal experiments. Motivated
by this observation, one can describe this dependence of the reaction rate constant on
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k =
{

a +b · sin(d ·Ep +ϕ), Ep ≤ Ē
a +b ·exp

{−[α · (Ep −µ)]c
} · sin(d ·Ep +ϕ), Ep > Ē

(3.4)

x(Ep , He ) =
 r ·

{
1−exp

{
− 1

Ee
· [a +b · sin(d ·Ep +ϕ)

] ·He

}}
, Ep ≤ Ē

r ·
{

1−exp
{
− 1

Ee
·
{

a +b ·e−[α·(Ep−µ)]c · sin(d ·Ep +ϕ)
}
·He

}}
, Ep > Ē

(3.5)

the photon energy by Eq. (3.4). Here, a,b,c,d ,α,µ,ϕ are the parameters to be estimated;
and Ē is the point at which the reaction rate starts to roll off. In the model (3.4), the
sinusoidal function describes the peak near 415nm and the decreasing trend for longer
wavelengths up to 460nm; while the exponentially decaying term, exp

{−[α · (Ep −µ)]c
}
,

is to account for the roll-off after the rate peak.

3.2.5. MODELING ROS CONCENTRATION AS A FUNCTION OF PHOTON EN-
ERGY AND FLUENCE

Now, by substituting Eq. (3.4) into Eq. (3.2) and noting that t = He /Ee , the model of the
relative ROS concentration x as a function of the photon energy and fluence of the stim-
ulating light can be finally derived, which takes a,b,c,d ,r,α,µ,ϕ and the light irradiance
Ee as parameters. The model takes the form of Eq. (3.5).

3.2.6. MODELING FUNGAL VIABILITY AS A FUNCTION OF PHOTON ENERGY

AND FLUENCE
Although a viability model is not required in the aforementioned ROS model, it is also
relevant to further understand the effect of the photon energy and fluence on the effi-
ciency of eliminating the fungi by the light. Such a mathematical relationship can be
built in a similar fashion as in building the ROS model.

To this end, one first needs to fit a time-varying viability model of the fungi when
being exposed to the light of each wavelength. Since it takes some time for the ROS
concentration to reach a sufficient level to kill the fungi, a piecewise function including
a “shoulder” [25] is suitable to describe such a process, i.e.

ρ(t ) =
{

1, t ≤ τ
e−kv (t−τ), t > τ (3.6)

where ρ(t ) is the survival rate at time t ; kv is the decaying rate coefficient; and τ is the
time constant when the inactivation starts.

The next step is also to fit the parameters kv and τ to the photon energy, because
they vary among the four different light wavelengths. Also according to the experimental
results to be presented later in Sec. 3.3, the models of kv and τ are respectively parame-
terized as follows.

kv = exp
(
p1 ·E 4

p +p2 ·E 3
p +p3 ·E 2

p +p4

)
, (3.7)

τ = q1 ·E 3
p +q2 ·E 2

p +q3 ·Ep +q4. (3.8)
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Here, pi , qi , i = 1,2,3,4 are the coefficients to be estimated. The exponential function in
Eq. (3.7) is to enforce kv > 0, since a pure polynomial function cannot ensure this, when
kv is close to zero.

Similarly, by substituting Eqs. (3.7, 3.8) into Eq. (3.6) and taking t = He /Ee , the model
can be finally written as Eq. (3.9).

ρ(Ep , He ) =
{

1 , He ≤ Ee ·∑4
i=1 qi ·E 4−i

p

exp
{
−exp

(∑3
i=1 pi ·E 5−i

p +p4

)
·
(

He
Ee

−∑4
i=1 qi ·E 4−i

p

)}
, otherwise

.

(3.9)

3.3. RESULTS

3.3.1. VIABILITY MEASUREMENTS OF C. ALBICANS

In the experiments with the 385nm, 405nm and 415nm light sources, no significant
growth inhibition of C . al bi cans was observed until being irradiated for ten minutes
(p < 0.05). After being exposed to the light for 25 or 30 minutes, the survival rates of
the fungi all dropped below 20%. On the other hand, in the experiment with the 450nm
light source, significant elimination of C . al bi cans was observed after being irradiated
for 100 minutes (p < 0.05); while after two hours, about 80% of the fungi were inhibited.
The viability rates of the four experiments are depicted in Fig. 3.2. As an illustrative ex-
ample, the fungal growth on the agar plates after being irradiated by the 385nm light for
different durations from 0 to 30 minutes is shown in Fig. 3.2(e). The decreasing trend of
the CFU can be clearly observed.

3.3.2. ROS MEASUREMENTS

The time sequences of the measured ROS concentrations in the C . al bi cans were mea-
sured from the experiments using all the four different light sources. The measured flu-
orescent levels y were processed according to the definition of Eq. (3.2) as x = y−y0

y0
,

where y0 is the initial level. The relative changes in the ROS concentrations due to the
light stimulation are plotted in Fig. 3.3.

To visualize the gradual accumulations of the ROS in the fungi as the light exposure
continues, the time-lapse images of the fungal cells after being irradiated by the 405nm
light for different durations from 0 to 30 minutes were taken by an Axio Observer A1
inverted fluorescence microscope (ZEISS, Germany), and are illustrated in Fig. 3.3(e).
The exciting and emitting wavelength were set respectively at 488nm and 525nm. The
increasing trend of the ROS concentrations can be clearly observed.

3.3.3. ESTIMATION OF THE PARAMETERS OF EQ. (2)
Eq. (3.2) contains two parameters to be estimated, i.e. r and k. By definition, this esti-
mation problem is nonlinear, and can be solved by a standard nonlinear least-squares
(NLS) algorithm [26], e.g. the Levenberg-Marquardt method. The dependence of the
RMSE fitting errors on the values of r and k is shown in Fig. 3.4. It can be seen that in
all the four cases, the optimum of the parameter pair (r,k) lies on the flat bottom of a
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Figure 3.2: Measured viability rates of the C . al bi cans irradiated respectively by (a) 385nm, (b) 405nm, (c)
415nm, (d) 450nm LED light source, and (e) the pictures of the fungal growth on the agar plates after being
irradiated by the 385nm light for different durations from 0 to 30 minutes.

narrow valley roughly within the range of 30 ≤ r ≤ 3000 and 10−4 ≤ k ≤ 10−6. The gra-
dients of the fitting errors with respect to this pair are approximately zero within this
valley. In other words, the NLS optimization is likely to terminate at any point in this
valley depending on the specified initial values and stopping conditions, which can also
been seen from Fig. 3.4. Based on this observation, it is better to fix r to a value in the
range of 30 ≤ r ≤ 3000, and estimate k by linear least-squares (LS), which is guaranteed
to result in a unique global optimal solution. Moreover, it is also necessary to set r to a
same value, in order to compare the effects of the four wavelengths on the reaction rates
k.

On the other hand, note that the fungi used in this work are of the same type, and
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Figure 3.3: Measured relative changes in the ROS fluorescent levels in the C . al bi cans irradiated respectively
by (a) 385nm, (b) 405nm, (c) 415nm, (d) 450nm LED light source, and (e) the time-lapse ROS fluorescent images
of the fungal cells taken from 0 to 30 minutes with a 5min time difference.

were cultivated and processed following exactly the same protocols. It is hence also rea-
sonable to assume that the parameter r in all the experiments is of the same value. Ac-
cording to the interpretation of r in Eq. (3.2), this physically means that the ratios of
the initial total concentration of the other molecules involved in the reactions (e.g. the
triplet oxygen and all the three states of the endogenous PS) to the initial ROS concen-
tration can be assumed to be at the same level in all the experiments. When there is an
ample amount of oxygen molecules in the cells, i.e. when r is dominated by the ratio
between the concentration of the initial triplet oxygen and the initial ROS, one can take
r = 50, since in the normal condition of mitochondrial respiration, ROS takes about 2%
of the total oxygen consumption [23]. More specifically, by fixing r , k can be estimated
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Figure 3.4: Dependence of the RMSE fitting errors on the values of r and k: (a) 385nm, (b) 405nm, (c) 415nm,
(d) 450nm. Contours: log10(RMSE); Stars: the NLS estimates.

by solving the following LS problem.

k · t =− ln
(
1− x

r

)
. (3.10)

The LS estimates and the RMSE fitting errors are listed in Table 3.3. As an illustrative
example, the model fitted to the data from the 415nm light irradiation experiment is
depicted in Fig. 3.5.

3.3.4. ESTIMATION OF THE PARAMETERS OF EQ. (4)
The estimated reaction rate constants in Table 3.3 and their corresponding photon en-
ergy in Table 3.2 are plotted in Fig. 3.6. Note that in Eq. (3.4), there are totally seven
unknown parameters to be estimated, i.e. a,b,c,d ,α,µ,ϕ. However, there are only four
data points, which can at most uniquely determine four parameters. To solve them, d
was first determined by estimating the period of the sinusoidal function from the four
target points, by noting that the range of the photon energy shall be within one com-
plete period of the sinusoidal function (otherwise, there will be multiple peaks). On the
other hand, Ē that determines the roll-off point shall be between 2.98 and 3.09; and α,µ
are intended to shift and normalize the photo energy into the range between 0 and 1.
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Table 3.3: Estimated reaction rate constants and RMSE fitting errors

k RMSE
385nm 2.65E-5 0.240
405nm 2.50E-5 0.056
415nm 3.68E-5 0.216
450nm 2.22E-5 1.233
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Figure 3.5: Fitted curve to the measured relative ROS concentration data from the 415nm light irradiation
experiment.

This then reduces the number of unknown parameters to three, which can be solved by
a standard NLS algorithm. The finally estimated parameters are listed in Table 3.4, which
perfectly fits to the four target points with an RMSE fitting error of 7.86E-7.

3.3.5. SIMULATING THE ROS MODEL WITH VARIOUS PHOTON ENERGY AND

FLUENCE

With the parameters in Table 3.4 and taking r = 50 and Ee = 50mW /cm2, the model of
the ROS concentration as a function of the stimulating photon energy and fluence, i.e.
Eq. (3.5), was finally simulated. The results are plotted in Fig. 3.7.

Table 3.4: Estimated parameters of Eq. (3.4)

a b c d α µ ϕ Ē
2.66E-5 1.90E-5 3.025 13.57 3.100 2.667 -31.55 3.012
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Figure 3.6: Fitted model of the reaction rate constants as a function of the photon energy. The arrows indicate
the experimenting light sources. The simulated range of the photon energy 2.7 ∼ 3.3eV corresponds to the
wavelength range of 375 ∼ 460nm.

3.3.6. SUMMARY OF THE PROCEDURES TO BUILD THE ROS MODEL

Although a single strain of C. albicans was tested in this work, the proposed modeling
method can actually be applied to other fungal species, as well. The experimental and
modeling procedures follow the steps shown in Fig. 3.8.

3.3.7. FITTING AND SIMULATION OF THE VIABILITY MODEL

Since the main purpose of this work is to build the ROS model, and also for brevity, the
detailed parameter estimation procedures for the viability model will be omitted; and
only the fitting results are presented here.

The parameters kv and τ were first fitted to the viability data as shown in Fig. 3.2,
whose estimated values for all the four wavelengths are listed in Table 3.5. The estimated
coefficients of the polynomials in Eqs. (3.7, 3.8) are listed in Table 3.6, which resulted in
the fitted curves as illustrated in Fig. 3.9. With these estimated parameters, the viability
model was finally simulated. The results are plotted in Fig. 3.10.

Table 3.5: Estimated parameters of Eq. (3.6)

kv τ (in sec.) RMSE
385nm 1E-3 226.80 0.235
405nm 7.06E-3 770.70 0.056
415nm 3.85E-3 447.30 0.211
450nm 2.89E-4 2232.72 1.176
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Figure 3.7: Relative increase of the ROS concentration in response to various photon energy and fluence: (a)
3D plot, (b) contour plot.

Table 3.6: Estimated coefficients of the polynomials in Eqs. (3.7, 3.8)

p1 or q1 p2 or q2 p3 or q3 p4 or q4 RMSE
Eq. (3.7) -37.23 287.19 -620.59 841.56 9.20E-16
Eq. (3.8) -1.53E5 1.39E6 -4.19E6 4.22E6 2.38E-9

3.4. DISCUSSION

In this study, anti-fungal light irradiation experiments were conducted using four differ-
ent wavelengths, in which both the viability of the fungi and the generated ROS therein
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Figure 3.8: Procedures of implementing the data-driven modeling method.

were measured. The main objectives are to compare the effects of four different wave-
lengths in terms of their effect in inducing ROS, and to build a mathematical model that
relates the ROS generation with the photon energy and the fluence of the stimulating
light.

The viability data in Fig. 3.2 show that the 415nm light performed best in eliminating
C . al bi cans in terms of the lowest survival rate of the fungi after having been irradiated
for 25 minutes. The longest wavelength 450nm turned out to be the worst in this aspect,
because of the much longer time it took to significantly kill the fungi. On the other hand,
a “shoulder” in the viability curve of the fungi can be clearly seen in most cases. The
shoulders indicate that the fungi were not immediately killed right after being exposed
to the light. This can be attributed to the fact that the main hypothesized mechanism
of anti-fungal light therapies is the cytotoxicity due to the induced ROS from the inter-
action between the light and the endogenous PS. To generate enough toxicity to kill the
fungi, the ROS in the cells needs to accumulate to a sufficient level. The turning point
appeared when all the four wavelengths led to more than 40% fungal elimination. These
points were respectively at 900sec for 385nm and 405nm, at 600sec for 415nm, and at
3600sec for 450nm. At these points, the relative ROS increases were of similar values
around 1, i.e. 1.11± 0.02,0.93± 0.09,0.82± 0.11,1.44± 0.78 respectively for the 385nm,
405nm, 415nm and 450nm light. On the other hand, in the case of the 385nm-light ir-
radiation, the fungi appeared to start degenerating sooner than the cases of using the
405nm and 415nm light. This indicates that the UVA light of 385nm may cause other
more dramatic inhibiting effects to the fungi besides inducing ROS, e.g. causing tryp-
tophan photodegradation within the cells [27]. Moreover, as can be observed from the
simulated fungal viability rates in response to various photon energy and fluence as in
Fig. 3.10, the most effective anti-fungal photon energy is in the range of 2.85∼3.2eV, cor-
responding to wavelength range of 387.5∼435nm.

Due to the aforementioned challenges to parameterize the model of the induced ROS
concentrations in vitro without utilizing any exogenous PS, a data-driven modeling ap-
proach was proposed. This modeling approach mainly takes into account the long time
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Figure 3.9: Fitted model of kv and τ as a function of the photon energy: (a) kv as in Eq. (3.7), (b) τ as in Eq.
(3.8).

scale ROS accumulating effect during light irradiation. The analysis of the dependence
of the RMSE fitting errors on the values of the two model parameters, i.e. r and k, show
that their optimal values are actually trapped within a flat and narrow valley. In this val-
ley, the gradients of the cost function with respect to these two parameters are almost
trivial. Therefore, instead of leaving the optimization to stop at a random point in this
valley (depending on the randomly given initial value and stopping criteria), the value of
r was fixed to 50. Consequently, the reaction rate constant k can be estimated as a linear
LS problem, which ensures that the unique global optimal value of k can be found. Here,
a mild assumption is made that r is dominated by the ratio between the concentrations
of the initial triplet oxygen and the initial ROS. Therefore, its value can be taken as 50,
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Figure 3.10: Variation of the fungal viability rates in response to various photon energy and fluence: (a) 3D
plot, (b) contour plot.

due to the aforementioned fact that in the normal condition of mitochondrial respira-
tion, ROS takes about 2% of the total oxygen consumption. Good agreement of the fitted
functions with the experimental data was achieved for the four data sets, as shown in
Table 3.3 and Fig. 3.5. This demonstrates the validity of the proposed model structure
and the assumption.

The estimated reaction rate constants show a dependence on the wavelengths or
their corresponding photon energy, which peak near 415nm and decline to the mini-
mum as the wavelength increases to 460nm. According to Eq. (3.2), the reaction rate
constant determines the speed of generating ROS in the photochemical reaction. The
larger the value, the faster the accumulation of the cytotoxic ROS, and thus the faster
the elimination of the fungi. On the other hand, the roll-off effect of the reaction rate
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at even shorter wavelengths, i.e. 385nm and 405nm, indicates that the sensitivity of the
endogenous PS to UVA light is lower than that to the light in the range of 415∼426nm.
However, the similar anti-fungal effect of 385nm and 405nm with that of 415nm indi-
cate that other inhibiting effects to the fungi besides inducing ROS might have also been
induced by these wavelengths, e.g. causing tryptophan photodegradation [27].

It is known in the literature that there are several types of endogenous PS respon-
sible for anti-fungal effects, including various kinds of porphyrins and flavins, depend-
ing on the fungal species. The Soret bands of porphyrins are generally in the range of
400∼410nm [28]; while some types can reach 413∼416nm [29]. On the other hand, the
Soret bands of flavins are usually at longer wavelengths. For instance, the peak absorp-
tion of acriflavin neutral (or euflavine) is at 436nm [30]; and that of cytochrome-flavin
complex is at 427nm [31]. In fact, the fitted model of Eq. (3.4) reveals that in the experi-
ments the peak absorption wavelength is at 426.6nm or 2.907eV in photon energy. This
indicates that there may be more than one type of endogenous PS in the C . al bi cans
studied in this work, which all contribute to the generation of ROS.

By simulating the model of the ROS concentration as a function of the photon energy
and fluence, the following observations can be further made. First, when the fluence is
small, i.e. He < 5J/cm2, the induced ROS concentration is not much for any photon
energy in the range of 2.7∼3.3eV. This indicates that the radiometric energy of the stim-
ulating light needs to be higher than a threshold to trigger sufficient ROS generation, no
matter how large the photon energy is. Second, as the fluence accumulates to a certain
level, i.e. He > 10J/cm2, the effects of the photon energy start to manifest. For this stud-
ied fungal strain, the range of photon energy 2.85∼2.95eV (or 420∼435nm in wavelength)
demonstrated a higher efficiency in generating ROS. These observations can be helpful
to design the therapeutic devices and the doses used in treating the infections caused by
this type of fungi.

On the other hand, the proposed model in this work also has some limitations. First,
the proposed model structure is simplified, and cannot describe the transient dynam-
ics of the PS and ROS. As another limitation, the proposed model does not distinguish
different types of ROS. As being fitted to the general oxidative stress measured by the
standard ROS assay kit, the output of the model is the changing rate of the total ROS ac-
cumulation, and hence contains the contributions from all the existing PS in the fungi.

3.5. CONCLUSIONS
In this work, a modeling approach has been developed to mathematically describe the
induced ROS in fungi, as a function of the photon energy and fluence of the stimulating
light. The method of estimating the model parameters from experimental data has also
been proposed and verified. The fitting results agree well with the main trends of the
experimental data at long time scales, e.g. from tens of minutes to a few hours. This
indicates that the proposed model structures and the parameter estimation methods are
effective to calculate the amount of accumulating ROS in the C . al bi cans, when being
stimulated by the photon energy in the range of 2.7 ∼ 3.3eV .

As another main conclusion, the photon energy within the range of 2.85∼2.95eV (or
420∼435nm in wavelength) is more effective in generating ROS in the fungi studied in
this work, and is hence more effective in treating the infections caused by this type of
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fungi.
As a potential future extension, the data-driven modeling approach can be further

extended to account for the individual contributions of the main types of endogenous
PS in the fungi to the generation of ROS. Another extension will be to develop a data-
driven approach to model the in vivo ROS generation.
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4
ANALYZING EFFICACY AND SAFETY

OF ANTI-FUNGAL BLUE LIGHT

THERAPY VIA KERNEL-BASED

MODELING THE REACTIVE OXYGEN

SPECIES INDUCED BY LIGHT

Objective: The goal of this study is to investigate the efficacy, safety, and mechanism of ABL
for inactivating Candida albicans (C. albicans), and to determine the best wavelength for
treating candida infected disease, by experimental measurements and dynamic model-
ing. Methods: The changes in reactive oxygen species (ROS) in C. albicans and human
host cells under the irradiation of 385, 405, and 415nm wavelengths light with irradiance
of 50mW /cm2 were measured. Moreover, a kernel-based nonlinear dynamic model, i.e.,
nonlinear autoregressive with exogenous inputs (NARX), was developed and applied to
predict the concentration of light-induced ROS, whose kernels were selected by a newly
developed algorithm based on particle swarm optimization (PSO). Results: The ROS con-
centration was increased respectively about 10-12 times in C. albicans and about 3-6 times
in human epithelial cells by the ABL treatment with the same fluence of 90J/cm2. The
NARX models were respectively fitted to the data from the experiments on both types of
cells. Besides, four different kernel functions, including Gaussian, Laplace, linear and
polynomial kernels, were compared in their fitting accuracies. The errors with the Laplace
kernel turned out to be only 0.2704 and 0.0593, as respectively fitted to the experimen-
tal data of the C. albicans and human host cells. Conclusion: The results demonstrated
the effectiveness of the NARX modeling approach, and revealed that the 415nm light was
more effective as an anti-fungal treatment with less damage to the host cells than the 405
or 385nm light. Significance: The kernel-based NARX model identification algorithm of-
fers opportunities for determining the effective and safe light dosages in treating various
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fungal infection diseases.

4.1. INTRODUCTION
Candida albicans (C. albicans) is widely found in nature and commonly occurs as a su-
perficial infection on mucous membranes, such as the mouth, throat, gut, and vagina
[1–3], and is the most common fungal pathogen of humans [4]. Candida species are nat-
urally found in 10%-20% of women [5]; and 75% of women have at least one episode of
vulvovaginal candidiasis (VVC) [6]. About 90% of the overall cases of VVC are caused by
C. albicans [7]. Topical antimycotic drugs and more convenient oral azole agents are the
main treatments for VVC [2]. However, C. albicans has shown increased resistance to
these drugs [8, 9]. Therefore it is crucial to identify new ways to treat fungal infections.
Photodynamic therapy (PDT) has been investigated as an alternative to treat localized
infectious diseases due to the rapid action and avoidance of drug resistance by these
pathogens [10]. Similar to PDT, anti-fungal blue light (ABL) therapy relies only on en-
dogenous photosensitizers (PS) of the pathogens, and are hence safer to use.

The hypothesized mechanism of the antimicrobial effect of PDT and ABL is that light
photons excite either exogenous PS in the former case or endogenous PS in the latter,
which, in turn, produces highly toxic ROS in cells [11]. Due to the type and content of
endogenous PS in different cells, their susceptibility to ABL can also be different. Fungal
PS content is normally higher than that of human cells. Thus, fungi are more suscepti-
ble to ABL and, hence, ABL has been widely investigated for treating fungal infections.
For instance, the inactivation rate of C. albicans by ABL was 42-fold faster than human
keratinocytes [12]. A dynamic model was developed based on the viability of C. albicans
and vaginal epithelial (V. E.) cells during ABL irradiation, which demonstrated that the
shorter ABL wavelength around 410nm achieved a higher anti-fungal effect than 450nm
[13]. The safety of ABL in treating candidal vaginitis was investigated in [14], which found
that the blue light at 405nm preferentially induced more death to the pathogenic cells
than to the human V.E. cells. Furthermore, no genotoxicity of blue light to the V. E. cells
was observed at the dosage for inactivating the pathogen. However, to the best of our
knowledge, no study has focused on the ROS concentrations in fungi and host cells for
treating VVC, i.e., C. albicans and the V. E. cells.

Some first-principle models have been proposed based on the PDT mechanism. For
instance, modeling of the dynamic changes in ROS concentrations has been well investi-
gated [15–17], which are highly nonlinear models. These first-principle models precisely
fit the dynamic changes in ROS concentrations. However, a dynamic model for the ROS
concentrations to treat fungal infections has not been established. This can be attributed
to the difficulty of using a first principle model, i.e., the parameters are related to the PS
characteristics, which are determined experimentally. For instance, up to 21 parameters
are required to describe the process related to the PS [16]. In contrast, although ABL
is believed to be caused by the PS that naturally exist in fungal cells, whose types and
amounts are usually unknown, first-principle modeling becomes even more challeng-
ing than modeling PDT.

Generally, to handle the challenges in modeling by first principles, system identifi-
cation methods (SIM) that estimate models from the data measured from complex dy-
namic processes have been well developed in control theory literature [18]. In the recent
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decades, the applications of SIM methods to identify biological and biomedical systems,
which are usually highly nonlinear, coupled and chaotic, have also been witnessed, e.g.,
in modeling arterial windkessel [19], aortic pressure [20] and electrodermal activity [21].
To deal with the nonlinearities in biological systems, various structured nonlinear dy-
namic model identification methods have been investigated, e.g., Wiener model [20] and
NARMAX model [22].

Despite all the aforementioned efforts in biomedical system identification, identify-
ing a nonlinear dynamic model for anti-fungal blue light therapy has not yet been tar-
geted in the literature. However, some attempts have been made to handle similar prob-
lems. For instance, a closed-loop control scheme has been implemented to track the
photobleaching trajectory during PDTs in [23], which is an ON/OFF controller designed
without any model. A data-driven modeling method has been investigated in [24], which
basically approximates the nonlinear PDT dynamics by a linear integrator model. Until
now, no nonlinear model based on experimental data has been established. Further-
more, no study has analyzed the effects and safety of ABL therapy based on a dynamic
ROS model.

In this study, ROS levels were measured in C. albicans and V. E. cells under irradiation
from three LED light sources of different wavelengths, including 385, 405, and 415nm.
Then, these experimental data were fitted using a popular kernel-based method [25],
e.g., nonlinear autoregressive with exogenous inputs (NARX) modeling [26, 27]. The ad-
vantage of using kernel based learning is mainly the treatment of the nonlinearity of a
complex dynamic process by linearly combining a set of kernels. Furthermore, sparse
kernel modeling can be applied to select the best kernel centers from the training sam-
ples. One popular approach is based on random selection by minimizing some cost
functions, e.g., using the repeating weighted boosting search (RWBS) algorithm [28],
which is an evolutionary algorithm based on weight boosting search. In this method,
the kernel parameters and the centers are chosen by minimizing a MSE objective func-
tion. However, to search one regressor, it needs to be repeated for multiple times with
initial random sampling, before finally converges to the global optimum. This iteration
may reduce the algorithm efficiency. To avoid this iteration and hence improve the ef-
ficiency, we choose the particle swarm optimization (PSO) algorithm instead of RWBS,
which is a proven method for its fast searching speed [29]. The fitting accuracy of the
NARX model to ROS detected in C. albicans and V. E. cells was satisfactory.

The contributions of the current study are three-fold. First, we conducted blue light
stimulation experiments and measured the induced ROS in both C. albicans and V. E.
cells, in response to three different wavelengths (385, 405, and 415nm). Second, a kernel-
based NARX model was developed and applied to the experimental data. Moreover, a
new PSO-based kernel selection algorithm was proposed and applied to improve this
NARX model. The fitting accuracy demonstrated the effectiveness of the modeling ap-
proach. Third, we analyzed the optimal ABL wavelength for treating VVC using the sim-
ulation results.
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4.2. METHODS

4.2.1. NARX MODELING
The “kernel trick” was used to reduce the experimental burden and treat the nonlinearity
of the dynamics of ROS accumulation, e.g., using the NARX model with a suitable kernel
function. A general discrete-time nonlinear system is described as:

yk = f (yk−1, · · · , yk−ny ,uk−1, · · · ,uk−nu )+εk , (4.1)

where uk ∈ Rm , yk ∈ R`, and εk ∈ R` are respectively the input, output, and noise vector
at time instant k; f (·) is a nonlinear function; and ny ,nu ∈ N represent respectively the
output and input delays, e.g., uk−nu = uk · z−nu , with z−1 standing for the one step delay
operator. The noise εk is zero-mean white Gaussian with a covariance matrix Σ, i.e.,
εk ∼N (0,Σ).

To model the changes in intracellular ROS concentrations by Eq. (4.1), let yk denote
the ROS concentration at the kth time sampling point, f denote the ROS generation
process, ŷk denote the estimated value of yk , and uk denote the irradiance of the light.
In ABL, the irradiance is usually kept constant during the entire treatment process, i.e.,
uk ≡ u,∀k > 0. So in (4.1), it is not necessary to consider the inputs at different delay
steps. Instead, the effect of the exogenous input u can be considered as a step response.
That is, when the light is switched on, the excitation of the ROS starts. Mathematically,
this process can be rewritten as:

yk = ŷk +εk = f̃u(yk−1, · · · , yk−ny )+εk , (4.2)

where f̃u(.) is defined as:

f̃u(yk−1, · · · , yk−ny ) =
{

0, if uk = 0

f (yk−1, · · · , yk−ny ), if uk = u
. (4.3)

For simplicity, collect the sequence of yk−1, ..., yk−ny into a column vector, and de-

note it as xk = [y T
k−1, ..., y T

k−ny
]T . Let the number of kernel basis functions be n. Eq. (4.2)

was changed into the following regression model using some suitable functions that ap-
proximate f (·) with arbitrary accuracy,

ŷk =Σn
i=1wi gi (xk ) (4.4)

where wi ∈R`, i = 1, · · · ,n are the corresponding weighting vectors; and gi ,∈R, i = 1, · · · ,n,
is a kernel function chosen from the popular candidates listed in Tab. 4.1.

The number of I/O data samples was denoted by N . The output vectors were col-
lected into a matrix as:

y = [
y1 y2 y3 · · · yN

]T ∈RN×` (4.5)

Similarly, the outputs of the kernel functions excited by x1, · · · , xN were collected into the
following regressor matrix
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Table 4.1: Some popular kernel functions, with xi being the center and ai ,bi , and ci being the parameters of
the i -th kernel.

Kernel gi (x)
Linear ai xT xi +bi

polynomial (ai xT xi +bi )ci , ai > 0,ci ∈N+

Gaussian(RBF) exp

(
− ‖x−xi ‖2

2

2a2
i

)
Laplace exp (−ai‖x −xi‖)

G =

 g1(x1) · · · gn(x1)
...

...
g1(xN ) · · · gn(xN )

 ∈RN×n (4.6)

= [
g1 g2 g3 · · · gn

]
,

where gi = [gi (x1), · · · , gi (xN )]T .
With the aforementioned definition, Eq. (4.4) can be written in compact form as

y =G w , (4.7)

where w = [
w1 w2 w3 · · · wn

]T ∈Rn×`.
With a given regressor matrix, the only parameter in Eq. (4.7) to be estimated is the

weight matrix w . On the other hand, the regressor matrix is determined by the kernels
with the set of parameters {xi , ai ,bi ,ci , i = 1, · · · , N }. The method to determine these
kernels will be detailed later in what follows.

First, to solve w , we use the QR factorization of G , i.e.,

G = P A, (4.8)

where A ∈ Rn×n is an upper diagonal matrix; P ∈ RN×n is as orthogonal matrix. There-
fore, Eq. (4.7) can be rewritten as

y = G ·w

= P A ·w

= P ·θ (4.9)

where θ = Aw ∈Rn×`, and can simply be solved as θ = P T y .
Learning a NARX model from data requires estimating the weights θ and the param-

eters of the kernel functions, e.g., the kernel center xi . In this study, a kernel selection
method based on particle swarm optimization (PSO) was applied to select a subset of
the best kernels from the full set of candidate kernels. This selection algorithm is de-
tailed in the Appendix. A.1. Incorporated by this selection algorithm, the entire NARX
model identification algorithm is summarized in Appendix A.2.1

1The codes implementing these algorithms are available from https://drive.google.com/drive/
folders/1tSwPW5aBiS3KYAWcTKwRapLasZ2ZqdSD?usp=sharing, or by contacting with the author.

https://drive.google.com/drive/folders/1tSwPW5aBiS3KYAWcTKwRapLasZ2ZqdSD?usp=sharing
https://drive.google.com/drive/folders/1tSwPW5aBiS3KYAWcTKwRapLasZ2ZqdSD?usp=sharing
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4.2.2. LED LIGHT SOURCE

Three different types of LEDs with the specified peak wavelengths respectively at 385nm,
405nm, and 415nm were applied in this work. The types of these LEDs and their main
parameters are listed in Tab. 4.2. Their spectral power density (SPD) curves, as measured
by a Maya2000Pro spectrometer (Ocean Optics, US), are depicted in Fig. 4.1(a). In this
figure, every SPD curve is normalized with respect to its integral over the range of the
measured wavelength, i.e., with each normalized SPD curve integrating to 1.

The LED light sources were designed following the procedures in [30], and were driven
by a constant current source with PWM current level control to stabilize the output irra-
diance [31]. The LED chips are arranged in a 1.5cm-by-1.5cm square as a 4-by-4 array.
The three LED light sources can deliver an irradiance of 50mW /cm2 uniformly within a
60cm-diameter circle. Fig. 4.1(c) shows the simulated irradiance distribution, where the
average irradiance in the 6cm-diameter circle is 49.39mW /cm2, with a relative variation
of only 6.56%. The irradiance was measured and confirmed by a PM100D power meter
with a S120VC probe (Thorlabs, US). The schematic diagram of the electrical drive and
control system and the experimental setup are illustrated in Figs. 4.1(b) and 4.1(d).

Table 4.2: The LEDs used and their main parameters, where FWHM represents full width at half maximum.

type wavelength FWHM

Vishay VLMU3500-385-120 385nm 10nm
Kingbright ATDS3534UV405B 405nm 15nm

LUMILEDS LUXEON LHUV-0415-A070 415nm 13.7mn

4.2.3. CULTURE CONDITIONS FOR C. albicans AND THE V. E. CELLS

The human host cell line used in this study was the vaginal epithelial cell strain (VK2/E6E7
ATCC CRL-2616, ATCC, Manassas, VA, USA). The cell line was incubated in Dulbecco’s
modified Eagle’s medium (Gibco, Carlsbad, CA, USA) supplemented with 10% fetal bovine
serum at 37oC in a humidified atmosphere with 5% CO2.

The C. albicans used in this study was the 3147 (IFO 1594) strain (ATCC). The fungal
strain was cultured in tryptic soy broth at 26oC. To maintain the concentration of the
fungal suspension within the same range, the absorption of the suspension was mea-
sured at 550nm using the U-3900H spectrophotometer (Hitachi, Tokyo, Japan) before all
experiments. The absorption levels measured by this equipment were always controlled
in the range of 2.3-2.5, which corresponded to a fungi density of 107 CFU/ml.

4.2.4. ROS ASSAY

The fungi were centrifuged, separated from the medium, and dissolved in a 1,000-fold
dilution of the ROS fluorescent probe (DCFH-DA assay kit, Beyotime Institute of Biotech-
nology, Beijing, China) in phosphate buffered saline. After incubating the suspension at
37oC in a shaker for 30 min, the suspension was centrifuged three times to remove the
redundant probe. Then, the suspension was seeded into a 96-well plate and was irradi-
ated with one of the three LED light sources.
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(a) (b)

(c) (d)

Figure 4.1: LED light source design: (a) normalized SPD of the four types of LEDs, (b) electrical scheme, (c)
simulated irradiance distribution, (d) photo of the experimental setup.

During the experiment, the cell suspension in one well was resuspended and taken
out of the plate consecutively at 0, 5, 10, 15, 20, 25, and 30 min. The removed suspension
in one well was placed in the dark; while the rest wells were kept under the irradiation
of the light. Therefore, the fluence received by each well was 0, 15, 30, 45, 60, 75, and 90
J/cm2, respectively, considering the light irradiance of 50 mW /cm2. The intracellular
ROS level of the cell suspension was measured immediately after the light treatment us-
ing a VL0L0TD0 Varioskan LUX microplate reader (Thermo Fisher, Waltham, MA, USA),
with excitation and emitting wavelengths of 488 and 525 nm, respectively.

Finally, a sequence of ROS fluorescent levels up to 30 min were obtained. The entire
experimental method was repeated three times independently. In total, triplicate ex-
periments were performed. In each repeating experiment, a new cell strain was thawed
and incubated, then seeded into a new 96-well plate, and finally irradiated following the
aforementioned procedures.
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4.2.5. MODELING THE VIABILITY OF C. albicans AND V. E. CELLS
Although the light-induced ROS causes cytotoxicity, the susceptibility to the ROS of the
two cells can still be different, in the sense that the same amount of ROS may cause
different viability reduction in both types of cells. To further investigate this issue, the
survival rates of C. albicans and V. E. cells affected by ABL were modeled.

The viability models take the following form, which is a piecewise function [13, 32],
including a shoulder at the beginning of the ABL to represent the accumulating process
of the light-induced cytotoxic ROS.

Nc,e (t ) =
{

Nc,e (0), t < τ
Nc,e (0) ·e−κ(t−τ), t ≥ τ , (4.10)

where Nc,e (t ) is the survival rate at time t ; the subscripts “c, e” respectively represent the
C. albicans and V. E. cells; κ is the decaying rate coefficient; and τ is the time constant of
when the inactivation starts.

4.2.6. STATISTICS
In the ROS assays, the raw data were processed to produce the mean and standard devia-
tion for each treatment time interval. The significance of ROS levels and viability of cells
were tested by the Student’s t-test. The values of P < 0.05 were considered statistically
significant.

4.3. RESULTS

4.3.1. MEASUREMENTS OF THE ROS CONCENTRATIONS IN C. albicans AND

V. E. CELLS DURING ABL IRRADIATION
The time sequences of the ROS concentrations in the C. albicans and V. E. cells were
measured using all three light sources. The measured fluorescence levels were processed
as y = R

R0
, where R0 is the initial ROS fluorescence of the cells, i.e., the ROS level not

altered by light, as the control group; R is the measured ROS fluorescence level after
the ABL irradiation, as the treatment group; and y is the processed relative fluorescence
level. We denoted the relative change in the C. albicans ROS level as yc ; and similarly
denoted that of V. E. cells as ye . The yc and ye values irradiated by ABL of the three
wavelengths from 0 to 30 min are plotted in Fig. 4.2.

After C. albicans was exposed to light for 5 min, the relative ROS concentration yc

increased significantly in all cases (P<0.05); yc increased 10-12 times within 30 min. The
ye value of the V. E. cells increased significantly after 5 min of light exposure in all cases
(P<0.05); ye was increased 3-6 times within 30 min. Considering the experimental data
from the both cells together, yc was significantly higher than ye after 15 min of irradiation
in all cases (P<0.05).

4.3.2. NARX MODELING AND COMPARISON BETWEEN PSO AND RWBS KER-
NEL SELECTION METHODS

The NARX was used to predict the dynamic changes in C. albicans ROS concentrations;
and the data from the experiments with different wavelengths were fitted. The relative
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Figure 4.2: Rrelative ROS levels of C. albicans and V. E. cells under irradiation with three wavelengths of ABL

ROS concentration of C. albicans at the kth time sampling point was denoted by yc (k).
Here, k is from 1 to 7; and corresponded C. albicans was irradiated for 0 to 30 min with a
step size of 5 min. Let ny = 2, i.e., in a second order nonlinear dynamic form. Then, the
NARX model can be written as:

yc (k) = f̃u(yc (k −2), yc (k −1)) (4.11)

The ROS concentrations of the cells irradiated by 385, 405, and 415nm wavelength
light were measured as time-series data. These time-series data were used to estimate
the NARX model. More specifically, seven data sampling points were processed with a
delay of two steps to generate five pairs of I/O data as required in Eq. (4.11).

The NARX model was estimated as described in Sec. 4.2.1 using these five pairs of
I/O data. Then, the first two data sampling points were taken to predict the third point.
After that, the iteration was continued by plugging the predicted points into the right
hand side of Eq. (4.11).

Here, we compared the kernel selection methods respectively by the PSO and RWBS
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algorithm [28], on fitting the NARX model to the data from the ABL experiment on the
C. albicans under the irradiation of the 415nm light. The parameters of RWBS algorithm
were chosen the same as those used in [28], i.e., population size Q = 40, outer loop repeat
times N = 7, and inner loop repeat times K = 600. The PSO parameters were Q = 40,
N = 1 and K = 5, which can yield comparable model accuracy as the RWBS algorithm,
as listed in Tab. 4.3. The weighting factors of Eq. (A.1) in Appendix A.1 were set to d1 =
0.6,d2 = 0.6,d3 = 0.5 empirically.

For this problem, the average time cost of running the RWBS algorithm was about 2.7
seconds; while the average time cost of the PSO algorithm was only about 0.8 seconds.
Both of them ended up with 2 best kernels.

Table 4.3: Comparison of the efficacy and accuracy of different kernel selection algorithms of NARX model.

Selection algorithm RMSE Time cost (s)
RWBS 0.5642 2.747

PSO 0.5407 0.8364

4.3.3. NARX MODELING BASED ON C. albicans ROS
To select a best kernel for gi (x) from the candidates listed in Tab. 4.1, the NARX models
were compared in simulations. They were compared in terms of the fitting error of the
RMSEs of NARX models, which are shown in Tab. 4.4.

Table 4.4: Comparison of the accuracy of the NARX models with different kernels fitted to the data from the
experiments with different wavelengths.

Wavelength RMSE with different kernels
[nm] RBF Laplace Linear Polynomial
385 0.8676 0.2019 0.8662 0.6051
405 0.7319 0.3163 0.9407 0.5748
415 0.2108 0.2931 0.2393 0.2394

Average 0.6035 0.2704 0.6821 0.4731

Since the Laplace kernel performs the best in the simulation, we chose the NARX
model with the Laplace kernel to model the process in the following. This predicting
results of the NARX model are shown in Fig. 4.3.

4.3.4. NARX MODELING BASED ON MEASURED ROS IN V. E. CELLS

Similar to section III.C, the NARX model was used to predict the dynamic changes in the
ROS concentrations of V. E. cells. The NARX model took the form of Eq. (4.11). As the
increase in ye was similar to that of yc , we chose NARX with the Laplace kernel to model
the process. The modeling accuracy of the NARX models against the data collected from
different wavelengths is listed in Tab. 4.5 and plotted in Fig. 4.4.
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Table 4.5: The RMSEs of the NARX model with the Laplace kernel estimated by the experimental data from V.
E. cells

Wavelength 385nm 405nm 415nm Average
RMSE 0.0544 0.0827 0.0409 0.0593

4.3.5. ANALYZING THE SAFETY AND EFFICACY OF ABL THERAPIES VIA NARX
MODELS

In the above sections, NARX models were established to estimate the ROS concentra-
tions induced by single-wavelength ABL for C. albicans and V. E. cells. In this section,
the ROS concentrations in the cells were compared using different NARX models. More
specifically, we plotted the tuple of (yc , ye ) stimulated by the same fluence ranging from

Figure 4.3: The NARX model predicting the measured relative ROS concentrations in C. albicans from the 385,
405 and 415nm light irradiation experiment, respectively.
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0 to 90 J/cm2 with a step size of 15 J/cm2. Here, fluence was calculated as the product
of irradiance and irradiation time. The results are shown in Fig. 4.5. A dash line yc = ye

was plotted to better reflect the trends in the figure. It can be clearly observed that the
ROS generation was greater in the C. albicans than in the V. E. cells for each wavelength
and at a same amount of fluence. As shown in Fig. 4.5, the red dash curve (415nm) is the
lowest one among the three curves, which indicates the consistently lowest ROS genera-
tion in the V. E. cells under the 415nm light exposure. Therefore, the 415nm light had less
damage to the human host cells than the 385nm and 405nm. In comparison, the 405nm
light was the most harmful to the V. E. cells.

4.3.6. COMPARISON OF THE NARX MODELS WITH LINEAR AR MODELS IN

FITTING THE EXPERIMENTAL DATA
To further show the advantage of the nonlinear NARX modeling approach, linear au-
toregressive (AR) models (see [18]) were also identified to predict the dynamic changes
of ROS in the C. albicans and V. E. cells. Similar to the NARX model, the delay step was
also set to 2. The RMSEs of the AR models are listed in Tab. 4.6. Clearly, the accuracy of
the AR models was much lower than that of the NARX models with the Laplace kernels,
which have been reported in Tab. 4.4 and 4.5, respectively for C. albicans and V. E. cells.

Table 4.6: The RMSE of the AR model fitted to data of all the three wavelengths.

Wavelength [nm] C. A. V. E.
385 3.6702 0.9402
405 3.2734 1.6248
415 2.1904 1.3077

Average 3.0477 1.2909

4.3.7. GENERALIZED NARX MODEL FOR SHORT WAVELENGTH ABL THER-
APY

In this section, we developed a generalized NARX model to fit the experimental data
from all three wavelengths. Here, the NARX model identified by the experimental data
with one wavelength was used to fit the experimental data to all three wavelengths. The
average fitting RMSEs of the NARX to the C. albicans experimental data are listed in Tab.
4.7. The NARX with a polynomial kernel estimated by 385 and 405nm data performed
well with a good generalized capability. Similarly, the polynomial kernel also showed
good generalized capability for the V. E. cells data. The NARX model estimated by the
405nm wavelength data performed the best of all.

4.3.8. THE SURVIVAL RATES OF C. albicans AND V. E. CELLS AFFECTED BY

ABL
By the aforementioned observations from Fig. 4.5, the 415nm was the best choice for
treating C. albicans infected VVC; while the 405nm was the worst. Therefore, we only
need to take these two extreme cases to study the inactivating effects on both C. albicans
and V. E. cells. It shall be emphasized that since the main contribution of this work is to
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develop and verify the kernel-based NARX models of light-induced ROS concentrations,
extensively repeating the well-studied viability assays is out of its scope. On the other
hand, in our previous work [13], such experiments with exactly the same types of cells
and experimental settings were already performed, which had resulted in the viability
data, i.e., Nc (t ) and Ne (t ) for t = 0,5,15,20,25 min, from respectively the 405nm and
415nm light irradiation. The details of the applied materials and methods can be found
therein.

Eq. (4.10) was fitted to these viability data, and applied to estimate the lethal doses
of the V. E. cells. The fitted parameters are listed in Tab. 4.8, with which the lethal doses
of the V. E. cells were finally estimated, and are listed in Tab. 4.9. Note that calculating
LD90 of the V. E. cells is especially relevant, because at the max fluence applied to the C.
albicans, i.e., after the irradiation by either of the wavelengths for 25min, Nc reached the
order of 10−3. However, at the same dosage, the survival rates of the V. E. cells were still
a bit higher than 0.5, by either the 405nm or 415nm light. Since the treatment target had
already been achieved, it was not necessary to further apply higher fluence to the V. E.
cells. Therefore, the LD90 calculated by the model is a reasonable estimate of the dosage
for killing up to 90% V. E. cells.

Furthermore, the tuples of (Nc , Ne ) caused by the same dosages are illustrated in Fig.
4.6. Besides, linear lines were fitted to show the descending trends of the V. E. cells, as the
viability rates of the C. albicans decreased. The slopes of the linear lines were −0.4733
and −0.4031, as respectively fitted to the experimental data of the 405nm and 415nm.

4.4. DISCUSSION

4.4.1. EXPERIMENTAL AND SIMULATION RESULTS

In this study, the ROS generated during anti-fungal light irradiation experiments were
measured with three different wavelengths. The main objectives were to compare the
effects of the three different wavelengths on inducing ROS, and to build a NARX model
to predict the changes in ROS levels.

In our experiments, light-induced ROS increased significantly in C. albicans, demon-
strating the effectiveness of the ABL therapy. On the other hand, the ROS in the V. E. cells
was also increased during blue light irradiation. However, the increased ROS ratio of V.
E. cells was much lower than that of C. albicans, which demonstrates the safety of ABL
therapy.

The ROS level produced by the 405nm light was slightly higher than that of the other
two wavelengths, indicating a higher effectiveness for inducing ROS in C. albicans. This

Table 4.7: The accuracy of the estimated NARX models fitted to data of all the three wavelengths. The experi-
mental data used were the C. albicans time-series ROS concentrations.

Wavelength Average RMSE with different kernels
[nm] RBF Laplace Linear Polynomial
385 1.3707 1.1629 2.1573 0.9875
405 1.8357 2.8710 2.0509 0.9402
415 1.5546 1.1629 1.6395 1.5785
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Figure 4.4: The NARX model predicting the measured relative ROS concentrations in V. E. cells from the 385,
405 and 415nm light irradiation experiment, respectively.

coincided with the finding that the main PS in C. albicans is porphyrins [12, 33], whose
peak absorption wavelength is 405nm. Thus, the 405nm blue light excited the porphyrins
more effectively than the other two wavelengths.

V. E. cells were also most affected by the 405nm blue light. Although the main en-
dogenous PS in V. E. cells is flavin adenine dinucleotide, whose peak absorption wave-
length is about 450nm [34], they also include considerable coproporphyrin content [14].
Besides, the molar extinction coefficient of coproporphyrin is about 45 times higher than
that of flavin adenine dinucleotide [35, 36]. Thus, 405nm light also induced the ROS ef-
fectively in V. E. cells.

The main difficulty with ROS assay experiments is that the initial cellular ROS level is
difficult to control. The initial cellular ROS level is proportional to the cell concentration,
which is strictly controlled by absorption of the fungal suspension. Also, the culture
conditions, e.g., media and passage or culture time, can affect the amount of cellular
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Table 4.8: Fitted parameters of the viability model (4.10).

405nm 415nm
τ κ τ κ

C. A. 769 85.9 450 3.80e-3
V. E. 56 224.3 526 5.81e-4

Table 4.9: Estimated lethal doses, LD50 and LD90, respectively for 50% and 90% viability reduction.

405nm 415nm
LD50 [J/cm2] 87.1 85.9
LD90 [J/cm2] 282.5 224.3

PS [37]; therefore, affecting the initial ROS level and ability of ROS to accumulate. In this
study, the culture conditions were strictly controlled. All experiments were performed
with fresh-thawed fungal strains, which were cultured for the same durations.

On the other hand, the performance of the polynomial kernel was best among the
four kernels, when the generalized NARX model was used to fit the experimental data
of all three wavelengths. The fitting accuracy of the linear kernel was not satisfactory,
which was attributed to the nonlinearity of the ROS accumulation process. For instance,
some kinetic models of light-induced ROS have been investigated [38–40] and all of these
kinetic models demonstrated high nonlinearity.

In Sec. 4.3.7, a generalized NARX model was developed to predict the ROS induced
by the three wavelengths of light. In fact, the 385, 405 and 415nm wavelengths include
almost all of the short wavelength blue light. Thus, this generalized NARX model was
useful to predict the ROS concentration with any short wavelength blue light. We did
not perform experiments with long wavelength ABL, since it does not inactivate fungal
strains [13, 34]. Thus, short wavelength ABL is a potential and effective treatment; and
our generalized NARX model has provided a satisfactory prediction of the light-induced
ROS concentration in responses to short wavelength blue light.

4.4.2. COMPARISON OF THE EFFECTS BASED ON THE EXPERIMENTAL AND

SIMULATION RESULTS OF ALL THREE WAVELENGTHS
The ROS concentrations in the different cells were compared in Sec. 4.3.5. The dash line
in Fig. 4.5 represents yc = ye , indicating the same ROS concentrations in C. albicans and
V. E. cells in response to the same fluence of light. All three curves were always below
it, which explains why the relative increase of ROS in V. E. cells was lower than that of
C. albicans. More specifically, by the same relative ROS concentrations in C. albicans
(yc =8), the increase in the ROS ratio in V. E. cells was 2.6, 3, and 2.13, respectively with the
385, 405, and 415nm light. Obviously, the 415nm light has a more effective anti-fungal
function with less damage to the human host cells than 385 and 405nm.

However, the same amount of ROS may still cause different viability reduction in dif-
ferent types of cells. The slopes of the fitted lines in Fig. 4.6 help to further investigate
this issue, which turned out to be −0.4733 and −0.4031, as respectively fitted to the ex-
perimental data of the 405nm and 415nm reported in our previous work [13]. The slope
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Figure 4.5: Comparing the light-induced ROS concentration using the NARX models identified from the data
of two types of cells

reflects the resistance of the V. E. cells to the light relatively to that of the C. albicans. The
lower its absolute value, the more resistant the host cells to the light than the pathogens.
Therefore, Fig. 4.6 shows that the 415nm light has a more effective anti-fungal function
with less damage to the human host cells than the 405nm. Putting the observations from
both Fig. 4.5 and Fig. 4.6 together, it can be concluded that the 415nm is the best wave-
length to treat this disease, in terms of both the efficacy and safety.

Notably, the 405nm ABL was the most effective wavelength to induce the ROS in C. al-
bicans and V. E. cells. However, the 415nm is the better wavelength for treating VVC. This
result reminds us that we should not only focus on the ROS accumulation by pathogens,
but pay attention to the damage to host cells. The peak absorption of specific pathogens,
such as C. albicans, is 405nm, determined by the endogenous PSs. However, this is not
to say that the 405nm is always the best ABL wavelength to treat candida infections.

4.4.3. THE SAFETY OF ABL
Clinically applicable anti-fungal strategies shall selectively inactivate pathogenic fungi,
while sparing the normal host cells and tissues. As a safety study of ABL, both the ROS
accumulation and survival rates were investigated and compared in C. albicans and V.
E. cells. The increased ROS concentration in the V. E. cells was much lower than that
in the C. albicans, implying the favorable selectivity of the ABL. During the 415nm light
exposure, no significant inhibition of the V. E. cells was observed within the beginning
10min; while 47% of the C. albicans was killed at that time. In the end, over 58% of the V.
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Figure 4.6: The survival rates for the C. albicans and V. E. cell in the irradiation of three wavelengths, i.e., 385,
405, and 415nm.

E. cells survived after the 415nm light irradiation, which almost completely inactivated
the C. albicans. The aforementioned results suggest that there exists a therapeutic win-
dow, where the C. albicans can be selectively inactivated, while the majority of V. E. cells
are preserved.

Furthermore, the maximum ABL fluence applied in this study was 90J/cm2. Such a
fluence is a safe dose without causing any genotoxicity to human host cells. It has been
reported by other authors that no ABL induced DNA damage occurred in the epithelial
cells up to the 216J/cm2 fluence of 405nm light [14]. For the more sensitive human
retinal pigment epithelial (RPE) cells, it has also been observed that the induced damage
to the mitochondrial DNA in the RPE cells was less at the fluence of 60J/cm2 than that at
30J/cm2 [41]. This may be attributed to the DNA repair system that was activated after
the 30J/cm2 light treatment. In fact, it was proved that the mitochondria are capable of
repairing oxidative DNA damage to some extent, e.g., the damage to bases and single-
strand breaks [42].

4.5. CONCLUSION
In this study, we measured the changes in intracellular ROS of C. albicans and V. E. cells
for 30 min with irradiation of 385, 405, and 415nm light. Furthermore, we proposed a
modeling scheme using a kernel-based NARX structure, whose kernels were selected by
a newly developed algorithm based on PSO optimization. This NARX model was used to
fit the experimental data. High fitting accuracy was achieved by the model, demonstrat-
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ing the effectiveness of the proposed modeling technique. Both the experimental data
and the numerical results from the NARX model indicated that the ROS ratio of V. E. cells
was always lower than that of C. albicans, demonstrating the safety of the ABL therapy.
Moreover, a key conclusion was that the 415nm wavelength blue light was the most ef-
fective wavelength, with the least damage to V. E. cells. More importantly, the proposed
kernel-based NARX model identification algorithm can also be applied to determine the
effective and safe light dosages in treating other types of fungal infection diseases.
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5
MULTIPLE MODEL BASED NARX
MODELING OF EGFR SIGNALING

NETWORKS IN MAMMALIAN CELLS

The epidermal growth factor receptor (EGFR) is an important factor that regulates cell
growth, survival, proliferation and differentiation. The dynamics of the concentrations
of the proteins in an EGFR signaling network are nonlinear and chaotic. Modeling by
first principles results in Michaelis-Menten type equations. These equations involve many
unknown parameters, e.g. reaction rates and initial conditions, which are difficult to be
measured or estimated. To avoid these modeling difficulties, we propose an approach us-
ing kernel-based NARX (nonlinear autoregressive with exogenous inputs) techniques. The
novelty of this work is two-fold. First, we propose a method based on particle swarm opti-
mization (PSO) to select optimal kernels of the NARX model. Second, we propose an adap-
tive estimation approach based on the multiple model principle to handle the chaotic
nature of the EGFR network. The convergence of the model adaptation is also analyzed.
Simulation results have verified the effectiveness of the proposed methods in modeling the
nonlinear and chaotic EGFR signaling network.

5.1. INTRODUCTION
The epidermal growth factor receptor (EGFR) belongs to the family of protein-tyrosine
kinase receptors. EGFR is widely distributed on the surface of mammalian epithelial
cells, fibroblasts, glial cells and keratinocytes[1]. EGFR signaling pathway plays an im-
portant role in cell growth, proliferation and differentiation. In [2, 3], the first principle
dynamic models of the EGFR signaling network are proposed, which are highly nonlin-
ear and chaotic.

To describe the dynamics of chemical or biological processes, time-series models are
widely applied [4–7]. Like the EGFR signaling network, these process are nonlinear, and
contain time-varying parameters due to aging, exogenous disturbances. Various nonlin-
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ear time-series models have been studied to handle these difficulties. In [4, 7, 8], NARX
models are parameterized to identify the nonlinear chemical processes therein. On the
other hand, to tackle the nonlinearities in complex dynamical processes, kernel and or-
thogonal basis function based learning [9–11] and system identification [12] techniques
are also becoming more and more popular.

In kernel based methods, sparse kernel modeling has been widely applied in se-
lecting the best kernel centers from the training samples. A popular method for ker-
nel selecting is the orthogonal least squares (OLS) algorithm [13, 14]. A limitation of
this method is choosing the centers with a fixed common Gaussian RBF kernel variance.
However, this kernel variance is critical for the generalization of the model. Another ap-
proach is selecting the kernel centers and common variance at the same time by global
optimizing methods. For example, in [15], a genetic algorithm (GA) has been used to
tune the parameters of the kernel though optimizing the model performance.

Like GA, PSO is also a global optimizer. The PSO algorithm is originally attributed to
[16, 17], and has been used in computer science and chemical engineering [18–20]. The
major advantage of PSO is the fast convergence speed. In [21] the convergence speed
between GA and PSO is compared, which shows that PSO converges faster and performs
better than GA does. Another global optimizer called repeating weighted boosting search
(RWBS) [22] has also been applied in kernel selection [23]. In this method, the kernel
variance and the center are chosen by minimizing an MSE objective function. However,
to search one regressor, it needs to repeated for multiple times with initial random sam-
pling before finally converges to the global optimum. This iteration may reduces the
algorithm efficiency. To avoid this iteration and hence improve the efficiency, we pro-
pose to use PSO algorithm instead of RWBS for kernel selection. The PSO algorithm has
been used to optimize the parameters, such as input or output delays of NARX models
[24, 25]. However, PSO has not yet been applied in selecting kernels in NARX models
in this literature. In this work, we propose to select the centers and the variance of the
kernels by PSO algorithm, and will hence call it “NARX-PSO” for brevity.

On the other hand, the time-series data of the concentrations in the EGFR signaling
network shows a chaotic characteristic, because the key parameters (such as the ini-
tial concentration of proteins) vary with time. In adaptive control, one of the popular
method is to use multiple models (MM) based adaptive structure [26–29], where the lo-
cal models are convexly combined. The weighting coefficients are also updated during
the model adaptation which can be regarded as the second level adaptation, and can
dramatically increase the predicting accuracy.

In this paper, the time-series data are generated by simulating the Michaelis-Menten
type first principle model of the concentrations of various proteins in the EGFR signaling
network. From the data, we identify NARX models that can predict the dynamic changes
of a protein or the phosphorylated fraction of a protein group therein. Since the ini-
tial concentration of the EGF can largely change the dynamic trajectories of any other
proteins in this network, this process exhibits a chaotic nature. We will therefore build
up multiple NARX models corresponding to different initial conditions, and adapt the
weight of each model to track the trajectories initiated at any arbitrary EGF concentra-
tion.

This paper is organized as follows. Section 2 introduces the first principle model of
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the EGFR signaling network. In Section 3, NARX model and kernel selection method
are proposed. Section 4 is devoted to developing the adaptive multiple model approach.
Section 5 gives the simulation results to show the effectiveness of the proposed approach.
Section 6 concludes the paper.

5.2. EGFR SIGNALING NETWORK
The epidermal growth factor receptor (EGFR) [1] belongs to the family of protein-tyrosine
kinase receptors, which regulates cell growth, survival, proliferation, and differentiation.
Because of EGF binding, the Grb2 (growth factor receptor-bound protein 2) starts bind-
ing and being activated, Shc (generic shell script compiler) and PLCγ (Phospholipase C,
gamma) are also phosphorylated.

The EGFR signaling network is illustrated in Fig. 5.1. While EGF binds to the extra-
cellular domain, it causes a series of reactions including 23 proteins or receptors. For
brevity, we only introduce the beginning part, i.e. the reactions from EGF to RP, to de-
scribe this network. This subnetwork starts with EGF binding to the extracellular domain
of the monomeric EGFR (designated as R) in step 1, i.e. the reaction 1 in Fig. 5.1, and then
forms the EGF-EGFR complex (designated as Ra). EGF binding drives the association of
the two receptor monomers into an activated receptor dimer (step 2). A 2:2 Ra complex
is the predominant form of the receptor dimer (designated as R2). The phosphorylation
of tyrosine residues by receptor tyrosine kinase is combined into a single step 3, yielding
a form designated as RP [2]. Then, the reactions with RP and other groups are activated.
A quantitative description of the short term EGFR signaling of these process is described
in [2], which contains a set of kinetic models describing the temporal changes of the
concentration of all the ingredients. The reacting rate in step n is denoted as vn . The dy-
namics of each step are described by the rate equations and kinetic models are provided
in the Appendix. A.3.

In this work. we treat this first principle model as the underlying true process, and
simulate it to generate the time-series data to identify the NARX model. Note that only
the step 1 process reacts in the extracellular domain. The concentration of EGF is hence
adjustable. Different initial concentrations of EGF can be used to simulated the first
principle model, and to test the chaotic nature of the dynamics.

5.3. NARX MODELING AND KERNEL SELECTION

5.3.1. PRELIMINARIES
Clearly from the model described in the Appendix. A.3, the dynamics of the EGFR sig-
naling network is nonlinear and highly coupled. This complicated nonlinearity can be
handled by the “kernel trick”, e.g. by the NARX model with RBF kernels. For brevity,
the preliminaries refer to NARX is omitted, due to the same NARX model was already
introduced in Chapter 4.

5.3.2. KERNEL SELECTION BY PSO
The objective of kernel selection is to select a subset of ns (ns ¿ n) best kernels from the
full set of n candidate kernels. One popular approach to choose the centers is based on
random selection by minimizing some cost functions, e.g. using the RWBS algorithm in
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Figure 5.1: The EGFR signaling network. Containing 25 reaction steps and 23 proteins.

[23], which is an evolutionary algorithm based on weight boosting search. In [22], it has
been shown to have a similar convergence speed as GA. Here, we propose to use the PSO
algorithm, another evolutionary algorithm that mimics the movement of the organisms
in a bird flock, in the NARX kernel selection, and will show its advantage in terms of the
speed over RWBS later in the simulation studies.

For simplicity of notations and also for the specific case of the EGFR signaling net-
work studied in this work, we will especially consider the single output case, i.e. ` = 1
and hence y ∈ RN , θ ∈ Rn . However, it shall be mentioned that the proposed method is
not restricted to single output case. For the NARX kernel selection, define a cost function
as Jt , where t stands for the number of selected regressors. The initial cost is denoted as
J0 = y T y . According to Eq. (4.9) one can write

J0 = θT P T Pθ =Σn
i=1pT

i piθ
2
i .

The idea is to search all the columns in P , and find the one that reduces the cost value
most, if being removed from Jt .

Jt = Ji−1 −pT
i piθ

2
i , (5.1)

where pi is chosen from P . This procedure can be terminated if

JT < ξ (5.2)
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is satisfied, where ξ is a chosen positive scalar; and the subscript “T” represents that T
regressors are chosen.

The PSO algorithm is proposed to choose the orthogonal columns in Eq. (5.1). In
PSO, the decision variables are regarded as particles. These particles move around in
the search space. The movements of the particles are guided by their own best known
position in the search space as well as the best known position of the entire swarm.

First, all particles are dispersed uniformly. The movement, also known as velocity, is
denoted as V , whose initial value can be randomly chosen. Let Ψ j ,V j ∈ RS denotes the
j -th particle and its corresponding velocity, where S denotes the dimension of Ψ j and
V j . The movements are adapted by the following formula [16, 17].

V j = wV j + c1(Ψ∗−Ψ j )+ c2(Ψ∗
j −Ψ j ), (5.3)

where w , c1 and c2 are the weighting factors; Ψ∗ and Ψ∗
j are the global best particle

and local best particle respectively. The value of V j shall be restricted into the so-called
“setting region” as follows

V j ,s =


Vmi n,s , if V j ,s ≤Vmi n,s , s = 1,2, · · · ,S
Vmax,s , if V j ,s ≥Vmi n,s , s = 1,2, · · · ,S
V j ,s , else

, (5.4)

where the subscript “s” denotes the s-th element of V j ,Vmi n ,Vmax .
After each movement, the position of the j -th particle is updated by

Ψ j+1 =Ψ j +V j , (5.5)

which is then restricted into the search space as follows

Ψ j ,s =

Ψmi n,s , ifΨ j ,s ≤Ψmi n,s , s = 1,2, · · · ,S
Ψmax,s , ifΨ j ,s ≥Ψmi n,s , s = 1,2, · · · ,S
Ψ j ,s , else

, (5.6)

where the subscript “s” denotes the s-th element ofΨ j ,Ψmi n ,Ψmax .
The search will stop when the cost function of Ψ∗ is satisfied or the maximum gen-

eration is reached.
In the specific EGFR signaling model, the I/O data are time-series data of the con-

centrations of proteins. For each protein, the time-series data of the concentration is a
vector. To model each protein, the output dimension is ` = 1, and hence yk ,θi take the
scalar form. The parameters in the NARX model to be optimized are the kernel center
xi and the kernel variance σi . Thus, for kernel selection, the particle shall include the
index of the center and its corresponding variance; i.e. Ψ j = [i j ,σi j ]T , where i j stands
for the index of the kernel center that is included in the j -th particle. Once these ker-
nel parameters are fixed, the corresponding pi and θi can be calculated by the standard
Gram-Schmidt procedure; and the cost function can be calculated by Eq. (5.1).

Algorithm 1 (NARX Kernel Selection by PSO)



5

78
5. MULTIPLE MODEL BASED NARX MODELING OF EGFR SIGNALING NETWORKS IN

MAMMALIAN CELLS

Outer loop (search the t-th regressor g t , t = 1,2, · · · ,T )
Initialize the value of population size denoted as Q; the weighting factors w, c1 and c2;
the searching spaceΨmi n ,Ψmax ; and the movement setting region Vmi n ,Vmax .
for(t=1; t ≤ T; t=t+1)

1. Initialize the population randomly in the searching space and randomly generate
an initial velocity matrix V inside the setting region.

2. for( j=1; j ≤ Q; j=j+1)

(a) Choose the kernel index i j from the particleΨ j = [i j ,σi j ]T . Compute the

regressor vector gi j = [gi j (x1), · · · , gi j (xN )]T by Tab. 4.1 and Eq. (4.6), as a
candidate while selecting the t-th regressor. Then orthogonalize it by the
standard Gram-Schmidt procedure:

(b) if t = 1

u j = gi j

pi j =
u j∥∥u j

∥∥
2

(c) else

u j = gi j −Σt−1
r=1(g T

i j
·pr ) ·pr (5.7)

pi j = u j∥∥u j
∥∥

2

(d) Calculate the corresponding θi j and the cost function in terms of pi j ,θi j by

θi j =
pi j

T y

pi j
T pi j

(5.8)

J j
t = J j−1

t −pi j
T pi j θi j

2 (5.9)

where the superscript j denotes the the j -th particle. i.g. J j
t is the cost after

chooseΨ j = [i j ,σi j ]T as the t-th regressor.

end for

3. Find the best particle, as the one corresponding to the minimal J j
t , i.e.

j∗ = min
j

{J 1
t , J 2

t , · · · , JQ
t }.

And set the global best asΨ∗ =Ψ j∗ .

4. Initialize the local best particles as

Ψ∗
j =Ψ j , j = 1,2, · · · ,Q
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The PSO inner loop:

for(k=1; k ≤ T; k=k+1)

for( j = 1; j ≤Q, j = j +1)

(a) Calculate V j by Eq. (5.3) and restrict its value into the setting region by Eq.
(5.4).

(b) UpdateΨ j by Eq. (5.5) and restrict its value into the search space by Eq. (5.6).

(c) Calculate the cost function value J j
t as in Eq. (5.9) for the new particle.

Update the global best particleΨ∗ and the local best particlesΨ∗
i as follows.

IfΨ j is better thanΨ∗, setΨ∗ =Ψ j .
IfΨ j is better thanΨ∗

j , setΨ∗
j =Ψ j .

end for

Stop the inner loop when the maximum epoch is reached or J j∗
t < ξP .

end for

End of inner loop

The best particle find in this epoch isΨ∗. Set Jt = J j∗
t , g t = gi j∗ , pt = pi j∗ and θt = θi j∗ .

Remove the selected index j∗ from the candidates of the regressor indices.

end for

End of outer loop

5.4. MULTIPLE MODEL AT DIFFERENT INITIAL CONDITIONS AND

WEIGHT ADAPTATION
According to the experimental study in [2], the initial concentrations of EGF can be dif-
ferent. Because of this difference, the concentrations of the other proteins show chaotic
dynamics. In this section, we will handle this chaos by a multiple-model approach. Let
h be the number of the local models, and α be the weighting coefficient, i.e.

α= [
α1 α2 · · · αh

]T ∈Rh

The final output is convexly combined by the results from all h local models.

ŷ(k) =
h∑

i=1
αi ŷi (k) (5.10)

To this end, first, train all the local models individually by different datasets. Here, a
dataset is a set of I/O data corresponding to a certain initial concentration of EGF. Sec-
ond, update α̃ by the following rule [30].

α̃(k) = α̃(k −1)− Ẽ Ẽ T α̃(k −1)+ Ẽeh(k), (5.11)
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where ei , α̃, Ẽ are defined as follows.

ei = y − ŷi (5.12)

α̃ = [
α1 α2 ...αh−1

]
(5.13)

Ẽ = [
e1 −eh e2 −eh ...eh−1 −eh

]
(5.14)

According to Eq. (5.11), the convergence of the updating rule is ensured by the fol-
lowing condition

Ẽ Ẽ T < 2,

Obviously, this condition depends on the error vector Ẽ , which can take arbitrary values
depending on the underlying system dynamics. Hence, we add a scaling factor β to Ẽ Ẽ T

in order to enforce this condition. To make the updating rule still fulfill the equality of the
error equations, i.e. ẽ(k) = Ẽα̃(k) as originally defined in [26], scaling by β is performed
as follows

α̃(k) = α̃(k −1)−β[
Ẽ Ẽ T α̃(k −1)+ Ẽeh(k)

]
, (5.15)

Now, the condition for the convergence of the updating rule is reduced to

β · Ẽ Ẽ T < 2. (5.16)

In this structure, h NARX models denoted by Mi , i = 1, · · · ,h are convexly combined
by h convex coefficients, each taking values within the range [0,1], and

∑h
i=1αi = 1.

For simplicity and also for the specific case of the EGFR network, let us consider
the case of two local models. Each of the local model is a NARX model identified from
the data simulated with one initial EGF concentration. The local model M1 is trained
with the minimum EGF concentration; while M2 is trained at its maximum. In this case,
y(k),e(k), Ẽ(k) become scalars. Eqs. (5.10)-(5.14) can hence be rewritten as

ŷ(k) = α1(k)ŷ1(k)+α2(k)ŷ2(k) (5.17)

e(k) = y(k)− ŷ(k)

e1(k) = y(k)− ŷ1(k)

e2(k) = y(k)− ŷ2(k)

Ẽ(k) = e1(k)−e2(k)

= ŷ2(k)− ŷ1(k)

Here, ŷ(k) is the estimate of the final output; ei (k) is the error for the i -th model at time
k; and ŷi (k) is the output of the i -th local model.

According to the condition of (5.16), in this case, the condition for the convergence
of the updating rule is reduced to

βẼ 2 < 2. (5.18)

This means that the difference between the two local models is bounded by ±p2/β. In
practice, on can select a proper value of β to ensure that Eq. (5.18) holds; and α con-
verges.
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We will now show that if α1 converges, i.e. if limk→∞α1(k) = limk→∞α1(k −1), then
y(k) = ŷ(k) holds. For brevity, we will omit the “lim” operator in the following derivation.
According to Eq. (5.15), as k →∞ one can write

βẼ 2α1(k −1) =−βẼe2(k).

Therefore, one has

α1(k) =α1(k −1) =−e2(k)

Ẽ
= ŷ2(k)− y(k)

ŷ2(k)− ŷ1(k)

Plugging into Eq. (5.17) and noting that α2(k) = 1−α1(k), one can further derive

ŷ(k) = α1(k)ŷ1(k)+α2(k)ŷ2(k)

= α1(k)ŷ1(k)+ (1−α1(k))ŷ2(k)

= ŷ2(k)+ (ŷ1(k)− ŷ2(k))α̂1(k)

= ŷ2(k)+ (ŷ1(k)− ŷ2(k))
ŷ2(k)− y(k)

ŷ2(k)− ŷ1(k)

= y(k)

Thus, if α converges, the estimate of the multiple models ŷ(k) converges to the true
value y(k).

Algorithm 2 (Multiple Model adaptation)

1. Set the initial coefficients α1 =α2 = 0.5 at time t0. Choose β as 0 <β< 1.

2. At time instant k, compute the output of both the two local models ŷ1(k), ŷ2(k);
compute the MM output ŷ(k) by Eq. (5.17); and compute e(k),e2(k), Ẽ(k).

3. Compute the updating rule of (5.15) and obtain α1.

4. Obtain α2(k) by α2(k) = 1−α1(k).

In practice, to ensure the condition of (5.18) holds, one can first simulate the two
local models or conduct experiments, and calculate the maximum difference between
their outputs, denoted as Ẽmax . Then, β can be chosen as β< 2

Ẽ 2
max

.

5.5. MODELING AND SIMULATION OF THE EGFR SIGNALING

NETWORK BY NARX AND MULTIPLE-MODEL PREDICTION
The NARX-PSO method and the multiple model approach proposed in the previous sec-
tions will be applied to model and simulate the EGFR signaling network in this section.
In 5.1, PSO and RWBS are compared in modeling the subnets in the EGFR signaling net-
work. In 5.2, the performance of MM is studied. Moreover in 5.5.3, a cascade model
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Figure 5.2: Correlation map of the time-series data from the concentrations of the proteins of the EGFR signal-
ing network

connecting 2 subnets is proposed and tested. Modeling the total phosphorylated pro-
teins is finally investigated and tested in 5.5.4.

The simulations in this section are performed in the MATLAB R2017b environment
on a computer with an Intel Core i5 2.70 GHz CPU and 8.00GB RAM.

5.5.1. SUBNET MODELING

The EGF network as defined in Fig. 5.1 contains 25 different reactions, and is hence a
rather complicated structure. For simplicity, we number all the proteins from 1 to 23 as
listed in Table A.1 in the Appendix. A.3. To ease the modeling, we first apply a “divide-
and-conquer” approach, and divide the network into several subnets. The dividing cri-
teria is the cross-correlation among the 23 different proteins. The cross correlation is
computed as follows. First, we simulated the ODEs of the concentrations of the EGFR
signaling network by the “ODE45” function in MATLAB. Then, a time-series data with
600 samples are generated for each of the 23 proteins. The time interval was set to 0.2
minute. After simulating for 120 minutes, the time series hence contain 600 samples.The
cross correlation is plotted in Fig. 5.2. On the other hand, different initial concentrations
of 2, 3, 4, 5, 6, 10, 15, 20nM of EGF are set in the simulations. These eight simulations
give rise to eight different datasets, respecting labeled as “EGF=2nM”, · · · , “EGF=20nM”.

According to the cross-correlation in Fig. 5.2, all the 23 proteins are correlated with
each other. The correlation between RP (protein 5) and Shp (protein 15) is more than 0.9,
which is obviously highly correlated. Hence, we can build a subnet between RP and Shp.
In such way, we can build subnet models between any two proteins in this network that
are highly correlated. For instance, another example to be studied is the subnet from



5.5. MODELING AND SIMULATION OF THE EGFR SIGNALING NETWORK BY NARX AND

MULTIPLE-MODEL PREDICTION

5

83

Table 5.1: Performance of the NARX models tested by seven datasets with kernels selected respectively by
RWBS and PSO.

testing data subnet 1 subnet 2
RWBS PSO RWBS PSO

EGF=2 0.2019 0.1980 1.3490 1.3765
EGF=3 0.1488 0.0987 0.58638 0.6038
EGF=4 0.0665 0.0503 0.3169 0.3178
EGF=5 0.0379 0.0336 0.1997 0.2010
EGF=6 0.0301 0.0270 0.1395 0.1391

EGF=10 0.0253 0.0219 0.0561 0.0549
EGF=15 0.0249 0.0213 0.0299 0.0299

Shp to Sh-G-S.
In modeling the subnets from RP to Shp and Shp to Sh-G-S, we compare the ker-

nel selection methods respectively by the PSO and RWBS algorithm. The parameters of
RWBS algorithm [22] are chosen the same as those used in [23] i.e.Q = 50 ,T = 600. The
PSO parameters are Q = 50 and T = 5, which can yield comparable model accuracy as
the RWBS algorithm, as will be shown later in the simulation. The weighting factors in
Eq. (5.3) are set to w = 0.6,c1 = 0.6,c2 = 0.5 empirically. Because the procedures in the
outer loop of both the algorithms are almost the same, we only compare the time cost of
running the PSO and RWBS inner loop. The training process uses dataset “EGF=20nM”,
while the testing process uses the other seven.

The first subnet to be modeled is from RP to Shp, we take the concentration of RP
as input denoted as uRP (k), and the concentration of Shp as output denoted as yShp (k).
Take nu = 3,ny = 1. The NARX model can therefore be written as

yShp (k) = f (uRP (k −1),uRP (k −2),uRP (k −3), yShp (k −1))

The training datasets are shown in Fig. 5.3.
For this problem, the average time cost of running the RWBS algorithm was about

4.3 seconds; while the average time cost of the PSO algorithm was about 1.3 seconds.
Both of them ended up with 5 to 8 best Gaussian RBF kernels. The evolution of the cost
function in both cases is shown in Fig. 5.4.

Another subnet model takes the concentration of Shp as input denoted as uShp (k),
and the concentration of Sh-G-S as output denoted as ySh−G−S (k). Also take nu = 3,ny =
1. The NARX model can be written as

ySh−G−S (k) = f (uShp (k −1),uShp (k −2),uShp (k −3), ySh−G−S (k −1))

The average time cost of running RWBS algorithm was about 4.5seconds; while he
average time cost of PSO algorithm was about 1.4 seconds. Both of them can result in a
6 to 8 best Gaussian RBF kernels. The model accuracy of the two subnets are compared
in Table 5.1. The accuracy by both kernel selection methods are similar.

Whereas, the time cost of the PSO algorithm is much lower than that of the RWBS.This
can be attribute to the fact that the RWBS needs to repeat for multiple times with ran-
dom initializations to convert a local optimizer to a global one [22]. Therefore, to find
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(a)

(b)

(c)

Figure 5.3: The time series of the concentration of the proteins simulated at eight different initial concentra-
tions of EGF: (a) RP; (b) Shp; (c) Sh-G-S.
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(a)

(b)

Figure 5.4: The evolution of the cost function during the kernel selection: (a) selection by RWBS; (b) selection
by PSO.
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Table 5.2: The average MSE of resulted from the local models and the multiple model approach, where the
average MSE is the average MSE errors from testing with the six datasets generated from “EGF=3nM” to
“EGF=15nM”

average MSE local model 1 local model 2 multiple model
subnet 1 0.7688 0.2265 0.0245
subnet 2 0.6586 0.2110 0.0263

each kernel center, the RWBS algorithm needs to repeats for several times, which signif-
icantly increases the computational load.

On the other hand, while testing with the data generated at low EGF concentrations,
the MSE errors were relatively larger than using the other datasets, because of the larger
differences in the initial EGF concentrations therein than that in the training data.

5.5.2. MULTIPLE MODEL ADAPTATION
According to [2], the concentrations of the phosphorylated proteins are higher along the
entire time sequence at higher EGF concentration than those at lower ones. We hence
need two local models respectively corresponding to a high EGF concentration and a
low each individual. The two local models were trained with the datasets corresponding
to these two different initial EGF concentrations. For example, in subnet 1, the model is
constructed between the concentration of RP and the concentration of Shp. The output
of local model 1 is modeled as

y1
Shp (k) = f (u1

RP (k −1,u1
RP (k −2),u1

RP (k −3), y1
Shp (k −1))

The output of local model 2 is modeled as

y2
Shp (k) = f (u2

RP (k −1),u2
RP (k −2),u2

RP (k −3), y2
Shp (k −1))

Finally, the outputs from two local models are convexly combined as described in Eq.
(5.10), which leads to the predicted outputs.

From the results listed in Table 5.2, neither of the local models can fit the testing data
well. Furthermore, the more difference between the initial concentration of EGF of the
training set and the testing set, the higher MSE error resulted from each individual local
model. The results from the multiple model prediction are clearly much more accurate.

5.5.3. CASCADE MODEL
Due to the large number of proteins and the complexity of the network structure, the
relationship between two proteins that are “far from” each other, in terms of their con-
nections via multiple edges may be too weak to lead to an accurate model. Therefore,
in this work, we propose to build cascade models, which connect more than one subnet
models in series, to link the proteins along a relatively long chain with stronger mathe-
matical relations. The cascade model takes the output of the former subnet as input, and
in turn feeds its output to the next subnet. For example, both the output of subnet 1 and
the input of subnet 2 is the concentration of ShP. So we can connect these two subnets
together. The structure is described in Fig. 5.5.
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Figure 5.5: The structure of the cascade model.

In this cascade model, the input is the concentration of RP, the output is the con-
centration of Sh-G-S. The average MSE error resulted from this cascade model is 0.0226.
Whereas, directly modeling from the concentration of RP to that of Sh-G-S, i.e.

ySh−G−S (k) = f (uRP (k −1),uRP (k −2),uRP (k −3), ySh−G−S (k −1))

gave rise to an average MSE of 0.0751, which is three times larger than the cascade model.
As an example, the predictions by the cascade model, when the initial EGF concentration
was 4nM, is shown in Fig. 5.6.

Figure 5.6: Prediction by the cascade model, when the initial EGF concentration was 4nM.

5.5.4. MODEL OF THE TOTAL PHOSPHORYLATED PROTEINS
In cell experiments, the concentrations of the tyrosine phosphorylation of specific target
proteins, such as Shc, Grb and EGFR, can be measured. This measurement is easier than
measuring individual proteins. The total concentrations of the target proteins are de-
fined in [2]. Here, we take the total concentrations of phosphorylated Shc as an example.
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Table 5.3: Performance of the MM-based NARX in modeling the total concentration of Shc.

local model 1 local model 2 multiple model
EGF=3 3.5968 1.05170 0.0569
EGF=4 6.4781 0.2770 0.0429
EGF=5 7.7445 0.1667 0.0470
EGF=6 8.3547 0.1384 0.0496

EGF=10 9.1945 0.1262 0.0528
EGF=15 9.4905 0.1256 6 0.0526

The concentration of total phosphorylated Shc is defined as

yt ,Shc =CR−ShP +CR−Sh−G +CR−Sh−G−S +CShP +CSh−G +CSh−G−S ,

where the subscript “t” means the total concentration of phosphorylated Shc. The time-
series of yt ,Shc is shown in Fig. 5.7. The NARX model takes the concentration of the total
phosphorylated proteins as the output denoted as yt ,Shc (k), and the concentration of R
as the input denoted as uR (k), which takes the following form

yt ,Shc (k) = f (uR (k −1),uR (k −2),uR (k −3), yt ,Shc (k −1)).

The testing results from the six different datasets, respectively corresponding to six
different initial EGF concentrations, are listed in Table 5.3. As an example, the predicted
output of yt ,Shc when the initial EGF concentration was 4nM is plotted in Fig. 5.8. It can
be seen that although the output trajectories become more chaotic, the multiple-model
approach still gave a more accurate result than the two local models did.

5.6. CONCLUSION
In this paper, we have proposed a modeling scheme with kernel-based NARX structure,
together with a PSO-based kernel selection method. This scheme has been applied to
model the EGFR signaling network in mammalian cells to handle the nonlinear dynam-
ics therein. Moreover, a multiple model adaptation method has also been developed to
handle the chaotic nature of this complicated biochemical process. Three simulation
case studies have been conducted; i.e. on small scale subnet models with proteins that
are highly correlated, on larger scale cascade models with proteins exhibiting weak cor-
relation, and on the total amount of phosphorylated proteins. All the simulation results
have verified the model accuracy.

As one future direction, the models will be identified from real-life experimental data
by conducting cell experiments. Another direction is to model the effect of exogenous
stimuli. e.g. the effect of medicine or physical factors like photons, to the EGFR signaling
network in mammalian cells.
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6
ANALYSIS AND DATA-BASED

MODELING OF THE

PHOTOCHEMICAL REACTION

DYNAMICS OF THE INDUCED

SINGLET OXYGEN IN LIGHT

THERAPIES

Objective: The macroscopic singlet oxygen (MSO) model for quantifying the light-induced
singlet oxygen (1O2) always contain a set of nonlinear dynamic equations and therefore
are generally difficult to be applied. This work was devoted to analyze and simplify this
dynamic model. Methods: Firstly, the nonlinearity of the MSO model was analyzed with
control theory. The conditions, under which it can be simplified to a linear one, were de-
rived. Secondly, in the case of ample triplet oxygen concentration, a closed-form exact so-
lution of the 1O2 model was further derived, in a nonlinear algebraic form with only four
parameters that can be easily fitted to experimental data. Finally, in vitro experiments of
anti-fungal light therapies were conducted, where the fungi, Candida albicans, were irra-
diated respectively by the 385, 405, 415, and 450nm wavelength light. The singlet oxygen
concentration levels in the fungi were measured, and then used to fit the developed mod-
els. Results: The parameters of the closed-form exact solution were estimated from both
the simulated and the measured experimental data. Based on this model, a functional re-
lationship between the photon energy, fluence rate and singlet oxygen concentration was
also established. The fitting accuracy of this model to the data was satisfactory, which
therefore demonstrates the effectiveness of the proposed modeling techniques. Conclu-
sion: The results from simulating the closed-form model indicate that the photon energy
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within the range of either 2.7 ∼ 2.8 eV or 3.0 ∼ 3. 2eV (388 ∼ 413nm or 443 ∼ 459nm
in wavelength) is more effective in generating singlet oxygen in the fungi studied in this
work. Significance: It is the first attempt of applying control theory to analyze the photo-
chemical reaction dynamics of light therapies in terms of their nonlinearity. The proposed
modeling techniques also offer opportunities for determining the light dosages in treating
fungal infection diseases, especially those on the surface tissues of human body.

6.1. INTRODUCTION
Photodynamic therapies (PDT) have been investigated as non-antibiotic alternatives for
treating localized infectious diseases due to their rapid action and lack of drug resistance
[1, 2]. Similar to PDT, blue light therapies that rely only on the endogenous pigments, i.e.,
porphyrins and flavins, of the pathogens are also effective and even safer to use. The
inactivation effect of blue light has been proven on the Gram-positive/negative bacteria
[3], mycobacterium [4], and algae [5]. Likewise, anti-fungal blue light (ABL) has been
widely studied as a new treatment approach of fungal infections. For instance, the effect
of 415nm LED light on C. albicans was studied and verified both in vitro and in vivo [6].
Blue light at 405nm was also previously shown to be effective in reducing the seeding of
exposed biofilms [7].

As a widely accepted hypothesis, the mechanisms of the anti-fungal effect of PDT
and ABL are that the photons from light can excite either the exogenous photosensi-
tizer (PS) in the former case or the endogenous pigments in the latter, which in turn
produces reactive oxygen species (ROS) that affect cells [8, 9]. ROS are highly reactive
chemical molecules formed due to the electron acceptability of O2. Examples of ROS
include peroxides, superoxide, hydroxyl radicals, singlet oxygen [10], and alpha-oxygen
[11]. According to a previous study [12], singlet oxygen usually accounts for 80% of all the
ROS induced by light; while hydroxyl radicals and other types of ROS take the remaining
20%. Furthermore, singlet oxygen is a precursor of most other ROS, and it also becomes
involved in the propagation of oxidative chain reactions [13].

Thus, there is greater interest in the quantum yield of singlet oxygen, whose cumula-
tive dose has been used to determine the tissue damage caused by PDT [14–16]. Based
on the mechanism of PDT, some first-principle models have been proposed to explore
the dynamic changes in singlet oxygen concentration [17–19], which are highly nonlin-
ear models. A set of coupled differential equations was used to describe this nonlinear
process, including seven Michaelis-Menten-type equations corresponding to seven dif-
ferent state variables [19], i.e., the concentration of PS and various types of oxygen and
the ROS acceptors excluding the PS molecules. Moreover, Monte Carlo simulations were
also combined with these types of kinetic models, and were proven to be effective in
simulating the light transport in biological tissues [20–22].

These first-principle models can precisely fit the dynamic changes in the singlet oxy-
gen concentrations. However, the parameters are related to the PS characteristics, and
they should be determined from dedicated experiments. For instance, in a previous
study [23], up to 21 parameters were required to describe the process related to the PS.
A classical macroscopic time-scale singlet oxygen (MSO) model [18, 19] was simplified
into three differential equations [21, 22] with some reasonable assumptions according
to the reality. However, 6 parameters and 3 states remained. This simplified model was
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verified in a previous study [24], in which the concentrations of PS and triplet oxygen
concentration were measured. The parameters were taken as the empirical values be-
cause of the difficulty in re-estimating them. However, although ABL are believed to be
caused by the PSs that naturally exist in fungal cells, whose types and amounts are usu-
ally unknown, modeling by first-principles becomes even more challenging than mod-
eling PDT. To accommodate these modeling challenges, data-driven modeling methods
based on time-series have been investigated [25–27]. However, there is still no attempt
made to ease the model form and the parameter estimation in the classical MSO models,
in a similar data-driven fashion based on measured time-series data.

In this study, we first examined the nonlinear dynamics of the MSO model, and then
analyzed the conditions under which it can be approximated by a linear model. Based
on the standard system linearization method, a linearized model was developed and
applied to simulate the concentration of singlet oxygen. We subsequently solved the
differential equations in the MSO model for the case of an abundant oxygen supply, and
obtained an analytical solution of the concentration of singlet oxygen. In experiments,
the singlet oxygen levels are measured from C. albicans under the irradiation of four LED
light sources with wavelengths of 385, 405, 415, and 450nm up to 30 minutes. Here, we
chose C. albicans to study because it is one of the most common fungal pathogens [28],
and it always infects membranes such as those of the mouth, vagina, and intestines in
humans [29, 30]. The fitting accuracy of the analytical solution of the MSO model to the
measured singlet oxygen concentrations also turned out to be satisfactory.

6.2. METHODS

6.2.1. MODELING METHODS

PRELIMINARIES OF THE FIRST-PRINCIPLE MODEL

A classical macroscopic time-scale singlet oxygen (MSO) model is based on the mecha-
nism of PDT with the included rate equations in Michaelis-Menten form [18, 19]. With
some reasonable assumptions according to the reality, this model can be simplified into
three differential equations [21, 22].

d [S0]

d t
=−ξσφ([S0]+δ)[3O2]

[3O2]+β [S0] (6.1a)

d [3O2]

d t
=−ξφ[S0] [3O2]

[3O2]+β + g · (1− [3O2]

[3O2]0
) (6.1b)

d [1O2]

d t
= f ·ξφ[S0][3O2]

[3O2]+β (6.1c)

where [S0] denotes the concentration of PS; [3O2], [1O2] denote the concentration of
triplet and singlet oxygen, respectively; and [3O2]0 denotes the initial concentration of
triplet oxygen. The included parameters are light fluence rate φ [mW], specific oxygen
consumption rate ξ [cm2/mW/s], the specific photobleaching ratioσ [µM−1], the oxygen
quenching threshold β [µM], the low concentration correction δ [µM], the fraction of
1O2 interacting with target f , and the oxygen supply rate g [µM/s]. In an ample oxygen
supply, the fraction f can be set as 1. Let g to be the external input, the nonlinearity of
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A =


−ξσφ [3O2]

[3O2]+β (2[S0]+δ) −ξσφ([S0]+δ)[S0]( 1
β+[3O2]

− [3O2]
(β+[3O2])2 ) 0

−ξφ [3O2]
[3O2]+β −g /[3O2]0 −ξφ[S0]( 1

β+[3O2]
− [3O2]

(β+[3O2])2 ) 0

f ξφ [3O2]
[3O2]+β f ξφ[S0]( 1

β+[3O2]
− [3O2]

(β+[3O2])2 ) 0

 (6.4)

model (6.1) can be examined by the poles and zeros of its linearized model at different

equilibrium points. If x = [
[S0] [3O2] [1O2]

]T
is denoted as the state vector, and u = g

as the control input of the nonlinear system, then Eq. (6.1) can be rewritten in a state
space form as

d x

d t
= h(x ,u), (6.2)

where h(·) is a nonlinear vector-valued function.

ANALYSIS OF THE FIRST-PRINCIPLE MODEL OF PDT
To analyze Eq. (6.1), first note that if a nonlinear system operates around an equilib-
rium point, i.e. around a configuration where the system is at rest, then it is possible to
study the behavior of the system in the neighborhood of such a point, where its dynamics
can be reasonably approximated as a linear model. Based on the standard linearization
method of a nonlinear system [31], we can linearize Eq. (6.2) as

d x

d t
= Ax +Bu, (6.3)

where A is defined as A = ∂h
∂x

∣∣∣
x∗,u∗ ; B is defined as B = ∂h

∂u

∣∣∣
x∗,u∗ ; and x∗,u∗ denotes an

equilibrium point. Thus, the linearized matrices A and B can be expressed as Eq. (6.4)
on the top of next page and Eq. (6.5).

B = [
0 1− [3O2]/[3O2]0 0

]T
(6.5)

Because the main objective is to model and track the concentration of 1O2, an output
equation can be added to Eq. (6.3), which leading to a standard state-space form:

d x

d t
= Ax +Bu (6.6a)

y =C x . (6.6b)

Here, as a reminder, the state vector is x = [
[S0] [3O2] [1O2]

]T
. The output matrix

C = [
0 0 1

]
, since the third dimension of the state vector is [1O2].

To examine the level of the nonlinearity of this dynamic process, one can study the
variation of the poles at different equilibrium points. It is well known in the control
theory literature that the poles and zeros of a system determine its dynamic behavior
in response to exogenous stimuli [31]. First, note that for the state-space model (6.3),
the poles are the eigenvalues of system matrix A [31], which are denoted as λ. Because
A ∈ R3×3, it has three eigenvalues. Based on the standard linear algebra, one eigenvalue
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is 0, because the third column of A are all 0’s; while the other two can be obtained by
solving the following characteristic equation:

(λ−a11)(λ−a22)−a12 ·a21 = 0, (6.7)

where ai j denotes the element on the i -th row and j -th column of A. Therefore, three
eigenvalues can be written as:

λ1 = 0

λ2 = 1
2

[
a11 +a22 −

√
(a11 +a22)2 −4(a11 ·a22 −a12 ·a21)

]
λ3 = 1

2

[
a11 +a22 +

√
(a11 +a22)2 −4(a11 ·a22 −a12 ·a21)

]
.

Under the real conditions of photofrin-mediated PDT [21, 22], the term σ is far less
than the other parameters, i.e.,σ= 9·10−5 µM−1, ξ= 3.7·10−3 cm2/mW/s, δ= 33µM,β=
11.9µM. This leads to a11, a12 ≈ 0, which containsσ. Thus, the term a11·a22−a12·a21 ≈ 0.
After substituting this into the equation above, the eigenvalues can be simplified to

λ1 = 0
λ2 ≈ 0
λ3 ≈ a11 +a22

. (6.8)

Obviously, there is a pole at the origin (λ1) and two negative real poles. However, the
analytic solutions of the zeroes are not as straightforward as those of the poles. Whereas,
according to the simulation results to be presented later, the linearized models only con-
tain one zero. Therefore, the linearized model can also be written in a transfer function
form, i.e.,

H(s) = K · s − z

s(s −λ2)(s −λ3)
(6.9)

≈ K

(s −λ2)(s −λ3)
, (6.10)

where K and z are respectively the gain and zero. According to the simulations to be
presented later, the order of magnitude of z is only −5 in all the linearized systems. This
trivial zero always cancels the pole at the origin, which approximately leads to a second
order transfer function (6.10) by standard minimal realization theory. This will also be
illustrated in the root-locus plots of the linearized systems at different equilibrium points
in Sec. 6.3.1. Consequently, the transfer function (6.10) contains a dominant pole (λ2)
and a non-dominant one (λ3).

Based on the locations of the zero and poles of the linearized systems, we mainly
need to analyze λ2 and λ3. Besides, due to the simpler form of λ3, we will now focus on
analyzing λ3 to investigate the nonlinearity of the MSO process. First, substituting the
corresponding terms of Eq. (6.4) into λ3 as follows, we obtain:

λ3 =−ξσφ [3O2](2[S0]+δ)

[3O2]+β − g

[3O2]0
− ξφβ[S0]

(β+ [3O2])2 (6.11)

Here, λ3 is a negative real pole, which defines an exponentially decaying component in
the dynamic response, i.e., eλ3t .
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In this MSO model, the initial concentration of triplet oxygen and the oxygen sup-
ply rate can be artificially adjusted by the oxygen content of the environment where the
cells are exposed. If the external environment is oxygen-rich, one can expect that the
concentration of triplet oxygen, i.e., [3O2], is far greater than β, and thus, the limit of λ3

is simplified to:
lim

[3O2]→+∞
λ3 =−ξσφ(2[S0]+δ) (6.12)

Because ξ, σ, and φ are constant parameters, the concentration of PS, i.e., [S0], be-
comes the only factor that can change the third pole, which in turn affects the dynamic
response of the system. As will be detailed later in the simulation results, there is actually
little change in [S0] during the whole process. Thus, the limit (6.12) is approximately a
constant. Similarly, the same conclusion can be drawn on lim[3O2]→+∞λ2, which are
also supported by the simulation results in Sec. 6.3.1.

Taking into account that λ2 and λ3 are approximately constants, the MSO model can
thus be approximated by a linear time invariant model, in the case of abundant oxygen
supply. Thus, one can use the linearized model (6.6) to simulate the concentration of
light-induced singlet oxygen [1O2].

It is worth mentioning that the linearized model (6.6) is a second-order linear-time-
invariant (LTI) model after the pole-zero cancelation, containing two poles. In compar-
ison, another LTI model [26] is a first-order model with only one pole, whose value is
close to the dominant pole λ2.

ANALYTICAL SOLUTION OF [1O2] WITH ABUNDANT 3O2

Although the approximated linear model (6.6) provides additional insights into the dy-
namic behavior of the MSO process, it can also lead to large prediction errors in the long-
term trajectories of [1O2] due to the approximations made for both the zeros and poles.
This further motivates the derivation of an exact solution of the differential equations in
(6.1), in the case of abundant 3O2.

Based on the situation of the abundant oxygen supply, [3O2] is much greater than β.

With this condition, [3O2]
[3O2]+β can approximate to a constant as

lim
[3O2]→+∞

[3O2]

[3O2]+β = 1. (6.13)

It is difficult to derive a closed-form solution of [1O2] from the linearized model of Eq.
(6.3), which contains three states. Neglecting the variation in the concentration of 3O2

and the approximation in Eq. (6.13), we can eliminate Eq. (6.1b) and derive the following
second-order dynamics:

d [S0]

d t
= a([S0]+δ)[S0] (6.14a)

d [1O2]

d t
= c[S0] (6.14b)

where a =−ξσφ and c = f ·ξφ. Note that, one of the two poles of Eq. (6.14) is exactly the
same as that in Eq. (6.12); another pole was at the origin.
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Then, Eq. (6.14a) can be solved as follows:

1

a([S0]+δ)[S0])
d [S0] = d t (6.15a)

1

aδ
(

1

[S0]
− 1

([S0]+δ)
)d [S0] = d t (6.15b)

Integrating both sides simultaneously leads to:

1

aδ
(ln[S0]− ln([S0]+δ)) = t +C1 (6.16a)

[S0] = δeaδ(t+C1)

1−eaδ(t+C1)
⇒C1 =

ln [S0]0
[S0]0+δ
aδ

(6.16b)

where C1 denotes the constant corresponding to the initial state of [S0], denoted as [S0]0.
Finally, after substituting Eq. (6.16b) into Eq. (6.14b), the following analytical solu-

tion of [1O2] can be derived as:

d [1O2]

d t
= c

δeaδ(t+C1)

1−eaδ(t+C1)
(6.17a)

[1O2] =− c

a
ln(1−eaδ(t+C1))+C2 (6.17b)

C2 = c

a
ln(1−eaδC1 ) (6.17c)

where C2 is a constant offset to ensure the initial value of [1O2], i.e., the induced singlet
oxygen by light at t = 0, to be zero. For the simplicity of the notations, denote k1 = − c

a ,

k2 = eaδC1 , k3 = − a
φδ, k4 = C2. According to the definitions of a and c in Eq. (6.14), and

C1 in Eq. (6.16b), the parameters k1, k2, and k3 actually take the following forms:

k1 = f

σ
,k2 = e

ln
[S0]0

[S0]0+δ ,k3 = ξσδ. (6.18)

Now, Eq. (6.17b) can be finally written as:

[1O2] = k1 ln(1−k2e−φk3t )+k4, (6.19)

which is an analytical solution of [1O2] in (6.1) in the case of abundant 3O2. Note that
although k1 ∼ k4 are determined by the original parameters [S0]0, σ, δ, ξ, and f , fitting
Eq. (6.19) actually does not require knowing or estimating these original ones. Therefore,
only four parameters (k1,k2,k3, and k4) need to be estimated to fully know Eq. (6.19).

FUNCTIONAL RELATIONSHIP BETWEEN k3 AND PHOTON ENERGY

In classical PDT models, the PDT dose is defined as the number of photons absorbed
by the PS, and is related to the fluence rate and the photon energy. The kinetic PDT
equations are henceforth parameterized by the fluence rate and photon energy of the
stimulating light.
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The energy of a photon is inversely proportional to the wavelength of the light, which
is usually given in the unit of electron-volt (eV), i.e.:

Ep = hc

λ
(6.20)

where h and c denote the Planck’s constant and the speed of light, respectively. Here,
the unit of λ shall be converted from nanometers to microns. Photon energy will also be
used to quantify a specific light source, as follows.

In Eq. (6.19), k3 is the only parameter related to ξ, which is anti-proportional to the
photon energy. Thus, the functional relationship between k3 and Ep can be established
as follows.

Based on our acknowledgments, the main PSs in C. albicans are flavin and porphyrin,
whose peak absorptions are at 405nm and 460nm, respectively. Thus, the blue light of
these two wavelengths can effectively inhibit the C. albicans. Moreover, k3 is a parameter
that reflects the singlet oxygen accumulation speed, which is correlated with the inhibi-
tion. Here, we use a piecewise function in Eq. (6.21) to describe this dependence of k3

on the photon energy:

k3 =
{

a1 +b1 · si n(c1Ep +d1),Ep ≤ E

a2 +b2 · si n(c2Ep +d2),Ep > E
(6.21)

where a1, a2,b1,b2,c1,c2,d1,d2 are the parameters to be estimated; and E is demarcation
point of the piecewise function that describes the peak near 415nm or 460nm.

MODELING [1O2] AS A FUNCTION OF PHOTON ENERGY AND FLUENCE RATE

Now, by substituting Eq. (6.21) into Eq. (6.19) and noting that φ · t = He (i.e., assuming a
constant fluence rate), the model of the 1O2 concentration y as a function of the photon
energy and fluence can be finally derived in Eq. (6.22) on the top of next page.

y(He ,Ep ) =
{

k1 ln(1−k2e−[a1+b1·si n(c1Ep+d1)]He )+k4,Ep ≤ E

k1 ln(1−k2e−[a2+b2·si n(c2Ep+d2)]He )+k4,Ep > E
(6.22)

Therefore, the 1O2 concentration can be calculated using the photon energy and flu-
ence rate of a treatment light source. This model can be applied in analyzing and cal-
culating light dosages in clinical PDTs and ABLs. However, the fluence rate is found in
clinical and in-vivo experiments to be highly subject to the optical properties of various
tissues and the light wavelength [32]. In this study, we will especially focus on analyzing
the light fluence rate in the superficial tissues of human body in what follows.

FLUENCE RATE FOR TREATING FUNGAL INFECTIONS IN CUTANEOUS TISSUES

For fungal infections in cutaneous tissues, i.e., on the surface of human body, external
treatment light can be effectively applied to the skin. As a common practice in the litera-
ture [22, 32], a shallow layer of the skin tissue can be assumed as a semi-infinite medium
with uniform optical properties, i.e., with the same absorption coefficient µa and the
same reduced scattering coefficient µ′

s . On the other hand, for a planar light source that
is applied externally, due to the backscattering effect from the tissue-air boundary, the
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fluence rate beyond the boundary in the tissue can be even greater than that in the air
[32]. That is

φ

φai r
= 1+2Rd , (6.23)

where φai r is the fluence rate of the incident light. Rd is the diffuse reflectance, and can
be calculated as [32]:

Rd = a′

2

(
1+e−

4/3
A

p
3(1−a′)

)
·e−

p
3(1−a′), (6.24)

where a′ = µ′
s /(µa +µ′

s ) is the transport albedo; A is a constant that can be calculated
based on the index of the refractions of the tissue and air at the boundary. For an air–tissue
interface, A = 2.9 is a good approximation [22, 33]. For estimating the light fluence rate
within the tissue, the following Lambart’s relationship is used.

φ(d) =φai r ·k ·e−µe f f ·d , (6.25)

where d is the depth below the tissue; µe f f is the effective attenuation coefficient, which

can be calculated as µe f f = √
3 ·µa(µa +µ′

s ); and k is the backscatter coefficient, which
is determined by [34] k = 3+5.1Rd −2e−9.7Rd .

The equations (6.23-6.25) suffice to characterize the light fluence rate in the cuta-
neous tissues below the air-skin boundary with a planar light source.

6.2.2. EXPERIMENTAL METHODS

CHEMICALS AND MATERIALS

The growth medium was tryptic soy broth (TSB), and was purchased from Hopebiol
(Qingdao, China). The test assay of 1O2 was Singlet Oxygen Sensor Green (SOSG) reagent
(Invitrogen, Eugene, USA), which was dissolved in methanol (100 µg in 33 µl ) to create
a stock solution of 5 mM.

FUNGAL STRAINS

The C. albicans used in this work is the 3147 (IFO 1594) strain (ATCC, Manassas, VA,
USA). The fungal strain was cultured overnight in TSB at 260C with shaking at 180 RPM.
To maintain the concentration of the fungal suspension within the same range, the ab-
sorption of the suspension at 550nm was measured by a U-3900H spectrophotometer
(Hitachi, Tokyo, Japan) before all the experiments. More specifically, the absorption lev-
els measured by this equipment were always controlled in the range of 2.3 ∼ 2.5, which
corresponds to a fungal density of 107 CFU/ml.

LED LIGHT SOURCE

Four different types of LEDs with specified peak wavelengths at 385, 405, 415, and 450nm
were selected to build four light sources. The spectral power density (SPD) curves for the
LEDs, as measured by a Maya 2000 Pro spectrometer (Ocean Optics, Gloucester, MA,
USA), are depicted in Fig. 6.1. In this figure, every SPD curve has been normalized with
respect to its integral.

All the four light sources were made of a 4-by-4 LED array, arranged in a 1.5-by-1.5cm
square as previously described [26]. Every light source was able to provide a round spot
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Figure 6.1: Normalized SPD curves of four LEDs.

with 15cm diameter at 10cm height above the sample. The target fluence rate in all the
experiments was 50 mW/cm2. The distribution of the irradiance in the target spot from
every light source was measured using a PM100D power meter with a S120VC probe
(Thorlabs, Newton, NJ, USA). According to the measurements, the average irradiance in
the central 6cm-diameter circle was 49.39 mW/cm2, with a relative variation of only 6.56
%. Therefore, the central light beam can be approximately regarded as being unidirec-
tional; and the light source can be treated as a planar one. Thus, the measured irradiance
and fluence rate are identical, both of which are numerically equal to the radiance in the
direction of incidence of the photon beam [35].

SINGLET OXYGEN ASSAY

The SOSG reagent is highly selective for 1O2. Unlike other available fluorescent and
chemiluminescent singlet oxygen detection reagents, it does not exhibit any apprecia-
ble response to hydroxyl radical or superoxide. Before the assay, the fungal suspension
was first washed by phosphate buffer saline (PBS) for three times. The SOSG stock so-
lution was then added to it in a ratio of 1:1000. Next, the suspension was seeded into a
96-well plate and was irradiated by one of the four LED light sources. The cell suspen-
sion in one well was resuspended and placed in the dark at each sampling point of 0, 5,
10, 15, 20, 25, and 30 min.

Immediately after the light treatment, the singlet oxygen concentration levels of the
cell suspension were measured as fluorescent levels using a VL0L0TD0 Varioskan LUX
microplate reader (Thermo Fisher, Waltham, MA, USA), with the excitation and emission
wavelengths set at 488nm and 525nm, respectively.

It is worth mentioning here that two potential factors that could affect the accuracy
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of the assays were analyzed via preliminary experiments. Firstly, the temperature of the
PBS solvent after being continuously irradiated for 30 min by the four light sources was
measured, and was found to be lower than 37oC in all the four cases. This indicated
that the light irradiation could not lead to a temperature that was prohibitive to the C.
albicans. Secondly, the absorption of the light by the PBS solvent was evaluated. The ex-
perimental measurements indicated that this absorption was indeed negligible, because
of the colorless and transparent nature of the solvent. Therefore, the influence of both
the light-induced heat and the light absorption by the PBS solvent on the light-induced
1O2 was negligible.

STATISTICS

In the ROS assays, the raw data were processed to produce the mean and standard devia-
tion for each treatment time interval. The significance of ROS levels and viability of cells
were tested by the Student’s t-test. The values of P < 0.05 were considered statistically
significant.

6.3. RESULTS

6.3.1. SIMULATION RESULTS

SIMULATION AND ANALYSIS OF THE FIRST-PRINCIPLE MSO MODEL

By taking the MSO model (6.1) as the first-principle model, we simulated the ODEs of the
model using Runge-Kutta-Fehlberg (RK45) method. The parameters were taken from a
photofrin-mediated PDT model [21], i.e., σ = 9× 10−5 µM−1, ξ = 3.7 · 10−3 cm2/mW/s,
δ= 33 µM, and β= 11.9 µM. The irradiance was set as φ=50 mW/cm2. For the case with
deficient oxygen concentration, [3O2]0 and the supply rate g were set as in the normal
condition as [3O2]0 = 50 µM, g = 0.5 µM/s. On the other hand, in the case of rich oxygen
concentration, their values were respectively set as [3O2]0 = 80 µM and g = 1 µM/s, i.e.,
their maximum values mentioned in [21]. The irradiation time was set to 30 min with
a step size of 5 min, which corresponded to the experimental time interval and total
irradiation time.

In both cases, a sequence of time-series data with seven samples were generated, and
were then taken as the equilibrium points to linearize the original nonlinear model (6.1).
The root locus plots of these seven LTI systems are shown in Fig. 6.2. Two observations
can be clearly made. First, the zero ranges from -5×10−5 to -2×10−5, and cancels with
the pole at the origin of all the seven LTI systems in both cases. Second, in the oxygen
rich case, the root loci at the different points are condensed to a much smaller cluster,
than those in the oxygen deficient case. This indicates that the LTI systems in the oxygen
rich case are more identical to each other.

Then, the remaining two poles after the pole-zero cancelation were respectively cal-
culated for both cases, and are shown in Fig. 6.3. Obviously, the variation of the poles
in the oxygen deficient case is much larger than that in the oxygen rich case. Specif-
ically, the magnitude of the non-dominant pole drops from 50.98 % to 12.85 %, when
the oxygen concentration increases; while the drop in the dominant pole is even more
remarkable, i.e., from 59.37 % to 9.14 %.
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Figure 6.2: The root locus plots of the seven linearized MSO processes at different equilibrium points: (a) 3O2
deficient case, (b) 3O2 rich case. The scales of the corresponding axes in the two figures are the same. The
inserts in the figures show the cancelation of the pole s = 0 with the zero.

VALIDATION OF THE LINEARIZED MODEL (6.6) TO MODEL (6.1) BY SIMULATIONS

In this section, the linearized model (6.6) was used to simulate [1O2] in an oxygen-rich
environment. Because this system can be regarded as a linear system with an abundant
oxygen supply, A and B were fixed to their mean value in Eq. (6.6). The fitting result is
plotted in Fig. 6.4(a) with a 8.5366 average root mean square error (RMSE).

VALIDATION OF THE CLOSED-FORM SOLUTION (6.19) TO MODEL (6.1) BY SIMULATIONS

In this section, the closed-form solution of the first-principle model was verified under
different oxygen supplies. We first consider the situation of an ample oxygen supply. The
oxygen-concentration related parameters were set as g = 0.8 µM/s, [3O2] = 50 µM. The
simulated results between the closed-form solution (6.19) and model (6.1) are shown in
Fig. 6.4(b). The estimated parameters are shown in Tab. 6.1. The RMSE of the fitted
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Figure 6.3: The pole positions of the linearized MSO process at different equilibrium points: (a) non-dominant
pole, (b) dominant pole. Cycles: 3O2 deficient case. Triangles: 3O2 rich case.

model (6.19) is only 1.2087, which obviously demonstrates its accuracy.

Table 6.1: Estimated parameters of Eq. (6.19).

k1 k2 k3 k4 RMSE
6.289e+03 0.0920 7.168e-06 609.553 1.2087

The entire simplification is based on the approximation of an abundant oxygen sup-
ply. Thus, we verified the closed-form solution Eq. (6.19) with different oxygen supply
rates g . The Mean relative absolute errors (MRAE), defined as follows, of Eq. (6.19) com-
pared to the first principle model with different oxygen supply rates are depicted in Fig.
6.5.

MR AE = 1

T

T∑
t=1

∣∣∣�[1O2]t − [1O2]t

∣∣∣
[1O2]t

(6.26)

The perfect fit of the closed-form solution Eq. (6.19) to the simulated data motivated us
to fit the experimental data to this model.
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Figure 6.4: The accuracy of the (a) linearized model and (b) closed-form solution comparing to the first-
principle model.

6.3.2. EXPERIMENTAL RESULTS

MEASUREMENTS OF THE SINGLET OXYGEN CONCENTRATIONS IN C. albicans AT ABL IRRA-
DIATION

The time sequences of the singlet oxygen concentrations in the C. albicans were mea-
sured from the experiments using all four different light sources, as shown in Fig. 6.6.
The singlet oxygen concentration was significantly increased after 10 min irradiation of
385nm wavelength (P<0.05). In other cases, a significant increase in [1O2] was observed
within 5 min of irradiation (P<0.05). The significance of the singlet oxygen concentra-
tion in fungi before and after the light treatment was tested by the Student’s t-test.

FITTING THE PARAMETERS OF EQ. (6.19) TO THE EXPERIMENTAL DATA

Due to the aforementioned challenges in parameterizing the model of the induced [1O2]
in vitro, a closed-form solution of the MSO process was developed. One needs to esti-
mate four parameters (k1,k2,k3, and k4) to use this model. More specifically, k1 and k2

rely on the type of pathogen and its endogenous PS; k4 is an offset to the initial concen-
tration of singlet oxygen, whereas k3 relies on the type of the pathogen and the PS, and
also on the photochemical parameters that are related to the photon energy.

Motivated by the definition of these parameters, we first fix the values of k1,k2, and
k4, and then built a functional relationship between k3 and photon energy to investigate
the light-induced 1O2 of C. albicans by different light wavelengths.

First, a standard least-squares (LS) algorithm was used to coarsely tune the values
of k1, k2, k3, and k4. The values of these parameters fitted to the experimental data
with different wavelengths are listed in Tab. 6.2. It is found that k1 and k2 were almost
constant regardless of the wavelengths.

The MRAE errors for the values of k1 and k2 are shown in Fig. 6.7. It can be seen that
in all the four cases, the optimum of the parameter pair (k1,k2) lies on the flat bottom of
a narrow valley roughly within the range of 10 < k1 < 104 and 0.1 < k2 < 1. Thus, we set
k1 = 280 and k2 = 0.9 as constant for all cases.

Second, with fixed k1,k2, again, we used the LS algorithm to fine-tune k3 and k4. The
results are listed in Tab. 6.3 and plotted in Fig. 6.8. k4 was found to be approximately
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Figure 6.5: The fitting accuracy of the closed-formed solution (6.19) as compared to the first-principle model
(6.1) in different oxygen supply rate g .

Table 6.2: Coarsely tuned values of the parameters of Eq. (6.19) by least squares

Wavelength [nm] k1 k2 k3 k4 RMSE
385 305.8660 0.8971 1.400e-5 716.1151 5.6245
405 257.9358 0.9399 8.000e-6 749.1535 4.3801
415 281.9836 0.9855 2.031e-06 1197.8264 1.5716
450 318.8462 0.7893 1.8e-5 517.9739 1.4840
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Figure 6.6: The singlet oxygen concentration in C. albicans induced by different light wavelength.

Table 6.3: Fine tuned values of k3 and k4 in Eq. (6.19)

Wavelength [nm] k3 k4 RMSE
385 1.1240e-05 674.6588 2.4744
405 9.0556e-06 673.8206 3.4526
415 6.0888e-06 671.0575 1.2636
450 8.5290e-06 666.1381 1.4852

constant in the results and can therefore also be fixed at k4 = 670. In contrast, k3 was
sharply altered in different experiments.

In Eq. (6.19), k3 determines the speed of generating 1O2 in the photochemical reac-
tion. The larger the value, the faster the accumulation of the cytotoxic 1O2.

RELATIONSHIP BETWEEN k3 AND PHOTON ENERGY

To fit and validate the relationship between k3 and photon energy, we split the experi-
mental data into two groups, i.e., with those from the 385nm, 405nm, and 450nm light
experiments for fitting, and with the 415nm experimental data for validation.

In Eq. (6.21), there are totally nine unknown parameters to be estimated, i.e., a1, a2,
b1, b2, c1, c2, d1, d2, and E . However, there are only three data points, which are not
enough to uniquely determine all these nine parameters by solving a single LS problem.
To fit them, c1 and c2 were first determined by estimating the periods of the sinusoidal
functions. More specifically, c1 was greater than c2 which corresponds to the PS of the
C. albicans absorption spectra. Then, b1 and b2 were secondly estimated by the heights
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Figure 6.7: The fitting errors with different values of k1 and k2, where the numbers on the color bars and the
contours are the MRAE errors.

of the peaks. For the same reason, b1 is smaller than b2. This then reduces the num-
ber of unknown parameters to five, where a1, a2, d1 and d2 can now be estimated by
a nonlinear LS algorithm with reasonable accuracy; and E is finally determined by the
intersection of piecewise functions. As a result, the value of k3 in the fitted model at
415nm turned out to be 5.855×10−6 wihch is plotted on Fig. 6.9. As a validation, the fit-
ted k3 by the experimental data was 6.089×10−6 as reported in Tab. 6.3. The difference
between the model output and the experimentally fitted k3 at this validation point was
about 4%, which is acceptable.

MODELING SINGLET OXYGEN AS A FUNCTION OF PHOTON ENERGY AND FLUENCE RATE

With the parameters in Tab. 6.4 on page 9, the model of [1O2] as a function of the stim-
ulating photon energy and fluence rate, i.e., Eq. (6.22), was finally established, with the
validation using the 415nm (Ep =2.99 eV) experimental data. The simulation results are
plotted in Fig. 6.10 where the validating data are shown in squares. The RMSE error of
the predicted [1O2] from the model compared to the validating experimental measure-
ments was only 1.251. Therefore, the accuracy of this model at the validation point is
also acceptable. However, the limitation of this model is that it is accurate only in an
oxygen-rich environment. According to our simulation studies, a rule of thumb to deter-
mine the richness of oxygen supply is that the supply rate shall be higher than 0.4 µMs−1
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Figure 6.8: Fitted curve to the measured [1O2] from different wavelength light irradiation experiment.

for in vivo or clinical experiments.

Table 6.4: Estimation of the parameters of Eq. (6.22)

a1 a2 b1 b2 c1 c2 d1 d2 k1 k2 k4

6.655e-06 6.537e-6 8e-6 2e-6 14 19 0.999 0.960 280 0.9 670

From the simulation results of (6.22), the following observations can be further made.
First, when the fluence rate is low, i.e., He <5 J/cm2, 1O2 is insufficiently induced by any
photon energy in the range of 2.6 ∼ 3.2 eV. This indicates that sufficiently large radiomet-
ric energy of the stimulating light is required to trigger sufficient singlet oxygen genera-
tion, no matter how large the photon energy is. Second, as the fluence rate accumulates
to a certain level, i.e., He >15 J /cm2 , the photon energy becomes the main factor to de-
termine [1O2]. For the fungi studied in this study, C. albicans, the photon energy in the
range of either 2.7 ∼ 2.8 eV or 3.0 ∼ 3.2eV (388 ∼ 413nm or 443 ∼ 459nm in wavelength)
can more effectively stimulate singlet oxygen generation, which coincides with the Sorét
bands of common types of porphyrin and flavin.
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Figure 6.9: Fitted model of k3 as a function of the photon energy.

QUANTIFYING THE FLUENCE RATE FOR TREATING FUNGAL INFECTIONS IN CUTANEOUS TIS-
SUES

To study the clinical effect of ABL on treating superficial infections, knowing the fluence
rate delivered to the tissues beneath the surface is important. To this end, we first col-
lected the optical properties of healthy human epidermis from the literature, including
the absorption coefficient µa and the reduced scattering coefficient µ′

s . Due to the lim-
ited measurements reported so far, it was still not possible to find all the values exactly
corresponding to the four wavelengths. Fortunately, in the studied range of wavelength,
the available values were found to be µa=1.5 cm−1, µ′

s =10 cm−1 at 400nm, and µa=1
cm−1, µ′

s =9 cm−1 at 450nm [36]. By respectively applying these parameters in Eqs. (6.23-
6.25), we simulated the light fluence rate up to 1cm depth beneath the epidermis. The
result is shown in Fig. 6.11(a). As can be seen, the light fluence rate increases sharply
at the air-tissue boundary because of the backscattering from the boundary; and then
exponentially decreases with the increasing depth. More specifically, the fluence rate of
the 400nm light decreases faster than that of the 450nm. For instance, the fluence rate
of 450nm at 0.2cm depth is 5.5 times lager than that of 400nm. That is to say, the 450nm
can penetrate deeper than 400nm.

Furthermore, the spatial distribution of the induced 1O2 concentration was simu-
lated using Eq. (6.22), with a total fluence rate of 90 J/cm2. The simulation result is
shown in Fig. 6.11(b), where the 1O2 concentration exponentially decreases with the
increasing depth.
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Figure 6.10: [1O2] in response to various photon energy and fluence rate, where the numbers on the color bar
indicate the values of [1O2].
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Figure 6.11: The spatial distributions of (a) fluence rate and (b) 1O2 concentration up to 1cm depth within
human epidermis.

6.4. DISCUSSION

6.4.1. CONDITIONS AND ACCURACY OF THE LINEARIZED MODEL (6.6)
According to both the root loci in Fig. 6.2 and the pole positions in Fig. 6.3, the nonlin-
earity of the MSO process (6.1) is greatly reduced in an oxygen rich environment. The
process can thus be approximately treated as linear. It is worth mentioning that it is
much easier for such a linear model to be obtained from the first-principle model or
identified from time-series data. On the other hand, the dominant poles λ2 of the oxy-
gen rich case are faster than their counterparts in the oxygen deficient case. This also
indicates that the response of 1O2 to light stimulation is faster, when the main ingredi-
ent 3O2 is abundant.

More specifically, as analyzed in Eq. (6.12), when the concentration of triplet oxygen
[3O2] is far greater than β, [S0] will become the only time-varying parameter that can
change the pole. In the simulation, although [3O2] is not infinite, it is still approximately
five times more than β with a normal oxygen content environment; this ratio increases
to ten times greater in an oxygen-rich environment. Thus, [S0] is the main factor that
determines the pole positions in an oxygen-rich environment. Moreover, since σ is far
less than the other parameters in Eq. (6.1), i.e.,σ= 9·10−5 µM−1, ξ= 3.7·10−3 cm2/mW/s,
δ = 33 µM, β = 11.9 µM, the variation of [S0] is relatively lower than that of the other

components. In the simulation, d [S0]
d t was only about 1% of d [3O2]

d t and d [1O2]
d t in the entire

process. Therefore, there was little change in the pole positions over time in the oxygen-
rich environment, and thus, the dynamics could be approximated to those of a linear
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system. This provides the insight into the dynamic behavior of the MSO process, in the
sense that the MSO process is approximately linear in the presence of ample oxygen
concentration.

For a linear system, a linearized model (6.6) was used to simulate the changes in 1O2.
However, the fitting results were suboptimal as compared to using the nonlinear model
(6.19). The reason for this can be the nonlinearity of the MSO model. As we previously
discussed, the MSO model can be approximated to linear in an oxygen-rich environ-
ment. However, the poles are slowly changing over time, and strictly speaking, it remains
a nonlinear model. This causes error in the linearized model, which assumes the fixed
system poles and zeros.

6.4.2. CONDITIONS AND ACCURACY OF THE MODEL EQ. (6.19)
The closed-form solution is based on the condition of abundant oxygen supply. The
concentration of 3O2 was assumed to be infinite in the derivation of Eq. (6.19). Al-
though [3O2] cannot be infinite in reality, when the value of [3O2] is sufficiently large, the
accuracy of the closed-form solution is acceptable. In Fig. 6.5, we validated this solu-
tion under different oxygen supply rates. More specifically, when the oxygen supply rate
g > 0.4µM s−1, the MRAE of Eq. (6.19) is always higher than 98%. When g = 0.8µM s−1,
shown in Fig. 6.4(b), the accuracy of the closed-form solution can be up to 99%. In real-
ity, the oxygen supply rate in human tissues is in the range of 0.1−1µM s−1 [21]. There-
fore, in most cases, this simplified closed-form model can still give accurate enough re-
sults.

It shall be mentioned that knowing the level of oxygen during PDTs is also important
to predict the PDT efficacy [37], since the cytotoxic effect of PDTs depends in part on
the availability of molecular oxygen in the target tissue. In this aspect, it was reported
that high fluence rates could lead to a reduced photodynamic effect due to the oxygen
depletion [38]. Therefore, for the accuracy of our model, it shall also be recommended to
avoid apply high fluence rates in clinical treatment. On the other hand, applying a pulsed
light with high amplitude can also be a way out. To determine the optimum timing of
the duty cycles of the light pulses, a mathematical model can be used to analyze their
effects on intercapillary tissue during PDTs [39].

On the other hand, it shall also be noted that the accuracy of the closed-form MSO
model is dependent on the oxygen supply rate g . According to our simulation studies, a
rule of thumb to determine the richness of oxygen supply is that the supply rate shall be
higher than 0.4µM s−1. In reality, g also depends on blood flow rate; and g = 0.7µM s−1 is
a well-accepted value in PDTs [22, 40], which clearly meets the condition of an accurate
closed-form MSO model. Besides, in treating superficial infection, due to the direct ex-
posure of the treatment area to the air, the oxygen supply can be even higher. Therefore,
the oxygen-rich environment assumption can be satisfied in both cases, and does not
impose any limitation to apply the model.

6.4.3. CLINICAL RELEVANCE OF THE CLOSED-FORM MODEL (6.19)
In traditional PDTs, reduced tumor sizes and cure index are usually considered as their
outcomes, which have been found to be highly correlated with the concentration of sin-
glet oxygen [22, 24]. Therefore, the first principle model (6.1) is widely applied clinically
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to determine the specified light dosage with a target [1O2]. Since the closed-form MSO
model (6.19) is directly derived from Eq. (6.1), it can be equivalently used to evaluate the
PDT outcomes, under the aforementioned condition of ample oxygen supply.

It shall be emphasized that although Eq. (6.19) was especially tested in treating fun-
gal infections, this model can actually be applied to all cases of antimicrobial light ther-
apies and PDTs. In any case, one only needs to estimate the four parameters (k1,k2,k3

and k4) to establish the model. To this end, a data-driven method was used in Sec. 6.3.2
to estimate them. On the other hand, these parameters can also be calculated with the
knowledge of the PS dependent parameters, i.e., [S0]0, σ, δ, ξ and f . These parame-
ters can be obtained either from the relevant literature or by conducting experiments
following standard procedures [23]. Once k1 ∼ k4 are determined, [1O2] can be calcu-
lated with a specified fluence by Eq. (6.19). The 1O2 concentration can then be used to
predict the PDT outcomes. In traditional PDTs, the relationship between the 1O2 con-
centration and treatment outcome can be found in many literatures. For instance, when
[1O2] > 1.1mM , the radiation-induced fibrosarcoma tumors exhibited a complete re-
sponse after 14 days PDT treatment [40]. For the more susceptible bacteria, it was re-
ported that S. typhimurium and E. coli were inactivated by 99% with [1O2] accumulated
to 74µM [41]. As a summary, the procedures of establishing the model (6.19) for a po-
tential clinical application are illustrated in Fig. 6.12.

6.5. CONCLUSION
In this work, the nonlinearity of the MSO process was examined by the poles of its lin-
earized models at different equilibrium points. It was found that this system is linear in
an oxygen-rich environment. Thus, the MSO model can be reduced to a linear dynamic
model. Although this linearized model provides additional insights into the dynamic
behavior of the MSO process, it can also lead to approximation errors in the prediction
of long-time trajectories. Hence, an closed-form exact solution of MSO model was de-
rived. Furthermore, based on this analytical solution, a general model was developed as
a function of the photon energy and light fluence rate.

We also measured the singlet oxygen concentration of C. albicans up to 30 min with
the irradiation of 385, 405, 415, and 450nm light. The fitting results of our model are
in agreement with the experimental data, indicating the effectiveness of the proposed
model and parameter estimation methods. We discovered that the photon energy within
the range of 2.7 ∼ 2.8 eV or 3.0 ∼ 3.2 eV (388 ∼ 413nm or 443 ∼ 459nm in wavelength) is
more effective in generating singlet oxygen in the fungi studied in this work, and is hence
more effective in treating the infections caused by this type of fungi.

A potential extension of the current work is to model and compare the light induced
singlet oxygen in other types of infectious fungal strains based on the developed analysis
and modeling methods.
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7
CONCLUSION

7.1. SUMMARY OF RESULTS
In this thesis, we focused on investigating the safety and efficacy of ABL therapies. Aim-
ing on the dosage optimization in ABL, several dynamic nonlinear models were devel-
oped. Here are the main significance and founding of this thesis:

• First, the safety and efficacy of ABL was investigated in Chapter 2 by in vivo exper-
iments. In that work, the inactivating effects of ABL on both the pathogens and
human host cells. A dynamic viability models and functional relationship of these
two types of cells were built based on the experimental data. The results indicate
that, in vitro, the 415nm light source has a more effective anti-fungal function with
less damage to the human host cells than 450nm and 405nm wavelength.

• Second, we measured the ROS concentration on the aforementioned two types
of cell during the ABL irradiation in . Furthermore, a first order linear integrator
has been developed to mathematically describe the induced ROS in fungi, as a
function of the photon energy and fluence of the stimulating light in Chapter 3.
The fitting results agree well with the main trends of the experimental data at long
time scales, e.g. from tens of minutes to a few hours.

This linear integrator model was applied on simulating the nonlinear ROS accu-
mulation process. Obviously, the theoretical error can not be eliminated. There-
fore, more nonlinear models were developed on solving the problem.

• Third, new modeling scheme was proposed in Chapter 4 using a kernel-based
NARX structure, whose kernels were selected by a newly developed algorithm based
on PSO optimization. This NARX model was used to simulating the intracellular
ROS concentration. High fitting accuracy was achieved by the model, demonstrat-
ing the effectiveness of the proposed modeling technique. Both the experimental
data and the numerical results from the NARX model indicated that the ROS ratio
of V. E. cells was always lower than that of C. albicans, demonstrating the safety of
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the ABL therapy. Moreover, a key conclusion was that the 415nm wavelength blue
light was the most effective wavelength, with the least damage to V. E. cells. This
results was also confirmed in the previous chapter.

As a nonlinear modeling technique, the NARX model can simulate the ROS ac-
cumulation process better than the linear model. However, due to the nature of
NARX, the form of the model was unclear and leads to some difficulties in using.

• Forth, an closed-form exact solution of MSO model was derived in Chapter 3. The
contribution of this chapter has two aspects. First, the control theory was the first
time tried applying on analysing the PDT model. After the pole-zero cancellation,
it was found that this system is linear in an oxygen-rich environment. Thus, the
MSO model can be reduced to a linear dynamic model. Second, simplified the
MSO model to a closed-form analytical solution, which is much easier to use. This
analytical solution estimate the singlet oxygen level with given light fluence and
photon energy.

The modeling technique was fitter to the experimental data on C. albicans. Results
discoverer that the photon energy within the range of 2.7-2.8eV or 3.0-3.2eV (388-
413nm or 443-459nm in wavelength) is more effective in generating singlet oxygen.
This range perfectly cover the aforementioned treating wavelength.

7.2. LIMITATION AND FUTURE WORK
The proposed modeling techniques in this thesis offer opportunities for determining
the light dosages in treating fungal infection diseases by PDT and ABL, especially those
on the surface tissues of human body. However, all thees modeling approaches were
developed based on the in vitro experimental data, the in vivo experiments were still
lacked. One of the future work can be aimed at the in vivo verification of the proposed
models.

In fact, some attempts have been tried by our team. Applying irradiation on an an-
imal model was not difficult. Also, the survival rates of the pathogens can be studied
by using the fluorescence fungi. The survival fungi can be observed directly by the flu-
orescence microscope. These methods have already been developed and successfully
published bu other researchers. The main difficulty to verify our models is the measure-
ment of the ROS and singlet oxygen concentration in the animal model. Because the
short live time and unstable nature, ROS and singlet oxygen will react with oxygen, or
transform into other species in a few seconds. Therefore, an instant measuring equip-
ment in the animal model is requiring. The detector of the equipment needs to be small
enough to be set up under the superficial skin of the animal. Due to the limitation of our
lab facilities and funding, we did not make this equipment.

Another future aim can be clinical trials of applying ABL on treating microbial infec-
tion. However, the urgency of the alternative treatment of infection is not that much.
People are still willing to use antibiotic or antimycotic drugs for their convenience and
economy. This may become the reason that very few clinical trials were studied. In
Chapter. 3, the spatial distribution of fluence rate and 1O2 concentration under human
epidermis was simulated. The simulation result was in accord with our knowledge, but
future clinical trials on this topic would be a good supplement of the modeling approach.
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A.1. PSO ALGORITHM FOR KERNEL SELECTION
The PSO algorithm is an evolutionary algorithm that mimics the movements of the or-
ganisms in a bird flock. It solves a problem by having a population of candidate solu-
tions, and moving these particles around in the search-space. The movements of the
particles are guided by their own best known position in the search space as well as the
best known position of the entire swarm.

First, all particles are dispersed uniformly. The movement, also known as velocity, is
denoted as V , whose initial value can be randomly chosen. LetΨ j ,V j ∈ RS denotes the
j -th particle and its corresponding velocity, where S denotes the dimension of Ψ j and
V j . The movements are adapted by the following formula.

V j = d1V j +d2(Ψ∗−Ψ j )+d3(Ψ∗
j −Ψ j ), (A.1)

where d1, d2 and d3 are the weighting factors; Ψ∗ and Ψ j∗ are the global best particle
and local best particle respectively. The value of V j shall be hard bounded to the so-
called “setting region” , i.e. V j ∈ [Vmi n ,Vmax ].

After each movement, the position of the j -th particle is updated by

Ψ j+1 =Ψ j +V j , (A.2)

which is then hard bounded to the search space, i.e. Ψ j ∈ [Ψmi n ,Vmax ]. The search will
stop when the cost function ofΨ∗ is satisfied or the maximum generation is reached.

In this work, we propose to use PSO for the kernel selection in the NARX model. The
objective of kernel selection is to select a subset of ns (ns ¿ n) best kernels from the
full set of n candidate kernels. In this specific NARX model, the I/O data are time-series
data of the ROS concentrations which is a vector. To model each this process, the output
dimension is `= 1, and hence yk ,θi take the scalar form. For simplicity of notations, we
will especially consider the single output case. However, it shall be mentioned that the
proposed method is not restricted to single output case. For the NARX kernel selection,
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define a cost function as Jt , where t stands for the number of selected regressors. The
initial cost is denoted as J0 = y T y . According to Eq. (8) one can write

J0 = θT P T Pθ =Σn
i=1pT

i piθ
2
i .

The idea is to search all the columns in P , and find the one that reduces the cost value
most, if being removed from J .

Ji = Ji−1 −pT
i piθ

2
i , (A.3)

where pi is chosen from P . This procedure can be terminated if

Ji < ε or i < T (A.4)

is satisfied, where ε is a chosen positive scalar; and “T” is the maximum epoch, repre-
sents that T regressors are chosen.

The PSO algorithm is proposed to choose the orthogonal columns in Eq. (A.3). In
PSO, the decision variables are regarded as particles. These particles move around in the
search space.

The parameters in the NARX model to be optimized are the kernel center xi and the
kernel parameters ai ,bi , · · · . Thus, for kernel selection, the particle shall include the in-
dex of the center and its corresponding variance; i.e., Ψ j = [i j , ai j ,bi j , · · · ]T , where i j

stands for the index of the kernel center that is included in the j -th particle while choos-
ing pi . Once these kernel parameters are fixed, the corresponding pi and θi can be cal-
culated by the standard Gram-Schmidt procedure; and the cost function can be calcu-
lated by Eq. (A.3).

A.2. NARX MODEL IDENTIFICATION ALGORITHM

Outer loop (search the i -th regressor gi , i = 1,2, · · · ,T )
Initialize the value of population size denoted as Q; the weighting factors d1, d2 and d3;
the searching spaceΨmi n ,Ψmax ; and the movement setting region Vmi n ,Vmax .
for(i=1; i ≤ T; i=i+1)

1. Initialize the populationΨ randomly in the searching space and randomly
generate an initial velocity matrix V inside the setting region.

2. Calculate the cost for all particles:

for( j=1; j ≤ Q; j=j+1)

(a) Choose the kernel index i j from the particleΨ j = [i j , ai j ,bi j , · · · ]T . Compute

the regressor vector gi j = [gi j (x1), · · · , gi j (xN )]T by the kernel functions on
Table (2), as a candidate while selecting the i -th regressor. Then
orthogonalize it by the standard Gram-Schmidt procedure:
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(b) if i = 1

u j = gi j

pi j =
u j∥∥u j

∥∥
2

(A.5)

else

u j = gi j −Σi−1
r=1(g T

i j
·pr ) ·pr (A.6)

pi j = u j∥∥u j
∥∥

2

(c) Calculate the corresponding θi j and the cost function in terms of pi j ,θi j by

θi j =
pi j

T y

pi j
T pi j

(A.7)

Ji j = Ji j−1 −pi j
T pi j θi j

2 (A.8)

where Ji j is the cost after chooseΨ j = [i j , ai j ,bi j , · · · ]T as the i -th regressor.

end for

3. Find the best particle, as the one corresponding to the minimal Ji j , i.e.

j∗= min
j

{Ji1 , Ji2 , · · · , JiQ }.

And set the global best asΨ∗ =Ψ j∗.

4. Initialize the local best particles as

Ψ j∗=Ψ j , j = 1,2, · · · ,Q

The PSO inner loop:

for(k=1; k ≤ K; k=k+1)

for( j = 1; j ≤Q, j = j +1)

(a) Calculate V j by (A.1) and restrict its value into the setting region.

(b) UpdateΨ j by (A.2) and restrict its value into the search space.

(c) Calculate the cost function value Ji j as in Eq. (A.8) for the new particle.
Update the global best particleΨ∗ and the local best particlesΨ∗

i as follows.
IfΨ j is better thanΨ∗, setΨ∗ =Ψ j .
IfΨ j is better thanΨ∗

j , setΨ∗
j =Ψ j .

end for

Stop the inner loop when the maximum epoch is reached or J∗i j
< ε.
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end for

End of inner loop

The best particle find in this epoch isΨ∗. Set Ji = Ji j ∗, gi = gi j∗ , pi = pi j∗ and θi = θi j∗ .
Remove the selected index j∗ from the candidates of the regressor indices.

end for

End of outer loop

A.3. THE RATE EQUATIONS OF EGFR SIGNALING NETWORK
The rate equations of EGFR signaling network are listed below, where C∗ denoted the
concentration of protein “∗”; K and k with subscript are respectively the Michaelis
constant and the kinetic constant.

v1 = k1CRCEGF −k−1CRa

v2 = k2CRa CRa −k−2CR2

v3 = k3CR2 −k−3CRP

v4 = V4CRP /(K4 +CRP )

v5 = k5CRP CPLCγ−k−5CRPL

v6 = k6CR−PL −k−6CR−PLP

v7 = k7CR−PLP −k−7CRP CPLCγP

v8 = V8CPLCγP /(K8 +CPLCγP )

v9 = k9CRP CGr b −k−9CR−G

v10 = k10CR−GCSOS −k−10CR−G−S

v11 = k11CR−G−S −k−11CRP CG−S

v12 = k12CG−S −k−12CGr bCSOS

v13 = k13CRP CShc −k−13CR−Sh

v14 = k14CR−Sh −k−14CR−ShP

v15 = k15CR−ShP −k−15CRP CShP

v16 = V16CShP /(K16 +CShP )

v17 = k17CR−ShP CGr b −k−15CR−Sh−G

v18 = k18CR−Sh−G −k−18CRP CShG

v19 = k19CR−Sh−GCSOS −k−19CR−Sh−G−S

v20 = k20CR−Sh−G−S −k−20CSh−G−SCRP

v21 = k21CShP CGr b −k−21CSh−G

v22 = k22CSh−GCSOS −k−22CSh−G−S

v23 = k23CSh−G−S −k−23CShP CG−S

v24 = k24CR−ShP CG−S −k−24CR−Sh−G−S

v25 = k24CPLCγP −k−25CPLCγP−I
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The kinetic equations are derived according the EGFR network in Fig. 5.1.

d [CEGF ]

d t
= −v1

d [CR ]

d t
= −v1

d [CRa ]

d t
= v1 −2v2

d [CR2 ]

d t
= v2 + v4 − v3

d [CRP ]

d t
= v3 + v7 + v11 + v15 + v18 + v20 − v4 − v5 − v9 − v13

d [CR−PL]

d t
= v5 − v6

d [CR−PLP ]

d t
= v6 − v7

d [CR−G ]

d t
= v9 − v10

d [CR−G−S ]

d t
= v10 − v11

d [CR−Sh]

d t
= v13 − v14

d [CR−ShP ]

d t
= v14 − v24 − v15 − v17

d [CR−Sh−G ]

d t
= v17 − v18 − v19

d [CR−Sh−G−S ]

d t
= v19 − v20 + v21

d [CG−S ]

d t
= v11 + v23 − v12 + v24

d [CShP ]

d t
= v15 + v23 − v21 + v16

d [CSh−G ]

d t
= v18 + v21 − v22

d [CPLCγ]

d t
= v8 − v5
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Table A.1: The index of the all 23 proteins

1 EGF 5 RP 9 R-G-S 13 R-Sh-G-S 17 PLCγ 21 Shc
2 R 6 R-PL 10 R-Sh 14 G-S 18 PLCγP 22 SOS
3 Ra 7 R-PLP 11 R-Shp 15 Shp 19 PLCγP-I 23 Sh-G-S
4 R2 8 RG 12 R-Sh-G 16 ShG 20 Grb

d [CPLCγP ]

d t
= v7 − v5 − v25

d [CPLCγP−I ]

d t
= v25

d [CGr b]

d t
= v12 − v9 − v17 − v21

d [CShc ]

d t
= v16 − v11

d [CSOS ]

d t
= v12 − v10 − v19 − v22

d [CSh−G−S ]

d t
= v20 + v22 − v23
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