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Abstract. Condition-based maintenance using routinely collected Supervisory Control and
Data Acquisition (SCADA) data is a promising strategy to reduce downtime and costs associated
with wind farm operations and maintenance. New approaches are continuously being developed
to improve the condition monitoring for wind turbines. Development of normal behaviour
models is a popular approach in studies using SCADA data. This paper first presents a data-
driven framework to apply normal behaviour models using an artificial neural network approach
for wind turbine gearbox prognostics. A one-class support vector machine classifier, combining
different error parameters, is used to analyse the normal behaviour model error to develop a
robust threshold to distinguish anomalous wind turbine operation. A detailed sensitivity study is
then conducted to evaluate the potential of using high-frequency SCADA data for wind turbine
gearbox prognostics. The results based on operational data from one wind turbine show that,
compared to the conventionally used 10-min averaged SCADA data, the use of high-frequency
data is valuable as it leads to improved prognostic predictions. High-frequency data provides
more insights into the dynamics of the condition of the wind turbine components and can aid
in earlier detection of faults.
Keywords: Wind turbine, Gearbox failure prognostics, High-frequency SCADA data, Machine
learning

1. Introduction
The offshore wind energy is expected to become one of the largest sources of renewable electricity
by 2042 [1]. However, the sector faces challenges pertinent to operations and maintenance
(O&M), which can make up a significant portion of the total costs associated with any wind
farm, with up to 30% for offshore installations [2]. Wind turbine (WT) gearboxes are among
the most expensive subsystems and their failures incur the longest downtime [3], therefore, this
research focuses on prognostics of gearbox failures.

Condition-based maintenance is an effective strategy to reduce O&M costs and improve
availability of WTs through condition monitoring. Commercially available purpose-based
CM systems require additional monitoring devices to be installed on the WT. These devices
measure and record large volumes of high-frequency data, including vibrations and oil debris
measurements. However, their wide-scale deployment is still limited, as their economic benefit
to O&M costs depends largely on the fault detection rate [4] and they only records component-
specific information. On the other hand, WT condition monitoring using supervisory control
and data acquisition (SCADA) systems is seen as a cost-effective and wide-scale approach, as
these are pre-installed systems in utility-scale WTs. SCADA systems are rich data sources that
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usually record 10-min averaged signals which characterize the operational and environmental
conditions of the WT [5]. This has motivated the scientific community to investigate their use
for CM purposes. When compared with condition monitoring systems, an important drawback
of SCADA data is low temporal resolution, which results in a loss of information about the
dynamic behaviour of the WTs and can lead to a loss of detection capabilities during the
monitoring phase [6]. Nevertheless, SCADA data are a potential solution for WT CM owing
to their availability at no additional cost [7]. Furthermore, using high-frequency SCADA data
instead of 10-min averaged signals, this research investigates in detail the potential of using
high-frequency SCADA data for WT prognostics.

Various recent studies reviewed in [8] have shown that multiple approaches and machine-
learning models can be used for condition monitoring of several wind turbine components using
SCADA data. One popular approach in studies using SCADA data is through the development
of normal behaviour models (NBM). NBMs are based on the idea of modelling the normal
(or healthy) behaviour of a WT component and comparing the model predictions with in-field
measurements to track error between the signals and detect fault inception. Mathematical
modelling methods like artificial neural networks (ANN) can be utilised to develop NBM to
analyse WT data [9]. ANNs are advantageous in monitoring any component without an in-depth
knowledge of its working principles and are efficient at modelling nonlinear complex systems [10].

Zaher et al. [11] used wind turbine field data to train an auto-regressive ANN model to
detect failures in gearbox bearings. The anomalies were detected based on analysing the error
between the predicted and measured target parameters. Such a method of fault detection is
prone to errors, as it does not take into consideration the inherent randomness in the ANN
predictions, and a threshold value is desirable to generate automatic alarms. Bangalore et al.
[12] used a nonlinear auto-regressive with exogenous input ANN configuration to predict the
gearbox bearing and lubrication oil temperature. They showed that postprocessing of the error
signal using a statistical approach based on the Mahalanobis distance, can be used to improve
confidence in the anomaly detection process. Other metrics, such as using simple thresholds
that can be set based on the training root-mean-squared-error (RMSE) to determine anomaly
rates or calculating health degree based on probability, have also been suggested in the literature
[13] [14]. However, these methods tend to focus on only one parameter to describe the error
signal, which over any period of time is multifaceted and has a unique error distribution in that
interval. An effective way of addressing these limitations and analysing the error signal is to
combine different characteristics of its distribution over a selected time interval in order to set a
more robust threshold for detecting anomalies. The advantage of such a method has also been
demonstrated by Turnbull et al. [15].

This research proposes a data-driven framework that utilises a feed-forward ANN-based NBM
to predict gearbox oil temperature and a one-class SVM (OC-SVM) classifier to combine multiple
error features to set a threshold for anomaly detection through a complex decision boundary.
Furthermore, a sensitivity study based on different SCADA sampling frequencies is carried out
to better understand the loss of information due to the data averaging effect. This paper
demonstrates the use of high-frequency SCADA data for performing WT gearbox prognostics
for potentially performing early fault detection compared to the 10-min averaged data.

2. Methodology

2.1. Data overview
The data set used in this research was collected and shared from the two-bladed Control
Advanced Research Turbine (CART2) on the Flatirons Campus of the National Renewable
Energy Laboratory (NREL), Colorado, USA. The CART2 turbine has a rotor diameter of 43.3
m and reaches a rated generator power of 600 kW at a wind speed of 11 m/s. The turbine was
outfitted with a total of 88 sensors recording measurements including pitch angles, shaft torque
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and rotational speed, oil temperature and pressure, power output and other control signals [16].
The sensors installed in the CART2 turbine are shown in the Figure 1.

Figure 1: CART2 sensor location [16]

The CART2 turbine experienced a gearbox failure on April 7, 2009, which led to a turbine
shutdown. The root cause analysis suggested that the failure was due to the misalignment
of gear teeth in the first stage of the gearbox (planetary gear failure). The gearbox was then
replaced in the summer of 2009 [17]. Compared to data sets usually used in the literature for the
analysis of gearbox failure prognostics, the CART2 data set is unique as the data were recorded
at a frequency of 100 Hz rather than 10-min averaged values, which is the conventional industry
practice.

2.2. Framework for gearbox failure prognostics
A NBM-based framework was developed for gearbox prognostics and is shown in Figure 2. The
entire framework can be segmented into three modules: Module 1 - data preprocessing, Module
2 - normal behaviour model, and Module 3 - anomaly detection and prognosis. It is executed in
two phases. First phase (training and validation) encompasses training, testing and validating
the employed machine learning models. The trained models are then used to detect anomalies
and this characterizes the second phase (application). The training and validation phase is a one-
time process, which is done using data representative of the healthy/normal state of the turbine
whereas the application phase represents the continuous application for anomaly detection and
condition monitoring.

2.2.1. Module 1: Data preprocessing The first task consists in to distinctly categorize the
data corresponding to the turbine’s healthy and faulty operation.“Healthy” instances are data
representing the normal behaviour of the turbine (i.e., when no signs of failure were observed
and are used to model the WT’s normal state). “Faulty” instances comprise data indicating
deterioration of the machine component before the fault occurs, hence, containing information
of the fault initiation and development. Faulty data is then compared with the NBM output to
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Figure 2: Model architecture for gearbox failure prognostics

identify the probable component degradation by observing the deviation from normal behaviour.
SCADA data for 4 months up to the known date of failure were denoted as faulty data and all
recorded operational data before this period were identified as healthy data. A 4-month time
period was selected, as this provided an appropriate balance between the two data sets and
sufficient timeline to understand the progression of the WT gearbox failure.

Because the CART2 turbine was installed to perform advanced wind turbine control research,
the data were recorded only when the field tests were conducted [17]. To tackle the issue
of discontinuous time-series data, the data set was clustered in weeks of operational data, as
shown in Figure 3. The faulty data have been analysed in terms of “weeks to failure” which was
done based on the known date of failure (7 April 2009).

Figure 3: Weeks of operation and corresponding dates in which the data was available for healthy
data (blue) and weeks to failure and corresponding dates for faulty data (orange)

Training the machine-learning models with low quality abnormal data might lead to
inaccuracies in the model predictions; therefore, it is imperative to filter out the outliers. For the
initial phase of model development and testing, the 100-Hz signals were resampled to 1-Hz. This
was done to tackle the issue of noise in the high-frequency raw data while keeping their failure
features.The down-sampled data set were cleaned of any data corresponding to curtailment or
downtime, blade pitch anomalies, and erroneous sensor measurements. Additionally, any power
measurement values recorded either below the cut-in or above the cut-out wind speed were
filtered out.

A common issue when working with real-world data sets is the imbalance in data distribution
across different machine operational regimes which can affect regression tasks [18]. Such
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imbalance within the data set result in over-fitting for operational regimes with large volumes
of data and under-fitting for regimes with relatively less data. This deters the generalization
capability of the ML models. An imbalance in the healthy data set analysed in this work can be
observed in Figure 4 for the case of healthy data. It can be seen that the original data distribution
is left-skewed with a substantially higher number of data points referring to low power output
values (i.e., between 0 - 100 kW; low power operational regime). In order to tackle this issue,
data were preprocessed using a synthetic minority oversampling technique with introduction
of Gaussian Noise (SMOGN) [19]. SMOGN combines a random undersampling strategy with
a commonly known oversampling techniques: synthetic minority oversampling technique for
regression. To make the oversampling technique more robust, the method adds interpolation
using normally distributed Gaussian noise to generate new synthetic samples when the samples
in the data set are too far from each other. The SMOGN implementation allowed for the low-
power region (0–100 kW) to become undersampled whereas synthetic samples were generated
in the high-power region (400–600 kW). There was no reduction in the number of data samples
when the healthy data were preprocessed with SMOGN.

100 0 100 200 300 400 500 600 700
Power Output (kW)

0.000

0.001

0.002

0.003

0.004

0.005

0.006

Da
ta

 sa
m

pl
e 

de
ns

ity

Original
Modified

Figure 4: Data density of the original and modified (after SMOGN application) healthy data
set

2.2.2. Module 2: Normal behaviour model The ANN-based NBM takes a variety of input
features to predict a target feature. Those features have been selected based on the
understanding of the gearbox physics. The gearbox lubrication oil temperature was selected as
the target feature, among the available signals, because it is the most sensitive to the condition
of the gearbox; hence, any deviations from healthy conditions would manifest themselves
into anomalies in temperature values [20]. The input features include signals describing
the environmental conditions (wind speed, and ambient temperature) and the WT operating
conditions (power output, high-speed shaft rotation speed, and nacelle temperature). In
summary, the NBM utilises five input features to predict one target feature as summarized
in Table 1. In order to model the NBM, a three-layer feed-forward neural network was built
to predict the target feature from the five input features. The key characteristics of the ANN
model are described in Table 2.

Out of the available samples in the healthy data, 70% were selected for training the ANN
model and 15% for validation, with the remaining 15% used to test the model independently.
Such a split provides a good balance to compare the model performance in all phases [21]. Once
the neural network was trained and optimized, the same input features from the faulty data set
were then fed into the ANN model to predict the gearbox lubrication oil temperature.
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Table 1: Model features for the ANN-based NBM

Features Description Layer
Uwind Wind speed Input layer
Pout Power output Input layer
UHss High-speed shaft rotation speed Input layer
Tnac Nacelle temperature Input layer
Tamb Ambient temperature Input layer
Tgb Gearbox lubrication oil temperature Output layer

Table 2: Key characteristics of the ANN model

Attributes Value
Number of input neurons 5
Number of hidden neurons 343
Number of layers 3 (1 input, 1 hidden, and 1 output layer)
Loss function Adaptive moment estimation (Adam)
Learning rate 0.001 (constant)

2.2.3. Module 3: Anomaly detection and prognosis After training and optimizing the ANN, the
NBM predictions are compared with the field measurements to track anomalies and determine a
robust threshold that can sufficiently distinguish between normal and anomalous behaviour. A
OC-SVM classifier was used to combine multiple error features and set complex boundaries
to describe the fault threshold. The error features which best described the unique error
distribution over a given period of time were selected. The approach of using multiple error
features to set a threshold to detect anomalies mitigates the risk of capturing the fluctuations
in the ANN model prediction.In the study presented in this paper, 4 parameters–namely, the
root-mean-squared-error (RMSE), the minimum error, the maximum error, and the standard
deviation of error distribution–are computed over a period of 1 minute and used as inputs to
the OC-SVM model. Using the healthy data set, the OC-SVM model is trained to recognise up
to 1% of data as anomalies in the training period and, therefore, a similar percentile would be
expected moving forward in absence of any fault in the system.

3. Results and Discussion
3.1. ANN model performance
The ANN performance was evaluated for each phase of the model development (training,
validation and testing) using the RMSE and the R-squared values (R2). The low values of
RMSE ranging between 0.03 - 0.06 for different model development phases demonstrate that
the predicted values of the target feature are indeed close to the actual values. The R2 values
close to 1 (0.95 - 0.97) and their 1.7% deviation between data sets demonstrate that the model
fits well and generalises relatively well. Figure 5 compares the observed and ANN-predicted
values of the gearbox oil temperature for the healthy data set. As a consequence of the SMOGN
preprocessing the model performs equally well for periods of low and high operational power.
The maximum deviation is observed when there is a sudden change in output power of the
turbine, due to the variability in wind speed.

3.2. Anomaly detection using OC-SVM
Once both models–ANN and OC-SVM–were trained with the healthy data, all the steps in the
framework were implemented with the faulty data set and the residual error over the 4 months
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Figure 5: (Top) Observed and predicted gearbox oil temperature values (Bottom) Power output
values in the case of healthy data set

leading up to the failure was evaluated. For each 1-min time step, the error features, introduced
in section 2.2.3 were calculated and fed into the OC-SVM model. Figure 6 shows the maximum
error plotted against the RMSE for both healthy and faulty data. The OV-SVM classifier is
able to learn the boundary of healthy operation and gives a prediction value of +1 if a data
point falls within it. Any data point far away from this boundary is assigned a value of -1
and is interpreted as representative of anomalous turbine operation. Figure 7 shows the data
classification (“normal operation” vs. “anomaly”) done by the OC-SVM for the faulty data set.
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Figure 6: Maximum error vs RMSE (Healthy
and Faulty data)
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Figure 7: Anomalous and normal operation
points classified by OC-SVM (Faulty data)

The percentage of anomalies in each week of turbine operation leading up to failure was then
calculated by considering the ratio between the number of data points classified as anomaly
by OC-SVM and the total number of data points recorded in that respective week. Figure 8
shows the progression of the anomaly percentage as the turbine gearbox approaches failure. The
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results show a gradual increase in the number of anomalies with a sharper change one month
before failure (4 weeks to failure) and, thereafter, an increasing trend showing 100% anomalies
detected on the day of failure. Between 12 and 5 weeks to failure, the percentage of anomalies
detected increase on average by 8% with a substantial increase of 32% between 5 and 4 weeks
before the failure. In terms of detection time, the first consistent increase in anomalies is seen
almost 8 weeks before failure, providing a lead time of 2 months to plan and execute maintenance
activities. The sharp increase in percentage of anomalies 4 weeks before failure shows that the
fault has become more severe and urgent action is required to prevent turbine shutdown.

Figure 8: Percentage of anomalies detected in each week leading up to the failure

3.3. Sensitivity study
The key contribution of this paper lies in the use of high-frequency SCADA data rather
than the routinely used 10-min averaged data. The use of high-frequency SCADA data
introduces additional noise in the signals which is usually smoothed by the averaging process
over conventionally used 10-min periods. However, the data averaging also leads to a loss of
information that might lead to false/missed alarms. To investigate the potential of using high-
frequency data, a sensitivity study was performed. The framework as described in Section 2.2
was implemented using data sampled at 12 different rates: 0.01 s (100 Hz), 0.02 s (50 Hz), 1 s
(1 Hz), 5 s, 15 s, 20 s, 25 s, 30 s, 60 s, 300 s, 600 s.

The first objective of the sensitivity study was to investigate how the ANN performance varies
with the data sampling period. This has been done by calculating two metrics, R2 and RMSE.
Results are shown in Figure 9a and Figure 9b, respectively. With R2 values ranging between 0.9
and 1, the model performs well for sampling periods below 30 s but deteriorates for sampling
periods higher than a minute. A similar trend can be observed in the RMSE values in Figure 9b,
where there is a considerable increase for sampling periods greater than 30 s. Additionally, it can
be seen that the model performance does not vary considerably for high sampling frequencies.
This trend in model performance is a consequence of two main factors: (1) the gearbox oil
temperature is a slow changing parameter and (2) the performance improvement of a configured
ANN model plateaus after a certain dataset size [22]. This poses a disadvantage in using SCADA
data sampled at such high frequencies (0.01 s and 0.02 s), as storing and operating large data
sets would require extensive resources and computational power with no major improvements
in the ANN model performance.

Another interesting point to observe in Figure 9 is how the values of the two metrics vary with
the model development phase in the case of sampling periods higher than 30 s. The metrics for
the model training phase being considerably higher, in the case of R2 and lower, in the case of
RMSE than those for the other two phases is an indication of model overfitting the training data
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(a) ANN model performance: R2 (b) ANN model performance: RMSE

Figure 9: ANN performance metrics for different sampling frequencies

and its inability to generalize its learning to the testing data set. This is due to the lower number
of data samples available for model training for the case of these longer sampling periods. This
limitation stems from the CART2 data set itself, as the turbine was only operated in periods
when testing and research were conducted, resulting in a low number of operational hours and
a small amount of data samples when aggregated for higher sampling periods.

The second objective was to assess how the trend in percentage of anomalies detected in the
WT operational period before failure varies with the data sampling frequency. Figure 10 shows
the heat map of the percentages of anomalies that were detected by OC-SVM for each week
before the failure for all different sampling rates. As we approach the failure, we can observe an
increasing trend in the percentage of anomalies detected, progressing to 100% for the week of
failure for all sampling periods except for the longer sampling intervals of 60 to 600 s. In fact, the
percentage of anomalies detected when using data with these high sampling periods is extremely
low for any week before failure, with almost no signs of failure until 5 weeks before failure. This
could be consequence of several factors such as: (1) loss of information about the condition of
the gearbox because of the data averaging effects; (2) poor ANN model performance due to a
low number of data samples, which leads to model overfitting to training data; (3) high range
of prediction error values, which could increase the OC-SVM threshold boundary, resulting in
anomalies being misclassified as normal operational points.

In contrast, the percentage of anomalies observed when using data sampled at high frequency
of 0.01 and 0.02 s is quite high, even 12 weeks before the failure. This can be accredited to
the fact that there is more information available due to the sampling frequency of the data.
However, considering that this data often entails higher noise, such high percentages could also
be attributed to the outliers/noise in the signals being misclassified as anomalies. In the latter
case, this might even lead to false alarms. Additionally, it can observed that the percentage of
anomalies decreases with increasing sampling periods with slight oscillations of around 5-6% in
the case of 8 to 6 weeks before failure. Such oscillations could be due to various reasons, such
as the data resampling, and the ANN and/or the SVM model performance. Lastly, the data
aggregated for 30 s periods shows the sudden increase in the percentage of anomalies progressing
from 5 to 4 weeks before failure, as was noted with the 1-Hz data. This indicates that despite
the averaging effect, the aggregated data still retain information about the gearbox fault that
can be extracted efficiently through the framework, and a maintenance alarm could be triggered
a month in advance.

4. Conclusion
In this research, the potential for using high-frequency SCADA data for the purpose of WT
condition monitoring has been thoroughly investigated. A framework combining ANN-based
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Figure 10: Heat map of the percentage of anomalies detected each week before failure for different
SCADA sampling rates

NBM and OC-SVM was developed for WT gearbox failure prognostics. It was shown that
SMOGN is an effective data preprocessing approach that can be employed to tackle the issue
of imbalanced operational regimes when working with real-world data sets and improves the
generalization capabilities of ANN. Through the use of an OC-SVM classifier, multiple metrics
were combined to describe the error distribution over a selected time period, and a complex
threshold boundary was formed to distinguish between normal and anomalous WT operation.
The results confirm the effectiveness of this framework and its usefulness for monitoring the
condition of WT gearboxes. The sensitivity study demonstrates that the use of high-frequency
data provides a deeper understanding of WT condition and improves the detection capabilities
of the suggested approach. Nevertheless, it was also seen that the issue of noise in data becomes
more prominent with very high sampling rates, which can lead to misclassified anomalies,
resulting in false/missed alarms. Such a study can be used to determine the optimal frequency
for recording SCADA data to build effective predictive maintenance strategies that can forestall
high O&M costs. Unfortunately, this research could not derive any definitive conclusions due
to the limitations posed by the CART2 data set wherein there were too few data samples
available for analysis for sampling periods over 30 s. Determining the optimal SCADA data
frequency would require further research and performing trade-off analysis of key factors such
as the implementation costs, the data storage capacities, the data analysis complexity and its
applicability for early fault detection.

Although this research demonstrates the advantage of using SCADA data to predict gearbox
failure, it should be noted that the root cause of the failure, which in this case was gear teeth
misalignment, could not be derived using this approach. This is because SCADA systems
only record general information about the WT rather than component-specific data, which are
obtained through condition monitoring systems. However, this framework can still potentially
identify any gearbox fault that directly or indirectly results in a rise in the oil temperature values
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such as gear misalignment, shaft misalignment, wearing of component parts, etc. Furthermore,
even though this framework can be tailored to give early fault detection results for other gearbox
related faults, to prove its efficacy further testing with different failure modes and turbines should
be carried out. Future work should focus on developing a combination of physical and data-
driven models to understand the failure causes in WT components and derive the root cause
of occurred faults. Moreover, a more comprehensive high-frequency data set could be used to
advance the sensitivity study presented in this paper to determine an optimal SCADA data
sampling frequency that could be used for wind turbine condition monitoring.
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