

Delft University of Technology

Transactions across serverless functions leveraging stateful dataflows

de Heus, Martijn ; Psarakis, Kyriakos; Fragkoulis, Marios; Katsifodimos, Asterios

DOI
10.1016/j.is.2022.102015
Publication date
2022
Document Version
Final published version
Published in
Information Systems

Citation (APA)
de Heus, M., Psarakis, K., Fragkoulis, M., & Katsifodimos, A. (2022). Transactions across serverless
functions leveraging stateful dataflows. Information Systems, 108, 16. Article 102015.
https://doi.org/10.1016/j.is.2022.102015

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1016/j.is.2022.102015
https://doi.org/10.1016/j.is.2022.102015

Information Systems 108 (2022) 102015

n
a
a
A
g
e
p

m

(
a

Contents lists available at ScienceDirect

Information Systems

journal homepage: www.elsevier.com/locate/is

Transactions across serverless functions leveraging stateful dataflows
Martijn de Heus a, Kyriakos Psarakis a, Marios Fragkoulis b,1, Asterios Katsifodimos a,∗

a Delft University of Technology, Netherlands
b Delivery Hero SE, Germany

a r t i c l e i n f o

Article history:
Received 17 October 2021
Received in revised form 12 February 2022
Accepted 23 February 2022
Available online 4 March 2022
Recommended by Gottfried Vossen

Keywords:
Serverless
Transactions
FaaS
Two-phase commit
Sagas
Streaming dataflows

a b s t r a c t

Serverless computing is currently the fastest-growing cloud services segment. The most promi-
nent serverless offering is Function-as-a-Service (FaaS), where users write functions and the cloud
automates deployment, maintenance, and scalability. Although FaaS is a good fit for executing
stateless functions, it does not adequately support stateful constructs like microservices and scalable,
low-latency cloud applications. Recently, there have been multiple attempts to add first-class support
for state in FaaS systems, such as Microsoft Orleans, Azure Durable Functions, or Beldi. These
approaches execute business code inside stateless functions, handing over their state to an external
database. In contrast, approaches such as Apache Flink’s StateFun follow a different design: a dataflow
system such as Apache Flink handles all state management, messaging, and checkpointing by executing
a stateful dataflow graph providing exactly-once state processing guarantees. This design relieves
programmers from having to ‘‘pollute’’ their business logic with distributed systems error checking,
management, and mitigation. Although programmers can easily develop applications without worrying
about messaging and state management, executing transactions across stateful functions remains an
open problem.

In this paper, we introduce a programming model and implementation for transaction orchestration
of stateful serverless functions. Our programming model supports serializable distributed transactions
with two-phase commit, as well as eventually consistent workflows with Sagas. We design and im-
plement our programming model on Apache Flink StateFun to leverage Flink’s exactly-once processing
and state management guarantees. Our experiments show that the approach of building transactional
systems on top of dataflow graphs can achieve very high throughput, but with latency overhead due
to checkpointing mechanism guaranteeing the exactly-once processing. We compare our approach to
Beldi that implements two-phase commit on AWS lambda functions backed by DynamoDB for state
management, as well as an implementation of a system that makes use of CockroachDB as its backend.

© 2022 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

The idea of democratizing distributed systems programming is
ot new. Approaches like Distributed ML [1], and Erlang [2] aimed
t simplifying the programming and deployment of distributed
pplications. Erlang [2] first introduced the actor model, which
kka [3] implemented later in Scala, offering a very low-level pro-
ramming model. Virtual Actors [4,5], inspired by Pat Helland’s
ntities [6], try to abstract away the execution primitives from
rogrammers.
Serverless computing [7] is a cloud computing execution

odel promising to simplify the programming, deployment, and

∗ Corresponding author.
E-mail addresses: m.deheus@tudelft.nl (M. de Heus), k.psarakis@tudelft.nl

K. Psarakis), marios.fragkoulis@deliveryhero.com (M. Fragkoulis),
.katsifodimos@tudelft.nl (A. Katsifodimos).
1 Work done while at TU Delft.
https://doi.org/10.1016/j.is.2022.102015
0306-4379/© 2022 The Author(s). Published by Elsevier Ltd. This is an open access a
operation of scalable cloud applications. In the serverless model,
developer teams upload their code written in a high-level API, and
the cloud platform takes care of the application’s deployment and
operations. Serverless computing aims to substantially increase
cloud adoption by remedying the status quo in the cloud land-
scape, where developer teams need to possess skills in distributed
systems, data management, and cloud execution model internals
to use the cloud effectively.

Function-as-a-service & messaging. The most prominent server-
less offering is Function-as-a-Service (FaaS), where users write
functions, and the cloud providers automate deployment and
operation. However, FaaS offerings lack the state management
support and the ability to perform transactional workflows across
multiple functions and state backends [8,9], which are needed by
general-purpose cloud applications. In addition, none of the cur-
rent FaaS approaches offers message-delivery guarantees, failing
to support exactly-once processing: the ability of a function to
mutate a function’s state exactly one time per incoming message.
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1016/j.is.2022.102015
http://www.elsevier.com/locate/is
http://www.elsevier.com/locate/is
http://crossmark.crossref.org/dialog/?doi=10.1016/j.is.2022.102015&domain=pdf
http://creativecommons.org/licenses/by/4.0/
mailto:m.deheus@tudelft.nl
mailto:k.psarakis@tudelft.nl
mailto:marios.fragkoulis@deliveryhero.com
mailto:a.katsifodimos@tudelft.nl
https://doi.org/10.1016/j.is.2022.102015
http://creativecommons.org/licenses/by/4.0/

M. de Heus, K. Psarakis, M. Fragkoulis et al. Information Systems 108 (2022) 102015

i
(
t
h
c
e
t
m
d
l
o

w
t
t
i
c
S
b
s
c
b

l
r
r
m
o
t
o
c
i

T
i
a

,

t
t
w
T
S
p
b
o
s
c
b
r
l
o
t
A
a
p
t

t
t

P
e
w
t
d
m
t
t
s
r

2

S
t
b
o

a
n
p
a
p
a
s
a

a
s
s

When a system does not guarantee exactly-once process-
ng, the burden of debugging and handling of systems errors
e.g., machines failing, network partitions, or stragglers) falls on
he shoulders of programmers [10]. These programmers then
ave to ‘‘pollute’’ their business logic with extra consistency
hecks, state rollbacks, timeouts, or recovery mechanisms, for
xample. [11]. The result is that the majority of the applica-
ion code is not comprised of business logic but error checking,
anagement, and mitigation [12]. Sooner or later, programming
istributed systems logic at the application level leads to prob-
ems of state consistency, bugs, and eventually significant service
utages.
Message-delivery guarantees are fundamentally hard to deal

ith in the general case, with the root of the problem being
he well-known Byzantine generals problem [13]. However, in
he closed world of dataflow systems, exactly-once processing
s possible [14–16] as in stateful dataflows, the system has full
ontrol over both messaging and state management. Apache Flink’s
tateFun2 is, to the best of our knowledge, the first approach to
uild a FaaS execution engine on top of a streaming dataflow
ystem offering exactly-once processing guarantees even under
omplex failure scenarios. However, StateFun’s approach can also
e implemented on top of other dataflow systems [14,17–20].
Such dataflow systems can execute stateful functions as fol-

ows: incoming events represent function execution requests
outed to continuous stateful operators that execute the cor-
esponding functions. With proper, consistent fault tolerance
echanisms [15,16], state of the art stream processing systems
perate at high-throughput and low-latency. At the same time,
hey guarantee the correctness of execution even in the presence
f failures. As we show in this paper, this set of properties
an serve as a means of supporting transactions with minimal
nvolvement from the application developers.

ransactional SFaaS. Although there is ongoing work in support-
ng stateful FaaS (SFaaS) applications, mutating state transaction-
ly, across functions remains an open problem. The only approach

addressing distributed transactions in an SFaaS setting is Beldi [21]
which provides fault-tolerant ACID transactions on stateful work-
flows across functions by logging the functions’ operations to a
serverless cloud database. Cloudburst [22] with HydroCache [23]
provides causal consistency on function workflows forming a
DAG by leveraging Anna [24], a key–value store with conflict
resolution policies in place. Cloudburst does not provide isolation
between DAG workflows.

In contrast with the aforementioned approaches, developer
eams in the microservices and cloud applications landscape go
o extreme lengths when they need to implement transactional
orkflows across the boundaries of a single service or function.
he most common approach adopted is the Saga pattern [25]. The
aga pattern separates a transaction into sub-transactions that
roceed independently with the benefit of improved performance
ut at the risk of having to undo or compensate the changes
f successful sub-transactions when at least one of the involved
ub-transactions fails. In addition, compensating actions can be
hallenging when concurrent changes are applied to the state
ecause Sagas do not require any means of isolation. For this
eason, state consistency needs to be dealt with at the application
evel. On the other hand, applications that prioritize consistency
ver performance implement distributed transactions using the
wo-phase commit protocol. Two-phase commit (TPC) [26] offers
CID, serializable transactions but imposes blocking operations
cross functions participating in a transaction, which penalizes
erformance in return for strict atomicity. Apparently, distributed
ransactions and the Saga pattern serve opposing goals.

2 http://statefun.io.
2

In this work, we draw inspiration from best practices in devel-
oping microservices and cloud applications and offer developers
a programming model that supports both Sagas and distributed
transactions with two-phase commit. Our implementation for
authoring workflows across stateful functions in FaaS with trans-
actional guarantees is publicly available on GitHub.3 We imple-
ment the two approaches on an open-source stateful FaaS system,
Apache Flink’s [14] StateFun.4

In summary, our work makes the following contributions:

• We argue for implementing transactional workflows on a
stateful dataflow engine and present the advantages of this
approach

• We propose a programming model for transactional work-
flows across stateful serverless functions

• We implement the two main approaches used by cloud ap-
plication practitioners to achieve transactional guarantees:
two-phase commit and Saga workflows

• We evaluate two transactional schemes using an extended
version of the YCSB benchmark on a cloud infrastructure

• We compare against the state-of-the-art academic SFaaS
proposal that supports serializable transactions and one of
the most popular transactional distributed database sys-
tems.

This manuscript is an extended version of a paper that re-
ceived the best paper award at the 15th ACM DEBS confer-
ence [27]. This version has four novel aspects: (i) experiments
against two state of the art approaches, (ii) a new section on
the relation of our work with deterministic databases, (iii) addi-
ional technical description of our work, and (iv) a discussion on
ransactional workflows for web and cloud applications.

aper structure. Section 2 gives the motivation of this work and
xplains the benefits of running transactions on dataflow graphs,
hile Section 3 presents the background. Next, Section 4 in-
roduces the concept of coordinator functions, and Section 5
etails their implementation and the introduced programming
odel. The experimental setup is presented in Section 7, while

he performance of coordinator functions is evaluated in Sec-
ion 8. Section 9 presents the related work. Finally, Section 11
ummarizes the work and discusses interesting areas for further
esearch.

. Transactions on streaming dataflows

Serverless platforms come in different flavors. One breed of
FaaS systems (e.g., Apache Flink StateFun and [9]) is built on
op of a stateful streaming dataflow engine. This architecture
ears important implications for supporting transactions because
f how distribution, state management, and fault tolerance work.
Network communication between distributed components in
typical streaming dataflow engine is implemented via FIFO
etwork channels that guarantee exactly-once processing and
reserve delivery order. In a serverless FaaS system, this char-
cteristic obviates the need for handling lost messages and im-
lementing retry logic concerning function invocations in trans-
ctional workflows. Messaging errors and retries are a significant
ource of friction and development effort at the application level,
nd those are offered by the underlying dataflow system.
State management in state-of-the-art streaming systems

chieves exactly-once processing guarantees by taking consistent
napshots of the system’s distributed state periodically [15]. The
napshots capture a globally consistent state of the system at a

3 https://github.com/delftdata/flink-statefun-transactions.
4 https://statefun.io.

http://statefun.io
https://github.com/delftdata/flink-statefun-transactions
https://statefun.io

M. de Heus, K. Psarakis, M. Fragkoulis et al. Information Systems 108 (2022) 102015

o
o
o
a
t
D
s
f
p
b
a
f

3

u
t
a
s
a
e
t
i
a
s
l
K
f

A
t
b
m
c
a
H
w
p
t
s
s

E
i
a
t
s
o
c
i
f

Fig. 1. StateFun Architecture.

specific point in time and are used to recover the system’s state
upon failure. Exactly-once means that the changes brought by
each function execution instance are recorded in the system’s
state exactly once, even in the face of failures. For transactions,
this capability is essential because fault recovery of transactions
can piggyback on the underlying fault tolerance mechanism with
zero effort and knowledge by the application. Given that a big
part of code and effort is spent on failure handling, fault tolerance,
and virtual resiliency [28] provided at the system level can play
a significant role.

Furthermore, unlike traditional streaming queries where the
computations are fully encapsulated within the system’s oper-
ators, it is common to have nondeterministic side effects (typ-
ically calls to external services or remote key–value stores) in
microservices and cloud applications. However, the traditional
fault tolerance mechanisms of streaming dataflow systems were
not designed to support non-determinism prevalent in general-
purpose applications. Thus, the consistency of applications and
the integrity of transactions are at risk when transactions in-
volve nondeterministic operations. Extending the fault tolerance
approach of streaming dataflow systems to support nondeter-
ministic computations [16] is an important step towards opening
their adoption for executing general-purpose applications. Recent
work [22,29] also recognizes the dataflow model as a key enabler
for the SFaaS systems of the future.

In short, we believe that stateful streaming dataflows and the
associated research that has been proposed so far [30–32] can
alleviate the burden of building rich stateful and transactional
applications on top of streaming dataflows. This paper presents
a step in this direction.

3. Preliminaries

In this section we first present our transactional model (Sec-
tion 3.1). Then, in Section 3.2 we describe the functionality and
internals of Apache Flink StateFun, which forms the backbone
of our proposed solution. Lastly, in Section 3.3 we list the re-
quirements that an SFaaS system should satisfy in order to be
considered as a backend for our work.

3.1. Transaction model

In the context of this work, a transaction is an atomic exe-
cution of a set of stateful function invocations. More specifically,
the transactional model introduced in this paper considers trans-
actions defined up-front. This is referred to as single-shot [33] or
one-shot,one-shot-h-store transactions in prior works. We follow
the definition of H-Store’s [34] one-shot transactions, which states
that the output of a function (query) cannot be used as input to
subsequent functions (queries) in the same transaction. Since the
3

Fig. 2. Original communication flow for remote functions.

utput of functions is not used by subsequent ones, the execution
f functions involved in a transactional workflow is independent
f one another. This simplifies coordination of the transaction
cross the system while still providing a practical model for
ransactions. Widely used database services, such as Amazon’s
ynamoDB [35], support one-shot transactions [33]. In an SFaaS
ystem, one-shot transactions provide a significant advantage:
unctions can implement arbitrary business logic in a general-
urpose programming language such as Java or Python instead of
eing limited to the API supported by a specific database, such
s DynamoDB. Thus, this advantage translates to considerable
lexibility in the programming model.

.2. Apache Flink StateFun

Apache Flink StateFun5 offers an abstraction and runtime for
sers to implement stateful cloud functions. A stateful func-
ion implemented by user code is referred to as a function type
nd describes the state held by this function type. Multiple in-
tances based on the same function type can exist in parallel
nd are identified by an id. Each of these function instances
ncapsulates its own state and can be uniquely addressed by
he combination of its type and id. Function instances can be
nvoked from other function instances or through ingresses such
s Kafka. Function instances can have four different controlled
ide effects; (1) state updates, (2) function invocations, (3) de-
ayed function invocations, (4) egress messages (for example,
afka). StateFun supports end-to-end exactly-once guarantees
rom ingress to egress, including any state updates.

rchitecture. In Fig. 1 we present the general system architec-
ure of Apache Flink StateFun. The interface with the system is
ased on the ingress/egress pattern (e.g., ingest/produce Kafka
essages). The Apache Flink StateFun cluster lies in the system’s
ore, consisting of multiple workers that manage both messaging
nd the partitioned state, leading to stateless remote functions.
owever, this means that the state needs to be transferred along
ith the request to each specific function for processing. After
rocessing, both the response and the new state are returned
o the StateFun cluster. This architecture’s major benefit is that
ince StateFun manages both messaging and state exactly-once
emantics is easier to achieve than other architectures.

mbedded vs. remote functions. Functions can be deployed both
nside the StateFun workers (referred to as embedded functions)
nd outside the StateFun cluster (co-located and remote func-
ions). Embedded functions are simply an abstraction on top of
tateful streaming operators in Flink, therefore providing exactly-
nce and fault-tolerance guarantees. StateFun allows dynamic
ommunication between these streaming operators by introduc-
ng a cycle in the streaming graph. The co-located and remote
unctions are entirely stateless because the state is persisted

5 https://flink.apache.org/stateful-functions.html.

https://flink.apache.org/stateful-functions.html

M. de Heus, K. Psarakis, M. Fragkoulis et al. Information Systems 108 (2022) 102015

w
c
s
E
f
f
i
m
s
f

1
1
1

F
s
1
t
f
a
i
t
B
r
S
o
s
t

P
f
o
(
s
t
t
i
u

(
t
s
b
s
b
o
r
t

3

r
o
u

1
1
1
1

ithin StateFun. This paper focuses on remote functions as these
an leverage existing FaaS services such as AWS Lambda to auto-
cale the compute layer. Fig. 2 shows how remote functions work.
ach function instance is represented by an embedded stateful
unction in the StateFun cluster. This standardized embedded
unction is responsible for managing the state of the function
nstance and the communication with the remote function that
ay be deployed anywhere. The persisted data in the embedded
tateful function with the communication pattern for remote
unctions are shown in Fig. 2.

1 def serializable_transfer(context, message: Transfer):
2 subtract_credit = SubtractCreditMessage(
3 amount=message.amount)
4
5 context.tpc_invocation("account_function",
6 message.debtor,
7 subtract_credit)
8 add_credit = AddCreditMessage(
9 amount=message.amount)
0 context.tpc_invocation("account_function",
1 message.creditor,
2 add_credit)

Listing 1: Two-phase commit coordinator function.

unction invocations as dataflow messages. Invocations that are
ent to a function instance arrive in a queue, as shown in step
of Fig. 2. If the embedded stateful function is ready to process

he next invocation, it pulls a message (invocation parameters)
rom the queue (step 2). When no invocation is being executed
t the remote function, the remote function is called. However,
f the remote function is busy with a previous function call,
he current invocation message is appended to the next batch.
atching is used as an optimization in order to avoid multiple
emote calls to external functions at the expense of latency (see
ection 8.1). Batches are also used to preserve the invocation
rder and order of state access (the batch has to wait until the
tate updates caused by the previous batch have been performed),
hus ensuring linearizability at the function instance level.

In step 3, the stateless remote function is called through a
rotobuf interface that contains both the (keyed) state required
or the remote function to operate and the invocation parameters
f the function. The stateless remote function can execute the
batch of) invocations and will be ready to return the updated
tate back to the Flink worker that made the call. In step 4,
he response of the stateless remote function is appended to
he queue of incoming messages to the function. The response
ncludes any side effects caused by the invocation(s), including
pdates to the user-defined state.
When the response from the stateless function is processed

step 5), the side effects caused by the invocation(s) are applied
o the state of the embedded function, updating the managed
tate in the embedded stateful function. If any invocations are
atched, the next batch of invocations is sent to the remote
tateless function, and the batch is truncated. When there are no
atched invocations, the in-flight status is cleared. Finally, any
utgoing function invocations are sent to the queues of their
espective function instances, and egress messages are sent to
heir respective egresses (step 6).

.3. Assumptions & requirements

As we describe in the next section, our coordinator functions
ely on an underlying SFaaS system for bookkeeping the state of
ngoing transactions and reliable messaging. To allow this, the
nderlying system should satisfy two requirements.
4

Exactly-once processing guarantees. Firstly, it is required for all
communication to be reliable and executed with exactly-once
processing guarantees. Thus, we require that the underlying sys-
tem is fault-tolerant [14] to ensure atomicity in case of a failure
in the middle of a transaction. This also means that the state
is durable within a snapshot/checkpoint, even in the event of
failures. If we can rely on exactly-once processing guarantees,
message replay, and error handling, a significant part of trans-
action coordination can be greatly simplified. Flink StateFun does
guarantee exactly-once processing.

Linearizable operations. The second requirement is that the oper-
ations for any specific function instance should be linearizable,
which means that there is a given order that operations are
performed on the function instance, and the state encapsulated
in this instance. Accordingly, a function invocation will always
have the correct state of the function instance in order to imple-
ment transactions. Since Flink StateFun’s function instances use
a single replica of the state per function instance and a single
process executes function invocations for that function instance
in a sequential FIFO manner, this ensures linearizable operations
per function instance.

1 def sagas_transfer(context, message: Transfer):
2 subtract_credit = SubtractCreditMessage(
3 amount=message.amount)
4 add_credit = AddCreditMessage(
5 amount=message.amount)
6 context.saga_invocation_pair("account_function",
7 message.debtor,
8 subtract_credit,
9 add_credit)
0 context.saga_invocation_pair("account_function",
1 message.creditor,
2 add_credit,
3 subtract_credit)

Listing 2: Saga coordinator function.

4. Approach overview

In this section, we introduce the concept of stateful coordi-
nator functions and provide an overview of our approach. Our
approach is based on the simple observation that since an under-
lying SFaaS system provides exactly-once processing and message
delivery guarantees, conceptually, it would be much simpler to
implement a transaction coordinator as a regular, stateful func-
tion. With this in mind, we opted for implementing a trans-
action API on top of stateful functions, which we present in
Table 1. Notably, further work is required to raise the transaction
abstractions at an even higher level [9,31] as syntactic sugar.

4.1. API

A stateful coordinator function is a stateful function that pre-
serves state about the execution of a given transaction. Coordina-
tor functions have the ability to force other function instances to
abort or compensate for the changes they applied.

API overview. Our coordinator function implements two trans-
action coordination patterns: two-phase commit and Sagas [25].
A complete example of a coordinator function for two-phase
commit and Saga is shown in Listings 1 and 2 respectively. In
short, to coordinate a two-phase commit transaction, the user
needs to invoke function instances via tpc_invocation, while
for a Saga, an invocation pair is expected, which consists of the
normal transaction invocation and the corresponding compensa-
tion invocation to be sent to the same function instance. A Saga
invocation pair can be called with saga_invocation_pair. An
important difference between the behavior of the two schemes
is that a failure in a Saga workflow will incur a compensating

function call.

M. de Heus, K. Psarakis, M. Fragkoulis et al. Information Systems 108 (2022) 102015

a
t
i
o
t
t
f
a
c
t
5
a
i

I
s
g
p
i

4

s
f
o
a
d
c
w
T

4

o
s

n
t
C

Table 1
Coordinator functions’ Python API.
Function Description

Shared coordinator function methods

send_on_success(type, id, message) Sends a message to another function instance if the transaction is successful
send_after_on_success(delay, type, id, message) Sends a delayed message if the transaction is successful
send_egress_on_success(type, egress_message) Sends a message to an egress if the transaction is successful
send_on_failure(type, id, message) Sends a message to another function instance if the transaction failed
send_after_on_failure(delay, type, id, message) Sends a delayed message if the transaction failed
send_egress_on_failure(type, egress_message) Sends a message to an egress if the transaction failed

Two-phase commit function methods

tpc_invocation(type, id, message) Add a function invocation to the transaction
send_on_retryable(type, id, message) Sends a message if the transaction aborted because of a deadlock
send_after_on_retryable(delay, type, id, message) Sends a delayed message if the transaction aborted because of a deadlock
send_egress_on_retryable(type, egress_message) Sends a message to an egress if the transaction aborted because of a deadlock

Sagas function methods

saga_invocation_pair(type, id, message, compensating_message) Add a pair of a message and a compensating message to the transaction

Ordinary functions

FunctionInvocationException Raised to fail the function invocation
4.2. Two-phase commit

The serializable_transfer function of Listing 1, receives
context (the underlying context of StateFun as we have ex-

ended it to support transactions) and a message. The message
s of type Transfer, and it contains three fields: the amount
f money transfer, a creditor, and a debtor. The amount men-
ioned in the message must be subtracted from the debtor and
ransferred to the creditor. To this end, assuming that there is a
unction type registered in the system as account_function,
s per the original StateFun API, we need to construct an object
ontaining the parameters for the account_function and push
hat message to the transaction coordinator. This is done in lines
–7: we give the TPC coordinator the function type to invoke,
longside the id of the debtor to form the address of the function
nstance and the SubtractCreditMessage which is going to
be given to that function as a parameter. Subsequently, we do
the same for the creditor: we construct an AddCreditMessage
and we pass it over to the function type account_function.
n short, the transaction coordinator function instance will make
ure that the two function instances are invoked with serializable
uarantees. It does this by coordinating a two-phase commit
rotocol across the function instances with locking to ensure
solation. More details on these aspects are given in Section 5.

.3. Sagas

Similarly to two-phase commit, our API offers the ability to
pecify Sagas: as seen in Listing 2, the saga_invocation_pair
unction in line 6 will receive the target function name, the ID
f the debtor as well as two messages: the subtract_credit
nd its compensating action add_credit. If there is a failure
uring the execution of subtract_credit our Sagas transaction
oordinator will execute the compensating action add_credit
hich will put back the original credit to the debtor’s account.
he details on how Sagas are executed are given in Section 5.

.4. Extensions to regular functions

To allow the execution of a transaction by the two types
f coordinator functions across any arbitrary function instances,
ome extensions to regular functions are required.
First, functions that can partake in a coordinated transaction

eed to be able to fail explicitly. After a failure is communicated
o a coordinator function, it results in a transaction rollback.
urrently, there is no notion of failing an invocation in Flink
5

StateFun; the function invocation may simply perform no side
effects. To allow explicit failure, a field containing these details
is added to the protocol between StateFun and the remotely de-
ployed functions. From the API perspective, a function failure can
be triggered by throwing an exception. The failure of a function
can be roughly compared to integrity constraint violations based
on the state encapsulated in a function instance in traditional
database terms.

Second, any batching mechanism needs to be changed. TPC
coordinator functions ensure isolated transactions. This means
that any function invocation that is part of such a transaction
may not be batched between other function invocations. Third,
appropriate locking should be implemented on the level of func-
tion instances to ensure the isolation of serializable transactions
based on two-phase commit coordinator functions.

Finally, the function instances should transparently commu-
nicate with the coordinator functions to not burden developers
with this task.

5. Transactional workflows

In this section, we present our Python API in more detail,
and we present the implementation for transactional workflows
across stateful serverless functions on Apache Flink StateFun. Our
implementation consists of coordinator functions that enforce
either a distributed serializable transaction with a two-phase
commit or a Saga workflow as a transaction without isolation.

5.1. Coordinator functions

Coordinator functions instrument transactional workflows
across ordinary Stateful functions. To achieve this, coordinator
functions encapsulate the state of active transactional workflows
that they are in charge of but hold no state of the participating
function executions or custom user-defined state. A coordinator
function can be invoked simply by its name (uniquely identified
by a type internally) and an ID generated randomly at initializa-
tion time. Then an input message will arrive at the coordinator’s
input queue. If the coordinator function is involved in an ongoing
transaction, the message will be queued until the workflow that
is executing completes. The coordinator functions’ Python API is
listed in Table 1.

Fig. 3 shows the common communication flow between a co-
ordinator function and regular function instances. Specializations
of this communication for two-phase commit and Saga workflows
are described in Section 5.2 and Section 5.3 respectively. Mes-
sages that are not always sent in both cases are annotated with

M. de Heus, K. Psarakis, M. Fragkoulis et al. Information Systems 108 (2022) 102015

a
t
w
i

5

s
A
o
f
t
(
s
i
r
s

I
s
T
(
w
t
(
t
s

P
b
5
h
e
f
i
s
a
m

I

o

*. Fig. 3 shows the enriched internal structure for regular func-
ion instances compared to Fig. 2. These are the extensions that
e implement for regular functions so that they can participate

n transactional workflows.

.2. Saga coordination

The programming model of the Saga coordinator function is
hown in Listing 2 through an example. Table 1 presents the
PI. In Sagas, the developer is responsible for defining pairs
f function invocations so that the invocation of the second
unction compensates the one of the first function [25]. Besides
his, the Saga coordinator function can also define side effects
e.g., outgoing egress messages) based on different completion
cenarios of the transaction (success or failure). The function
nvocations composing a Saga are executed in parallel in the cur-
ent implementation.6 In the following, we describe the messages
pecifically for Sagas seen in Fig. 3.

nitialization & remote coordinator function call. First, a message is
ent to the coordinator function to initialize a transaction (step 1).
he message is taken from the queue to initialize the transaction
step 2). Then, the remote Saga coordinator function is called
ith the incoming message (step 3). The remote function returns
he definition of the Saga workflow to its embedded counterpart
step 4). This includes the function invocations involved in the
ransaction and their compensating invocations, as well as the
ide effects to perform on success or failure.

rocessing the remote coordinator function’s result. When the em-
edded function processes the result of the remote function (step
), a random transaction ID is generated, and a map is created
olding the addresses of function instances and the result of their
xecution (at this stage, those are initialized as null values). It
ollows that only one invocation per function instance can be
nvolved in a particular workflow. If multiple invocations of a
ingle function instance are required, this can be solved at the
pplication level by allowing a single message, which combines
ultiple function invocations to be sent to the function instance.

nvoking regular functions. In step 6, each of the participating
regular (non-coordinator) function instances receives a function
invocation in its input queue. All the invocations are sent simul-
taneously, and the function instances can do the work in parallel.
These function invocations are distinguishable as function in-
vocations that belong to a Saga workflow. Each Saga function
invocation is fetched from the queue, and it is either directly
sent to the remote function or batched with other invocations
for efficiency (step 7). Because Sagas do not require isolation, a
function invocation can be batched with other invocations. Then
it is sent to the regular remote function (step 8). After processing
it, the function’s response is added to the queue of its stateful em-
bedded representation in StateFun (step 9). When the response
of the stateless remote function is processed in the embedded
stateful function at step 10, the indices in the in-flight function
invocation metadata and new list added to the Protobuf interface,
i.e., the regular function extensions, are used to identify the result
status of the Saga function invocations and the corresponding
coordinator’s addresses. If the function invocation fails, no side
effects of the function are performed. After this, this function can
continue processing other function invocations.

6 We plan to expose a configuration for the intended behavior in the API, in
rder to optionally make these sequential.
6

Fig. 3. Communication flow for transactions.

Saga success vs. compensation. Based on the success status of
the Saga function invocation, a success or failure message is
sent to the coordinator function (step 11). When the embedded
coordinator function processes the success status of each function
invocation, the map is updated with either a success or failure
status (step 12). If a function instance fails, any function instances
that successfully executed their function invocation are messaged
with their respective compensating actions (step 13), and the
side effects in case of a failure are performed (steps 14, 15,
16). The coordinator function has to wait until the result of all
function invocations is received before it is done. In case any of
the function invocations fails, the coordinator function sends the
compensating messages to all function instances that success-
fully processed their invocation. Note that there is no need to
send compensating invocations to function instances that failed
since those function instances have applied no side effects. The
compensating messages are processed as regular messages and
are only required when any of the function invocations fail. This
means that the performance of a Saga workflow will be worse if it
is likely to fail as this will require extra messaging and processing,
up to double. As a matter of fact, this is the trade-off offered by
optimistic transaction approaches like Sagas.

5.3. Two-phase commit coordination

In Listing 1 we presented the programming model for a two-
phase commit coordinator function; Table 1 shows the available
functions of the two-phase commit API. Similar to Saga coordina-
tor functions, two-phase commit coordinator functions can also
define side effects to execute for any completion scenario. Beyond
successful and failed completion, two-phase commit transactions
can also be complete as ‘‘retryable’’. This occurs when the trans-
action is aborted due to a deadlock. In the following, we describe
the workflow of the two-phase commit as seen in Fig. 3. Note that
the initialization of the workflow, i.e., steps 1–5, is the same as
in Sagas. Thus, we do not detail it here.

PREPARE & two-phase locking growing phase. Each involved func-
tion instance is messaged with its respective function invocation
in step 6. This message is identifiable as a PREPARE message of
the two-phase commit protocol. When a two-phase commit func-
tion invocation arrives at the embedded stateful regular function
and a batch of invocations for this function is currently in-flight,
this two-phase commit function invocation is not batched with

M. de Heus, K. Psarakis, M. Fragkoulis et al. Information Systems 108 (2022) 102015

o
c
i
o
r

I
r
7
m
b
s
i
e
t
o
f
a
t
s
c
s
m
i

A
m
f
t
t
a
t
l
i

C
c
i
i
s
p
t

C
f
e
p
a
l
r
i
i
c

D
m
w
o
t
d
i
d
s
n
h
a
i
c

i
a
c
f
i
r
f

6

i
s
a
h
t
w
d
s

S
e
s
s
w
a
d

M
o
p
c
t
g
e
s

S
t
a
i
t
a
o
s
t
c
t
s
m
s
p

R
m
c
s
t
i

d
t
t
a
s
c
m
w
o
w
s

ther invocations. Instead, the two-phase commit function invo-
ations split up batches and are sent to the remote function in
solation as seen in Fig. 3. This practice increases the complexity
f the batching mechanism, as it now requires a queue of batches
ather than an append-only batch as shown in Fig. 2.

nvoking regular remote functions. When the message (and cur-
ent state) is processed and sent to the remote function in steps
and 8, the transaction ID and the address of the two-phase com-
it coordinator function are stored in the details of the in-flight
atch of invocations. The lock on the function instance is also
et at this point. The response of the stateless remote function
ncludes the result status of the function invocation and any side
ffects (step 9). Suppose a FunctionInvocationException is
hrown at the stateless remote function. In that case, the response
f the remote function is discarded, a response to the coordinator
unction instance is sent to notify it that the invocation failed,
nd the regular function instance’s lock is removed as it knows
he transaction will be aborted. If the function invocation is
uccessful, the lock is kept, and a success response is sent to the
oordinator function instance. The state effects are then stored as
taged side effects in the function instance (step 10). Any other
essages that arrive while the function instance is locked are put

n the queued batches.

BORT & Two-phase locking shrinking phase upon Failure. The
essage at step 11 notifies the two-phase commit coordinator

unction instance whether the function invocation succeeded. If
he two-phase commit function instance receives the message
hat a function invocation failed (step 12), it immediately sends
n ABORT message to all other function instances and performs
he appropriate side effects (step 13), and calls the two-phase
ock shrinking phase. After this, the two-phase commit function
s done.

OMMIT & Two-phase locking shrinking phase. If the two-phase
ommit function instance receives the message that a function
nvocation was successful, it updates the map it keeps of all
nvolved function instances. If all function instances succeed, it
ends COMMIT messages to all involved function instances and
ublishes the appropriate side effects (i.e., applies the changes to
he embedded function state).

OMMIT/ABORT & Two-phase locking shrinking phase. When a
unction instance receives a COMMIT message (step 14), it ex-
cutes its staged side effects, releases the lock and continues
rocessing the next request. When a function instance receives
n ABORT message, it discards its staged changes, releases the
ock, and continues processing. Note that a function could also
eceive the ABORT message while the PREPARE message is still
n the queue or in-flight. In this case, the PREPARE message
s discarded. Messages 15 and 16 are never sent for two-phase
ommit transactions.

eadlock detection. Due to the use of locks, the two-phase com-
it protocol is susceptible to deadlocks. A deadlock can happen
hen two or more different two-phase commit transactions wait
n the locks on function instances that are held by other transac-
ions. To deal with deadlocks, we have implemented a deadlock
etection mechanism, which we describe below. All participants
n the two-phase commit transaction can be partitioned across
ifferent machines, and the state of active transactions is encap-
ulated in different coordinator function instances. Thus, we do
ot want transactions to rely on any centralized component for
andling deadlocks. We implemented the Chandy–Misra–Haas
lgorithm [36] that provides a simple way to detect deadlocks
n a distributed manner, without dependence on a single global
oordinator. Whenever a deadlock is detected in a transaction,
7

t immediately completes as a retry-able transaction and sends
bort messages to all involved function instances. Upon re-
eiving a retry-able result status, a two-phase commit regular
unction may send itself a delayed invocation with the same
nitial message (and possibly a counter attached) to perform a
etry. This is left to the developer so that the system remains
lexible across various use cases.

. Towards strict serializability

Our approach offers serializable transactions by virtue of us-
ng the two-phase locking protocol. Under certain transactional
cenarios, which we discuss in this section, our approach can
chieve strict serializability, where the processing of transactions
appens in the same order that the transactions have reached
he system. In order to achieve strict serializability, our approach
ould require extensions. In the following, we explain various
esign decisions or changes that need to occur in our system to
upport different flavors of serializability.

ingle-partition transactions. A single-threaded operator instance
xecutes every operation to the state of a given partition. Thus,
ingle-partition transactions are guaranteed to be processed in a
erial manner. This also follows that single-partition transactions
ill be guaranteed strict serializability even when executed in
distributed fashion. Moreover, transactions that operate on

ifferent partitions are going to scale horizontally.

ulti-partition transactions. In the general case, a transaction in
ur approach can access multiple functions, mutate multiple state
artitions, or both. Since two-phase locking is used, the system
an enforce serializability across multiple functions and data par-
itions of the same function. In addition, our approach does not
uard against changes in the order of transaction executions. For
xample, induced by transaction aborts due to a deadlock, or
ystem failures, transactions may be re-submitted for execution.

trict serializability. Our approach features three core advantages
hat provide important foundations for achieving strict serializ-
bility. First, since we support one-shot transactions, the system
s aware of the keys that will be touched from a transaction prior
o its execution. Furthermore, these one-shot transactions can be
rranged prior to their execution in a specific serial order — that
rder can be set to be the order of arrival, thus guaranteeing
trict serializability. Second, Apache Flink, which executes our
ransactions, recovers from a failure by falling back to the latest
ompleted checkpoint and re-processes input requests following
he checkpoint. This strategy allows us to reconstruct the exact
ame state as prior to the failure under the assumption of deter-
inistic computations. Finally, data-parallel processing in disjoint
tate partitions allows us to execute concurrent transactions in a
arallel manner and without the need for concurrency control.

elation to deterministic databases. Interestingly, the three afore-
entioned characteristics of our approach resemble design
hoices opted by deterministic databases [37–39], which achieve
trict serializability: the concurrent processing of a specific set of
ransactions across a distributed system is guaranteed to result
n one, single runtime state.

Furthermore, one could draw inspiration from deterministic
atabases for advancing its transactional model in two ways. First,
ransactions on dataflow systems would benefit from an input
ransaction log for pre-determining the order of transactions in
way that would not introduce aborts during execution, es-

entially implementing a protocol like Calvin [40]. Second, one
ould leverage a determinism service [16] to wrap nondeter-
inistic computations, which would cause its state to diverge
hen recovering from a failure. Essentially, pre-ordering a batch
f transactions and ensuring deterministic transaction processing
ould help dataflow-based transactional FaaS systems guarantee
trict serializability.

M. de Heus, K. Psarakis, M. Fragkoulis et al. Information Systems 108 (2022) 102015

7

a
w
(

7

w
i
t

t
o

i
a
w
t
p
F
s
p
s
i
o

r
u
t
i
s

d
k
s
k
c

Fig. 4. StateFun benchmark application architecture.

. Experimental setup

In this section, we describe in detail our experimental evalu-
tion methodology. For the lack of a benchmark aimed at SFaaS,
e opted for an extension of the Yahoo! Cloud Serving Benchmark
YCSB) [41] benchmark.

.1. Benchmark workload

In YCSB, the first step is to insert records into the system
ith a unique ID and several task-specific fields. After the data

nsertion stage, the benchmark performs operations on the ini-
ialized state. YCSB defines read and write operations as part
of their core workloads. Because this work’s main contribution
is distributed transactions across stateful function instances, we
added a new operation based on an extension introduced in [42].
This operation is called a transfer, and it atomically subtracts
balance from one account and adds this to another, meaning
that records also include a numeric balance field. These addi-
ions mean that the workloads can consist of the following three
perations:
read Reads the state associated with a single key and outputs

it to the egress.
write Updates a field associated with a single key and outputs

a success message to the egress.
transfer Requires two keys and a specified amount, sub-

tracts the amount from the balance of one key, and adds it to the
other. Depending on the transaction result, the output is either a
success or failure message to the egress.

Across experiments, we vary the proportion of each operation
n the resulting workloads. In YCSB, the user selects the prob-
bility distribution of the operations’ record IDs. In this work,
e assume uniform key distributions. The added benefit is that
he number of requests for a single key can be increased trans-
arently by decreasing the system’s total number of records.
inally, YCSB allows variations in the number of fields and the
ize of the values associated with each field. In this evaluation
rocess, all records have ten fields containing a single random
tring of 128 bits and a single integer field. A StateFun application
s implemented with the following two functions to support the
perations defined in Section 7.1:

– Account function. This is a regular function containing the
ecord state for each key. It processes messages to read the state,
pdates the fields, and subtracts or adds balance as part of a
ransaction. It throws an exception and rolls back the transaction
f the key does not exist, or there is not enough balance to
ubtract the transaction amount.

– Transfer function. The transfer function is a transactional/coor-
inator function that takes a message consisting of two different
eys and an amount. That message represents a transaction con-
isting of two function invocations, one to each of the function
eys. This function is implemented with both the two-phase

ommit and the Saga API.

8

Fig. 5. Maximum throughput for the original StateFun vs. StateFun with
coordinator functions.

Fig. 4 depicts the architecture of the system under test. The
benchmark publishes the workload to a Kafka cluster. StateFun
reads from Kafka as ingress, invokes the appropriate functions,
and then publishes the result to a Kafka topic as an egress. For
CockroachDB (v21.1.7), Kafka clients read from the relevant topics
and submit queries to the not geo-replicated database.

Although CockroachDB and Kafka can provide exactly-once
semantics individually, since the state (CockroachDB) and mes-
saging (Kafka clients) are not managed by a single entity and un-
der the same checkpointing mechanism, this deployment offers
at-least-once semantics. More specifically, the clients that con-
sume Kafka queues that deliver the transaction-initiating events
need to pull an event from a Kafka topic, submit a query to
CockroachDB and acknowledge the execution of the respective
transaction back to Kafka. However, in the event of a client
(or database) failure, the transaction may be executed, but the
message to the queue may never be acknowledged. Not having
returned the acknowledgment to Kafka, the client will re-execute
the same transaction after recovery. In general, unless the trans-
actions come with application-specific idempotence keys, the sys-
tem by itself cannot enforce exactly-once processing guarantees,
falling back to at-least-once guarantees.

Our StateFun-based implementation and the CockroachDB de-
ployment are deployed on SurfSara7, an HPC cloud with instances
with up to 80-vCPUs. For our experiments, we used a two-VM
Kubernetes cluster to simplify deployment and management of
the system’s separate components with enough vCPUs to support
the system’s configuration under test. Beldi was deployed on
AWS. All components shown in Fig. 4 can be horizontally scaled as
necessary. Additionally, we give the Kafka cluster and the clients
enough resources to ensure that they can handle the load: when a
bottleneck appears, it can be attributed to the system performing
the application logic, i.e., the StateFun cluster, CockroachDB, or
Beldi’s API.

7.2. Evaluation metrics

We evaluate the systems based on two metrics. First, the
throughput is either at max or stable (80%), showing the number
of workload operations the system can handle per second, and
the latency, showing the time it takes to process an operation.

The maximum throughput of each workload and system con-
figuration is found by steadily increasing the input throughput

7 https://userinfo.surfsara.nl/systems/hpc-cloud.

https://userinfo.surfsara.nl/systems/hpc-cloud

M. de Heus, K. Psarakis, M. Fragkoulis et al. Information Systems 108 (2022) 102015

c
c
a
p
t
t
s
o
t
t

o
i
w
a
t
t
c

8

o
g

Fig. 6. Graphs comparing latencies of original StateFun (OS) and StateFun with coordinator functions (CF) at different throughputs for read-only and write-only
workloads.
Fig. 7. Maximum throughput for workloads with increasing proportions of transfer operations in the workload.
reated by the benchmark clients in Kafka until the StateFun
luster/CockroachDB can no longer consistently handle the load,
s measured by the system’s output throughput in Kafka. At some
oint, the output throughput starts fluctuating, and we define
his value as the maximum throughput for the configuration. In
he comparison with Beldi, we could not measure it this way
ince it will always rescale to accommodate the new load. So
ur approach in this matter is to take the 80% throughput of
he StateFun configuration and run Beldi with the same input
hroughput.

We use the Kafka event time for the ingress and egress events
f operations to measure their end-to-end latency. Since latency
s always dependent on the throughput, in our experiments,
e set the throughput to 80% of the maximum throughput to
llow consistent operation of the system under test and measure
he latency accurately. When comparing latencies, the different
hroughput rates at which the latency is measured should be
onsidered.

. Experiment results

In this section, we go through the experimental evaluation of
ur system that is split into six experiments with the following
oals.

(i) Determine the overhead that function coordination intro-
duced to StateFun (Section 8.1).

(ii) Compare between the two transaction protocols with/out
rollback operations (Section 8.2).

(iii) Evaluate the system’s scalability (Section 8.3).
(iv) Perform a microbenchmark with a fixed number of ma-

chines and a variable number of keys and proportions of
transfer operations (Section 8.4).

(v) Compare against the CockroachDB with Kafka clients de-

ployment (Section 8.5).

9

(vi) Compare against Beldi (Section 8.6).

In terms of resources used, for (i, ii, iv, v), we used three 4-CPU
StateFun workers/CockroachDB nodes, and for (iii), each worker
had 2 CPUs. In (v), we kept the default settings meaning that
CockroachDB replicates data three times for fault tolerance and
high availability. For (vi), we allowed AWS and DynamoDB to
autoscale while measuring the maximum concurrency reached by
AWS Lambda.

8.1. Coordination overhead

In the first experiment, the performance of StateFun with
coordinator functions is compared against the original on non-
transactional workloads to see how much computational over-
head the coordination logic has added. In Fig. 5 we show the
maximum throughput achieved by the two systems for a varying
number of keys. While in Fig. 6 we show the different latencies
for the systems across read and write workloads at different
throughputs and numbers of keys.

Throughput. The first observation we can make is that there is a
20% decrease in throughput in the case of 100 keys that plateaus
to 10% as the number of keys increases. The decreased perfor-
mance is because of the batching mechanism being more complex
than the original append-only approach by enforcing isolated
function invocations as part of a two-phase commit transac-
tion. In addition, coordinator functions keep track of transaction
progress, which incurs some overhead. Another observation is
that there is no noticeable throughput difference between work-
loads with only read or write operations. The reason behind this
behavior is that, in StateFun, both operations need to access the

remote function, making the communication layer the bottleneck.

M. de Heus, K. Psarakis, M. Fragkoulis et al. Information Systems 108 (2022) 102015

t
t
l
s
T
s
o
a
o
i

l
p

8

t
o
w
c
t
b
s

Fig. 8. Details of locking behavior for a workload for 100 and 5000 keys with various proportions of transfers without rollbacks. The boxplots show the 5th and
95th percentiles.
t
t
b
t
m
o
t
o
o
o
d
F
t
o
s

Fig. 9. Throughput with different proportions of rolled back transfer
operations for workloads with 50% and 100% transfer operations.

Latency. The latencies in Fig. 6 are approximately 20% higher
for our version of StateFun for read workloads. However, as
he number of keys increases, the difference becomes smaller,
owards 7%. This decrease in performance is due to the additional
ogic required for function coordination. Another interesting ob-
ervation is the indifference in performance for writeworkloads.
he reason is that StateFun batches every read operation before
erialization, adding up over time for larger batches. In contrast,
nly the last version needs to be serialized for writes. Addition-
lly, serialization happens at the remote function for both types
f operations, explaining why it does not affect throughput, but
t does affect latency.

Finally, we consider the introduced overhead as a reasonably
ow price to pay for having full-fledged transaction execution
rimitives added to the system.

.2. Sagas vs two-phase commit

The second experiment shows a performance comparison be-
ween the two implemented transaction protocols, their impact
n the maximum throughput in perfect conditions (Fig. 7), and
ith failures, measuring the impact of locking for the two-phase
ommit (Fig. 8) and of rollbacks (Fig. 9) for the Saga protocols. In
hese experiments, we set a certain proportion of the workload to
e transfer operations and the remaining proportion is equally
hared between read and write operations. In our case, each
transfer operation causes three remote function invocations
(coordinator function and one function per account holder taking
part in the transfer). When evaluating two-phase commit func-
tions, we do not include messages sent to detect deadlocks in
 d

10
the total number of invocations. Therefore, the indicator should
be considered a lower bound on the actual number of messages.
Finally, we used a uniform key access distribution for these ex-
periments. At the same time, in some real-world scenarios, this
can be skewed (e.g., lots of transactions on very active accounts
vs. a long tail of inactive ones).

Fig. 7 plots the achieved throughput against the absolute num-
ber of transfer operations in the workload with a varying
number of keys given that the benchmark provided the accounts
enough balance to ensure all transactions succeeded. It also dis-
plays indicators for the absolute amount of total internal function
invocations, considering additional internal invocations required
for transactions and the absolute amount of total remote function
invocations. We observe that Sagas perform much better than
two-phase commit for a few keys (100 and 2000). This happens
for two reasons: i) Sagas can still benefit from the batching mech-
anism of StateFun since they do not require isolation, and (ii)
the locking in two-phase commit severely limits the throughput.
However, it is also interesting that two-phase commit performs
comparably to Sagas for a higher number of keys (5000–10000)
even though it provides much stronger guarantees. This is be-
cause there is less contention on a single function, decreasing
the effect of locking, while batching provides no benefits, as
also shown in Fig. 5. A second observation from Fig. 7 is that
the total function invocations still drop when the proportion of
transactions increases. This is because the total function invoca-
tions account for the additional messaging required to coordinate
transactions, leading to the overall throughput of workloads with
a high proportion of transfer operations being relatively low.

Locking overhead. In Fig. 8 we measure the behavior of locking
and deadlocks that accompany the two-phase commit protocol.
The lock duration is measured between the point in time where
the function instance sends the response to the preparemessage
and when it either receives a commit or abort message, sending
he next batch to the remote function. In Fig. 8(a), we see little
o no difference in the median across the different workloads
ut, when the proportion of transfer operations is higher,
he higher percentiles increase significantly. Next, we want to
easure the deadlock frequency, and Fig. 8(b) shows the number
f deadlocks against the total number of transfer operations in
he workload. As expected, there are no deadlocks for workloads
n 5000 keys since the contention is low. For 100 keys, we
bserve an increasing number of deadlocks while the proportion
f transfer operations increase. However, the percentage of
eadlocks across all transfer operations is still small. Finally,
ig. 8(c) shows the time it takes to detect a deadlock, i.e., perform
he Chandy–Misra–Haas algorithm. We observe that the median
f the time this takes is similar across all workloads, and it also
hows that as the amount of transfer operations increases, so

o the higher percentile times.

M. de Heus, K. Psarakis, M. Fragkoulis et al. Information Systems 108 (2022) 102015

o

t

R
w
f
t
i
i
a
n
r
r
s
t

l
m
t
t
f
k

8

p
m
d

Fig. 10. Maximum throughput for the system with 5000 keys for different numbers of StateFun workers for workloads with different proportions of transfer
perations.
Fig. 11. Graph comparing latencies for Sagas and two-phase commit coordinator function for different keys and transaction proportions in the workload at 80% of
he respective maximum throughputs.
ollback overhead. Fig. 9 shows the maximum throughput for
orkloads with 50% and 100% transfer operations where dif-

erent proportions of transfer operations fail for Sagas and
wo-phase commit coordinator functions. As expected, when us-
ng two-phase commit, a rollback does not increase the load
n the system because the coordinator function needs to send
second message either way. Again, nothing out of the ordi-
ary happened as the proportion of transfer operations to be
olled back increased. The throughput decreased as the protocol
equired additional compensating messages to be sent in the
ystem. However, with 5000 keys, the difference is small at 50%
ransfer operations: 8% when going from 25 to 75% rollbacks

and increasing to 18% with 100% transfer operations. This is
arger than the 100 keys case that can still leverage the batching
echanism of StateFun and limit the performance drop to 10% in

he worst case. Still, no matter the decrease in performance due
o the compensating actions of the Saga protocol, it remains 20%
aster than two-phase commit in the worst-case scenario of 5000
eys and 75% rollbacks.

.3. Scalability comparison

In the last experiment, we evaluated the scalability of the pro-
osed system with coordinator functions. In Fig. 10 we display the
aximum throughput for both two-phase commit and Sagas at
ifferent amounts of StateFun workers and different transaction
11
proportions in the workload. For Sagas, the scalability from 1 to
5 workers is close to 90% throughout for all workloads. For two-
phase commit, the scalability from 1 to 5 workers starts at 87% at
10% transfer operations and drops to 75% at 100% transfer
operations.

The reason for the low decrease in scalability on both protocols
is that as workers increase, more traffic needs to go over the
network. In the Sagas’ case, the efficiency does not decrease
across all workloads for the same reasons as expressed in Sec-
tion 8.2. Namely, the system can still utilize batching, no locking
is required, and the number of messages is two times lower than
the two-phase commit protocol when all transactions succeed.
On the other hand, the 8% decrease in scalability in two-phase
commit from 10% to 100% transfer operations is due to the
protocol’s requirements for locks, more messages, and the inabil-
ity to use batching. Considering all the impeding factors, it still
achieves decent efficiency with strong consistency guarantees in
fully transactional workloads.

8.4. Micro benchmark

As a final experiment, we conduct a microbenchmark on the
system. At first, we keep the number of resources fixed, and then
for every transfer proportion and number of keys, we measure
the throughput at 80% load and the corresponding latency. By
the results presented in Fig. 11 we can see that for a use case

M. de Heus, K. Psarakis, M. Fragkoulis et al. Information Systems 108 (2022) 102015

r
B

w
t
t
t
l
t
s
t
t
m
d

8

p
o
b
i
o
r
a

o
o
c
w
o
N
m
r
k
a
t
p
b
a
W
b
s
s

p
a
t

Fig. 12. Comparing the maximum throughput of CockroachDB and Flink State-
Fun for workloads with different proportions of transfer operations (the
emaining operations are read or update operations with equal probability).
oth systems are deployed with 3 instances, each with 4 CPUs.

ith a low number of keys, the Sagas beat by a large margin
he two-phase commit protocol in both throughput, with more
han a 650% increase in performance, and latency that is at least
wo times lower. The contention becomes less of a problem for a
arger number of keys. We observe a smaller difference between
he two protocols at around 40% on average for throughput and a
table difference in latency around 20%. To conclude, Sagas seems
o be the obvious choice for a few keys or high contention; if
he business logic permits it. In any other case, the choice is
ainly about the consistency guarantee requirements since the
ifference is not that significant.

.5. Comparison against CockroachDB

We compare the performance of StateFun against a
roduction-grade distributed database, CockroachDB, in terms
f throughput and latency. Due to the fundamental differences
etween the two systems, this is merely a reference compar-
son. In this experimental setting, the input requests consist
f a varying proportion of transactional and non-transactional
equests. We signify transactional requests as transfer operations
nd non-transactional requests as non-transfer operations.
As Fig. 12 shows, CockroachDB outperforms StateFun in terms

f throughput by a constant factor when transactions are evoked
n a small number of unique keys. In addition, this experiment
onfiguration examines the performance of the two systems
hen there is high lock contention since subsequent transactions
n the same key have to wait for previous ones to complete.
otably, the performance difference in terms of throughput re-
ains the same while the proportion of transactions in the input

equest set increases from 0.1 to 0.5 to 1. When there are many
eys, e.g., 5000, StateFun outperforms CockroachDB. In fact, for
small proportion of transactions (0.1), StateFun achieves four

imes more throughput. As the number of transactions grows, the
erformance difference shrinks. These results can be explained
y a more sophisticated or aggressive batching mechanism that
llows StateFun to batch non-transactional requests efficiently.
hen there are many non-transactional requests, the effect of
atching provides a significant performance advantage, which is
hrinking as the number of non-transactional requests becomes
maller.
On the other hand, CockroachDB is superior in terms of latency

erformance as Table 2 depicts. Both median latency and latency
t the 95th percentile are roughly six times better on average

han StateFun’s in all configurations. This result can be explained

12
Table 2
Latency compared for StateFun and CockroachDB, each system was ran at 80%
of the maximum throughput measured as shown in Fig. 12.
100 keys
Operations StateFun CockroachDB

Median 95th %tile Median 95th %tile

Transfer (0.1) 297 787 48 86
Non-transfer 96 591 47 79

Transfer (0.5) 173 577 22 72
Non-transfer 89 441 17 68

Transfer (1.0) 226 615 41 114

5000 keys
Operations StateFun CockroachDB

Median 95th %tile Median 95th %tile

Transfer (0.1) 178 308 36 113
Non-transfer 55 150 21 107

Transfer (0.5) 156 278 21 64
Non-transfer 62 129 11 62

Transfer (1.0) 146 240 43 78

because CockroachDB is run with default settings, and there is no
batching implemented at the application level. This contributes to
lower throughput, but it also favors lower latency. On the other
hand, StateFun can inherently apply batching at several points in
the system, such as when (i) it sends a request to a remote func-
tion, (ii) fetches requests from Kafka, and (iii) produces responses
to Kafka.

In summary, CockroachDB seems more suitable for handling
skewed transactional workloads, although the performance im-
provement against StateFun is constant in terms of throughput.
Thus, a potential superiority based on the locking mechanism
of CockroachDB is capped and does not result in a scalable ad-
vantage. Furthermore, CockroachDB replicates data three times,
leading to additional overhead but providing the capacity to serve
requests even in the case of node failures. On the other hand,
StateFun provides no replication and needs to recover from a
checkpoint following a node failure. On the other hand, StateFun
can leverage its sophisticated batching mechanism to drive sig-
nificantly better throughput for workloads containing a modest
number of transactions. Notably, while CockroachDB supports full
transactional SQL and StateFun supports only one-shot functions,
due to the simplicity of the workload, the feature set should
not have a significant impact on performance. In addition, the
executed workloads allow for less locking and more batching.
Finally, CockroachDB demonstrates reliably low latency in all
configurations, roughly six times lower than StateFun.

8.6. Comparison against Beldi

We also compare StateFun with a stateful function as a service
library and runtime, Beldi, which runs on AWS Lambda and uses
DynamoDB as backend storage for transactions. Because of the
intricacies of the serverless environment and the restricted way
it can be configured, we limit our comparison to latency per-
formance given a fixed amount of throughput requests since we
have limited visibility to the number of resources used by Beldi.
AWS only exposes the concurrency level of the Lambda functions
and allows restricting that to a max number. In Table 3 max con-
currency refers to the max concurrency utilized by AWS Lambdas.
Max concurrency was fairly stable throughout each experiment.
Notably, there is no information regarding the specification of the
underlying hardware that is used.

Furthermore, even latency performance does not provide a
fair comparison because Beldi only measures latency from when

M. de Heus, K. Psarakis, M. Fragkoulis et al. Information Systems 108 (2022) 102015
Table 3
Comparison between latencies of Beldi and StateFun.
100 keys
Operations Throughput StateFun Beldi

CPU Median 95th %tile Max. concurrency Median 95th %tile

Transfer (0.1) 1.5K 80 298 723 128 49 739
Non-transfer 99 572 83 693

Transfer (1.0) 0.16K 80 223 532 182 91 724

5000 keys
Operations Throughput StateFun Beldi

CPU Median 95th %tile Max. concurrency Median 95th %tile

Transfer (0.1) 8K 80 184 287 1000a 123 174
Non-transfer 52 184 50 77

Transfer (1.0) 1.2K 80 146 273 902 114 847

aExperiment is throttled and runs at a lower throughput ≈4K, i.e., experiment lasted longer.
a request’s execution starts until the time it completes without
considering the amount of time spent for routing and waiting
in an input queue before the request’s execution begins. Conse-
quently, a performance throttle in Beldi due to excess load will
not show in the measured latency. We try to compensate for this
by measuring the experiment’s completion time and estimating
Beldi’s actual throughput. On the other hand, we run StateFun
in an IaaS cloud infrastructure where we provide it with a spe-
cific amount of computational resources and measure latency
end-to-end. The disparity between the two infrastructures and
experimental settings limits the insights that can be extracted.

Table 3 shows the experimental results, from which we draw
two notable observations regarding latency. For non-transfer op-
erations, regardless of the number of keys, StateFun and Beldi
achieve the same level of low-latency performance. Beldi demon-
strates 2–3 times superior performance in terms of median la-
tency for transfer operations, while tail latency at the 95th per-
centile suggests no important differences between the two sys-
tems. In Beldi, latency only captures delays that are internal to
the system, which may be owed to lock contention inside Beldi,
communication stalls between Lambda functions and DynamoDB,
as well as queuing in DynamoDB. Unfortunately, it is impossible
to pinpoint the exact factors and their merit in the observed tail
latency.

Lastly, an important factor in the experiments is that Beldi is
let free to auto-scale up to 1000 concurrently executing func-
tions. This aggressive availability of resources far exceeds the
80 CPUs given to the remote functions executing on StateFun.
Interestingly, when the number of unique keys is large, mean-
ing that lock contention is low, this level of concurrency is not
adequate to accommodate the input throughput of 8K requests
per second. In this case, AWS Lambdas used all the available
concurrency, and the execution of requests was throttled, waiting
for CPUs to become available. Given the experiment’s duration,
we approximated the level of throughput achieved by Beldi at 4K
requests per second. Note that Beldi’s latency remains unaffected
since it does not account for external delays, such as queuing.
On the other hand, we observe that when the number of unique
keys is small, meaning that lock contention is high, Beldi is quite
efficient. It used more concurrency than what was available to
StateFun, but at the same overall level of magnitude. Beldi’s
efficiency is probably owed to juggling between requests that can
execute immediately and others that should be put to sleep until
they can get hold of the lock they require to proceed.

Finally, the observed performance of Beldi does not account
for garbage collection. Beldi features a garbage collector to shrink
its transaction log periodically, but the garbage collector does
not need to run during the presented experiments because their
duration is too short. In general, however, the garbage collec-
tor is expected to add overhead not represented in our set of

experiments.

13
9. Related work

SFaaS systems. SFaaS has been a very active area in both research
and the open-source community. From the research community,
the most relevant work is Beldi [21] which, like AFT [43], builds
on top of Amazon’s AWS Lambda to add fault tolerance and trans-
action support allowing for more complex state management.
Their principal difference is that Beldi’s execution environment
is completely serverless, while AFT relies on external servers
for transaction support. To make that happen, Beldi uses atomic
logging, extending Olive [44], to ensure fault tolerance for read
and write operations, with garbage collection to manage the
logs’ growth. Regarding transactions, Beldi supports a variant
of the two-phase commit protocol enforcing strong consistency
guarantees with wait-die deadlock prevention. Cloudburst with
Hydrocache [23] provides causal consistency guarantees within
the same DAG workflow backed by Anna [24], a key–value state
backend. Another promising SFaaS system, FAASM [45], supports
direct memory access between functions while maintaining iso-
lation and speeds up initialization times compared to containers.
At the time of writing, FAASM does not provide transactional sup-
port. Finally, the two most prominent open-source SFaaS projects
are Cloudstate8, based on stateful actors, and Apache Flink State-
Fun, which is presented in detail in Section 3.2. In Cloudstate,
communication is allowed between different actors within the
same cluster and between user-defined functions over gRPC with
at-least-once processing guarantees.

Transactional programming model. The most notable difference
among these systems in terms of programming model is state
access. Both StateFun and Cloudstate encapsulate state within
a specific function instance. In contrast, Cloudburst and Beldi
allow any function access to any state stored in Anna or Dy-
namoDB, respectively. Regarding transactions, only Beldi offers a
programming model where the programmer writes two markers
(begin/end_tx), and every function invocation in between will ex-
ecute as part of a transaction. Our contribution is a programming
model that supports transactions on StateFun with the choice of
strong or relaxed consistency guarantees as shown in Section 4.1.

Stream processing transactions. Furthermore, transactions on top
of stream processing systems have received some attention in the
literature. In [46] the authors introduce a transactional model
over both data streams and traditional tabular data. Following
a similar model, in [47] the authors add guarantees for snap-
shot isolation and consistency across partitioned state. Then
TSpoon [48], an extension of FlowDB [32]), proposes a data

8 https://cloudstate.io/.

https://cloudstate.io/

M. de Heus, K. Psarakis, M. Fragkoulis et al. Information Systems 108 (2022) 102015

m
s
t
o
e

D
s
i
a
r
p
m
d
a
p
a
d
a
m
a
t
f
t
a
t

B
t
r
t
t
w
m
a
a
t
a
S
Y
a

1

P
m
n
H
p
p
a
f
d
i
p
o
g

D
s
g
o
c
B
m
o
d

H
o
i
c
a
d
c
f

F
d
s
f
s
F
s
o
d
c
c
n
t
o
t
t
a
p
g

1

t
f
a
g
i
u
t
c
a
f
d
a
e
Y
p
f
w
w
S
o
w
f
m
t
h
d
h
w
i
d

anagement system built on top of a stream processor that
upports transactions, giving the option of both strong and weak
ransactional guarantees and queryable state. Our work focuses
n transactional workflows between generic stateful functions
xecuted on a serverless dataflow system.

istributed databases. The mentioned stream processing systems
hare the same main goal as distributed databases [49–54], that
s, how to scale to multiple machines while providing serializ-
ble transactional guarantees. This is an old problem in database
esearch. The R* system [49] was one of the first to try the two-
hase commit protocol with distributed deadlock detection. Then
ore recent approaches like H-store [50] showed that distributed
atabase solutions could provide both very high performance
nd transactional guarantees when transactions touch a single
artition. Currently, research in distributed databases revolves
round globally distributed databases with Spanner [51] intro-
ucing serializable transactions using a timestamp mechanism
cross all locations/machines based on atomic clocks. Further-
ore, approaches like Carousel [52] and SLOG [53] improve glob-
lly distributed database transactions. Carousel enhances transac-
ion execution by minimizing network usage, while SLOG offers a
ine-grained transaction protocol based on the proximity between
he data and the client. Finally, CockroachDB [54] provides seri-
lizable globally distributed transactions without a complicated
ime mechanism.

enchmarks. The large variety of use cases and systems makes
hem difficult to compare using a standardized benchmark. The
elated benchmarks that could be used to evaluate SFaaS sys-
ems are the Yahoo! Cloud Serving Benchmark (YCSB) [41] and
he DeathStarBench [55]. Given that StateFun is based on Flink,
hich is a stream processing system, a stream processing bench-
ark [56] would be another alternative. However, its workloads
re not representative of those executed by an SFaaS system. In
ddition, we did not consider TPC-C [57] because it was created
o test relational database management systems, including trans-
ctions, and requiring many additional features not present in
FaaS. We ultimately chose to develop and use an extension of
CSB [42] that introduced explainable transactional workloads,
llowing for an easier interpretation of the results.

0. Discussion & open problems

rogramming models for the cloud. Although the stateful dataflow
odel has been very successful as an execution model, it has
ot been leveraged thus far as an intermediate representation.
istorically, MapReduce/Hadoop [58] and Dryad [59] were first
roposed as a means of authoring and executing distributed data-
arallel applications using high-level language constructs, such
s Java functions and LINQ [60] respectively. Many systems have
ollowed that execution model subsequently, including streaming
ataflow systems such as Apache Storm [61], Flink [14], Na-
ad [62]. However, none of these systems could execute general-
urpose cloud applications; their programming model focuses
n distributed collection processing and adopts a functional pro-
ramming API.‘

ataflows for cloud applications. We believe that abstractions
uch as stateful functions can play the role of a high-level pro-
ramming model for dataflow engines and have a high impact
n cloud programming. The current approach to program in the
loud is to either use domain-specific languages (DSLs) such as
loom [63], Hilda [64] and Erlang [2], or as libraries in within
ainstream languages like Akka [3], Spring Boot ()). The main
bservation here is that the programmer either has to learn a new
omain-specific language, or they have to use libraries that leak
 s

14
implementation details to the business logic. Very close to the
spirit of this work are virtual actors, and Orleans [4,5] from which
Apache Flink’s StateFun drew inspiration. In turn, Orleans and
virtual actors draw their inspiration from Pat Helland’s entities [6].
owever, Orleans requires a specialized runtime and does not
ffer exactly-once function execution. As we show in this paper,
mplementing very complex protocols (with lots of corner cases)
an be simpler since we benefit from the state management
nd exactly-once guarantees of modern dataflow systems. Since
ataflow systems nowadays are well understood, scalable and
onsistent, we believe that they will play a critical role in the
uture of execution engines for the cloud.

uture dataflow systems. However promising they can be,
ataflow engines still suffer from several issues. Stream proces-
ors such as Apache Flink [14], or Jet [20] have been designed
or continuous operation on high-throughput streams. However,
tateful functions have very different workload characteristics.
or instance, lots of cloud applications may have to call external
ervices – a source of non-determinism [16], and functions calling
ther functions, expecting return values, introduce cycles in the
ataflow graph. Current dataflow systems either do not support
ycles or support a few special cases of cycles. This is because
ycles can cause deadlocks and various other issues [15,65] that
eed to be dealt with. Finally, in this paper, we introduced
ransactions at the function level without having to touch the core
f Apache Flink’s dataflow engine. However, proper implemen-
ation of transactions would require the dataflow system itself
o be aware of transaction boundaries (e.g., commit, prepare)
nd incorporate transaction processing into its fault-tolerance
rotocol. We think that more research needs to be performed to
et dataflow systems fully capable of leveraging their potential.

1. Conclusions

In this paper, we tackle the problem of supporting transac-
ional workflows across cloud applications on a serverless plat-
orm. This problem is notorious in the microservices and cloud
pplications landscape. In addition to that, we introduced a pro-
ramming model and corresponding implementation for author-
ng workflows across stateful serverless functions with config-
rable transactional guarantees. Developers can opt for a dis-
ributed transaction across functions with strict atomicity and
onsistency guarantees or a Saga workflow that provides eventual
tomicity and consistency. These complementary alternatives
aithfully represent the requirements of real-world use cases. We
escribed our implementation on top of Apache Flink StateFun,
n open-source production-grade serverless sFaaS platform, and
valuated our implementation on an extended version of the
CSB benchmark that we developed in terms of (a) through-
ut and latency overhead against the original StateFun, (b) per-
ormance efficiency between distributed transactions and Saga
orkflows, and (c) scalability. We found that our transactional
orkflows add affordable overhead to the system around 10%,
agas significantly outperform distributed transactions on a scale
f 15%–34% depending on the amount of ongoing transactional
orkflows in the system, and scalability manifests a factor of 90%

or Sagas compared to 75%–87% for two-phase commit. Further-
ore, our comparison against a serverless SFaaS runtime showed

hat our work could achieve higher throughput, but it also incurs
igher latency. Finally, we compared against a popular distributed
atabase, CockroachDB, which achieved better performance in
igh contention scenarios and in terms of latency. Notably, our
ork achieved better results in sparse key distributions, while

t provides exactly-once processing semantics compared to our
eployment of Kafka with a CockroachDB backend at-least-once

emantics.

M. de Heus, K. Psarakis, M. Fragkoulis et al. Information Systems 108 (2022) 102015

D

c
t

A

O
i
w

R

eclaration of competing interest

The authors declare that they have no known competing finan-
ial interests or personal relationships that could have appeared
o influence the work reported in this paper.

cknowledgments

This work has been partially funded by the H2020 project
pertusMundi No. 870228 and the AI for Fintech ICAI lab. Exper-
ments were carried out on the Dutch national e-infrastructure
ith the support of SURF Cooperative.

eferences

[1] C.D. Krumvieda, Distributed ML: Abstracts for Efficient and Fault-Tolerant
Programming, Cornell University, 1993.

[2] J. Armstrong, Programming Erlang: Software for a Concurrent World,
Pragmatic Bookshelf, 2013.

[3] D. Wyatt, Akka Concurrency, Artima Incorporation, 2013.
[4] S. Bykov, A. Geller, G. Kliot, J.R. Larus, R. Pandya, J. Thelin, Orleans: cloud

computing for everyone, in: SoCC, 2011.
[5] P. Bernstein, S. Bykov, A. Geller, G. Kliot, J. Thelin, Orleans: Distributed

Virtual Actors for Programmability and Scalability, MSR-TR, 2014.
[6] P. Helland, Life beyond distributed transactions: an apostate’s opinion, in:

ACMQueue, 2016.
[7] E. Jonas, J. Schleier-Smith, V. Sreekanti, C.-C. Tsai, A. Khandelwal, Q. Pu, V.

Shankar, J. Carreira, K. Krauth, N. Yadwadkar, et al., Cloud programming
simplified: A berkeley view on serverless computing, 2019, arXiv.

[8] J.M. Hellerstein, J.M. Faleiro, J.E. Gonzalez, J. Schleier-Smith, V. Sreekanti,
A. Tumanov, C. Wu, Serverless computing: One step forward, two steps
back, 2018, CoRR.

[9] A. Akhter, M. Fragkoulis, A. Katsifodimos, Stateful functions as a service in
action, in: VLDB, 2019.

[10] S.S. de Toledo, A. Martini, A. Przybyszewska, D.I.K. Sjøberg, Architectural
technical debt in microservices: A case study in a large company, in:
Proceedings of the Second International Conference on Technical Debt, in:
TechDebt ’19, IEEE Press, 2019, pp. 78–87.

[11] T. Killalea, The hidden dividends of microservices: Microservices aren’t
for every company, and the journey isn’t easy, ACM Queue 14 (3) (2016)
25–34.

[12] R. Laigner, Y. Zhou, M.A.V. Salles, Y. Liu, M. Kalinowski, Data management
in microservices: State of the practice, challenges, and research directions,
Proc. VLDB Endow. 14 (13) (2021) 3348–3361.

[13] L. Lamport, R. Shostak, M. Pease, The Byzantine generals problem, ACM
Trans. Program. Lang. Syst. 4 (3) (1982) 382–401.

[14] P. Carbone, A. Katsifodimos, S. Ewen, V. Markl, S. Haridi, K. Tzoumas,
Apache flink TM : Stream and batch processing in a single engine, IEEE
Data Eng. Bull. (2015).

[15] P. Carbone, S. Ewen, G. Fóra, S. Haridi, S. Richter, K. Tzoumas, State man-
agement in apache flink: Consistent stateful distributed stream processing,
in: VLDB, 2017.

[16] P. Silvestre, M. Fragkoulis, D. Spinellis, A. Katsifodimos, Clonos: Consistent
causal recovery for highly-available streaming dataflows, in: SIGMOD,
2021.

[17] P. Carbone, M. Fragkoulis, V. Kalavri, A. Katsifodimos, Beyond analytics:
The evolution of stream processing systems, in: SIGMOD, 2020.

[18] M. Armbrust, T. Das, J. Torres, B. Yavuz, S. Zhu, R. Xin, A. Ghodsi, I.
Stoica, M. Zaharia, Structured streaming: A declarative API for real-time
applications in apache spark, in: SIGMOD, 2018.

[19] T. Akidau, A. Balikov, K. Bekiroğlu, S. Chernyak, J. Haberman, R. Lax,
S. McVeety, D. Mills, P. Nordstrom, S. Whittle, Millwheel: fault-tolerant
stream processing at internet scale, in: VLDB, 2013.

[20] C. Gencer, M. Topolnik, V. Ďurina, E. Demirci, E.B. Kahveci, A.G.O. Lukáš,
J. Bartók, G. Gierlach, F. Hartman, U. Yılmaz, M. Doğan, M. Mandouh, M.
Fragkoulis, A. Katsifodimos, Hazelcast jet: Low-latency stream processing
at the 99.99th percentile, in: VLDB, 2021.

[21] H. Zhang, A. Cardoza, P.B. Chen, S. Angel, V. Liu, Fault-tolerant and
transactional stateful serverless workflows, in: OSDI, 2020.

[22] V. Sreekanti, C. Wu, X.C. Lin, J. Schleier-Smith, J.E. Gonzalez, J.M.
Hellerstein, A. Tumanov, Cloudburst, in: VLDB, 2020.

[23] C. Wu, V. Sreekanti, J.M. Hellerstein, Transactional causal consistency for
serverless computing, in: SIGMOD, 2020.

[24] C. Wu, J. Faleiro, Y. Lin, J. Hellerstein, Anna: A KVS for any scale, in: ICDE,
2018.

[25] H. Garcia-Molina, K. Salem, Sagas, in: ACM Sigmod Record, 1987.
15
[26] J.N. Gray, Notes on data base operating systems, in: R. Bayer, R.M. Graham,
G. Seegmüller (Eds.), Operating Systems: An Advanced Course, Springer
Berlin Heidelberg, 1978.

[27] M. de Heus, K. Psarakis, M. Fragkoulis, A. Katsifodimos, Distributed
transactions on serverless stateful functions, in: DEBS, 2021.

[28] J. Goldstein, A. Abdelhamid, M. Barnett, S. Burckhardt, B. Chandramouli, D.
Gehring, N. Lebeck, C. Meiklejohn, U.F. Minhas, R. Newton, et al., Ambrosia:
Providing performant virtual resiliency for distributed applications, in:
VLDB, 2020.

[29] A. Cheung, N. Crooks, J.M. Hellerstein, M. Milano, New directions in cloud
programming, in: CIDR, 2021.

[30] R.C. Fernandez, M. Migliavacca, E. Kalyvianaki, P. Pietzuch, Making state
explicit for imperative big data processing, in: USENIX ATC, 2014.

[31] A. Katsifodimos, M. Fragkoulis, Operational stream processing: Towards
scalable and consistent event-driven applications, in: EDBT, 2019.

[32] L. Affetti, A. Margara, G. Cugola, Flowdb: Integrating stream processing and
consistent state management, in: DEBS, 2017.

[33] D. Terry, Transactions and Scalability in Cloud Databases—Can’t We Have
Both? USENIX Association, 2019.

[34] R. Kallman, H. Kimura, J. Natkins, A. Pavlo, A. Rasin, S. Zdonik, E.P.C. Jones,
S. Madden, M. Stonebraker, Y. Zhang, J. Hugg, D.J. Abadi, H-store: A high-
performance, distributed main memory transaction processing system, in:
VLDB, 2008.

[35] S. Sivasubramanian, Amazon dynamodb: a seamlessly scalable non-
relational database service, in: SIGMOD, 2012.

[36] K.M. Chandy, J. Misra, L.M. Haas, Distributed deadlock detection, in: ACM
Trans. Comput. Syst., 1983.

[37] D.J. Abadi, J.M. Faleiro, An overview of deterministic database systems,
Commun. ACM (2018).

[38] A. Thomson, D.J. Abadi, The case for determinism in database systems, in:
VLDB, 2010.

[39] K. Ren, A. Thomson, D.J. Abadi, An evaluation of the advantages and
disadvantages of deterministic database systems, in: VLDB, 2014.

[40] A. Thomson, D.J. Abadi, The case for determinism in database systems, in:
VLDB, 2010.

[41] B.F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, R. Sears, Benchmarking
cloud serving systems with YCSB, in: SOCC, 2010.

[42] A. Dey, A. Fekete, R. Nambiar, U. Röhm, YCSB+T: Benchmarking web-scale
transactional databases, in: ICDE Workshops, 2014.

[43] V. Sreekanti, C. Wu, S. Chhatrapati, J.E. Gonzalez, J.M. Hellerstein, J.M.
Faleiro, A fault-tolerance shim for serverless computing, in: EuroSys, 2020.

[44] S. Setty, C. Su, J.R. Lorch, L. Zhou, H. Chen, P. Patel, J. Ren, Realizing the
fault-tolerance promise of cloud storage using locks with intent, in: OSDI,
2016.

[45] S. Shillaker, P. Pietzuch, Faasm: Lightweight isolation for efficient stateful
serverless computing, in: 2020 USENIX Annual Technical Conference,
USENIX ATC 20, 2020.

[46] I. Botan, P.M. Fischer, D. Kossmann, N. Tatbul, Transactional stream
processing, in: EDBT, 2012.

[47] P. Götze, K.-U. Sattler, Snapshot isolation for transactional stream
processing., in: EDBT, 2019.

[48] L. Affetti, A. Margara, G. Cugola, TSpoon: Transactions on a stream
processor, J. Parallel Distrib. Comput. (2020).

[49] C. Mohan, B. Lindsay, R. Obermarck, Transaction management in the r*
distributed database management system, in: TODS, 1986.

[50] R. Kallman, H. Kimura, J. Natkins, A. Pavlo, A. Rasin, S. Zdonik, E.P. Jones,
S. Madden, M. Stonebraker, Y. Zhang, et al., H-store: a high-performance,
distributed main memory transaction processing system, in: VLDB, 2008.

[51] J.C. Corbett, J. Dean, M. Epstein, A. Fikes, C. Frost, J.J. Furman, S. Ghemawat,
A. Gubarev, C. Heiser, P. Hochschild, et al., Spanner: Google’s globally
distributed database, in: TOCS, 2013.

[52] X. Yan, L. Yang, H. Zhang, X.C. Lin, B. Wong, K. Salem, T. Brecht,
Carousel: Low-latency transaction processing for globally-distributed data,
in: SIGMOD, 2018.

[53] K. Ren, D. Li, D.J. Abadi, Slog: Serializable, low-latency, geo-replicated
transactions, in: VLDB, 2019.

[54] R. Taft, I. Sharif, A. Matei, N. VanBenschoten, J. Lewis, T. Grieger, K.
Niemi, A. Woods, A. Birzin, R. Poss, et al., Cockroachdb: The resilient
geo-distributed sql database, in: SIGMOD, 2020.

[55] Y. Gan, Y. Zhang, D. Cheng, A. Shetty, P. Rathi, N. Katarki, A. Bruno, J.
Hu, B. Ritchken, B. Jackson, et al., An open-source benchmark suite for
microservices and their hardware-software implications for cloud & edge
systems, in: ASPLOS, 2019.

[56] J. Karimov, T. Rabl, A. Katsifodimos, R. Samarev, H. Heiskanen, V. Markl,
Benchmarking distributed stream data processing systems, in: ICDE, 2018.

[57] F. Raab, TPC-C - The standard benchmark for online transaction processing
(OLTP), in: J. Gray (Ed.), The Benchmark Handbook, Morgan Kaufmann,
1993.

[58] J. Dean, S. Ghemawat, MapReduce: simplified data processing on large
clusters, Commun. ACM (2008).

http://refhub.elsevier.com/S0306-4379(22)00022-9/sb1
http://refhub.elsevier.com/S0306-4379(22)00022-9/sb1
http://refhub.elsevier.com/S0306-4379(22)00022-9/sb1
http://refhub.elsevier.com/S0306-4379(22)00022-9/sb2
http://refhub.elsevier.com/S0306-4379(22)00022-9/sb2
http://refhub.elsevier.com/S0306-4379(22)00022-9/sb2
http://refhub.elsevier.com/S0306-4379(22)00022-9/sb3
http://refhub.elsevier.com/S0306-4379(22)00022-9/sb4
http://refhub.elsevier.com/S0306-4379(22)00022-9/sb4
http://refhub.elsevier.com/S0306-4379(22)00022-9/sb4
http://refhub.elsevier.com/S0306-4379(22)00022-9/sb5
http://refhub.elsevier.com/S0306-4379(22)00022-9/sb5
http://refhub.elsevier.com/S0306-4379(22)00022-9/sb5
http://refhub.elsevier.com/S0306-4379(22)00022-9/sb6
http://refhub.elsevier.com/S0306-4379(22)00022-9/sb6
http://refhub.elsevier.com/S0306-4379(22)00022-9/sb6
http://refhub.elsevier.com/S0306-4379(22)00022-9/sb7
http://refhub.elsevier.com/S0306-4379(22)00022-9/sb7
http://refhub.elsevier.com/S0306-4379(22)00022-9/sb7
http://refhub.elsevier.com/S0306-4379(22)00022-9/sb7
http://refhub.elsevier.com/S0306-4379(22)00022-9/sb7
http://refhub.elsevier.com/S0306-4379(22)00022-9/sb8
http://refhub.elsevier.com/S0306-4379(22)00022-9/sb8
http://refhub.elsevier.com/S0306-4379(22)00022-9/sb8
http://refhub.elsevier.com/S0306-4379(22)00022-9/sb8
http://refhub.elsevier.com/S0306-4379(22)00022-9/sb8
http://refhub.elsevier.com/S0306-4379(22)00022-9/sb9
http://refhub.elsevier.com/S0306-4379(22)00022-9/sb9
http://refhub.elsevier.com/S0306-4379(22)00022-9/sb9
http://refhub.elsevier.com/S0306-4379(22)00022-9/sb10
http://refhub.elsevier.com/S0306-4379(22)00022-9/sb10
http://refhub.elsevier.com/S0306-4379(22)00022-9/sb10
http://refhub.elsevier.com/S0306-4379(22)00022-9/sb10
http://refhub.elsevier.com/S0306-4379(22)00022-9/sb10
http://refhub.elsevier.com/S0306-4379(22)00022-9/sb10
http://refhub.elsevier.com/S0306-4379(22)00022-9/sb10
http://refhub.elsevier.com/S0306-4379(22)00022-9/sb11
http://refhub.elsevier.com/S0306-4379(22)00022-9/sb11
http://refhub.elsevier.com/S0306-4379(22)00022-9/sb11
http://refhub.elsevier.com/S0306-4379(22)00022-9/sb11
http://refhub.elsevier.com/S0306-4379(22)00022-9/sb11
http://refhub.elsevier.com/S0306-4379(22)00022-9/sb12
http://refhub.elsevier.com/S0306-4379(22)00022-9/sb12
http://refhub.elsevier.com/S0306-4379(22)00022-9/sb12
http://refhub.elsevier.com/S0306-4379(22)00022-9/sb12
http://refhub.elsevier.com/S0306-4379(22)00022-9/sb12
http://refhub.elsevier.com/S0306-4379(22)00022-9/sb13
http://refhub.elsevier.com/S0306-4379(22)00022-9/sb13
http://refhub.elsevier.com/S0306-4379(22)00022-9/sb13
http://refhub.elsevier.com/S0306-4379(22)00022-9/sb14
http://refhub.elsevier.com/S0306-4379(22)00022-9/sb14
http://refhub.elsevier.com/S0306-4379(22)00022-9/sb14
http://refhub.elsevier.com/S0306-4379(22)00022-9/sb14
http://refhub.elsevier.com/S0306-4379(22)00022-9/sb14
http://refhub.elsevier.com/S0306-4379(22)00022-9/sb15
http://refhub.elsevier.com/S0306-4379(22)00022-9/sb15
http://refhub.elsevier.com/S0306-4379(22)00022-9/sb15
http://refhub.elsevier.com/S0306-4379(22)00022-9/sb15
http://refhub.elsevier.com/S0306-4379(22)00022-9/sb15
http://refhub.elsevier.com/S0306-4379(22)00022-9/sb16
http://refhub.elsevier.com/S0306-4379(22)00022-9/sb16
http://refhub.elsevier.com/S0306-4379(22)00022-9/sb16
http://refhub.elsevier.com/S0306-4379(22)00022-9/sb16
http://refhub.elsevier.com/S0306-4379(22)00022-9/sb16
http://refhub.elsevier.com/S0306-4379(22)00022-9/sb17
http://refhub.elsevier.com/S0306-4379(22)00022-9/sb17
http://refhub.elsevier.com/S0306-4379(22)00022-9/sb17
http://refhub.elsevier.com/S0306-4379(22)00022-9/sb18
http://refhub.elsevier.com/S0306-4379(22)00022-9/sb18
http://refhub.elsevier.com/S0306-4379(22)00022-9/sb18
http://refhub.elsevier.com/S0306-4379(22)00022-9/sb18
http://refhub.elsevier.com/S0306-4379(22)00022-9/sb18
http://refhub.elsevier.com/S0306-4379(22)00022-9/sb19
http://refhub.elsevier.com/S0306-4379(22)00022-9/sb19
http://refhub.elsevier.com/S0306-4379(22)00022-9/sb19
http://refhub.elsevier.com/S0306-4379(22)00022-9/sb19
http://refhub.elsevier.com/S0306-4379(22)00022-9/sb19
http://refhub.elsevier.com/S0306-4379(22)00022-9/sb20
http://refhub.elsevier.com/S0306-4379(22)00022-9/sb20
http://refhub.elsevier.com/S0306-4379(22)00022-9/sb20
http://refhub.elsevier.com/S0306-4379(22)00022-9/sb20
http://refhub.elsevier.com/S0306-4379(22)00022-9/sb20
http://refhub.elsevier.com/S0306-4379(22)00022-9/sb20
http://refhub.elsevier.com/S0306-4379(22)00022-9/sb20
http://refhub.elsevier.com/S0306-4379(22)00022-9/sb21
http://refhub.elsevier.com/S0306-4379(22)00022-9/sb21
http://refhub.elsevier.com/S0306-4379(22)00022-9/sb21
http://refhub.elsevier.com/S0306-4379(22)00022-9/sb22
http://refhub.elsevier.com/S0306-4379(22)00022-9/sb22
http://refhub.elsevier.com/S0306-4379(22)00022-9/sb22
http://refhub.elsevier.com/S0306-4379(22)00022-9/sb23
http://refhub.elsevier.com/S0306-4379(22)00022-9/sb23
http://refhub.elsevier.com/S0306-4379(22)00022-9/sb23
http://refhub.elsevier.com/S0306-4379(22)00022-9/sb24
http://refhub.elsevier.com/S0306-4379(22)00022-9/sb24
http://refhub.elsevier.com/S0306-4379(22)00022-9/sb24
http://refhub.elsevier.com/S0306-4379(22)00022-9/sb25
http://refhub.elsevier.com/S0306-4379(22)00022-9/sb26
http://refhub.elsevier.com/S0306-4379(22)00022-9/sb26
http://refhub.elsevier.com/S0306-4379(22)00022-9/sb26
http://refhub.elsevier.com/S0306-4379(22)00022-9/sb26
http://refhub.elsevier.com/S0306-4379(22)00022-9/sb26
http://refhub.elsevier.com/S0306-4379(22)00022-9/sb27
http://refhub.elsevier.com/S0306-4379(22)00022-9/sb27
http://refhub.elsevier.com/S0306-4379(22)00022-9/sb27
http://refhub.elsevier.com/S0306-4379(22)00022-9/sb28
http://refhub.elsevier.com/S0306-4379(22)00022-9/sb28
http://refhub.elsevier.com/S0306-4379(22)00022-9/sb28
http://refhub.elsevier.com/S0306-4379(22)00022-9/sb28
http://refhub.elsevier.com/S0306-4379(22)00022-9/sb28
http://refhub.elsevier.com/S0306-4379(22)00022-9/sb28
http://refhub.elsevier.com/S0306-4379(22)00022-9/sb28
http://refhub.elsevier.com/S0306-4379(22)00022-9/sb29
http://refhub.elsevier.com/S0306-4379(22)00022-9/sb29
http://refhub.elsevier.com/S0306-4379(22)00022-9/sb29
http://refhub.elsevier.com/S0306-4379(22)00022-9/sb30
http://refhub.elsevier.com/S0306-4379(22)00022-9/sb30
http://refhub.elsevier.com/S0306-4379(22)00022-9/sb30
http://refhub.elsevier.com/S0306-4379(22)00022-9/sb31
http://refhub.elsevier.com/S0306-4379(22)00022-9/sb31
http://refhub.elsevier.com/S0306-4379(22)00022-9/sb31
http://refhub.elsevier.com/S0306-4379(22)00022-9/sb32
http://refhub.elsevier.com/S0306-4379(22)00022-9/sb32
http://refhub.elsevier.com/S0306-4379(22)00022-9/sb32
http://refhub.elsevier.com/S0306-4379(22)00022-9/sb33
http://refhub.elsevier.com/S0306-4379(22)00022-9/sb33
http://refhub.elsevier.com/S0306-4379(22)00022-9/sb33
http://refhub.elsevier.com/S0306-4379(22)00022-9/sb34
http://refhub.elsevier.com/S0306-4379(22)00022-9/sb34
http://refhub.elsevier.com/S0306-4379(22)00022-9/sb34
http://refhub.elsevier.com/S0306-4379(22)00022-9/sb34
http://refhub.elsevier.com/S0306-4379(22)00022-9/sb34
http://refhub.elsevier.com/S0306-4379(22)00022-9/sb34
http://refhub.elsevier.com/S0306-4379(22)00022-9/sb34
http://refhub.elsevier.com/S0306-4379(22)00022-9/sb35
http://refhub.elsevier.com/S0306-4379(22)00022-9/sb35
http://refhub.elsevier.com/S0306-4379(22)00022-9/sb35
http://refhub.elsevier.com/S0306-4379(22)00022-9/sb36
http://refhub.elsevier.com/S0306-4379(22)00022-9/sb36
http://refhub.elsevier.com/S0306-4379(22)00022-9/sb36
http://refhub.elsevier.com/S0306-4379(22)00022-9/sb37
http://refhub.elsevier.com/S0306-4379(22)00022-9/sb37
http://refhub.elsevier.com/S0306-4379(22)00022-9/sb37
http://refhub.elsevier.com/S0306-4379(22)00022-9/sb38
http://refhub.elsevier.com/S0306-4379(22)00022-9/sb38
http://refhub.elsevier.com/S0306-4379(22)00022-9/sb38
http://refhub.elsevier.com/S0306-4379(22)00022-9/sb39
http://refhub.elsevier.com/S0306-4379(22)00022-9/sb39
http://refhub.elsevier.com/S0306-4379(22)00022-9/sb39
http://refhub.elsevier.com/S0306-4379(22)00022-9/sb40
http://refhub.elsevier.com/S0306-4379(22)00022-9/sb40
http://refhub.elsevier.com/S0306-4379(22)00022-9/sb40
http://refhub.elsevier.com/S0306-4379(22)00022-9/sb41
http://refhub.elsevier.com/S0306-4379(22)00022-9/sb41
http://refhub.elsevier.com/S0306-4379(22)00022-9/sb41
http://refhub.elsevier.com/S0306-4379(22)00022-9/sb42
http://refhub.elsevier.com/S0306-4379(22)00022-9/sb42
http://refhub.elsevier.com/S0306-4379(22)00022-9/sb42
http://refhub.elsevier.com/S0306-4379(22)00022-9/sb43
http://refhub.elsevier.com/S0306-4379(22)00022-9/sb43
http://refhub.elsevier.com/S0306-4379(22)00022-9/sb43
http://refhub.elsevier.com/S0306-4379(22)00022-9/sb44
http://refhub.elsevier.com/S0306-4379(22)00022-9/sb44
http://refhub.elsevier.com/S0306-4379(22)00022-9/sb44
http://refhub.elsevier.com/S0306-4379(22)00022-9/sb44
http://refhub.elsevier.com/S0306-4379(22)00022-9/sb44
http://refhub.elsevier.com/S0306-4379(22)00022-9/sb45
http://refhub.elsevier.com/S0306-4379(22)00022-9/sb45
http://refhub.elsevier.com/S0306-4379(22)00022-9/sb45
http://refhub.elsevier.com/S0306-4379(22)00022-9/sb45
http://refhub.elsevier.com/S0306-4379(22)00022-9/sb45
http://refhub.elsevier.com/S0306-4379(22)00022-9/sb46
http://refhub.elsevier.com/S0306-4379(22)00022-9/sb46
http://refhub.elsevier.com/S0306-4379(22)00022-9/sb46
http://refhub.elsevier.com/S0306-4379(22)00022-9/sb47
http://refhub.elsevier.com/S0306-4379(22)00022-9/sb47
http://refhub.elsevier.com/S0306-4379(22)00022-9/sb47
http://refhub.elsevier.com/S0306-4379(22)00022-9/sb48
http://refhub.elsevier.com/S0306-4379(22)00022-9/sb48
http://refhub.elsevier.com/S0306-4379(22)00022-9/sb48
http://refhub.elsevier.com/S0306-4379(22)00022-9/sb49
http://refhub.elsevier.com/S0306-4379(22)00022-9/sb49
http://refhub.elsevier.com/S0306-4379(22)00022-9/sb49
http://refhub.elsevier.com/S0306-4379(22)00022-9/sb50
http://refhub.elsevier.com/S0306-4379(22)00022-9/sb50
http://refhub.elsevier.com/S0306-4379(22)00022-9/sb50
http://refhub.elsevier.com/S0306-4379(22)00022-9/sb50
http://refhub.elsevier.com/S0306-4379(22)00022-9/sb50
http://refhub.elsevier.com/S0306-4379(22)00022-9/sb51
http://refhub.elsevier.com/S0306-4379(22)00022-9/sb51
http://refhub.elsevier.com/S0306-4379(22)00022-9/sb51
http://refhub.elsevier.com/S0306-4379(22)00022-9/sb51
http://refhub.elsevier.com/S0306-4379(22)00022-9/sb51
http://refhub.elsevier.com/S0306-4379(22)00022-9/sb52
http://refhub.elsevier.com/S0306-4379(22)00022-9/sb52
http://refhub.elsevier.com/S0306-4379(22)00022-9/sb52
http://refhub.elsevier.com/S0306-4379(22)00022-9/sb52
http://refhub.elsevier.com/S0306-4379(22)00022-9/sb52
http://refhub.elsevier.com/S0306-4379(22)00022-9/sb53
http://refhub.elsevier.com/S0306-4379(22)00022-9/sb53
http://refhub.elsevier.com/S0306-4379(22)00022-9/sb53
http://refhub.elsevier.com/S0306-4379(22)00022-9/sb54
http://refhub.elsevier.com/S0306-4379(22)00022-9/sb54
http://refhub.elsevier.com/S0306-4379(22)00022-9/sb54
http://refhub.elsevier.com/S0306-4379(22)00022-9/sb54
http://refhub.elsevier.com/S0306-4379(22)00022-9/sb54
http://refhub.elsevier.com/S0306-4379(22)00022-9/sb55
http://refhub.elsevier.com/S0306-4379(22)00022-9/sb55
http://refhub.elsevier.com/S0306-4379(22)00022-9/sb55
http://refhub.elsevier.com/S0306-4379(22)00022-9/sb55
http://refhub.elsevier.com/S0306-4379(22)00022-9/sb55
http://refhub.elsevier.com/S0306-4379(22)00022-9/sb55
http://refhub.elsevier.com/S0306-4379(22)00022-9/sb55
http://refhub.elsevier.com/S0306-4379(22)00022-9/sb56
http://refhub.elsevier.com/S0306-4379(22)00022-9/sb56
http://refhub.elsevier.com/S0306-4379(22)00022-9/sb56
http://refhub.elsevier.com/S0306-4379(22)00022-9/sb57
http://refhub.elsevier.com/S0306-4379(22)00022-9/sb57
http://refhub.elsevier.com/S0306-4379(22)00022-9/sb57
http://refhub.elsevier.com/S0306-4379(22)00022-9/sb57
http://refhub.elsevier.com/S0306-4379(22)00022-9/sb57
http://refhub.elsevier.com/S0306-4379(22)00022-9/sb58
http://refhub.elsevier.com/S0306-4379(22)00022-9/sb58
http://refhub.elsevier.com/S0306-4379(22)00022-9/sb58

M. de Heus, K. Psarakis, M. Fragkoulis et al. Information Systems 108 (2022) 102015
[59] Y. Yu, M. Isard, D. Fetterly, M. Budiu, U. Erlingsson, P. Gunda, J. Cur-
rey, DryadLINQ: A system for general-purpose distributed data-parallel
computing using a high-level language, in: OSDI, 2008.

[60] E. Meijer, B. Beckman, G. Bierman, Linq: reconciling object, relations and
xml in the. net framework, in: SIGMOD, 2006.

[61] A. Toshniwal, S. Taneja, A. Shukla, K. Ramasamy, J.M. Patel, S. Kulkarni, J.
Jackson, K. Gade, M. Fu, J. Donham, et al., Storm@ twitter, in: SIGMOD,
2014.

[62] D.G. Murray, F. McSherry, R. Isaacs, M. Isard, P. Barham, M. Abadi, Naiad:
a timely dataflow system, in: Proceedings of the Twenty-Fourth ACM
Symposium on Operating Systems Principles, 2013.
16
[63] P. Alvaro, T. Condie, N. Conway, K. Elmeleegy, J.M. Hellerstein, R. Sears,
Boom analytics: exploring data-centric, declarative programming for the
cloud, in: Proceedings of the 5th European Conference on Computer
Systems, 2010.

[64] F. Yang, J. Shanmugasundaram, M. Riedewald, J. Gehrke, Hilda: A high-
level language for data-drivenweb applications, in: 22nd International
Conference on Data Engineering, ICDE’06, IEEE, 2006.

[65] A. Lattuada, F. McSherry, Z. Chothia, Faucet: a user-level, modular tech-
nique for flow control in dataflow engines, in: SIGMOD BeyondMR
Workshop, ACM, 2016.

http://refhub.elsevier.com/S0306-4379(22)00022-9/sb59
http://refhub.elsevier.com/S0306-4379(22)00022-9/sb59
http://refhub.elsevier.com/S0306-4379(22)00022-9/sb59
http://refhub.elsevier.com/S0306-4379(22)00022-9/sb59
http://refhub.elsevier.com/S0306-4379(22)00022-9/sb59
http://refhub.elsevier.com/S0306-4379(22)00022-9/sb60
http://refhub.elsevier.com/S0306-4379(22)00022-9/sb60
http://refhub.elsevier.com/S0306-4379(22)00022-9/sb60
http://refhub.elsevier.com/S0306-4379(22)00022-9/sb61
http://refhub.elsevier.com/S0306-4379(22)00022-9/sb61
http://refhub.elsevier.com/S0306-4379(22)00022-9/sb61
http://refhub.elsevier.com/S0306-4379(22)00022-9/sb61
http://refhub.elsevier.com/S0306-4379(22)00022-9/sb61
http://refhub.elsevier.com/S0306-4379(22)00022-9/sb62
http://refhub.elsevier.com/S0306-4379(22)00022-9/sb62
http://refhub.elsevier.com/S0306-4379(22)00022-9/sb62
http://refhub.elsevier.com/S0306-4379(22)00022-9/sb62
http://refhub.elsevier.com/S0306-4379(22)00022-9/sb62
http://refhub.elsevier.com/S0306-4379(22)00022-9/sb63
http://refhub.elsevier.com/S0306-4379(22)00022-9/sb63
http://refhub.elsevier.com/S0306-4379(22)00022-9/sb63
http://refhub.elsevier.com/S0306-4379(22)00022-9/sb63
http://refhub.elsevier.com/S0306-4379(22)00022-9/sb63
http://refhub.elsevier.com/S0306-4379(22)00022-9/sb63
http://refhub.elsevier.com/S0306-4379(22)00022-9/sb63
http://refhub.elsevier.com/S0306-4379(22)00022-9/sb64
http://refhub.elsevier.com/S0306-4379(22)00022-9/sb64
http://refhub.elsevier.com/S0306-4379(22)00022-9/sb64
http://refhub.elsevier.com/S0306-4379(22)00022-9/sb64
http://refhub.elsevier.com/S0306-4379(22)00022-9/sb64
http://refhub.elsevier.com/S0306-4379(22)00022-9/sb65
http://refhub.elsevier.com/S0306-4379(22)00022-9/sb65
http://refhub.elsevier.com/S0306-4379(22)00022-9/sb65
http://refhub.elsevier.com/S0306-4379(22)00022-9/sb65
http://refhub.elsevier.com/S0306-4379(22)00022-9/sb65

	Transactions across serverless functions leveraging stateful dataflows
	Introduction
	Transactions on streaming dataflows
	Preliminaries
	Transaction model
	Apache Flink StateFun
	Assumptions requirements

	Approach overview
	API
	Two-phase commit
	Sagas
	Extensions to regular functions

	Transactional workflows
	Coordinator functions
	Saga coordination
	Two-phase commit coordination

	Towards strict serializability
	Experimental setup
	Benchmark workload
	Evaluation metrics

	Experiment results
	Coordination overhead
	Sagas vs two-phase commit
	Scalability comparison
	Micro benchmark
	Comparison against CockroachDB
	Comparison against Beldi

	Related work
	Discussion open problems
	Conclusions
	Declaration of competing interest
	Acknowledgments
	References

