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Abstract. The zigzag process is a variant of the telegraph process with position dependent switching intensities. A characterization
of the L2-spectrum for the generator of the one-dimensional zigzag process is obtained in the case where the marginal stationary
distribution on R is unimodal and the refreshment intensity is zero. Sufficient conditions are obtained for a spectral mapping theorem,
mapping the spectrum of the generator to the spectrum of the corresponding Markov semigroup. Furthermore results are obtained for
symmetric stationary distributions and for perturbations of the spectrum, in particular for the case of a non-zero refreshment intensity.
In the examples we consider (including a Gaussian target distribution) a slight increase of the refreshment intensity above zero results
in a larger L2-spectral gap, corresponding to an improved convergence in L2.

Résumé. Le processus de ZigZag est une variante du processus du télégraphe avec des intensités de retournement dépendant de la
position. Nous obtenons une caractérisation du spectre en norme L2 du générateur du processus de zigzag unidimensionnel, dans le
cas où la distribution marginale stationnaire sur R est unimodale, avec une fréquence de rééchantillonnage nulle. Nous obtenons des
conditions suffisantes pour un théorème d’isomorphisme spectral, identifiant le spectre du générateur à celui du semi-groupe de Markov
correspondant. Par ailleurs, nous obtenons des résultats pour les distributions stationnaires symétriques ainsi que pour les perturbations
du spectre dans le cas particulier d’une fréquence de rééchantillonnage non nulle. Enfin, nous considérons dans les exemples (avec une
distribution cible gaussienne) un faible taux de rafraichissement positif par rapport aux résultats du taux nul, ce qui induit une plus
grande bande dans le spectre L2, correspondant à une convergence améliorée en norme L2.

MSC2020 subject classifications: Primary 47A10; secondary 37A30; 60J25

Keywords: Spectral theory; Non-reversible Markov process; Markov semigroup; Zigzag process; Exponential ergodicity; Perturbation theory;
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1. Introduction

In recent years piecewise deterministic Markov processes have emerged as a useful computational tool in stochastic
simulation, for example for Bayesian statistics or statistical physics. A particular instance of such a process is the zigzag
process, described already in e.g. [12,21] and given its name in [5]. The zigzag process is a variant of, and extends the
telegraph process [16] and is intimately related to the Bouncy Particle Sampler [6,22].

The zigzag process can be defined in multiple dimensions [4] but here we consider only one spatial dimension. In this
setting the zigzag process is a Markov process (X(t),�(t)) in the state space E := R × {−1,+1}. Conditional on the
velocity process (�(t))t≥0, the position process (X(t))t≥0 in R is completely determined by the relation X(t) = X(0) +∫ t

0 �(s)ds. The velocity process (�(t))t≥0 in {−1,+1} switches sign at inhomogeneous Poisson rate λ(X(t),�(t)),
where λ : E → [0,∞) is a continuous function. Thus the switching intensity function λ has a crucial impact on the
dynamics exhibited by the zigzag process.

For a given absolutely continuous potential function U : R → R, the switching intensity λ can be chosen as
λ(x, θ) = (θU ′(x) ∨ 0) + λrefr(x) for some non-negative refreshment intensity function λrefr : R → [0,∞). This con-
dition results in the zigzag process having stationary distribution μ on E with marginal density on R proportional to e−U .
This observation makes the zigzag process into a useful computational device for the stochastic simulation of a given
target density proportional to e−U .

https://imstat.org/journals-and-publications/annales-de-linstitut-henri-poincare/
https://doi.org/10.1214/21-AIHP1188
mailto:oris.bierkens@tudelft.nl
mailto:S.M.VerduynLunel@uu.nl
https://mathscinet.ams.org/mathscinet/msc/msc2020.html


828 J. Bierkens and S.M. Verduyn Lunel

In the design of stochastic simulation algorithms it is vital to understand the convergence to stationarity, i.e., the
quality of the approximation of the probability density proportional to e−U by the law of X(t). For the zigzag pro-
cess this question has already been addressed in several ways. In [5,13] a Lyapunov function argument has been
used to show exponentially fast convergence to stationarity in total variation norm. In [3] a central limit theorem for

1√
T

∫ T

0 (f (X(s),�(s)) − π(f )) ds, for T → ∞, was obtained under suitable conditions. Here π denotes the normal-
ization of μ into a probability distribution. The hypocoercivity approach of [9] is applied in [1] to the zigzag process,
amongst other piecewise deterministic processes, in order to obtain exponential convergence in L2(μ). Recently [19]
provided estimates on the exponential convergence of PDMPs using a time-dependent Poincaré inequality, that seem to
result in a good understanding of dependence on, e.g., dimensionality, anisotropy and convexity. However, typically these
results either do not obtain a tractable quantitative bound on the rate of convergence, and/or provide only a one-sided
estimate on the rate of convergence.

In order to obtain quantitative result on the rate of convergence to stationarity, it is natural to investigate the spectral
properties of the Markov semigroup (P (t))t≥0 connected to the zigzag process, and this is the aim of this work. The
probabilistic interpretation of P(t) is that

P(t)f (x, θ) = Ex,θf
(
X(t),�(t)

)
, t ≥ 0,

where Ex,θ denotes the expectation over trajectories of the Markov process (X(t),�(t)) with initial position
(X(0),�(0)) = (x, θ). In this paper we take a fully analytical approach, and thus construct and analyse the semigroup
(P (t))t≥0 using functional analytical arguments with no reliance on probabilistic results.

In a similar vein in [20] a rather complete understanding of the spectral properties in L2(μ) is obtained for a periodic
variant of the telegraph process, with uniform marginal stationary distribution on the position space. As in [1,20] we con-
sider the spectrum of the zigzag semigroup in the Hilbert space L2(μ). Although the zigzag semigroup is not selfadjoint,
it still has remarkable symmetry properties as a semigroup in L2(μ). In particular we obtain an elegant characterization of
the adjoint of the generator (see Lemma 3.4), and a decomposition of the spectrum in the case of a symmetric stationary
distribution (Section 5).

Our results rely for a significant part on the explicit solution of the eigenvalue and resolvent equations, which is
possible if λrefr = 0. We anticipate that the results can be extended to λrefr �= 0 and to a wider variety of function spaces,
using an approach based upon characteristic matrices [15], which will be the focus of further research.

The structure of this work is as follows. First, in Section 2 we introduce notation and our main assumptions which are
used throughout this document. In Section 3 we construct, imposing minimal assumptions and taking a purely analytical
approach, the zigzag semigroup (P (t))t≥0 on L2(μ), where we characterize the domain of the infinitesemal generator L

explicitly (Theorem 3.6). Under mild conditions it is established that the resolvent of (P (t))t≥0 is compact with immediate
strong implications for the spectrum. Then, in Section 4 the spectrum of the zigzag semigroup is studied under the
assumption of unimodality of e−U and vanishing refreshment, λrefr(x) = 0 for all x. It turns out that in this case we
can find a holomorphic function Z : C → C such that the spectrum of L is identical to the roots of Z (Theorem 4.4).
Under a further suitable polynomial growth condition on the potential function, a spectral mapping theorem is shown to
hold, so that the spectrum of (P (t))t≥0 can expressed in terms of the roots of Z (Theorem 4.13), yielding in particular a
characterization of the spectral gap of (P (t))t≥0 in L2(μ) (Theorem 4.14).

Interestingly, if U is symmetric, as discussed in Section 5, then the state space L2(μ) can be separated into two sub-
spaces that are invariant with respect to the zigzag semigroup. In particular this implies a decomposition of the spectrum
(Theorem 5.3). In Section 6 we determine the effect of small perturbations of the generator on the spectrum of the zigzag
semigroup, allowing us to study the effect of a small non-zero refreshment intensity.

In Section 7 some fundamental examples are discussed along with a numerical illustration of the spectrum. Interest-
ingly, in the examples we consider (including a Gaussian target distribution) a slight increase above zero in the zigzag
refreshment intensity results in a larger spectral gap and thus an improved convergence in L2. In contrast, the asymptotic
variance increases when the refreshment rate increases [3]. This apparent contradiction between convergence in law and
convergence of empirical averages is also observed in reversible, nearly-periodic Markov chains [24] and non-reversible
Markov chains [25].

Finally we include an appendix containing several technical lemmas.

2. Notation and assumptions

Let E =R× {−1,+1} and equip E with the product topology generated by the usual topologies on R and {−1,+1}. We
also equip E with the product σ -algebra generated by products of Lebesgue sets in R and all subsets of {−1,+1}.
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Associated to a potential function U : R → R, which we assume to be continuously differentiable, we define the
switching intensity function

λ(x, θ) := (
θU ′(x) ∨ 0

) + λrefr(x), (x, θ) ∈ E. (2.1)

Here (a ∨ b) := max(a, b) for any a, b ∈R, and λrefr : R→ [0,∞) is a continuous function. The function λrefr is referred
to as the refreshment rate or excess switching rate. In order to obtain the main results in this paper we will often assume
that λrefr(x) = 0 for all x ∈R; this assumption will always be made explicit.

The switching intensities λ define (under suitable conditions) a Markov process in E, with associated Markov semi-
group (P (t))t≥0 on B(E), the Banach space of bounded measurable functions on E. We call (P (t)) the zigzag semigroup.
For a probabilistic construction see, e.g., [4,5].

It is the aim of this paper to carry out a detailed investigation of properties of this semigroup as a strongly continuous
semigroup in L2(μ), where μ denotes a stationary distribution of the process (to be made precise later). We will be
particularly interested in spectral properties of the semigroup.

2.1. Notation

For a measure μ on a measurable space E we write μ(f ) = ∫
E

f dμ, for f ∈ L1(μ). Let E =R×{−1,+1}. For f : E →
C we write f θ = f (·, θ), θ = ±1. Recall the Sobolev spaces Wk,p(�,ν) for � an open subset of R and ν a Borel measure
on � and write Wk,p(�) when the underlying measure is Lebesgue measure. Let μ denote a Borel measure on E. We say
that f ∈ Wk,p(μ) if f (·, θ) ∈ Wk,p(R,μ) for θ ∈ {−1,+1}. Similarly we say that f ∈ W

k,p

loc (E) if, for any θ ∈ {−1,+1},
f (·, θ) restricted to F is in Wk,p(F ) for any compact set F ⊂R. Mappings M of functions f :R→ C yielding a function
Mf : R → C may be extended to mappings of functions f : E → C by defining (Mf )θ = Mf (·, θ) = Mf θ for θ = ±1.
For example, for f ∈ W 1,p(E) we write ∂xf : E → R for the function such that (∂xf )θ = ∂x(f

θ ) for θ = ±1. Similarly
a function space of functions f : R → R is readily extended to functions f : E → R. For example, C∞

c (E) denotes the
space of all functions f : E → C such that f θ ∈ C∞

c (R) for θ = ±1.

2.2. Assumptions on the potential function

We introduce several different assumptions on the potential function U for later reference. See Section 7 for the verifica-
tion of these conditions for a specific family of potential functions.

Assumption A1. U ∈ C2(R), e−U ∈ L1(R) and, for some δ ∈ (0,1), m ∈R, and M > 0,

m ≤ U ′′(x) ≤ δ
∣∣U ′(x)

∣∣2 + M, x ∈R.

Furthermore there are constants c1, c2 ≥ 0 such that λrefr(x) ≤ c1 + c2|U ′(x)| for all x ∈R.

Assumption A2. limx→∞ U ′(x) = +∞ and limx→−∞ U ′(x) = −∞.

Assumption A3 (Unimodality). U(0) = 0, U ′(x) ≤ 0 for x ≤ 0 and U ′(x) ≥ 0 for x ≥ 0.

Assumption A4 (Growth condition). There are constants C ≤ 0, M ≥ 0, m > 0 and p > 1 such that

U(y) ≥ U(x) + C + m|x − y|p for all x, y for which M ≤ x ≤ y or y ≤ x ≤ −M . (2.2)

Note that for continuously differentiable U , Assumption A4 cannot hold for C > 0. Indeed, if (2.2) would hold with
C > 0 then for all x ≥ M

U ′(x) = lim
h↓0

U(x + h) − U(x)

h
≥ lim

h↓0

C

h
+ mhp−1 = +∞.

Remark 2.1. If Assumption (2.2) holds for some M > 0, then it also holds for M = 0 (for a different value of m), which
simplies proofs later on. This result is delegated to the appendix, see Lemma A.2.

Examples of potential functions for which Assumption A4 is satisfied are given by U(x) = |x|p for p > 1, with C = 0
and m = 1. This can be seen by defining, for fixed x ≥ 0, f (y) := |y|p − |x|p − |y − x|p and noting that f ′(y) ≥ 0 for
y ≥ x.
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Remark 2.2. For convenience of the reader we provide the following lemma which gives an easily verifiable condition
for Assumption A4 to hold. The reverse implication does not hold: see Lemma 7.1 for an example where the conditions
of Lemma 2.3 are not satisfied whereas Assumptions A2 and A4 are satisfied.

Lemma 2.3. Suppose U ∈ C2(R) and U ′′(x) ≥ m for all |x| ≥ M , where m > 0 and M ≥ 0. Then Assumptions A2 and
A4 hold.

Proof. The implication of Assumption A2 is immediate. If the assumptions of the lemma are satisfied then U ′(x) ≥ 0 for
x sufficiently large (say for x ≥ M̃ ≥ M). By integrating it follows that for y ≥ x ≥ M̃ and m̃ = m/2 we have that

U(y) ≥ U(x) + U ′(x)(y − x) + m̃(y − x)2 ≥ U(x) + m̃(y − x)2.

We may use an analogous argument for y ≤ x ≤ −M to obtain Assumption A4 for C = 0 and p = 2. �

In Section 5 we will investigate the implications of the following symmetry assumption.

Assumption A5 (Symmetry). U(x) = U(−x) for x ∈R.

Remark 2.4. For convenience of the reader we remark that the following list of assumptions implies all conditions
mentioned so far, but is somewhat stronger than necessary. In particular (iii) and (v) are stronger than necessary for most
of the results.

(i) U ∈ C2(R).
(ii) For some δ ∈ (0,1), and M > 0,

U ′′(x) ≤ δ
∣∣U ′(x)

∣∣2 + M, x ∈ R.

(iii) Symmetry: U(x) = U(−x) for x ∈R.
(iv) Unimodality: U(0) = 0 and U ′(x) ≥ 0 for x ≥ 0.
(v) m-strong convexity: U ′′(x) ≥ m for all |x| ≥ M , where m > 0 and M ≥ 0.

In particular note that e−U ∈ L1(R) is implied by (v).

Example 2.5 (Gaussian distribution). Suppose U(x) = x2

2σ 2 with σ > 0. Then Assumptions A1, A2, A3, A4 and A5
are satisfied. Here Assumption A4 follows, e.g., by Lemma 2.3. We will study a more general family of distributions,
including the Gaussian distribution, in Section 7.

Example 2.6 (t -distribution). Suppose U(x) = (α+1
2 ) log(1 + x2

α
), with α > 0. In this case the probability measure on

R with density proportional to e−U is the t -distribution with α degrees of freedom. In particular if α = 1 this is the

Cauchy distribution. Then U ′(x) = (α+1)x

α+x2 and U ′′(x) = (α+1)(α−x2)

(x2+α)2 . Since U ′′ is a bounded function for any α > 0,

Assumption A1 is satisfied. However, |U ′(x)| → 0 as |x| → ∞ for any α > 0, so that Assumption A2 is not satisfied.
Assumptions A3 and A5 are trivially satisfied; Assumption A4 is not satisfied.

3. The zigzag semigroup in L2(μ)

In this section we take a purely functional analytic approach to the construction of the zigzag semigroup in L2(μ). That is,
we do not refer to the probabilistic construction of the process as carried out, e.g., in [5]. This construction is discussed in
Section 3.1. Next, we establish that under reasonable conditions (i.e. Assumptions A1, A2) the semigroup has a compact
resolvent, which is important in the characterization of the spectrum from Section 4 onwards.

3.1. Construction of the zigzag semigroup

Define measures ν on R and μ on E, respectively by

ν(A) =
∫

A

e−U(x) dx, and μ
(
A × {θ}) = ν(A), A ∈ B(R), θ ∈ {−1,+1}.
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At this point there is no requirement that e−U be integrable. Therefore the measure μ is not necessarily finite, but as a
consequence of the continuity of U it is σ -finite. We consider the complex Hilbert space L2(μ) with inner product 〈·, ·〉
and norm ‖ · ‖. The space L2(μ) is separable by [7, p. 36]. Define a linear operator (L,D(L)) on the domain

D(L) = {
f ∈ L2(μ) ∩ W

1,2
loc (E) : (x, θ) �→ θ∂xf (x, θ) + λ(x, θ)

(
f (x,−θ) − f (x, θ)

) ∈ L2(μ)
}
. (3.1)

by

Lf (x, θ) = θ∂xf (x, θ) + λ(x, θ)
(
f (x,−θ) − f (x, θ)

)
. (3.2)

We introduce the flipping operator Ff (x, θ) = f (x,−θ) and we will often use the shorthand notation Lf = θ∂xf +
λ(Ff − f ).

The aim of this section is to establish that L is the generator of a semigroup (P (t))t≥0 in L2(μ), which we will refer
to as the zigzag semigroup. In order to do so, we will first show that L is a closed dissipative operator (Lemmas 3.1,
3.3), determine a core for L (Lemma 3.2), and next characterize the adjoint of L, finding essentially that L� = FLF

(Lemmas 3.4, 3.5). These results then immediately imply the wellposedness of the Cauchy problem, i.e., the construction
of the semigroup P(t), see Theorem 3.6.

Lemma 3.1. The operator (L,D(L)) is closed.

Proof. Let (fn) ⊂ D(L) be a converging sequence in L2(μ) with limn→∞ fn = f ∈ L2(μ), and suppose (gn) := (Lfn)

converges in L2(μ) to g. Note that

∂xfn(x, θ) = θ
(
gn(x, θ) − λ(x, θ)

(
fn(x,−θ) − fn(x, θ)

))
(3.3)

and define in similar spirit

h(x, θ) := θ
(
g(x, θ) − λ(x, θ)

(
f (x,−θ) − f (x, θ)

))
.

We will first show that f ∈ W
1,2
loc (E) and that ∂xf = h. To this end let φ ∈ C∞

c (E). Then

−
∫

E

f ∂xφ dx = −
∫

E

(
lim

n→∞fn

)
∂xφ dx = − lim

n→∞

∫
E

fn∂xφ dx

= lim
n→∞

∫
E

(∂xfn)φ dx =
∫

E

(
lim

n→∞ ∂xfn

)
φ dx =

∫
E

hφ dx.

In he above derivation we were allowed to exchange the limit and integral twice, since (for the first interchange), fn →
f in L2(μ), and using (for the second interchange) that fn → f in L2(μ), gn → g in L2(μ), and λ is bounded on
compact intervals, and thus ∂xfn converges in L2

loc(R) by (3.3). This establishes that ∂xf = h. Furthermore, taking a
subsequence, θ∂xfnk

= gnk
− λ(Ffnk

− fnk
) → g − λ(Ff − f ) = θ∂xf almost everywhere (by L2-convergence of fn

and gn). Therefore gnk
= Lfnk

→ θ∂xf + λ(Ff − f ) = g almost everywhere. Since also gnk
→ g in L2(μ) we have

f ∈ D(L) and Lf = g. �

Lemma 3.2. C∞
c (E) is a core for L.

Proof. We use ideas from the proof of [18, Proposition 8.7.3]. Let f ∈ D(L), and let ξ : [0,∞) → [0,1] be a smooth
function such that ξ = 1 in [0,1/2] and ξ = 0 in [1,∞), and define ξn(x) = ξ(|x|/n). Then define fn(x, θ) =
f (x, θ)ξn(x). Then every fn has compact support, fn ∈ W 1,2(μ), and fn → f in L2(μ) by dominated convergence.
Furthermore we have

Lfn(x, θ) = θξ ′
n(x)f (x, θ) + ξn(x)Lf (x, θ).

Note that supx∈R |ξ ′
n(x)| ≤ C/n for some C > 0. It follows that, as n → ∞,∥∥Lfn(x, θ) − Lf (x, θ)

∥∥
L2(μ)

≤ C/n‖f ‖L2(μ) + ∥∥(1 − ξn)Lf
∥∥

L2(μ)
→ 0,

where the second term converges to zero by dominated converence. Thus, functions with compact support are dense in
D(L) with respect to the graph norm of L. We can now limit ourselves to the situation in which f has compact support.
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Let ϕ ∈ C∞
c (R) be a smooth function, compactly supported in [−1,1] such that ϕ = 1 in [−1/2,1/2], ϕ(x) ∈ [0,1] for

all x, and ‖ϕ‖L1(R) = 1. Set ϕn(x) = nϕ(x/n) for n ∈ N, and for compactly supported f , define

fn(x, θ) = (f � ϕn)(x, θ) :=
∫
R

ϕn(x − y)f (y, θ) dy, x ∈ R, n ∈ N.

Then fn ∈ C∞
c (E), uniformly supported in supp(f )+B(1), and fn → f in L2(μ). Furthermore, since ∂xfn = (∂xf )�ϕn,

and λ is bounded uniformly in n on the support of (fn), it follows that ‖Lfn − Lf ‖L2(μ) → 0. �

Lemma 3.3 (Dissipativity). (λ+ + λ−)|f + − f −|2 ∈ L1(ν) for any f ∈D(L), and

Re
∫

E

(Lf )f dμ ≤ −1

2

∫
R

(
λ+ + λ−)∣∣f + − f −∣∣2

dν, f ∈D(L). (3.4)

Proof. First we establish the result for f ∈ C∞
c (E). By partial integration, using compact support of f , and noting that

(2.1) leads to the equality λ+(x) − λ−(x) = U ′(x), we find that

Re
∑

θ=±1

∫ ∞

−∞
(Lf )θf θ dν(x)

= Re
∫ ∞

−∞
{(

∂xf
+ + λ+(

f − − f +))
f + + (−∂xf

− + λ−(
f + − f −))

f −}
e−U dx

=
∫ ∞

−∞
1

2
∂x

(∣∣f +∣∣2
e−U

) + Re

(
1

2
U ′f + + λ+(

f − − f +))
f +e−U dx

+
∫ ∞

−∞
(−1

2
∂x

(∣∣f −∣∣2
e−U

) + Re

(
−1

2
U ′f − + λ−(

f + − f −))
f −e−U dx

= Re
∫ ∞

−∞

(
λ+f −f + + λ−f +f − − 1

2

(
λ+ + λ−)∣∣f +∣∣2 − 1

2

(
λ+ + λ−)∣∣f −∣∣2

)
e−U dx

= −1

2

∫ ∞

−∞
(
λ+ + λ−)∣∣f + − f −∣∣2

e−U dx.

For f ∈ D(L), using that C∞
c (E) is a core for L (Lemma 3.2), take a sequence fn → f , with fn ∈ C∞

c (E), and with
convergence in the graph norm of L. By Fatou,

1

2

∫
R

(
λ+ + λ−)∣∣f + − f −∣∣2

dν ≤ −Re
∫

E

(Lf )f dμ < ∞. �

Recall that the adjoint operator of a densely defined operator (A,D(A)) on L2(μ) is defined on the domain

D
(
A�

) = {
g ∈ L2(μ) : there is an h ∈ L2(μ) such that 〈Af,g〉 = 〈f,h〉 for all f ∈D(A)

}
,

by A�g = h, with h the function as described in the domain of the adjoint.
Define an operator (L×,D(L×)) by

D
(
L×) = {

g ∈ L2(μ) ∩ W
1,2
loc (E) : (x, θ) �→ −θ∂xg(x, θ) + λ(x,−θ)

(
g(x,−θ) − g(x, θ)

) ∈ L2(μ)
}

and

L×g(x, θ) = −θ∂xg(x, θ) + λ(x,−θ)
(
g(x,−θ) − g(x, θ)

)
, g ∈ D

(
L×)

, (x, θ) ∈ E.

This operator is going to be our candidate for the adjoint operator L�.

Lemma 3.4. (L�,D(L�)) = (L×,D(L×)).
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Proof. We first show that D(L�) ⊂ D(L×), and that L� conincides with L× on its domain. Suppose g ∈ D(L�), and let
h ∈ L2(μ) be so that 〈Lf,g〉 = 〈f,h〉 for every f ∈ D(L). Note that C∞

c (E) ⊂ D(L). For f ∈ C∞
c (E) and θ = ±1, we

have ∑
θ=±1

∫
R

θ∂xf (x, θ)g(x, θ)e−U(x) dx = 〈θ∂xf, g〉

= 〈(
Lf − λ(Ff − f )

)
, g

〉 = 〈f,h〉 − 〈
λ(Ff − f ), g

〉
=

∑
θ=±1

∫
R

f
(
h − F(λg) + λg

)
e−U dx.

Since this holds in particular for any f such that either f (·,+1) = 0 or f (·,−1) = 0, it follows that θge−U has a weak
derivative −(h − F(λg) + λg)e−U . From this we may conclude (by Lemma A.1) that g = (θge−U)(θeU ) ∈ W

1,2
loc (E)

with weak derivative

∂xg = −θ
(
h − F(λg) + λg

) + U ′g.

Isolating h on the left hand side gives

h(x, θ) = −θ∂xg(x, θ) + λ(x,−θ)g(x,−θ) − λ(x, θ)g(x, θ) + θU ′(x)g(x, θ)

= −θ∂xg(x, θ) + λ(x,−θ)
(
g(x,−θ) − g(x, θ)

)
,

using that θU ′ = λ − Fλ. Since h ∈ L2(μ) the right-hand side is also in L2(μ). So g ∈D(L×) and h = L×g.
Conversely, if g ∈ D(L×) and f ∈ D(L), we may approximate f by f̃ ∈ C∞

c (E). By partial integration it follows
that 〈Lf̃ ,g〉 = 〈f̃ ,L×g〉. Since f̃ can be arbitrarily close to f in the graph norm of L by Lemma 3.2, it follows that
〈Lf,g〉 = 〈f,L×g〉. This establishes that D(L×) ⊂D(L�). �

The following lemma establishes that L× = FLF .

Lemma 3.5. f ∈ D(L) if and only if Ff ∈ D(L×), and FLf = L×Ff for f ∈ D(L). In particular L� = L× is dissipa-
tive.

Proof. If f ∈ D(L), then f ∈ W
1,2
loc (E), and therefore Ff ∈ W

1,2
loc (E). Applying L× (formally) to Ff yields

L×Ff (x, θ) = −θ∂xf (x,−θ) + λ(x, θ)
(
f (x, θ) − f (x,−θ)

) = FLf (x, θ).

Since Lf ∈ L2(μ), it follows that FLf ∈ L2(μ). This establishes that Ff ∈ D(L×) and FLf = L×Ff for f ∈ D(L).
The reverse inclusion is analogous. Since L is dissipative by Lemma 3.3, this applies to L×. �

We summarize our findings in the following theorem.

Theorem 3.6. L is a closed dissipative operator which generates a strongly continuous contraction semigroup (P (t))t≥0
in L2(μ). The adjoint of L is given by L� = FLF , i.e., D(L�) = {Ff : f ∈D(L)} and L�g = FLFg for g ∈ D(L�). The
adjoint semigroup (P �(t))t≥0 is given by P �(t) = FP(t)F for t ≥ 0.

Proof. The fact that L generates a strongly continuous semigroup follows by [10, Theorem II.3.17], using that L and L�

are dissipative. In particular the range of γ − L is equal to L2(μ) ([10, Theorem II.3.15]) for any γ > 0. The statement
on the adjoints of L� and P � follows by Lemma 3.4. �

3.2. Compactness of the resolvent of the zigzag semigroup generator

We will now investigate conditions under which the resolvent of the generator of the zigzag semigroup is compact. This
is of fundamental importance in the characterization of the spectrum in subsequent sections.

Let W 1,2(ν) denote the usual Sobolev space of functions in L2(ν) which have a weak derivative in L2(ν). Since
W 1,2(ν) ⊂ W

1,2
loc (R), all f ∈ W 1,2(ν) are absolutely continuous. Finally we denote by W 1,2(μ) the (equivalence classes

of) measurable functions f : E →R such that f θ ∈ W 1,2(ν) for θ = ±1.
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We may obtain a better understanding of D(L) if we suppose Assumption A1 and A2 are satisfied. In particular, e−U

is assumed to belong to L1(R) so that ν and μ are finite measures. The relevance of these assumptions follows for a large
part from the following lemmas.

Lemma 3.7 ([18, Lemma 8.5.2, Theorem 8.5.3]). Suppose that Assumption A1 holds. Then for any p ∈ [2,+∞) there
exists a positive constant C such that∫

R

|f |p∣∣U ′∣∣2
dν ≤ C‖f ‖p

W 1,p(ν)
, f ∈ W 1,p(ν).

If additionally Assumption A2 is satisfied, then the embedding W 1,p(ν) ⊂ Lp(ν) is compact for any p ∈ [2,+∞).

Lemma 3.8. Suppose that U satisfies Assumption A1. Suppose f ∈ W
1,2
loc (R) ∩ L2(ν) is such that f ′ − U ′f ∈ L2(ν).

Then f ∈ W 1,2(ν) and∫
R

∣∣f ′∣∣2
dν ≤ −m

∫
R

|f |2 dν +
∫
R

∣∣f ′ − U ′f
∣∣2

dν < ∞. (3.5)

Proof. First suppose f ∈ C∞
c (R). We compute∫

R

∣∣f ′ − U ′f
∣∣2

dν =
∫
R

{∣∣f ′∣∣2 − f ′U ′f − U ′f
(
f ′) + ∣∣U ′∣∣2|f |2}dν.

For the cross terms we find by partial integration that∫
R

{−(
f ′)U ′f − U ′f

(
f ′)}dν = −

∫
R

(
∂x |f |2)U ′e−U dx

=
∫
R

{|f |2U ′′ − ∣∣U ′∣∣2|f |2}e−U dx.

Thus, ∫
R

∣∣f ′ − U ′f
∣∣2

dν =
∫
R

{∣∣f ′∣∣2 + |f |2U ′′}dν.

Combining with the assumption that U ′′ ≥ m and rearranging yields the stated conclusion for f ∈ C∞
c (R).

Analogous to the proof of Lemma 3.2, it may be established that C∞
c (R) is a core for the closed operator (C,D(C)) on

L2(ν) with Cf = f ′ − U ′f and D(C) = {f ∈ L2(ν) ∩ W
1,2
loc : Cf ∈ L2(ν)}; see Lemma A.3 for details. Letting fn → f

in the graph norm of C with (fn) ⊂ C∞
c (R), we find that, using Fatou’s lemma, and after taking a subsequence for which

f ′
n converges almost everywhere,

∥∥f ′∥∥2
L2(ν)

=
∥∥∥ lim

n→∞f ′
n

∥∥∥2

L2(ν)

≤ lim inf
n→∞

∥∥f ′
n

∥∥2
L2(ν)

≤ lim inf
n→∞

(−m‖fn‖2
L2(ν)

+ ‖Cfn‖2
L2(ν)

)
= −m‖f ‖2

L2(ν)
+ ‖Cf ‖2

L2(ν)
< ∞. �

We can now state sufficient conditions for the resolvent of the generator of the zigzag semigroup to be compact.

Theorem 3.9 (Compact resolvent). Suppose Assumption A1 is satisfied. Then D(L) = W 1,2(μ). If also Assumption A2
holds then the embedding W 1,2(μ) ⊂ L2(μ) is compact and in particular, for any γ > 0, the resolvent operator (γ −
L)−1 : L2(μ) → L2(μ) is compact.
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Proof. First we prove that D(L) ⊂ W 1,2(μ). Suppose f ∈ D(L) and write Lf = h. Write g1 = f + − f − and g2 =
f + + f −. We have

∂xg1 = h+ − λ+(
f − − f +) + h− − λ−(

f + − f −) = h+ + h− + U ′g1,

∂xg2 = h+ − λ+(
f − − f +) − h− + λ−(

f + − f −) = h+ − h− − (
2λrefr + ∣∣U ′∣∣)g1.

We see that g1 satisfies g′
1 −U ′g1 = h+ +h− ∈ L2(ν) so that, by Lemma 3.8, g1 ∈ W 1,2(ν). Next by the estimate on λrefr

of Assumption A1, Lemma 3.7 and the second equation, g2 ∈ W 1,2(ν). The inclusion D(L) ⊂ W 1,2(μ) follows since f ±
may be expressed as linear combinations of g1 and g2.

Conversely, we now prove that W 1,2(μ) ⊂ D(L). Since λrefr(x) ≤ c1 + c2|U ′(x)| for some constants c1, c2, it follows
that |λ(x, θ)| ≤ C1 +C2|U ′(x)| for some constants C1, C2. By Assumption A1 and Lemma 3.7, ‖f ‖L2(μ) +‖Lf ‖L2(μ) ≤
C̃‖f ‖W 1,2(μ) for some C̃ > 0, which establishes that W 1,2(μ) ⊂D(L).

Let γ > 0. Recall that γ − L : D(L) → L2(μ) is bijective, so the inverse map exists, and is bounded by dissipativity
(see [10, Proposition II.3.14]. Since the embedding W 1,2 ↪→ L2(μ) is compact by Lemma 3.7 it follows from [10,
Proposition II.4.25] that the resolvent is compact. �

Remark 3.10. If Assumption A1 is satisfied, then (3.4) holds with equality, i.e., for all f ∈D(L) we have

Re
∫

E

(Lf )f dμ = −1

2

∫
R

(
λ+ + λ−)∣∣f + − f −∣∣2

dν, f ∈ D(L).

This follows from the proof of Lemma 3.3. Indeed in the proof the above relation is established for f ∈ C∞
c (E). Now for

f ∈ D(L) = W 1,2(μ), take a sequence (fn) ⊂ C∞
c (E) converging in W 1,2(μ) towards f , and note that both sides of the

above equation converge, using Lemma 3.7.

The fact that the resolvent is compact under suitable conditions leads naturally to the question whether the semigroup
is eventually compact. We will now establish that this is not the case. The following lemma first states in a technical way
that the zigzag semigroup consists simply of translations in regions of the space where the switching intensity vanishes, a
necessary ingredient for the conclusion of Proposition 3.12 that the zigzag semigroup is in general not eventually compact.

Lemma 3.11. Suppose λrefr(x) = 0 for all x. Suppose θU ′(x) ≤ 0 for some θ ∈ {−1,+1} and all x ∈ I , where I = [a, b]
is a non-empty interval. Then P(t)f (x, θ) = f (x + θt, θ) for all t ≥ 0 and μ-almost all x ∈ R for which {x + θs : 0 ≤
s ≤ t} ⊂ I .

Proof. First suppose f ∈D(L). Write ϕ(t, x) := P(t)f (x, θ) with θ as in the assumption of the lemma. Then, for x ∈ I

∂tϕ(t, x) = ∂tP (t)f (x, θ) = LP(t)f (x, θ) = θ∂xP (t)f (x, θ) = θ∂xϕ(t, x).

Fix (x, t) such that x + θs ∈ [a, b] for 0 ≤ s ≤ t . Consider the characteristic curve X(s) = x + θs, T (s) = t − s. We find
that, since X(s) ∈ I for all 0 ≤ s ≤ t , then d

ds
ϕ(T (s),X(s)) = 0, so that

ϕ(t, x) = ϕ
(
T (0),X(0)

) = ϕ
(
T (t),X(t)

) = ϕ(0, x + θt) = f (x + θt).

Now if fn → f in L2(μ) with (fn) ⊂ D(L), then P(t)fnk
(x, θ) → P(t)f (x, θ), μ-almost all x, for a subsequence fnk

,
and fnkl

(x + θt, θ) → f (x + θt, θ), μ-almost all x, for a further subsequence, which yields the result for general f . �

Proposition 3.12. Suppose Assumption A3 is satisfied. Furthermore assume that λrefr(x) = 0 everywhere. Then, for any
t > 0, the operator P(t) is not compact.

Proof. For n ∈ N define functions fn by

f̃ +
n (x) = 1[−1/n,−1/(n+1)](x), f̃ −

n (x) = 0, f̃n(·,±1) = f̃ ±
n , fn = f̃n/‖f̃n‖L2(μ).

Then (fn) is a bounded sequence of functions in L2(μ). Therefore if P(t0) were compact for some t0 > 0, it should be
possible to find a convergent subsequence of (P (t0)fn)

∞
n=1. However we will show that this is impossible.
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By Assumption A3, U ′(x) ≤ 0 for x ≤ 0. By Lemma 3.11,

P(t0)f (x,+1) = f (x + t0,+1) if x ≤ −t0, for any f ∈ L2(μ).

Suppose m �= n. Then

∥∥P(t0)fn − P(t0)fm

∥∥2
L2(μ)

≥
∫ −t0

−∞
∣∣P(t0)fn(x,+1) − P(t0)fm(x,+1)

∣∣2
e−U(x) dx

=
∫ −t0

−∞
∣∣f +

n (x + t0) − f +
m (x + t0)

∣∣2
e−U(x) dx

=
∫ 0

−∞
(∣∣f +

n (y)
∣∣2 + ∣∣f +

m (y)
∣∣2)

e−U(y−t0) dy

=
∫ −1/(n+1)

−1/n
e−U(y−t0) dy∫ −1/(n+1)

−1/n
e−U(y) dy

+
∫ −1/(m+1)

−1/m
e−U(y−t0) dy∫ −1/(m+1)

−1/m
e−U(y) dy

≥ 2e−U(−1−t0)+U(0).

This establishes that no subsequence of (P (t0)fn)n∈N is Cauchy, and therefore that P(t0) is not compact. �

4. Spectral theory of the zigzag generator

This section will describe key results concerning the characterization of the spectrum of the zigzag semigroup under
the assumptions of unimodularity and no refreshments. The main result is Theorem 4.4 which, in summary, gives a
description of the spectrum of L as consisting of the roots of a particular complex valued function.

As usual define the resolvent set ρ(A) of a closed operator A by

ρ(A) = {
γ ∈ C : γ − A is invertible and (γ − A)−1 is bounded

}
and the spectrum σ(A) by σ(A) =C \ ρ(A). The point spectrum of A is defined as

σp(A) = {γ ∈ C : γ − A is not injective}.
Elements γ ∈ σp(A) are called eigenvalues. For a disjoint decomposition of the spectrum σ(A) = σc ∪ σu where σu is
closed and σc is compact, the spectral projection Pc is defined as

Pc = 1

2π i

∫
�

(ζ − A)−1 dζ,

where � is a Jordan curve in the complement of σu and enclosing σc. See [10, Section IV.1] or [17, Section III.6.4] for
details. If � encloses only a single element γ ∈ σ(A) then we write Pγ = Pc .

We start with a simple corollary of Theorem 3.9.

Corollary 4.1. Suppose Assumptions A1 and A2 are satisfied. Then the spectrum of L consists entirely of isolated eigen-
values with finite multiplicities, and the resolvent operator (γ − L)−1 is compact for every γ ∈ ρ(L).

Proof. This follows from Theorem 3.9 and [17, Theorem III.6.29]. �

There are also some interesting immediate consequences of the fact that L� = FLF which we state in some generality
in Lemma 4.2. Let (H, 〈·, ·, 〉) denote a Hilbert space, and let J be a unitary operator on H. We call a closed operator
(A,D(A)) on H J -selfadjoint if A� = JAJ �. In the case of the zigzag process we have that L is J -selfadjoint for J = F .

Lemma 4.2. Suppose (A,D(A)) is a closed operator on H such that A is J -selfadjoint.

(i) ρ(A) = ρ(A�).
(ii) σ(A) = {γ : γ ∈ σ(A)} and σp(A) = {γ : γ ∈ σp(A)} (i.e. σ(A) and σp(A) are closed under taking complex conju-

gate).
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(iii) If γ1, γ2, γ1 �= γ2, are eigenvalues of A with eigenvectors φ1, φ2, respectively, then either γ1 = γ 2 or φ1 and φ2 are
J -orthogonal, i.e., 〈Jφ1, φ2〉 = 0.

(iv) If φ is an eigenvector of A with eigenvalue γ , then Jφ is an eigenvector of A� with eigenvalue γ .
(v) The adjoint of the spectral projection Pγ associated to an isolated eigenvalue γ ∈ σ(A) satisfies

(Pγ )� = JPγ J �

and is equal to the spectral projection associated with A� for the eigenvalue γ .

Proof.

(i) This follows from (γ − A�)−1 = J (γ − A)−1J � for γ ∈ ρ(A).
(ii) For general closed operators A on a Hilbert space, we have that σ(A�) equals the complex conjugate of σ(A), and

similarly for σp(A) (e.g., [17, Theorem III.6.22]). Combining with the above equality used in the proof of (i) gives
the stated result.

(iii) This follows from

γ1〈Jφ1, φ2〉 = 〈JAφ1, φ2〉 = 〈
A�Jφ1, φ2

〉 = 〈Jφ1,Aφ2〉 = γ 2〈Jφ1, φ2〉.

(iv) If φ is an eigenvector of A with eigenvalue γ , then A�Jφ = JAφ = γ Jφ.
(v) Let � denote a counterclockwise contour in the complex plane around (only) the eigenvalue γ . By [17, Theo-

rem III.6.22], the adjoint of the corresponding spectral projection satisfies

(Pγ )� = 1

2π i

∫
�

(
ζ − A�

)−1
dζ = 1

2π i
J

∫
�

(ζ − A)−1 dζJ � = JPγ J �. �

For later reference we note the following general observation for eigenfunctions of linear operators on function spaces.

Lemma 4.3. Suppose (A,D(A)) is a closed operator on L2(μ). Suppose

ψ ∈ D(A) =⇒ Reψ ∈D(A) and Imψ ∈ D(A),

and suppose A maps (a.e.) real valued functions in its domain into (a.e.) real valued functions. Suppose φ is an eigen-
function of A with eigenvalue γ . Then φ is an eigenfunction of A with eigenvalue γ .

Proof. By linearity of A,

Aφ = AReφ − iA Imφ = AReφ + iA Imφ = Aφ = γφ,

which establishes the result. �

We are now ready to state the main result of this section, which characterizes σ(L). Define functions ψ±(γ ) :=∫ ±∞
0 U ′(ξ)e∓2γ ξ−U(ξ) dξ , i.e.,

ψ+(γ ) :=
∫ ∞

0
U ′(ξ)e−2γ ξ−U(ξ) dξ and ψ−(γ ) := −

∫ 0

−∞
U ′(ξ)e2γ ξ−U(ξ) dξ, γ ∈C, (4.1)

and

Z(γ ) := 1 − ψ+(γ )ψ−(γ ), γ ∈C. (4.2)

Define the set

� := {
γ ∈C : Z(γ ) = 0

}
. (4.3)

Under Assumption A2 the functions ψ± are well defined, using Lemma A.4.
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Theorem 4.4 (Spectrum, resolvent and eigenfunctions of the zigzag generator). Suppose Assumptions A1, A2 and A3
are satisfied. Furthermore assume λrefr(x) = 0 for all x. Then σ(L) = σp(L) = �.

If γ ∈ ρ(L) and h ∈ L2(μ) then f = (γ − L)−1h is given by

f +(x) =
{

eγ x(k+ + ∫ 0
x

e−γ ξh+(ξ) dξ), x ≤ 0,

eγ x+U(x)(k+ − ∫ x

0 e−γ ξ−U(ξ)[h+(ξ) + U ′(ξ)e−γ ξ (k− + ∫ ξ

0 eγηh−(η) dη)]dξ), x > 0,

f −(x) =
{

e−γ x+U(x)(k− − ∫ 0
x

eγ ξ−U(ξ)[h−(ξ) − U ′(ξ)eγ ξ (k+ + ∫ 0
ξ

e−γ ηh+(η) dη)]dξ), x ≤ 0,

e−γ x(k− + ∫ x

0 eγ ξh−(ξ) dξ), x > 0.
(4.4)

The constants k± = k±(γ ;h) are given by(
k+(γ ;h)

k−(γ ;h)

)
= 1

Z(γ )

(
1 ψ+(γ )

ψ−(γ ) 1

)
K(γ )h, (4.5)

with K(γ ) : L2(μ) → C
2 the bounded linear mapping given by

K(γ )h =
(∫ ∞

0 e−γ ξ−U(ξ)h+(ξ) dξ + ∫ ∞
0 U ′(ξ)e−2γ ξ−U(ξ)

∫ ξ

0 eγηh−(η) dη dξ∫ 0
−∞ eγ ξ−U(ξ)h−(ξ) dξ − ∫ 0

−∞ U ′(ξ)e2γ ξ−U(ξ)
∫ 0
ξ

e−γ ηh+(η) dη dξ

)
. (4.6)

For every γ ∈ σp(L), the corresponding eigenfunctions form a one-dimensional space spanned by the function fγ ∈
D(L) defined by

f +
γ (x) = ψ+(γ )eγ x, (x ≤ 0), f +

γ (x) = eγ x+U(x)

∫ ∞

x

U ′(ξ)e−2γ ξ−U(ξ) dξ, (x ≥ 0),

f −
γ (x) = e−γ x, (x ≥ 0), f −

γ (x) = −ψ+(γ )e−γ x+U(x)

∫ x

−∞
U ′(ξ)e2γ ξ−U(ξ) dξ, (x ≤ 0).

If γ1, γ2 ∈ σp(L), γ1 �= γ2, with corresponding eigenfunctions f1, f2 then either γ1 = γ 2 or 〈Ff1, f2〉 = 0.

Proof. Claim: � ⊂ σ(L).
Proof of claim. We will prove the equivalent statement that ρ(L) ⊂ C \ �. Suppose γ ∈ ρ(L). In particular, for

all h ∈ L2(μ), there is a solution f ∈ D(L) to the equation (γ − L)f = h.f satisfies the coupled system of ordinary
differential equations

γf + − ∂xf
+ − λ+(

f − − f +) = h+,

γf − + ∂xf
− − λ−(

f + − f −) = h−.

For x ≤ 0, we have λ+(x) = 0 and λ−(x) = −U ′(x). We find that

f +(x) = eγ x

(
k+ +

∫ 0

x

e−γ ξh+(ξ) dξ

)
, x ≤ 0,

for some constant k+. By variation of constants, for x ≤ 0,

f −(x) = e−γ x+U(x)

(
k− −

∫ 0

x

eγ ξ−U(ξ)
[
h−(ξ) + λ−(ξ)f +(ξ)

]
dξ

)

= e−γ x+U(x)

(
k− −

∫ 0

x

eγ ξ−U(ξ)

[
h−(ξ) − U ′(ξ)eγ ξ

(
k+ +

∫ 0

ξ

e−γ ηh+(η) dη

)]
dξ

)
.

Similarly, for x ≥ 0, we obtain

f −(x) = e−γ x

(
k− +

∫ x

0
eγ ξh−(ξ) dξ

)
,

f +(x) = eγ x+U(x)

(
k+ −

∫ x

0
e−γ ξ−U(ξ)

[
h+(ξ) + U ′(ξ)f −(ξ)

]
dξ

)
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= eγ x+U(x)

(
k+ −

∫ x

0
e−γ ξ−U(ξ)

[
h+(ξ) + U ′(ξ)e−γ ξ

(
k− +

∫ ξ

0
eγηh−(η) dη

)]
dξ

)
.

Here no new integration constants are introduced because we required continuity of f . Indeed by assumption f ∈ D(L)

and thus f is continuous.
By Lemma A.4, we have that all the integrals occuring in the expressions for f +(x) for x ≥ 0 and (analogously)

f −(x) for x ≤ 0, converge as |x| → ∞. In order for f ∈ L2(μ), it follows that necessarily

k+ −
∫ ∞

0
e−γ ξ−U(ξ)

[
h+(ξ) + U ′(ξ)e−γ ξ

(
k− +

∫ ξ

0
eγηh−(η) dη

)]
dξ = 0 and

k− −
∫ 0

−∞
eγ ξ−U(ξ)

[
h−(ξ) − U ′(ξ)eγ ξ

(
k+ +

∫ 0

ξ

e−γ ηh+(η) dη

)]
dξ = 0,

(4.7)

for otherwise the multiplication by e±γ x+U(x) in the expression for f would lead to the norm of f being equal to ∞.
(Note that the exponential growth by e±Reγ x in f + for x ≥ 0 and f − for x ≤ 0 is not problematic since it is compensated
by e−U(x) in the L2(μ) inner product, which by Assumption A2 will decay faster than any exponential.) Condition (4.7)
can be written in terms of a linear system for k±:(

1 −ψ+(γ )

−ψ−(γ ) 1

)(
k+
k−

)
= K(γ )h, (4.8)

where, for γ ∈ C, K(γ ) : L2(μ) →C
2 is defined by (4.6). The boundedness of K follows by the proof of Lemma A.4.

Now suppose γ ∈ �. In this case the system (4.8) is singular. However the linear map K(γ ) : L2(μ) → C
2 is surjective,

even when we restrict the domain to the functions in L2(μ) having compact support. Indeed, we can produce the vector
( 1 0 )T on the right hand side by choosing

h−(x) = 0 and h+(x) = eγ x+U(x)1[0,1](x), x ∈R,

and in an analogous way we can choose h so that the vector ( 0 1 )T is obtained on the right hand side. Thus the right hand
side as a function of h having compact support has range C

2, whereas the left hand side can only span a one-dimensional
subspace due to the assumption γ ∈ �. It follows that there are choices h such that no solution to the resolvent system
(γ − L)f = h exist, so that γ /∈ ρ(L); a contradiction. The solution of (4.8) yields the stated expression for k±.

Claim: σp(L) ⊂ �.
Proof of claim. Suppose γ ∈ σp(L). There exists a function f ∈ D(L) such that Lf = γf . This corresponds to the

system

γf + − ∂xf
+ − λ+(

f − − f +) = 0,

γf − + ∂xf
− − λ−(

f + − f −) = 0.

Solving for f + for x ≤ 0 yields f +(x) = c+eγ x , and similarly f −(x) = c−e−γ x for x ≥ 0 for some constants c± ∈ C.
Then using variation of constants and insisting upon continuity in x = 0, yields

f +(x) = eγ x+U(x)

(
c+ − c−

∫ x

0
U ′(ξ)e−2γ ξ−U(ξ) dξ

)
, x ≥ 0,

f −(x) = e−γ x+U(x)

(
c− + c+

∫ 0

x

U ′(ξ)e2γ ξ−U(ξ) dξ

)
, x ≤ 0.

Again the integrals converge as |x| → ∞ by Lemma A.4. Now in order for f ∈ L2(μ), we require that the terms within
parantheses in the expressions for f ± vanish as |x| → ∞. This yields the conditions

c+ = c−ψ+(γ ), and c− = c+ψ−(γ ). (4.9)

This system admits a non-trivial solution if and only if γ ∈ �. The choice for f in the statement of the proposition is
obtained by taking c− = 1 and c+ = ψ+(γ ).

We have established that � ⊂ σ(L) and σp(L) ⊂ �. Since L has compact resolvent (Corollary 4.1), σp(L) = σ(L)

and the proof is complete.
The final statement of the theorem follows by an application of Lemma 4.2(iii). �
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Corollary 4.5. The spectral projection corresponding to γ ∈ σ(L) is given by

Pγ = 1

2π i

∫
�

1

Z(ζ )
M(ζ )

(
1 ψ+(ζ )

ψ−(ζ ) 1

)
K(ζ)dζ, (4.10)

where � is a Jordan contour in C enclosing the eigenvalue γ and no other eigenvalues, and where the family of bounded
linear operators (M(ζ ))ζ∈ρ(L) is given for fixed ζ ∈ ρ(L) as a bounded operator M(ζ) :C2 → L2(μ) by

(
M(ζ)a

)+
(x) := M+(ζ )a(x) :=

{
eζxa+, x ≤ 0,

eζx+U(x)(a+ − a− ∫ x

0 U ′(ξ)e−2ζ ξ−U(ξ) dξ), x > 0,

(
M(ζ)a

)−
(x) := M−(ζ )a(x) :=

{
e−ζx+U(x)(a− + a+ ∫ 0

x
U ′(ξ)e2ζx−U(ξ) dξ), x ≤ 0,

e−ζxa−, x > 0,

for a = (
a+
a−

) ∈C2.

Note that the integral in (4.10) is a concatenation of bounded linear operators and as such the integrand is a well defined
mapping from ρ(L) into the bounded operators on L2(μ), which makes the integral over closed contours well defined as
a Bochner integral.

Proof. By [17, proof of Theorem 6.17], the spectral projections are given for γ ∈ σ(L) by

Pγ = 1

2π i

∫
�

(ζ − L)−1 dζ,

where � is a contour enclosing γ as stated. Note that the terms in the resolvent expression (4.4) which do not involve k±
amount to integral operators by an analytic integral kernel. We may check that such terms are holomorphic as operator
valued functions of the complex-valued argument. Indeed, as discussed in [17, Section VII.1.1] weak and strong notions
of holomorphicity coincide, and we may check that for example the operator T +(ζ ), constituting the non-k±-dependent
terms in ((ζ − L)−1h)+, given by

T +(ζ )h(x) =
{

eζx
∫ 0
x

e−ζ ξh+(ξ) dξ, x ≤ 0,

eζx+U(x)(− ∫ x

0 e−ζ ξ−U(ξ)[h+(ξ) + U ′(ξ)e−ζ ξ
∫ ξ

0 eζηh−(η) dη]), x > 0,

is holomorphic as a function of ζ by verifying that 〈g,T +(ζ )h〉L2(ν) is holomorphic for indicator functions g, h. Analo-
gously this can be verified for ((ζ − L)−1h)−.

Thus, if we perform the complex contour integration all terms in (4.4) which do not involve k± vanish, since such terms
are holomorphic in ζ . The constants k± are given by (4.5). Combining these observations yields the stated expression. �

Corollary 4.6 (Simple roots). Suppose the assumptions of Theorem 4.4 are satisfied and γ is a simple root of Z, so that
γ ∈ σ(L) and Z′(γ ) �= 0. The corresponding spectral projection has rank one and is given by

Pγ h = ( 1 ψ+(γ ) )K(γ )h

Z′(γ )ψ+(γ )
fγ ,

where fγ is the eigenfunction corresponding to γ as introduced in Theorem 4.4. An alternative expression for Pγ is given
by

Pγ h = 〈h,Ff γ 〉
〈fγ ,Ff γ 〉fγ .

Proof. Note that Z(γ ) = 0 yields ψ−(γ ) = 1/ψ+(γ ). The Cauchy residue theorem applied to the expression for Pγ of
Corollary 4.5 yields that

Pγ = 1

Z′(γ )
M(γ )

(
1

ψ−(γ )

)(
1 ψ+(γ )

)
K(γ ).
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Next we compute

M+(γ )

(
1

ψ−(γ )

)
(x) =

{
eγ x, x ≤ 0,

eγ x+U(x)(1 − ψ− ∫ x

0 U ′(ξ)e−2γ ξ−U(ξ) dξ), x > 0,

=
{

eγ x, x ≤ 0,

ψ−(γ )eγ x+U(x)
∫ ∞
x

U ′(ξ)e−2γ ξ−U(ξ) dξ, x > 0,

and similarly

M−(γ )

(
1

ψ−(γ )

)
(x) =

{
−e−γ x+U(x)

∫ x

−∞ U ′(ξ)e2γ x−U(ξ) dξ, x ≤ 0,

ψ−(γ )e−γ x, x > 0.

Multiplying by ψ+(γ )

ψ+(γ )
and using that ψ+(γ )ψ−(γ ) = 1 yields the stated result.

Furthermore since Pγ is of rank one and has range span{fγ }, there exists a g ∈ L2(μ) such that Pγ h = 〈h,g〉fγ . We
have P �

γ m = 〈m,fγ 〉g, for m ∈ L2(μ). Since P �
γ is the spectral projection corresponding to eigenvalue γ of L� (see [17,

Theorem III.6.22]), it follows that g is an eigenfunction of L� with eigenvalue γ . By Lemma 4.3, g is an eigenfunction
of L� with eigenvalue γ , and by Lemma 4.2(iv), Fg is an eigenfunction of L with eigenvalue γ , i.e., Fg is parallel to
fγ . It follows that Fg = αfγ for some α ∈C, i.e., g = αFfγ . From P 2

γ = Pγ it follows that 〈fγ , g〉 = 1 which yields the
correct value for α. �

Remark 4.7. Corollary 4.6 yields an expression for Z′(γ ) for γ ∈ σ(L), for Z′(γ ) �= 0:

Z′(γ ) = 〈fγ ,Ff γ 〉
〈h,Ff γ 〉

( 1 ψ+(γ ) )K(γ )h

ψ+(γ )
.

It may be computed directly that ( 1 ψ+(γ ) )K(γ )h = 〈h,Ff γ 〉, so that

Z′(γ ) = 〈fγ ,Ff γ 〉/ψ+(γ ) = ψ−(γ )〈fγ ,Ff γ 〉.
In fact this expression for Z′(γ ) remains valid if Z′(γ ) = 0, which may be verified by direct computation, showing that
〈fγ ,Ff γ 〉 = 0, and making using of the following lemma.

Lemma 4.8. Suppose the assumptions of Theorem 4.4 hold. Then the functions ψ± (as defined in (4.1)) are holomorphic,
and satisfy

ψ±(γ ) = 1 ∓ 2γ

∫ ±∞

0
e∓2γ ξ−U(ξ) dξ. (4.11)

Furthermore

d

dγ
ψ±(γ ) = ∓2

∫ ±∞

0
e∓2γ ξ−U(ξ) dξ + 4γ

∫ ±∞

0
ξe∓2γ ξ−U(ξ) dξ, γ ∈C. (4.12)

Proof. This follows by partial integration. �

Proposition 4.9 (Dominant eigenvalue). Suppose the assumptions of Theorem 4.4 hold. Then 0 is a simple eigenvalue
of L (i.e. its spectral projection has rank one). The spectral projection maps onto the space of constant functions.

Proof. From (4.11), ψ±(0) = 1, so that Z(0) = 1 − ψ+(0)ψ−(0) = 0. Furthermore, using (4.12),

d

dγ
Z(0) = −ψ+(0)

d

dγ
ψ−(0) − ψ−(0)

d

dγ
ψ+(0) = 2

∫ ∞

−∞
e−U(ξ) dξ �= 0.

The range of the spectral projection coincides with the span of the eigenfunction corresponding to the eigenvalue 0, which
is constant by Theorem 4.4. �
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Define the closed subspace L2
0(μ) := {f ∈ L2(μ) : μ(f ) = 0} = 1⊥. From Proposition 4.9 and Corollary 4.6 it follows

that L2
0(μ) = (I − P0)L

2(μ), where P0 = 〈·,1〉/〈1,1〉1 denotes the spectral projection corresponding to the eigenvalue
0. Since spectral projections associated with L commute with the semigroup generated by L, it follows that the semigroup
(P (t))t≥0 leaves L2

0(μ) invariant. The restriction of (P (t))t≥0 to L2
0(μ) has generator L0, defined to be the restriction of

L to the domain D(L0) =D(L) ∩ L2
0(μ). This establishes the following result.

Proposition 4.10 (Poisson equation). Suppose the assumptions of Theorem 4.4 are satisfied. Then σ(L0) = σp(L0) =
σ(L) \ {0}. In particular L0 admits a bounded inverse.

4.1. Spectral gap

The following theorem establishes that the non-trivial spectrum of L is strictly separated from the imaginary axis. The
proof depends upon Lemmas A.5 and A.6, which may be found in the appendix.

Theorem 4.11 (Spectral gap). Suppose the assumptions of Theorem 4.4 are satisfied. Define

κ := inf
{−Reγ : γ ∈ σ(L), γ �= 0

}
.

Then κ > 0.

Proof. Suppose on the contrary there exists a sequence (γn) ∈ σ(L) \ {0} such that Reγn → 0. By Lemma A.5, it follows
that Imγn is unbounded (for otherwise there would be an accumulation point iβ for β ∈ R). By extracting a subsequence,
we may assume that | Imγn| → ∞. However, by Lemma A.6, applied to a small interval α ∈ [−ε,0] this is impossible. �

4.2. A spectral mapping theorem

In this section we will establish a spectral mapping theorem, which maps the spectrum of the infinitesemal generator
to the spectrum of the semigroup. If the semigroup were eventually compact, this would be immediate (see, e.g., [10,
Corollary IV.3.12]); however this is not the case as we have established in Proposition 3.12.

By the Gearhart–Herbst theorem [14, Theorem 4.5] spectrum of the semigroup may also originate from vertical lines
in the complex plane (i.e. Reγ = constant) along which the resolvent of the generator is unbounded. We verify in Propo-
sition 4.12 that this does not happen if we include Assumption A4, which details a sufficiently fast decay of the stationary
distribution in its tails. Using Proposition 4.12 we can then prove the spectral mapping theorem, Theorem 4.13.

Proposition 4.12. Suppose Assumptions A1, A2, A3 and A4 are satisfied. Furthermore assume λrefr(x) = 0 for all x.
There is a family of constants C(α) such that for all α ∈R we have

lim sup
|β|→∞

∥∥(α + iβ − L)−1
∥∥ ≤ C(α).

Proof. Suppose γ ∈ ρ(L) and write γ = α + iβ , where α,β ∈ R. In this proof we will often write C(α) for a positive
constant which depends only on α, whose value may be different at different locations in the proof. Let h ∈ L2(μ) and let
f = (γ − L)−1h. The proof of Theorem 4.4 gives an expression for f in terms of h. It only remains to provide adequate
bounds for the expressions.

We have by the proof of Theorem 4.4, for x ≤ 0, that

f +(x) = k+eγ x + eγ x

∫ 0

x

e−γ ξh+(ξ) dξ.

We will first the following claim.
Claim 1: ‖x �→ f +(x)1{x≤0}‖L2(ν) ≤ C(α)(|k+| + ‖h+‖L2(ν)).

Proof of Claim 1. For the first term of f +,
∫ 0
−∞ |e2γ x |e−U(x) dx = ∫ 0

−∞ e2αxe−U(x) dx ≤ C(α) by Assumption A2. For
the second term of f +, by Lemma A.7, taking ψ(y) = h+(−y)1{y≥0} and φ(y) = e−γy1{y≥0}, we find that (substituting
x = −y and ξ = −η, and noting that Assumption A4 is invariant under this reparametrization)∥∥∥∥x �→ eγ x

∫ 0

x

e−γ ξh+(ξ) dξ1{x≤0}
∥∥∥∥

L2(ν)

=
∥∥∥∥y �→

∫ y

0
e−γ (y−η)h+(−η)dη1{y≥0}

∥∥∥∥
L2(ν̃)



Spectral analysis of the zigzag process 843

= ‖φ � ψ‖L2(ν̃)

≤
(∫ ∞

0
e−αx−C/2−(m/2)|x|p dx

)∥∥h+∥∥
L2(ν)

,

where ν̃(dy) = e−U(−y) dy. This establishes Claim 1.
By an analogous argument, we have that ‖x �→ f −(x)1{x≥0}‖L2(ν) ≤ C(α)(|k−| + ‖h−‖L2(ν)).
Next we will obtain a similar estimate for

f +(x) = eγ x+U(x)

(
k+ −

∫ x

0
e−γ ξ−U(ξ)

[
h+(ξ) + U ′(ξ)e−γ ξ

(
k− +

∫ ξ

0
eγηh−(η) dη

)]
dξ

)
, x ≥ 0.

Claim 2: ‖x �→ f +(x)1{x≥0}‖L2(ν) ≤ C(α)(|k−| + ‖h+‖L2(ν) + ‖h−‖L2(ν)).
Proof of Claim 2. Recall from the proof of Theorem 4.4 that k+ and k− satisfy the relations (4.7). By substituting the

expression for k+ in the above expression for f + we obtain

f +(x) = eγ x+U(x)

∫ ∞

x

e−γ ξ−U(ξ)
[̃
h+(ξ) + k−U ′(ξ)e−γ ξ

]
dξ, x ≥ 0.

Here h̃+(ξ) = h+(ξ) + U ′(ξ)e−γ ξ
∫ ξ

0 eγηh−(η) dη, ξ ≥ 0. First we will establish Claim 2a: x �→ h̃+(x)1{x≥0} ∈ L2(ν),
with norm depending only on ‖h+‖L2(ν), ‖h−‖L2(ν) and Reγ . We only need to establish this for the second term of h̃+.
We may estimate∣∣∣∣e−γ ξ

∫ ξ

0
eγηh−(η) dη

∣∣∣∣ ≤ e−αξ

∫ ξ

0
eαη

∣∣h−(η)
∣∣dη.

An analogous argument as given in the proof of Claim 1 establishes that

φ : x �→ e−αx

∫ x

0
eαη

∣∣h−(η)
∣∣dη1{x≥0} ∈ L2(ν),

with ‖φ‖L2(ν) depending only on α and ‖h−‖L2(ν). Then φ has weak derivative ∂xφ(x) = (|h−(x)| − αφ(x))1{x≥0} in
L2(ν) which may be bounded by a constant depending only on ‖h−‖L2(ν) and α. Thus ‖φ‖W 1,2(ν) ≤ C(α)‖h−‖L2(ν). By
Lemma 3.7, U ′(x)φ(x) ∈ L2(ν) with norm depending only on α and h. This establishes Claim 2a. Next we establish
Claim 2b: ξ �→ U ′(ξ)e−γ ξ ∈ L2(ν) with norm depending only on α. Indeed∫ ∞

0

(
U ′(ξ)

)2
e−2αξ−U(ξ) dξ < ∞

by Lemma 3.7. Combining Claims 2a and 2b yields that for ψ(ξ) = h̃+(ξ) + k−U ′(ξ)e−γ ξ ,

‖ψ‖L2(ν) ≤ C(α)
(∥∥h+∥∥

L2(ν)
+ ∥∥h−∥∥

L2(ν)
+ ∣∣k−∣∣).

Now Claim 2 is proven by applying the second statement of Lemma A.7, applied to ψ as defined above and φ(x) = e−γ x .
We may repeat the proofs of Claims 1 and 2 to establish analogous results for f −. Thus we obtain that

‖f ‖L2(μ) ≤ C(α)
(∣∣k+∣∣ + ∣∣k−∣∣ + ‖h‖L2(μ)

)
.

We will now express k± in terms of h and γ . From (4.8) and (4.6), we obtain(
k+
k−

)
= 1

Z(γ )
A(γ )K(γ )h, with A(γ ) :=

(
1 ψ+(γ )

ψ−(γ ) 1

)
.

The first row of K(γ ) contains the expression∫ ∞

0
e−γ ξ−U(ξ)h̃+(ξ) dξ,
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where h̃+ ∈ L2(ν) is as in the proof of Claim 2 above. In the proof of Claim 2 it is established that h̃+ ∈ L2(ν), with
norm depending only on ‖h‖L2(μ) and α = Reγ . The same holds for the second row and we conclude that ‖K(γ )h‖ ≤
C(α)‖h‖L2(μ) for some constant C(α) depending only on α.

Recall ψ+(γ ) = ∫ ∞
0 U ′(ξ)e−2γ ξ−U(ξ) dξ . Since under our assumptions x �→ U ′(x)e−U(x)−2αx1{x≥0} ∈ L1(R) for any

α ∈ R, by Riemann–Lebesgue [10, Theorem C.8], we find for any α ∈R that lim|β|→∞ ψ+(α + iβ) = 0. By an analogous
argument, lim|β|→∞ ψ−(α + iβ) = 0. Thus for any α the matrix β �→ A(α + iβ) is bounded. Furthermore

lim|β|→∞Z(α + iβ) = lim|β|→∞
(
1 − ψ+(α + iβ)ψ−(α + iβ)

) = 1,

so that the roots of Z are contained in a bounded interval along the line Reγ = α.
Combining all estimates yields the stated result. �

Theorem 4.13 (Spectrum of the zigzag semigroup). Suppose Assumptions A1, A2, A3 and A4 are satisfied. Furthermore
assume λrefr(x) = 0 for all x. Then for all t > 0,

σ
(
P(t)

) \ {0} = σp

(
P(t)

) \ {0} = {
eγ t : γ ∈ σ(L)

}
. (4.13)

Proof. Fix t > 0. Spectral mapping of the point spectrum is well known [10, Theorem IV.3.7]: {eγ t : γ ∈ σp(L)} =
σp(P (t))\ {0}. By Theorem 4.4 we have σp(L) = σ(L). Since σp(P (t))\ {0} ⊂ σ(P (t))\ {0} it only remains to establish
that σ(P (t)) \ {0} ⊂ {eγ t : γ ∈ σ(L)}. Suppose η ∈ C, η �= 0, and consider the set

�η := {
γ ∈ C : eγ t = η

} = {
α + βi : α = (

ln |η|)/t, β = (argη)/t + 2kπ/t, k ∈ Z
}
.

Suppose �η ∩ σ(L) = ∅. By Proposition 4.12 and the above characterization of �η , it follows that γ �→ ‖(γ − L)−1‖
is bounded on �η . Therefore, by [14, Theorem 4.5], η /∈ σ(P (t)). In other words, if η ∈ σ(P (t)) \ {0}, then there is a
γ ∈ �η ∩ σ(L). This establishes that σ(P (t)) \ {0} ⊂ {eγ t : γ ∈ σ(L)}. �

Recall the spectral gap κ of L,

κ := inf
{−Reγ : γ ∈ σp(L), γ �= 0

}
,

which by Theorem 4.11 satisfies κ > 0. By Assumption A1, we have that μ(E) < ∞. Define a Borel probability distri-
bution π on E by

π(A) = μ(A)/μ(E), for all Borel measurable A ⊂ E. (4.14)

Theorem 4.14. Suppose the assumptions of Theorem 4.13 are satisfied. There is a constant M > 0 such that for any
f ∈ L2(μ),∥∥P(t)f − π(f )

∥∥
L2(μ)

≤ Me−κt
∥∥f − π(f )

∥∥
L2(μ)

.

For the proof we will consider the spectrum of the semigroup (P (t))t≥0 restricted to L2
0(μ) as defined just before

Proposition 4.10, with infinitesemal generator L̃.

Proof. Write P̃ (t) for P(t)|L2
0(μ). The argument of Theorem 4.13 may be repeated to establish that, for t > 0,

σ
(
P̃ (t)

) \ {0} = σp

(
P̃ (t)

) \ {0} = {
eγ t : γ ∈ σ(L̃)

} = {
eγ t : γ ∈ σ(L), γ �= 0

}
.

Here we used that 0 is a simple eigenvalue (Proposition 4.9), which is removed from σ(L̃), since L2
0(μ) is by definition

orthogonal to the associated eigenspace of constant functions. It then follows from [10, Proposition IV.2.2] that there exists
an M > 0 such that for the operator norm we have ‖P0(t)‖L2

0(μ) ≤ Me−κt . Applying P̃ (t) to the function f = f − π(f )

yields the stated result. �
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5. The symmetric case

Let us now consider Assumption A5 (Symmetry): U(x) = U(−x) for all x. In this case the zigzag semigroup decouples
into two separate semigroups:

(i) a ‘climb-fall’ semigroup acting on functions f (x, θ) which satisfy f (x, θ) = f (−x,−θ), and
(ii) a second semigroup acting on functions f (x, θ) which satisfy f (x, θ) = −f (−x,−θ).

The climb-fall semigroup (i) can be interpreted as the semigroup corresponding to the process Y(t), where Y(t) =
�(t)X(t) with (X(t),�(t)) denoting the Zig-Zag process, as described in the introduction. This process Y(t) can (under
Assumption A5) be seen to be a (piecewise deterministic) Markov process itself, with generator (5.1) below. The other
semigroup (ii) is not a Markov semigroup.

We will now discuss this decomposition in more detail. Define an operator T ∈ L(L2(μ)) by

Tf (x, θ) = 1√
2

(
f +(x) + θf −(−x)

)
.

Then T is unitary: Indeed, if f,g ∈ L2(μ), then

〈Tf,T g〉 =
∫
R

(Tf )+(x)(T g)+(x)e−U(x) dx +
∫
R

(Tf )−(x)(T g)−(x)e−U(x) dx

= 1

2

∫
R

(
f +(x) + f −(−x)

)(
g+(x) + g−(−x)

)
e−U(x) dx

+ 1

2

∫
R

(
f +(x) − f −(−x)

)(
g+(x) − g−(−x)

)
e−U(x) dx

=
∫
R

[
f +(x)g+(x) + f −(−x)g−(−x)

]
e−U(x) dx = 〈f,g〉,

where the last equality holds due to Assumption A5. It may be checked that

T �f (x, θ) = T −1f (x, θ) = 1√
2

(
f (θx,+1) + θf (θx,−1)

)
.

Remark 5.1. Define subspaces of L2(μ) as follows:

HS := {
f ∈ L2(μ) : f +(x) = f −(−x) for x ∈ R

}
, H+ := {

f ∈ L2(μ) : f −(x) = 0 for x ∈R
}

HA := {
f ∈ L2(μ) : f +(x) = −f −(−x) for x ∈ R

}
, H− := {

f ∈ L2(μ) : f +(x) = 0 for x ∈R
}
.

We can write f ∈ L2(μ) as(
f +(x)

f −(x)

)
= 1

2

(
f +(x) + f −(−x)

f −(x) + f +(−x)

)
+ 1

2

(
f +(x) − f −(−x)

f −(x) − f +(−x)

)
,

coressponding with the decomposition L2(μ) ∼= HS ⊕ HA. We thus have that L2(μ) ∼= H+ ⊕ H−, L2(μ) ∼= HS ⊕ HA,
H+ ⊥H− and moreover, using Assumption A5, HS ⊥HA. Furthermore

THS =H+, THA =H−, T �H+ =HS, T �H− =HA.

In other words T :HS ⊕HA →H+ ⊕H− with the mapping T respecting the direct sum.
The motivation for this transformation and these subspaces stems from the following proposition.

Proposition 5.2. Suppose Assumptions A1 and A5 are satisfied, and λrefr(x) = λrefr(−x) for all x. The transformation of
(L,D(L)) by T , i.e., (L̃,D(L)) with L̃ = T LT �, is given by D(L̃) = W 1,2(μ) and

(L̃f )±(x) = ∂xf
±(x) + λ+(x)

(±f ±(−x) − f ±(x)
)
, f ∈ D(L̃).
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This proposition states that the subspaces H± are invariant for L̃. In terms of the original generator L, this implies that
the decomposition L2(μ) =HS ⊕HA is invariant under L. That is, L maps f ∈ HS ∩D(L) into HS and f ∈HA ∩D(L)

into HA respectively.

Proof. By Theorem 3.9 we have D(L) = W 1,2(μ) which is invariant under T and its inverse. Write g(·, θ) = T �f (·, θ) =
1√
2
(f +(θ ·) + θf −(θ ·)). Then

θ∂xg(·, θ) = 1√
2

[(
∂xf

+)
(θ ·) + θ

(
∂xf

−)
(θ ·)].

Using the above expression, and λ+(x) = λ−(−x),(
T LT �f

)+
(x)

= 1√
2

(
LT �f +(x) + LT �f −(−x)

)
= 1√

2

(
∂xg

+(x) − ∂xg
−(−x)

)
+ 1√

2

(
λ+(x)

(
g−(x) − g+(x)

) + λ−(−x)
(
g+(−x) − g−(−x)

))
= 1

2

(
∂xf

+(x) + ∂xf
−(x) + ∂xf

+(x) − ∂xf
−(x)

)
+ 1

2
λ+(x)

(
f +(−x) − f −(−x) − f +(x) − f −(x) + f +(−x) + f −(−x) − f +(x) + f −(x)

)
= ∂xf

+(x) + λ+(x)
(
f +(−x) − f +(x)

)
.

An analogous computation yields(
T LT �f

)−
(x) = ∂xf

−(x) − λ+(x)
(
f −(−x) + f −(x)

)
. �

Recall that ν denotes the measure on R with density e−U with respect to Lebesgue measure. We see that under the
transformation T , the generator decouples, and we may thus consider the two generators L± on the decoupled spaces
given by

L+f (x) = f ′(x) + λ+(x)
(
f (−x) − f (x)

)
, f ∈ W 1,2(ν), (5.1)

and

L−f (x) = f ′(x) + λ+(x)
(−f (−x) − f (x)

)
, f ∈ W 1,2(ν)

independently.

5.1. Spectral theory of the reduced semigroups

Here we consider the two semigroups with generator

L±f (x) = f ′(x) + λ+(x)
(±f (−x) − f (x)

)
, f ∈ W 1,2(ν),

in L2(ν). Because from an analytic point of view the two semigroups L+ and L− are very similar, we carry out the
analysis for the semigroups at once, at least as much as possible. We carefully keep track of the effect of the sign ± in the
expressions that follow. We assume throughout Assumption A5, i.e., U(x) = U(−x), x ∈R.

Define functions Z± : C→ C by

Z±(γ ) = 1 ∓
∫ ∞

0
U ′(η)e−2γ η−U(η) dη = 1 ∓ ψ+(γ ) (5.2)
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and sets �+ ⊂C and �− ⊂C by

�± = {
γ ∈ C : Z±(γ ) = 0

}
. (5.3)

Theorem 5.3. Suppose Assumptions A1, A2, A3 and A5 are satisfied. Furthermore assume λrefr(x) = 0 for all x. Then
σp(L±) = σ(L±) = �±. If γ ∈ ρ(L±) then, for h ∈ L2(ν), f ± = (γ − L±)−1h ∈ W 1,2(ν) admits the expression

f ±(x) =
⎧⎨⎩eγ x(

m±
γ (h)

Z±(γ )
+ ∫ 0

x
e−γ ξh(ξ) dξ), x ≤ 0,

eγ x+U(x)
∫ ∞
x

e−γ ξ−U(ξ)[h(ξ) ± U ′(ξ)e−γ ξ (
m±

γ (h)

Z±(γ )
+ ∫ 0

−ξ
e−γ ηh(η)dη)]dξ, x > 0,

(5.4)

where m±
γ (h) is given by

m±
γ (h) =

∫ ∞

0
e−γ ξ−U(ξ)

[
h(ξ) ± U ′(ξ)e−γ ξ

∫ ξ

0
eγηh(−η)dη

]
dξ. (5.5)

For every γ ∈ σ(L±) the associated space of eigenfunctions is one-dimensional and spanned by f ±
γ ∈ W 1,2(ν) given by

f ±
γ (x) =

{
eγ x, x ≤ 0,

±eγ x+U(x)
∫ ∞
x

U ′(ξ)e−2γ ξ−U(ξ) dξ, x ≥ 0.
(5.6)

In this proposition, and in the remainder of this manuscript, statements involving ± hold for the + and − cases,
respectively. For example, σp(L+) = σ(L+) = �+, and f +

γ is an eigenfunction corresponding to the eigenvalue γ ∈ �+
for the operator L+.

Proof. The details of this proof (e.g., bounds on integrals) are analogous to those given in the proof of Theorem 4.4
and will be omitted. We only carry out the computations yielding the stated expressions. First suppose γ ∈ ρ(L±). The
resolvent equation is γf ±−L±f ± = h where h ∈ L2(ν). For x ≤ 0, since λ+(x) = 0, this becomes γf ±(x)−(f ±)′(x) =
h(x), leading to the expression

f ±(x) = eγ x

(
k±(γ ;h) +

∫ 0

x

e−γ ξh(ξ) dξ

)
, x ≤ 0, (5.7)

where k±(γ ;h) ∈ C are integration constants depending on γ and h, which will be specified below. For x ≥ 0 the
resolvent equation may be written as

γf ±(x) − (
f ±)′

(x) + U ′(x)f ±(x) = h̃±(x), x ≥ 0, (5.8)

where, for x ≥ 0,

h̃±(x) := h(x) ± U ′(x)f ±(−x) = h(x) ± U ′(x)e−γ x

[
k±(γ ;h) +

∫ 0

−x

e−γ ξh(ξ) dξ

]
.

This first order ordinary differential equation admits the solution

f ±(x) = eγ x+U(x)

(
k±(γ ;h) −

∫ x

0
e−γ ξ−U(ξ)h̃±(ξ) dξ

)
, x ≥ 0, (5.9)

where the integration constant is chosen so that f ± is continuous in x. In case γ /∈ �±, let k±(γ ;h) = m±
γ (h)/Z±(γ )

with m±
γ (h) as in (5.5). Analogously to the proof of Theorem 4.4, it may then be verified that f ±(x) admits the expression

f ±(x) = eγ x+U(x)

∫ ∞

x

e−γ ξ−U(ξ)h̃±(ξ) dξ, x ≥ 0. (5.10)

Indeed, expression (5.10) is equal to (5.9) if and only if

k±(γ ;h) =
∫ ∞

0
e−γ ξ−U(ξ)h̃±(ξ) dξ = ±k±(γ ;h)

∫ ∞

0
U ′(ξ)e−2γ ξ−U(ξ) dξ + m±

γ (h). (5.11)
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Solving for k±(γ ;h) and using (4.1) yields the stated expression for k±(γ ;h). We have, using (5.7) and Lemma A.7 for
x ≤ 0, and (5.10) and Lemma A.4 for x ≥ 0, that f ± ∈ L2(ν). This fully determines the solution f ± of the resolvent
equation. If γ ∈ �± then (5.11) implies that m±

γ (h) which is defined by (5.5) is identically equal to 0; a contradiction.
Now suppose γ ∈ σ(L±). Since σ(L±) ⊂ σ(L), it follows by Corollary 4.1 that γ is in the point spectrum of L±.

A solution to the equation (γ − L±)f ±
γ is given by

f ±
γ (x) =

{
eγ x, x ≤ 0,

eγ x+U(x)(1 ∓ ∫ x

0 U ′(ξ)e−2γ ξ−U(ξ) dξ), x ≥ 0,

insisting upon continuity in x = 0. Since we require f ±
γ ∈ L2(ν), its growth as x → ∞ should be controlled, requiring

that

1 ∓
∫ ∞

0
U ′(ξ)e−2γ ξ−U(ξ) dξ = 0,

with the respective limits being well defined by an application of Lemma A.4. But this is equivalent to γ ∈ �±, and yields
the alternative expression (5.6). �

Remark 5.4 (Adjoint generator). Introduce the operator J : L2(ν) → L2(ν) by Jg(x) = g(−x). It may be verified that
(L±)� = JL±J , a very similar situation as in the previous case where L� = FLF . Indeed by partial integration (taking
for simplicity f,g ∈ C∞

c (E) to be real valued),∫
R

f L±g dν =
∫
R

f (x)
[
g′(x) + λ+(x)

(±g(−x) − g(x)
)]

e−U(x) dx

=
∫
R

[−f ′(x)g(x) + U ′(x)f (x)g(x) ± λ+(x)f (x)g(−x) − λ+(x)f (x)g(x)
]
e−U(x) dx

=
∫
R

[−f ′(x)g(x) ± λ+(−x)f (−x)g(x) − λ−(x)f (x)g(x)
]
e−U(x) dx

=
∫
R

[
J∂xJf (x) ± λ+(−x)f (−x) − λ+(−x)f (x)

]
g(x)e−U(x) dx

=
∫
R

(
JL±Jf

)
g dν,

where we used partial integration in the second inequality, performed a change of variables x → −x for the integral over
λ+(x)f (x)g(−x), and used U ′(x) − λ+(x) = −λ−(x) = −λ+(−x) in the third and fourth inequality.

The observation that (L±)� = JL±J implies that the results of Lemma 4.2 concerning the spectrum of L± apply.

Corollary 5.5 (Spectral projection). Under the assumptions of Theorem 5.3 the spectral projection corresponding to
γ ∈ σ(L±) is given by

P ±
γ h = 1

2π i

∫
�

k±(ζ, h)f ±
ζ dζ,

where � is a Jordan contour in C enclosing the eigenvalue γ and no other eigenvalues, where k± and f ±
ζ are as defined

in Theorem 5.3.
In particular if γ is a simple root of Z±, then P ±

γ has rank one and is given by

P ±
γ h = m±

γ (h)

d
dγ

Z±(γ )
f ±

γ = 〈h,Jf
±
γ 〉L2(ν)

〈f ±
γ , Jf

±
γ 〉L2(ν)

f ±
γ ,

with m±
γ given in Theorem 5.3.

Proof. As in the proof of Proposition 4.5 the non-vanishing terms after integrating the resolvent along a simple closed
contour � enclosing the eigenvalue γ are only those depending on k±(γ ;h) since these have Z±(γ ) in the denominator
and are thus non-holomorphic on the interior of �. This yields the stated expression. The expressions for the case of a
simple root of Z± follow analogously to the proof of Corollary 4.6 �
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Remark 5.6. As was the case with Remark 4.7, it may be verified by direct computation that, if γ ∈ σp(L±), we have

m±
γ (h) = 〈

h,Jf
±
γ

〉
and

d

dγ
Z±(γ ) = 〈

f ±
γ , Jf

±
γ

〉
,

also when d
dγ

Z±(γ ) = 0.

6. Bounded perturbations

So far the characterization of the spectrum relies upon the assumption that λrefr(x) = 0 for all x, in which case relatively
explicit solutions to resolvent and eigenvalue equations can be obtained. In order to extend our analysis to the case
λrefr �= 0, we investigate the effect of small perturbations of the zigzag generator on its spectrum.

Proposition 6.1. Let (L,D(L)) denote the generator of the zigzag semigroup in L2(μ) and let B be a bounded operator
on L2(μ). Suppose the assumptions of Theorem 4.4 are satisfied. Suppose γ is a root of Z, so that γ ∈ σp(L).

(i) For ε > 0 sufficiently small there is a set of (repeated) eigenvalues γj (ε) ∈ σp(L + εB) = σ(L + εB), j = 1, . . . ,m,
with total algebraic multiplicity equal to the algebraic multiplicity m of γ , such that γj (ε) → γ as ε ↓ 0. Furthermore
the eigenvalues γj (ε) admit the asymptotic expansions

γj (ε) = γ + εμ
(1)
j + o(ε), j = 1, . . . ,m,

where (μ
(1)
j ) are the repeated eigenvalues of the operator Pγ BPγ considered in the m-dimensional space Pγ L2(μ),

where Pγ denotes the spectral projection corresponding to γ .
(ii) If moreover γ is a simple root of Z, so that it is a simple eigenvalue of L, then for ε > 0 sufficiently small the operator

L + εB has a simple eigenvalue γ (ε) such that γ (ε) → γ as ε ↓ 0, and γ (ε) admits the asymptotic expansion

γ (ε) = γ + ε〈Bfγ ,Ff γ 〉L2(μ)/〈fγ ,Ff γ 〉L2(μ) + o(ε), (6.1)

where fγ is the eigenfunction associated to γ as given by Theorem 4.4.

Proof. Since L has compact resolvent, also L + εB has compact resolvent by [10, Proposition III.1.12], so that σ(L +
εB) = σp(L + εB). Using that the dependence of L + εB on ε is holomorphic, by [17, Theorem VII.1.3] the resolvent
(ζ − L − εB)−1 is jointly holomorphic in (ζ, ε) for sufficiently small ε. Then [17, Theorem VII.1.7] establishes that
spectral projections depend holomorphically on ε, in the sense of [17, Equation (VII.1.4)]. It then follows that γ is a
stable eigenvalue in the terminology of [17, Section VIII.1.4]): condition (i) of the definition of stable eigenvalue is
satisfied by the mentioned joint analyticity of (ζ − L − εB)−1 around γ and condition (ii) is satisfied by the mentioned
analyticity of the spectral projections. We may therefore apply [17, Theorem VIII.2.6] to conclude (i). Finally (ii) follows
from (i) and the expression for Pγ obtained in Corollary 4.6. �

Remark 6.2 (Perturbations in the symmetric case). If Assumption A5 is satisfied, and if additionally the bounded
perturbation B : L2(μ) respects the direct sum B : HS ⊕HA →HS ⊕HA, then the perturbed operator L+εB decomposes
through the transformation T , i.e.,

T (L + εB)T � =
(

L+ + εB+ 0
0 L− + εB−

)
with L± as before and B± : L2(ν) → L2(ν) bounded linear mappingss. If moreover the conditions of Theorem 4.4 are
satisfied and γ is a simple eigenvalue of L±, then we obtain analogously to Proposition 6.1 an asymptotic expansion for
the eigenvalues γ (ε) of the generators L± + εB± given by

γ (ε) = γ + ε
〈
B±fγ , Jf

±
γ

〉
L2(ν)

/
〈
f ±

γ , Jf
±
γ

〉
L2(ν)

+ o(ε), (6.2)

where γ is a simple eigenvalue of L± and f ±
γ is the associated eigenfunction as given by Theorem 5.3 and we recall that

Jf (x) = f (−x).
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6.1. Example (additive perturbation of the switching intensity)

Consider the bounded perturbation operator Bf = Ff − f , so that L + εB admits the expression

(L + εB)f (x, θ) = θ∂xf (x, θ) + (
max

(
θU ′(x),0

) + ε
)(

f (x,−θ) − f (x, θ)
)
.

We see that the perturbation εB effectively adds a constant ε to the switching intensity. In case the potential function
U is such that the assumptions of Theorem 4.4 are satisfied and furthermore all eigenvalues of L are simple, then by
Proposition 6.1(ii) the perturbed eigenvalues γ (ε) allow the asymptotic expansion

γ (ε) = γ + ε〈Bfγ ,Ff γ 〉L2(μ)/〈fγ ,Ff γ 〉L2(μ) + o(ε)

= γ + ε
(〈Ffγ ,Ff γ 〉L2(μ)/〈fγ ,Ff γ 〉L2(μ) − 1

) + o(ε)

= γ + ε
(〈fγ ,f γ 〉L2(μ)/〈fγ ,Ff γ 〉L2(μ) − 1

) + o(ε),

where we subsequently used (6.1), the expression for B , and finally the fact that 〈Ff,Fg〉L2(μ) = 〈f,g〉L2(μ) for any
f,g ∈ L2(μ).

Furthermore the operator B satisfies the condition stated in Remark 6.2 of preserving the decomposition HS ⊕ HA.
We compute

T BT �f (x,+1) = f (−x,+1) − f (x,+1), and T BT �f (x,−1) = −f (−x,−1) − f (x,−1),

so that in the notation of Remark 6.2, we have

B±f = ±Jf − f.

This means that if the additional assumption of symmetry (Assumption A5, U(x) = U(−x)) is satisfied, then we may
determine from (6.2) the perturbed eigenvalues as

γ (ε) = γ + ε
〈
B±fγ , Jf

±
γ

〉
L2(ν)

/
〈
f ±

γ , Jf
±
γ

〉
L2(ν)

+ o(ε)

= γ + ε
(〈±Jf ±

γ , Jf
±
γ

〉
L2(ν)

/
〈
f ±

γ , Jf
±
γ

〉
L2(ν)

− 1
) + o(ε)

= γ + ε
(〈±f ±

γ , f
±
γ

〉
L2(ν)

/
〈
f ±

γ , Jf
±
γ

〉
L2(ν)

− 1
) + o(ε),

where we should read ‘+’ or ‘−’ in the above expression depending on whether γ ∈ σ(L+) = �+ or γ ∈ σ(L−) = �−.
Unfortunately the expression does not seem to simplify further and in order to compute the above expansion in partic-

ular situations we will have to resort to numerical computation of the integrals involved.

7. Examples

7.1. A family of medium-heavy to light-tailed symmetric distributions

Consider

U(x) = 1

β

[(
1 + x2)β/2 − 1

]
where β > 1. (7.1)

We compute

U ′(x) = x
(
1 + x2)β/2−1

,

U ′′(x) = (
1 + x2)β/2−2(1 + (β − 1)x2).

The case β = 2 corresponds to the standard normal distribution. Note that for β ≤ 1 already the most basic assumptions
of our theory (e.g., Assumption A2) are not satisfied.

Lemma 7.1. Suppose U is given by (7.1). Then Assumptions A1, A2, A3, A4 and A5 are satisfied.
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Proof. Assumptions A3 and A5 are immediate. From the expression for U ′′(x) it follows that U ′′(x) ≥ 0 for all x ∈ R

and β > 1. We have

U ′′(x)

(U ′(x))2
= (

1 + x2)−β/2(1 + (β − 1)x2)x−2 ∼ (β − 1)|x|−β,

establishing that Assumption A1 is satisfied. Furthermore |U ′(x)| ∼ |x|β−1 → ∞ as |x| → ∞, establishing Assump-
tion A2.

Asymptotically, U ′′(x) ∼ (β − 1)|x|β−2 as |x| → ∞, which establishes Assumption A4 for β ≥ 2, using Lemma 2.3.
Finally we establish Assumption A4 for 1 < β < 2. Let M > 1. By symmetry it suffices to consider y ≥ x ≥ M in

Assumption A4. For all x ≥ M , (1 + x2) ≤ (1 + 1
M2 )x2. It follows that

U ′(x) = x
(
1 + x2)β/2−1 ≥

(
1 + 1

M2

)β/2−1

xβ−1, x ≥ M. (7.2)

Define h(ξ) = U(x + ξ) − U(x) − mξβ for ξ ≥ 0 and fixed x ≥ M . Then, using (7.2)

h′(ξ) = U ′(x + ξ) − mβξβ−1 ≥
(

1 + 1

M2

)β/2−1

(x + ξ)β−1 − mβξβ−1

≥
[(

1 + 1

M2

)β/2−1

− mβ

]
ξβ−1 = 0,

by taking m = 1
β
(1 + 1

M2 )β/2−1. We see that h(ξ) is strictly non-decreasing as a function of ξ for any x ≥ M . Thus
h(y − x) ≥ h(0) = 0 for all y, establishing that

U(y) ≥ U(x) + m|y − x|β, y ≥ x ≥ M,

as required. �

7.2. Gaussian distribution

Suppose U(x) = x2/(2σ 2). Without loss of generality we assume that σ = 1 and consider U(x) = x2/2. This is an
instance of the family discussed above, with β = 2. In particular Assumptions A1 until A5 are satisfied. Let erfc(z) =
1 − erf(z) denote the complimentary error function, with the error function erf(z) given by

erf(z) = 2√
π

∫ z

0
e−t2

dt, z ∈ C.

Proposition 7.2. Suppose U(x) = x2/2 and λrefr(x) = 0 for all x. Then the spectrum of the zigzag semigroup is given by

σ(L) = σp(L) = �+ ∪ �−,

where

�+ = {0} ∪ {
γ ∈ C : erfc(

√
2γ ) = 0

}
and �− = {

γ ∈C : √πγ e2γ 2
erfc(

√
2γ ) = √

2
}
.

All eigenvalues γ ∈ σ(L) are algebraically simple.

Proof. As established in Theorem 5.3, the spectrum consists of eigenvalues only, and is given by σ(L) = �+ ∪ �−,
where

�± = σ
(
L±) = {

γ ∈C : ψ+(γ ) = ±1
}
.

By partial integration (Lemma 4.8)

ψ+(γ ) = 1 − √
2πγ e2γ 2

erfc(
√

2γ ), γ ∈ C, (7.3)
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resulting in the characterization of σ±. From (4.11) and (4.12) we have

ψ+(γ ) = 1 + γ
d

dγ
ψ+(γ ) − 4γ 2ψ+(γ ). (7.4)

Note that ψ−(γ ) = ψ+(γ ) by symmetry of U . Since Z(γ ) = 1 − (ψ+(γ ))2, it follows that d
dγ

Z(γ ) =
−2ψ+(γ ) d

dγ
ψ+(γ ). Thus if γ is an eigenvalue with algebraic multiplicity larger than one, then ψ+(γ ) = ±1 and

dψ+
dγ

= 0. Assume d
dγ

ψ+(γ ) = 0. Using (7.4), in case ψ+(γ ) = 1, then necessarily γ = 0; however it was established in

the proof of Proposition 4.9 that d
dγ

Z(0) �= 0. In case ψ+(γ ) = −1, using again (7.4), we find that γ = ± 1
2

√
2i, which is

however not a root of ψ+ as defined in (7.3). �

Asymptotic expansions for the elements of �+ can be found in [11]. However for a complete computation of the
spectrum we have to rely on numerical computation.

7.3. Numerical results

By Theorems 4.4 and 5.3, the spectrum of L and L± may be computed as the roots of Z (see (4.2)) and Z± (see (5.2)),
respectively. For ease of notation we only consider roots of Z but the exposition applies equally to roots of Z±.

A suitable numerical routine for determining roots of Z is provided by [8], to which we refer for details. For our
purposes it is important to remark that the method of [8] relies on the ability to integrate Z′(ζ )/Z(ζ ) efficiently along
line segments in the complex plane. We have

Z′(ζ )

Z(ζ )
= −ψ−(ζ ) d

dζ
ψ+(ζ ) + ψ+(ζ ) d

dζ
ψ−(ζ )

1 − ψ+(ζ )ψ−(ζ )
.

In the case of a Gaussian target distribution (Section 7.2), these functions may be expressed in terms of the error function.
However for the general family considered in Section 7.1 we have to rely on numerical integration to determine the value
of Z′(ζ )/Z(ζ ).

Computer code (in Julia) for visualization of the spectrum and perturbations may be found at [2]. Graphical depictions
of the spectrum, including the effect of perturbations by a positive switching rate, for the Gaussian case (β = 2) and two
other cases are provided in Figure 1. In the Gaussian case the rightmost (pairs of) eigenvalues are given (up to 6 significant
digits) by 0, −0.425665 ± 1.02295i, −0.957995 ± 1.40818i, −1.26616 ± 1.66757i,−1.53940 ± −1.90293i and we find
that the spectral gap is given by 0.425665. An interesting observation is that a positive refreshment rate increases the
spectral gap (since the spectrum moves towards the left). This phenomenon is also observed in [20]. Furthermore it seems
that making the tail more heavy (i.e. decreasing β) results in an increase of the spectral gap.

8. Discussion

In this section we will explore the relation between the results obtained in this paper, and other results concerning expo-
nential convergence to equilibrium. Assume μ(E) < ∞ and recall the notation π for the normalization of μ, defined by
(4.14).

8.1. Connection between spectral gap and geometric ergodicity

Suppose we have a spectral gap for the zigzag semigroup; e.g., assume the conditions of Theorem 4.14 are satisfied. We
consider a time discretization of the zigzag semigroup (P (t))t≥0 by defining, for a fixed t0 > 0, the Markov kernel

Q(η,A) :=
∫

P(t0)1A(x, θ)η(dx, dθ),

where η is any probability measure on E =R× {−1,+1}.
For any signed measure η � π we define ‖η‖2

L2(π)
= ∫

(
dη
dπ

)2 dπ . We say that a Markov chain with transition kernel

Q on a general state space (X,X ) is L2(π)-geometrically ergodic if there is a function c(η) < ∞ and a constant ρ < 1
such that∥∥Qn(η, ·) − π

∥∥
L2(π)

≤ c(η)ρn,

for all Borel probability distributions η on E satisfying ‖η‖L2(π) < ∞.
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Fig. 1. The spectra of L+ and L− for the distributions described in Section 7.1, along with the directions in which the spectrum is perturbed under a
small refreshment rate λrefr = ε > 0.

By considering the adjoint semigroup of the zigzag semigroup we then have the following result.

Corollary 8.1. Under the assumptions of Theorem 4.14, the Markov kernel Q is L2(π)-geometrically ergodic.

Proof. We have that Qn(η,A) = ∫
A

P �(nt0)
dη
dπ

dπ where P �(t) is the adjoint semigroup of P(t). Since the result of
Theorem 4.14 for (P (t))t≥0 carries over to (P �(t))t≥0 (using Theorem 3.6), the stated claim follows. �

An alternative notion of geometric ergodicity is the following. We say that a chain is π -almost everywhere geometri-
cally ergodic if there is a function W : E → ∞ and ρ < 1 such that for π -almost all z,∥∥Qn(z, ·) − π

∥∥
TV ≤ W(z)ρn.

Importantly the latter notion is phrased in terms of π -almost all initial positions. However, as a result of [23, Theo-
rem 1] we have indeed that Q is also π -almost everywhere geometrically ergodic.
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8.2. Comparison to hypocoercivity analysis

In [1] conditions for hypocoercivity of piecewise deterministic process such as the zigzag process are established. We
will rephrase the result of [1] to fit in the present context.

Theorem 8.2 ([1, Theorem 1]). Suppose the following assumptions hold:

(i) U ∈ C3(R), λrefr is continuous and e−U ∈ L1(R).
(ii) There is a p ≥ 0 such that supx∈R |U(3)(x)|/(1 + |x|p) < ∞.

(iii) There is a constant c1 ≥ 0 such that U ′′(x) ≥ −c1 for all x ∈ R.
(iv) lim inf|x|→∞{|U ′(x)|2/2 − U ′′(x)} > 0.
(v) The refreshment rate λrefr : R → (0,∞) is bounded from below and from above as follows. There exists λ > 0 and

cλ ≥ 0 such that for all x ∈ R,

0 < λ ≤ λrefr(x) ≤ λ
(
1 + cλ

∣∣U ′(x)
∣∣).

Then there exist constants C > 0 and α > 0 such that, for any f ∈ L2
0(μ) and t ≥ 0,∥∥P(t)f

∥∥
L2

0(μ)
≤ Ce−αt‖f ‖L2

0(μ).

Proof. We may write the generator of the zigzag semigroup in the notation of [1, Equation (1)],

Lf (x, θ) = θ∂xf (x, θ) + λ1(x, θ)(B1 − I )f (x, θ) + m
1/2
2 λref(x)Rvf (x, θ),

where

λ1f (x, θ) = (
θF1(x)

)
+, for F1(x) = U ′(x),

B1f (x, θ) = f (x,−θ),m2 = 1, λref(x) = 2λrefr(x), Rvf (x, θ) = 1

2

(
f (x,−θ) − f (x, θ)

)
.

(The factor 2 had to be redistributed between the refreshment rate and the refreshment kernel to be consistent with the
definition of Rv in [1].)

We verify that the stated assumptions imply the assumptions A1 and H1-H6 of [1]. Some notations below are from
[1], and may override notation from this paper; in particular ν for the uniform marginal stationary distribution on the
velocities {−1,+1}.

By Lemma 3.2 and Theorem 3.6, Assumption A1 of [1] is satisfied.
By (ii), U ∈ C

(3)
poly(R). Together with assumptions (iii) and (iv) this implies H1.

We have F1(x) = U ′(x), which by (i) is in C2(R). It is then clear that H2 is satisfied.
H3 is satisfied by taking ϕ(s) = max(0, s).
H4 is satisfied by taking V = {−1,+1} and ν = 1

2 (δ−1 + δ+1).
H5 is satisfied for Rv := �v − I where �vf = ν(f ). In particular if g ∈ L2

0(ν) we have, writing g = (g1, g2) =
(g1,−g1),

〈−Rvg, g〉L2(ν) = −1

2
g2

1 − 1

2
g2

2 + 1

4
(g1 + g2)

2 = −1

4
(g1 − g2)

2 = ‖g‖L2(ν).

Finally H6 is identical to (v). �

Bounds for the constants C and α can, in principle, be obtained in explicit form although this requires a tedious effort.
The result above may be compared to the same result of Theorem 4.14, which depends on Assumptions A1, A2, A3 and
A4. The above conditions are different from our conditions in several respects. Condition (iv) in the above theorem is
stronger than our Assumption A1, for example. Furthermore a strictly positive refreshment rate is required. On the other
hand we require that |U ′(x)| → ∞ (Assumption A2), a zero refreshment rate and unimodal target distribution to obtain
the explicit characterization of the eigenvalues.
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8.3. Comparison to exponential ergodicity

In [5] the following result on exponential ergodicity of the zigzag process is established. A function V : E → R is called
norm-like if V (x, θ) > 0 for all (x, θ) ∈ E and lim|x|→∞ V (x, θ) = ∞ for θ = ±1.

Theorem 8.3 ([5, Theorem 5]). Suppose U is continuously differentiable, λrefr is continuous, and for λ±(x) = (±U ′(x)∨
0) + λrefr(x), we have that

lim inf
x→∞ λ+(x) > lim sup

x→∞
λ−(x) and lim inf

x→−∞λ−(x) > lim sup
x→−∞

λ+(x).

Then there are constants c > 0, α > 0 and a continuous norm-like function V ∈ L2(μ), V > 0 on E, such that for all
(x, θ) ∈ E,∣∣P(t)f (x, θ) − π(f )

∣∣ ≤ c
(
1 + V (x, θ)

)
e−αt , t ≥ 0,

for all measurable f : E →R satisfying |f (x, θ)| ≤ 1 + V (x, θ) on E.

Note that here the family of operators P(t) represents the extension of the Markov semigroup to a suitable space of
measurable functions. In the case with constant refreshment rate the condition of Theorem 8.3 reduces to the requirement
that lim infx→∞ U ′(x) > 0 and lim supx→−∞ U ′(x) < 0. We see that the above result implies, under only mild condi-
tions, exponentially fast convergence in L2(π) for functions f satisfying |f (x, θ)| ≤ 1 + V (x, θ). However, this class of
functions does not contain the full space L2(π). Indeed, by the proof of [5, Theorem 5], the function V is growing at an
exponential rate as |x| → ∞, putting a restriction on the growth of the functions f (x, θ).

Appendix: Technical lemmas

A.1. Weak derivatives

In this section we recall some basic results on weak derivatives as used in Section 3. A function f : R→ R is said to have
a weak derivative f ′ if, for all ϕ ∈ C∞

c (R), we have∫
R

f ϕ′ dx = −
∫
R

f ′ϕ dx.

If furthermore, for p ≥ 1, f |U and f ′|U ∈ Lp(U) for any open U ⊂R with compact closure, then we write f ∈ W
1,p

loc (R).

Lemma A.1. Suppose f ∈ W
1,p

loc (R) and g ∈ C1(R). Then fg ∈ W
1,p

loc (R), and (fg)′ = f ′g + fg′.

Proof. Let ϕ ∈ C∞
c (R) and write K = suppϕ. By standard approximation arguments we may find g̃ ∈ C∞

c (R) such that
supx∈K |g̃(x) − g(x)| + |g̃′(x) − g′(x)| < ε. We then have by the definition of the weak derivative that∫

R

f g̃ϕ′ dx =
∫
R

f (g̃ϕ)′ dx −
∫
R

f g̃′ϕdx = −
∫
R

f ′g̃ϕ dx −
∫
R

f g̃′ϕ dx.

Since ε > 0 is arbitrary, and ϕ has compact support, this yields∫
R

fgϕ′ dx = −
∫
R

(
f ′g + fg′)ϕ dx

so that fg has weak derivative f ′g + fg′. Now since g and g′ are bounded on any bounded set, and f ∈ W
1,p

loc (R), it

follows that fg ∈ W
1,p

loc (R). �
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A.2. Assumption A4 revisited

The following lemma establishes that the constant M in Assumption A4 can, without loss of generality, be assumed to be
equal to zero.

Lemma A.2. Suppose Assumption A4 is satisfied for certain values C ≤ 0, M > 0, m > 0 and p > 1. Then it is also
satisfied for M = 0. That is, for m̃ := 21−pm and some C̃ ≤ C we have that

U(y) ≥ U(x) + C̃ + m̃|x − y|p for all x, y for which y ≥ x ≥ 0 or y ≤ x ≤ 0. (A.1)

Proof. Suppose Assumption A4 holds. We prove (A.1) for y ≥ x ≥ 0; the proof for y ≤ x ≤ 0 is analogous. First suppose
0 ≤ x ≤ y ≤ M . Write C1 := max0≤ξ≤M U(ξ) and C2 := min0≤ξ≤M U(ξ). Define C̃1 = C2 − C1 − mMp ≤ 0. Then

U(y) ≥ U(x) + C̃1 + m|x − y|p.

Next consider the situation 0 ≤ x ≤ M ≤ y. We have by Assumption A4 that

U(y) ≥ U(M) + C + m|M − y|p.

Next

U(M) ≥ U(x) + C̃1 + m|M − x|p

by the first part of this proof. Finally we have by Jensen’s inequality that

|y − M|p + |M − x|p ≥ 21−p|y − x|p.

It follows that

U(y) ≥ U(x) + C̃1 + m|M − x|p + C + m|M − y|p ≥ U(x) + C̃1 + C + 21−pm|y − x|p.

By assumption the required inequality also holds for M ≤ x ≤ y. The statement of the lemma follows by taking C̃ :=
min(C, C̃1,C + C̃1) = C + C̃1. �

A.3. The operator C and its core

As in Section 3.2, for f ∈ W
1,2
loc (R) let Cf = f ′ − Uf ′, and (with slight abuse of notation) restrict C to the domain

D(C) = {f ∈ L2(ν) ∩ W
1,2
loc (R) : Cf ∈ L2(ν)}.

Lemma A.3. (C,D(C)) is closed and C∞
c (R) is a core for (C,D(C)).

Proof. First we show that (C,D(C)) is closed. Let (fn) ⊂ D(C), gn = Cfn, and assume fn → f and gn → g in L2(ν).
Then fnk

→ f and gnk
→ g ν-almost everywhere for a suitable subsequence. Therefore

f ′
nk

(x) = gnk
(x) + U ′(x)fnk

(x) → g(x) + U ′(x)f (x), ν-almost everywhere.

Now fix an open set F ⊂ R with compact closure. Since U ′ is bounded on F , it follows that the subsequence (f ′
nk

) =
(gnk

+ U ′fnk
) is Cauchy in L2(F ). Thus f ∈ W

1,2
loc (R). Next∫

R

|Cf − g|2 dν =
∫
R

lim
k→∞|Cfnk

− gnk
|2 dν

Fatou≤ lim
k→∞

∫
R

|Cfnk
− gnk

|2 dν = 0.

Therefore ‖Cf ‖L2(ν) ≤ ‖Cf − g‖L2(ν) + ‖g‖L2(ν) < ∞ and Cf = g.
Next we will show that C∞

c (R) is a core for (C,D(C)), in complete analogy to Lemma 3.2. Let f ∈ D(C). First take
functions ξn as in the proof of Lemma 3.2 and define fn(x) := f (x)ξn(x). Then fn ∈D(C), fn has compact support and
fn → f in L2(ν) by dominated convergence, and

‖Cfn − Cf ‖L2(ν) ≤ ∥∥(Cf )(ξn − 1)
∥∥

L2(ν)
+ ∥∥f ξ ′

n

∥∥
L2(ν)

→ 0 as n → ∞,
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the first term by dominated convergence and the second term since supx∈R |ξ ′
n(x)| ≤ c/n for some positive c > 0 inde-

pendent of n. This shows that compactly supported functions are dense in D(C) with respect to the graph norm.
Next take ϕn ∈ C∞

c (R), again as in the proof of Lemma 3.2. Let f ∈D(C) with compact support, and define fn(x) =
(f � ϕn)(x). Then every fn ∈ C∞

c (R) is supported in supp(f ) + B(1) and fn → f in L2(ν). Since ∂xfn = (∂xf ) � ϕn

and U ′ is bounded uniformly in n on the support of (fn), it follows that ‖Cf − Cfn‖L2(ν) → 0. �

A.4. Estimates in the proof of Theorem 4.4

In the following lemma we verify that the constants that appear as integrals in the proof of Theorem 4.4 are well defined.

Lemma A.4. Suppose Assumption A2 holds. Let h ∈ L2(ν). For any γ ∈ C, we have that the following mappings are in
L1(R).

ξ �→ U ′(ξ)e−2γ ξ−U(ξ), (A.2)

ξ �→ e−2γ ξ−U(ξ), (A.3)

ξ �→ e−γ ξ−U(ξ)h(ξ), (A.4)

ξ �→ U ′(ξ)e−γ ξ

∫ ξ

0
eγηh(η)dη. (A.5)

Proof. Write α = Reγ . It suffices to check integrability over [0,∞), as integrability over (−∞,0] is analogous. Next,
by continuity and where necessary local integrability of h it suffices to check integrability over [x0,∞) for some x0 > 0.
Let x0 be sufficiently large, such that, for some constant c > 0 such that c + 2α > 0, we have that U ′(x) ≥ c for x ≥ x0.
We find∫ ∞

x0

∣∣U ′(ξ)e−2γ ξ−U(ξ)
∣∣dξ =

∫ ∞

x0

U ′(ξ)e−2αξ−U(ξ) dξ

= e−U(x0) − 2α

∫ ∞

0
e−U(ξ)−2αξ dξ.

If α ≥ 0, we have already succeeded in establishing (A.2). Moreover, for any value of α ∈ R,∫ ∞

x0

e−U(ξ)−2αξ dξ ≤
∫ ∞

x0

e−U(x0)−c(ξ−x0)−2αξ dξ < ∞,

establishing (A.2), (A.3). This yields, for (A.4), that∫ ∞

0
e−αξ−U(ξ)

∣∣h(ξ)
∣∣dξ ≤ ‖h‖L2(ν)

∫ ∞

0
e−2αξ−U(ξ) dξ < ∞.

Finally, for (A.5),∫ ∞

0

∣∣U ′(ξ)
∣∣e−2αξ−U(ξ)

∫ ξ

0
eαη

∣∣h(η)
∣∣dη dξ

=
∫ ∞

0

∫ ∞

η

∣∣U ′(ξ)
∣∣e−2αξ−U(ξ) dξeαη+U(η)

∣∣h(η)
∣∣e−U(η) dη,

so it suffices (for this term) to check that

η �→
∫ ∞

η

∣∣U ′(ξ)
∣∣e−2αξ−U(ξ) dξeαη+U(η) ∈ L2(ν).

We have for η ≥ x0, by partial integration,∫ ∞

η

∣∣U ′(ξ)
∣∣e−2αξ−U(ξ) dξeαη+U(η) = e−αη − 2α

∫ ∞

η

e−2αξ−U(ξ) dξeαη+U(η).
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The first term has already been establised above to belong to L2(ν), the second term can be estimated using U(ξ) −
U(η) ≥ c(ξ − η) as∫ ∞

η

e−2αξ−U(ξ) dξeαη+U(η) ≤
∫ ∞

η

e−2αξ−c(ξ−η) dξeαη = e−αη

2α + c
< ∞. �

A.5. Lemmas for the proof of Theorem 4.11

The following two lemmas are instrumental in establishing a spectral gap, i.e., Theorem 4.11.

Lemma A.5. Suppose the assumptions of Theorem 4.4 are satisfied. Then iβ ∈ σ(L) for β ∈ R if and only if β = 0. In
particular σ(L) does not have an accumulation point at iβ for β ∈R.

Proof. First note that by Assumption A3, U ′(0) = 0 and x �→ U ′(x)e−U(x) is a probability density function on [0,∞).
We have

ψ+(iβ) =
∫ ∞

0
U ′(ξ)e−2iβξ−U(ξ) dξ =

∫ ∞

0
U ′(ξ)

[
cos(2βξ) − i sin(2βξ)

]
e−U(ξ) dξ,

so that, by Jensen’s inequality,

∣∣ψ+(iβ)
∣∣2 =

(∫ ∞

0
U ′(ξ) cos(2βξ)e−U(ξ) dξ

)2

+
(∫ ∞

0
U ′(ξ) sin(2βξ)e−U(ξ) dξ

)2

≤
∫ ∞

0
U ′(ξ)

[
cos2(2βξ) + sin2(2βξ)

]
e−U(ξ) dξ =

∫ ∞

0
U ′(ξ)e−U(ξ) dξ = 1,

with equality if and only if the integrands are constant, i.e., if and only if β = 0. Similarly |ψ−(iβ)| ≤ 1 with equality if
and only if β = 0. It follows that Z(iβ) = 1 − ψ+(iβ)ψ−(iβ) = 0 if and only if β = 0.

Now suppose there is β �= 0 and a sequence γn ∈ σ(L) such that limn→∞ γn = iβ . By continuity of Z (Lemma 4.8),
it follows that Z(iβ) = 0, a contradiction. Furthermore, since 0 an eigenvalue, and the spectrum consists of isolated
eigenvalues only, 0 cannot be an accumulation point either. �

Lemma A.6. Suppose the assumptions of Theorem 4.4 are satisfied. For every closed and bounded interval [a, b] ⊂ R

there is a constant C > 0 such that∣∣ψ±(α + iβ)
∣∣ ≤ C

|β| for all α ∈ [a, b] and β �= 0.

In particular, α + iβ ∈ ρ(L) for α ∈ [a, b], |β| > C.

Proof. By partial integration, and using that by Assumption A1, |U ′′(ξ)| ≤ c1 +c2|U ′(ξ)|2, for some constants c1, c2 > 0,

∣∣ψ+(α + iβ)
∣∣ =

∣∣∣∣∫ ∞

0
U ′(ξ)e−2αξ−2iβξ−U(ξ) dξ

∣∣∣∣
=

∣∣∣∣ 1

2iβ

∫ ∞

0

[
U ′′(ξ) − 2αU ′(ξ) − (

U ′(ξ)
)2]

e−2αξ−2iβξ−U(ξ) dξ

∣∣∣∣
≤ 1

2|β|
∫ ∞

0

∣∣U ′′(ξ) − 2αU ′(ξ) − (
U ′(ξ)

)2∣∣e−2αξ−U(ξ) dξ

≤ 1

2|β|
∫ ∞

0

[
c1 + 2α2 + (c2 + 3/2)

(
U ′(ξ)

)2]
e−2αξ−U(ξ) dξ,

and the integral converges by an application of Lemma 3.7. It follows that, for α ∈ [a, b],
∣∣ψ+(α + iβ)

∣∣ ≤ 1

2|β|
∫ ∞

0

[
c1 + 2 max

(|a|, |b|)2 + (c2 + 3/2)
(
U ′(ξ)

)2]
e−2aξ−U(ξ) dξ =: C+/|β|.



Spectral analysis of the zigzag process 859

The result for ψ− follows analogously, yielding a constant C−, and we may take C as the maximum of the two constants
obtained. Thus for |β| > C, we have that∣∣ψ+(α + iβ)ψ−(α + iβ)

∣∣ ≤ C2/β2 < 1,

so that Z(α + iβ) �= 0 and therefore α + iβ ∈ ρ(L). �

A.6. A convolution estimate

In the proof of Proposition 4.12 we will make repeated use of the following lemma.

Lemma A.7. Suppose Assumption A4 is satisfied. Let φ : R → C be Lebesgue measurable and ψ ∈ L2(ν). Furthermore
assume that φ(x) = ψ(x) = 0 for almost every x < 0. Let

(φ � ψ)(x) :=
∫ x

0
φ(x − y)ψ(y)dy, and ζ(x) := eU(x)

∫ ∞

x

φ(y − x)ψ(y)e−U(y) dy, x ≥ 0.

Then

‖φ � ψ‖L2(ν) ≤
(∫ ∞

0

∣∣φ(x)
∣∣e−C/2−(m/2)|x|p dx

)
‖ψ‖L2(ν),

and

‖ζ‖L2(ν) ≤
(∫ ∞

0

∣∣φ(x)
∣∣e−C/2−(m/2)|x|p dx

)
‖ψ‖L2(ν).

Proof. By Lemma A.2 we may assume without loss of generality that Assumption A4 holds with M = 0, i.e., there are
constants C ≤ 0, m > 0 and p > 1 such that

U(y) ≥ U(x) + C + m|x − y|p for all x, y for which 0 ≤ x ≤ y or y ≤ x ≤ 0.

Write ψ̂(x) = e−U(x)/2ψ(x), so that ‖ψ̂‖L2(R) = ‖ψ‖L2(ν). By Assumption A4,

e−U(x)/2
∫ x

0
φ(x − y)ψ(y)dy = e−U(x)/2

∫ x

0
φ(x − y)ψ̂(y)eU(y)/2 dy

≤
∫ x

0

∣∣φ(x − y)
∣∣e−C/2−(m/2)|y−x|p ∣∣ψ̂(y)

∣∣dy

= (|φ̂| � |ψ̂ |)(x),

where

φ̂(x) = φ(x)e−C/2−(m/2)|x|p .

The first result of the lemma follows now from the convolutional inequality ‖f � g‖L2(R) ≤ ‖f ‖L1(R)‖g‖L2(R). Next

e−U(x)/2ζ(x) = eU(x)/2
∫ ∞

x

φ(y − x)ψ̂(y)e−U(y)/2 dy

≤
∫ ∞

x

∣∣φ(y − x)
∣∣e−C/2−(m/2)|x−y|p/2

∣∣ψ̂(y)
∣∣dy

= (|φ̃| � |ψ̂ |)(x),

where

φ̃(x) = φ(−x)e−C/2−(m/2)|x|p ,

which yields the second statement after applying the convolutional inequality again. �
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