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a b s t r a c t

The discretisation of the Laplacian results into the well-known Laplace matrix. In the
case of a one dimensional problem, an explicit formula for its inverse is derived on the
basis of fundamental solutions (Green’s functions) for general boundary conditions. For
a linear reaction–diffusion equation, approximations of the inverse are given.
© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC

BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Many partial differential equations contain the Laplace operator. Such differential equations model (diffusive) transport
f matter, energy (heat) or momentum. In the computation of approximations for solutions of these equations, one often
as to solve (large) systems of linear algebraic equations in order to get the desired quantity on the mesh points. These
quations are often characterised by the discretised Laplacian, which is also commonly referred to as the Laplace matrix.
olution procedures often take advantage of the symmetry and positive definiteness of the Laplace matrix, which results
rom the self-adjointness and positive definiteness of the (continuous) Laplace operator. Well-known solution procedures
re direct methods such as Gaussian elimination, Thomas algorithm (for a tridiagonal system) and Choleski decomposition,
ee for instance [1–3]. If the system is very large, then one uses classical iterative methods such as defect correction, Gauss,
auss–Seidel, SOR, (preconditioned) Krylov subspace methods (such as conjugate gradients), or multigrid methods, see
or instance [3–6], among very many others. One of the major issues in solving these large systems of equations is that
he discretisation matrix becomes ill-conditioned as the resolution increases, which makes it necessary to perform a
arge number of iterations or to apply preconditioning in order to reach a predefined accuracy. In order to speed up
omputations, often one uses preconditioning, in which the algebraic system of equations, given by

Sx = b, (1)

is multiplied by a matrix P that approximates the inverse of S. The idea is to improve the effective condition of the
resulting system of equations by decreasing the width (that is the ratio between the largest and smallest eigenvalues)
of the spectrum of the eigenvalues. For preconditioning, one uses approximations like Incomplete Choleski, diagonal
preconditioning, Eissenstadt, or even deflation methods to ‘remove’ the last, few persisting smallest eigenvalues, see for
instance [7,8]. The eigenspace from the smallest, persistent eigenvalues is typically approximated so that the eigenvalues

∗ Corresponding author at: University of Hasselt, Department of Mathematics and Statistics, Diepenbeek, Belgium.

E-mail address: Fred.Vermolen@uhasselt.be (F.J. Vermolen).

ttps://doi.org/10.1016/j.rinam.2022.100288
590-0374/© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.

org/licenses/by-nc-nd/4.0/).

https://doi.org/10.1016/j.rinam.2022.100288
http://www.elsevier.com/locate/results-in-applied-mathematics
http://www.elsevier.com/locate/results-in-applied-mathematics
http://crossmark.crossref.org/dialog/?doi=10.1016/j.rinam.2022.100288&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:Fred.Vermolen@uhasselt.be
https://doi.org/10.1016/j.rinam.2022.100288
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/


F.J. Vermolen, D.R. den Bakker and C. Vuik Results in Applied Mathematics 15 (2022) 100288

W
h
f
t
f
w
e
i
T
m
o
m
s
i
t

f
r

2

a
o

e

and eigenvectors from the smallest eigenvalues do not have to be determined. Deflation is often applied in physical
systems with very sharp transitions, such as in porous media, see for instance [9].

The current communication focuses on analytic expressions for approximations of the inverse of Laplace-like matrices.
e do not claim to be the first authors that present a closed form expression of the inverse of Laplace-like matrices,
owever, we believe that our approach is simple and elegant, and straightforward to carry out. For instance, Gueye [10]
ound an exact representation of the inverse of the matrix that was obtained after finite difference discretisation of
he 1D Laplace/Poisson equation by means of Gaussian elimination and substitution. Our current approach is based on
undamental solutions (Green’s functions) and allows more general configurations. Furthermore, cases with combinations
ith generic linear boundary conditions (Dirichlet, Neumann, Robin) can be dealt with, as well as non-uniform finite
lement meshes. In the case of one-dimensional problems, an exact representation for the inverse of the Laplace matrix
s derived. The derivation is based on Green’s functions of the (continuous) differential equation, see for instance [11].
he inverse enables us to represent solutions to the Laplace matrix in an algebraic way, which is an alternative next to
ore classical ways. Approximations, as well as their accuracy, are derived for (linear) reaction–diffusion equations. The
btained formulas for the inverses of matrices may be used in mathematical proofs that need the inverse of Laplace
atrices. An example of such an application is where one derives conditions for monotonicity of solutions of linear
ystems that result from the (finite element or (staggered) finite volume) discretisation of saddle point problems. This
ssue is relevant for the numerical solution of Biot’s poroelasticity model, where stabilisation techniques have to be used
o warrant monotonic finite element solutions, see [12–14] for instance.

First we will start with the procedure, in which we will derive the Green’s matrices as an algebraic analogue of Green’s
unctions (fundamental solutions) in the context of differential equations. Then, we will outline the procedure for linear
eaction–diffusion equations and study convergence both analytically and experimentally.

. The general principle

The general idea behind our approach is the following. We consider a (finite element) discretisation method to
pproximate the solution of a (partial) differential equation, which results into a mesh with nodal points in the domain
f computation. We assume that the number of unknowns is given by n. Suppose that a matrix S ∈ Rn×n is given. This

matrix S is the discrete counterpart of a linear differential operator, L, including (homogeneous) boundary conditions. Let
the solution be known for a given right-hand side, in other words, let the function ui be known for a given right-hand
side fi:

Lui = fi, in Ω,

where Ω represents the domain of computation. We assume that the above problem has a unique solution (that is
Lu = 0 ⇐⇒ u = 0 in Ω). Let S denote the non-singular finite element discretisation matrix of the above problem,
and let bi denote the right-hand side that corresponds to the above continuous problem, then we have

Svi = bi,

Imagine further that the solution ui is such that, on the finite element nodal points, it is equal to the solution of the
discretised problem, that is ui(x⃗j) = vij, where vi = [vi1 vi2 . . . vin]

T . The idea is that we use n equations in which all the
fi and bi are linearly independent. This gives n linearly independent solutions for vi and ui. Putting these expressions in
matrices, that is

B = [b1 . . . bn], and V = [v1 . . . vn],

gives

SV = B ⇐⇒ S−1
= VB−1.

If B−1 is easier to invert than S, which is true if B is diagonal or equal to the identity matrix, then this operation pays
off, else, this operation is unpractical. In the setting of Green’s functions, we will use finite elements and obtain an
identity matrix for B. The idea works perfectly if the solution to the discretised problem is the same as the solution
of the continuous problem. First, we will work this out for the one-dimensional Laplacian operator.

3. The exact representation of 1D Laplace matrices

The exact representation formulas for 1D Laplace under generic boundary conditions and under generic meshes are
shown. In a one-dimensional setting, we take Ω = (0, 1), with closure Ω = [0, 1], and we consider the following Poisson
quation⎧⎨⎩ −u′′

= δ(x − s), x ∈ Ω, s ∈ Ω,

−u′(0) + α1u(0) = 0,
′

(2)

u (1) + α2u(1) = 0.

2
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Fig. 1. The ‘forbidden region’, defined by α1 +α2 +α1α2 = 0, indicated by the black, solid curve. The asymptotes α1 = −1 and α2 = −1 are indicated
by the red, dashed curves.

Here the prime stands for differentiation with respect to x, and δ(.) denotes the Dirac delta (probability) distribution,
which is characterised by⎧⎨⎩ δ(x) = 0, for all x ̸= 0 and for each open domain, Ω , containing x = 0,

we have
∫

Ω
δ(x) dx = 1.

(3)

Let

V := {(α1, α2) ∈ R2
: α1, α2 ≥ 0 and α1 + α2 > 0},

then it follows that if (α1, α2) ∈ V then the differential operator in Problem (2) is coercive (positive definite), and hence
Problem (2) has a uniquely defined solution. The region V is referred to as ‘the region of positive definiteness’. The exact
solution to boundary value problem (2) is given by

u(x; s) =
1 + α2(1 − s)

α1 + α2 + α1α2
(α1x + 1) − (x − s)+, (4)

provided that α1 + α2 + α1α2 ̸= 0. The ‘forbidden region’, F, defined by

F := {(α1, α2) ∈ R2
: α1 + α2 + α1α2 = 0},

has been plotted in Fig. 1. In the above equation, we used the convention (.)+ := max(0, .). This solution can be obtained
easily by integration twice or by the use of Laplace transformations. Sending α1 and α2 to infinity provides us with
oundary condition u(0) = 0 and u(1) = 1, respectively. For the case of Dirichlet boundary conditions on both boundary
oints, that is both α1 and α2 are sent to infinity, we have

u(x; s) = (1 − s)x − (x − s)+. (5)

n order to keep the problem positive definite (coercive), one requires (α1, α2) ∈ V, which is a sufficient (hence not
ecessary) condition for the existence of a uniquely defined solution. If (α1, α2) ∈ V, then α1 +α2 +α1α2 ≥ α1 +α2 > 0,
nd hence it is clear that the ‘forbidden region’ in Fig. 1 has no overlap with the ‘region of positive definiteness’, V. This
mplies that

(α1, α2) ∈ V H⇒ (α1, α2) /∈ F (in particular α1 + α2 + α1α2 > 0).

rom Eq. (4), it is clear that the solution exhibits a piecewise linear behaviour. This means that for x ̸= s, all derivatives
igher than one vanish. In order to find the weak solution, the solution is sought in function spaces, which for the benefit
3
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of the reader, we define below. Suppose that Ω ⊂ Rd is a open, bounded Lipschitz domain in the d–dimensional space,
hen the space of Lp–integrable functions is defined by:

Lp(Ω) := {f : Ω −→ R :

∫
Ω

|f |pdΩ < ∞}.

he finite element space, where we seek the solution, is defined by

H1(Ω) = {f ∈ L2(Ω) :
∂ f
∂xi

∈ L2(Ω), ∀i ∈ {1, . . . , d}}.

Then, with Ω = (0, 1), the weak form of problem (2) is given by⎧⎪⎪⎨⎪⎪⎩
Find u ∈ H1(Ω) such that

α1u(0)φ(0) + α2u(1)φ(1) +

∫ 1

0
u′φ′dx = δs(φ) = φ(s),

∀φ ∈ H1(Ω), s ∈ [0, 1].

(6)

Let Ω ⊂ Rd be open, bounded and Lipschitz in Rd, then the Sobolev space W k,p(Ω) is defined by

W k,p(Ω) := {f ∈ Lp(Ω) : Dα f ∈ Lp(Ω), ∀α ≤ k},

where α denotes the multi-index, α = (α1, . . . , αd) (not to be confused with the parameters in the boundary conditions),
|α| =

∑d
j=1 αj and Dα f =

∂ |α|f
∂x

α1
1 ...∂x

αd
d
. Further, the infinity norm is defined by

L∞(Ω) = inf
C≥0

{ |f | ≤ C, a.e. in Ω }.

Sobolev’s Inequality (see for instance Brenner & Scott [15], page 33) states that there is a C > 0 such that

∀φ ∈ W k,p(Ω) : ∥φ∥L∞(Ω) ≤ C∥φ∥W k,p(Ω), if d < k p,

where d, k and p, respectively, denote the dimensionality (which is 1 here), the order of the derivative and the exponent
of the Hölder norm. Since we have H1(Ω) = W 1,2(Ω), hence k = 1, p = 2 and d = 1, it follows that the above Sobolev’s
Inequality is satisfied, and hence

|φ(s)| ≤ ∥φ∥L∞(Ω) ≤ C∥φ∥H1(Ω),

which says that the right-hand side functional δs(φ) is bounded in H1(Ω). We also remark that if (α1, α2) ∈ V, then Lax–
ilgram’s Theorem provides the existence and uniqueness of a solution in H1(Ω), if Ω ⊂ R. Note that for dimensionalities
igher than one, boundedness in H1(Ω) does not follow. For the time being we consider Ω = (0, 1), for the case that
∈ H1(Ω) under the restriction that φ(0) = 0, it follows that

|φ(s)| = |

∫ s

0
φ′(t)dt| ≤

√
s
[∫ s

0
(φ′(t))2dt

]1/2
≤

[∫ 1

0
(φ′(t))2dt

]1/2
≤ ∥φ∥H1(0,1),

and hence C = 1 in this case. The idea is that we assemble a finite element mesh with n linear Lagrangian elements,
in which s represents any nodal point of the finite element mesh, for which we have xk−1 < xk, x1 = 0, xn = 1 and
hi = xi+1 − xi for i = 1, . . . , n − 1. By locating the force of the delta distribution on the mesh points, that is s = xj, we
construct the following solutions using Eq. (4):

u(xi; xj) =
1 + α2(1 − xj)
α1 + α2 + α1α2

(α1xi + 1) − (xi − xj)+, (7)

The Galerkin method, where the numerical approximation, uh, is sought as a linear combination of the linear Lagrangian
basis functions, dictates that uh(x) =

∑n
j=1 cjφj(x). This implies that the algebraic system for cj is given by

Sc = b, (8)

where Sij is characterised as follows:

S11 = α1 +
1
h1

, Sii =
1

hi−1
+

1
hi

, for i = 2, . . . , n − 1,

Snn = α2 +
1

hn−1
, Si−1i = Sii−1 =

1
hi−1

, for i = 2, . . . , n,

Sij = 0, for |i − j| > 1.

The right-hand side vector b is characterised by

b = b = e ,
i i

4
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where ei is the unit vector in the ith direction, that is, all components of ei are zero, except for the ith component, which
s equal to one. Choosing the delta distributions to act on the finite element mesh points, and using Céa’s Lemma, the
1–error of the interpolatory solution, Aubin–Nitsche’s trick, one arrives at a quadratic error in the L2–norm of the finite
lement solution [16], taking Ω = (0, 1):

0 ≤ ∥u − uh
∥L2(Ω) ≤ Kh2

n−1∑
k=1

∥u′′
∥L2(Ωk), (9)

here Ωk = (xk, xk+1). Further, h is the maximum element size, and since the second derivative vanishes in each element,
he error vanishes and therefore the finite-element solution is equal to the (exact) solution (4). It is noted that it is crucially
mportant to choose the point of action of the Dirac pulse on the nodal points, otherwise u /∈ H2(Ωk). Collecting the
quations for all i = 1, . . . , n, gives the identity matrix on the right-hand side. Furthermore since the error vanishes, it
mmediately follows that the columns of the inverse of the discretisation matrix S are given by the exact solution on the
odal points of the finite element mesh. Hence, using Eq. (7), upon substituting s = xj, we get

(S−1)ij = u(xi; xj) =
1 + (1 − xj)α2

α1 + α2 + α1α2
(α1xi + 1) − (xi − xj)+, i, j = 1, . . . , n, (10)

where xi =
∑i−1

k=1 hk, which implies the following theorem:

Theorem 3.1. Let S ∈ Rn×n, hi > 0 for i = 1, . . . , n − 1, and let S be given by

S =

⎛⎜⎜⎜⎜⎜⎝
α1 +

1
h1

−
1
h1

0 . . . . . . 0
−

1
h1

1
h1

+
1
h2

−
1
h2

0 . . . 0
. . . . . . . . . . . . . . . . . .

0 . . . 0 −
1

hn−2
1

hn−2
+

1
hn−1

−
1

hn−1

0 . . . . . . 0 −
1

hn−1
1

hn−1
+ α2

⎞⎟⎟⎟⎟⎟⎠ ,

hen its inverse exists, and the inverse is given by

(S−1)ij =
1 + (1 −

∑j−1
k=1 hk)α2

α1 + α2 + α1α2
(α1

i−1∑
k=1

hk + 1) − (
i−1∑
k=1

hk −

j−1∑
k=1

hk)+, i, j = 1, . . . , n,

provided that α1 + α2 + α1α2 ̸= 0.

Note that S−1 is a full (non-sparse) matrix. For an equidistant mesh (with (n − 1)h = 1), one obtains

(S−1)ij =
1 + (1 − (j − 1)h)α2

α1 + α2 + α1α2
(α1(i − 1)h + 1) − h(i − j)+, i, j = 1, . . . , n,

ending α1 and α2 to infinity, which entails homogeneous Dirichlet boundary conditions at both sides. For the sake of
implicity, we will count the unknowns differently by x0 = 0 < x1 < x2 < · · · < xn−1 < xn < xn+1 = 1 such that
nknowns are only positioned on x1, . . ., xn. Using hi = xi+1 − xi for i = 0, . . . , n, we get

S =

⎛⎜⎜⎜⎜⎜⎝
1
h0

+
1
h1

−
1
h1

0 . . . . . . 0
−

1
h1

1
h1

+
1
h2

−
1
h2

0 . . . 0
. . . . . . . . . . . . . . . . . .

0 . . . 0 −
1

hn−2
1

hn−2
+

1
hn−1

−
1

hn−1

0 . . . . . . 0 −
1

hn−1
1

hn−1
+

1
hn

⎞⎟⎟⎟⎟⎟⎠ ,

sing Eq. (5), substituting xj and xi for s and x, respectively, and using xi =
∑i−1

k=0 hk, the inverse of S is given by

(S−1)i,j = (1 −

j−1∑
k=0

hk)
i−1∑
k=0

hk − (
i−1∑
k=0

hk −

j−1∑
k=0

hk)+, i, j = 1, . . . , n,

The case where hi = h (and (n + 1)h = 1), also follows easily:

(S−1)i,j = (1 − jh)ih − h(i − j)+, i, j = 1, . . . , n.

Regarding the traditional Laplace matrix, which is just the same as the double Dirichlet case with an equidistant mesh,
times h,

A =

⎛⎜⎜⎜⎝
2 −1 0 0 . . . 0

−1 2 −1 0 . . . 0
. . . . . . . . . . . . . . . . . .

0 . . . . . . −1 2 −1

⎞⎟⎟⎟⎠ = hS. (11)
0 . . . . . . . . . −1 2
5
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This gives, with using (n + 1)h = 1, the following inverse

(A−1)ij =
n + 1 − j
n + 1

i − (i − j)+.

e remark that this procedure is based on a Lagrangian-based finite element representation of the problem, which allows
he very straightforward treatment of the Dirac delta distribution. The above expression was also obtained in [10], and
pplies to finite element methods and apart from a factor h, it also can also be applied to finite differences. The (exact)
olution ‘lives’ in the finite element space H1(Ω) in the 1D case. In the case of higher dimensionality, this is not possible
ince the fundamental solution does not live in H1(Ω) and has a singularity in the point of action of the Dirac delta
distribution, which makes that Sobolev’s Inequality is not satisfied.

4. The approximate inverse for Laplace-reaction problems and error analysis

First we show the formulas for the approximate inverse. This is followed by an error analysis.

4.1. The approximate inverse

We consider the following problem on Ω = (0, 1):{
−u′′

+ β u = δ(x − s), with 0 ≤ s ≤ 1,
−u′(0) + α1u(0) = 0,
u′(1) + α2u(1) = 0.

(12)

e take β > 0. Processing the boundary conditions, gives the following general solution

u(x; s) =
u(0; s)
√

β
sinh(

√
βx) + α1u(0; s) cosh(

√
βx) −

1
√

β
sinh(

√
β(x − s)) · H(x − s), (13)

here

u(0; s) =

cosh(
√

β(1 − s)) +
α2√
β
sinh(

√
β(1 − s))

(1 + α1α2) cosh(
√

β) + (α1
√

β +
α2√
β
) sinh(

√
β)

. (14)

he solution shows that all its derivatives of orders that are larger or equal to two with respect to x do not vanish and
ence the finite element error will not be zero. Herewith the finite element solution is not equal to the solution of the
oundary value problem. The idea is to approximate the inverse of the discretisation matrix by the use of Green’s functions.
he weak form is given by⎧⎪⎪⎨⎪⎪⎩

Find u ∈ H1(Ω) such that

α1u(0)φ(0) + α2u(1)φ(1) +

∫ 1

0
u′φ′

+ βuφdx = δs(φ) = φ(s),

∀φ ∈ H1(Ω), s ∈ [0, 1].

(15)

sing linear Lagrangian element basis functions, gives the following discretisation matrix for S

S11 = α1 +
1
h1

+ β
h1

3
, Sii =

1
hi−1

+
1
hi

+
β

3
(hi−1 + hi), for i = 2, . . . , n − 1,

Snn = α2 +
1

hn−1
+

β

3
hn−1, Si−1i = Sii−1 =

1
hi−1

+
β

6
hi−1, for i = 2, . . . , n,

Sij = 0, for |i − j| > 1.

By locating the force of the delta distribution on the mesh points, that is s = xj, we construct the following solutions
using Eqs. (13) and (14):

u(xi; xj) =
u(0; xj)

√
β

sinh(
√

βxi) + α1u(0; xj) cosh(
√

βxi) −
1

√
β

sinh(
√

β(xi − xj)) · H(xi − xj), (16)

here

u(0; xj) =

cosh(
√

β(1 − xj)) +
α2√
β
sinh(

√
β(1 − xj))

(1 + α1α2) cosh(
√

β) + (α1
√

β +
α2√ ) sinh(

√
β)

. (17)

β

6
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It is straightforward to show that Eqs. (16) and (17) converge to Eq. (7) as β −→ 0. Once again, the idea is to approximate
he inverse of S by the above solution

(S−1)ij ≈
u(0; xj)

√
β

sinh(
√

βxi) + α1u(0; xj) cosh(
√

βxi)

−
1

√
β

sinh(
√

β(xi − xj)) · H(xi − xj) = (S̃−1)ij. (18)

Here S̃−1 is referred to as the approximate inverse of S. In the next section, we will derive an upper bound for the error of
this approximation of the inverse of the matrix (that is, the difference between the inverse and the approximate inverse).

4.2. Error estimation

The Trapezoidal Rule is a Newton–Cotes quadrature rule that is based on linear interpolation using the mesh points
xi and xi+1. To estimate the integration (quadrature) error, the interpolation error is used. Let u and uh, respectively,
denote the true function and the interpolated approximation of u, then the interpolation error is given by u(x) − uh(x) =

−
1
2 (x − xi)(x − xi+1)u′′(ξ ) for some ξ ∈ (xi, xi+1) (see for instance [3]). Integration of the result over the interval (xi, xi+1)

gives E(u) = −
h3
12u

′′(ξ ) and hence, it follows that |E(u)| ≤ γ h3 for some γ > 0. Let u and uh, now respectively, denote the
olution and its finite element approximation and h denotes the mesh size, and let w(x) = u(x) − uh(x), then, using the
rapezoidal quadrature (Newton–Cotes) Rule and its accuracy of O(h3) over a single element, Cauchy–Schwarz’ Inequality
nd relation (9), one obtains

(EA)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
|u(xi) − uh(xi)| = |w(xi)| ≤ |w(xi)| + |w(xi+1)| =

2
h

·
h
2
(|w(xi)| + |w(xi+1)|) =

2
h
(
∫ xi+1

xi

|w(s)|ds + γ h3) ≤
2
h
(
√
h∥w∥L2(0,1) + γ h3) ≤

2
h
(
√
hKh2

+ γ h3) = O(h3/2).

n the literature, one can also find pointwise (or max norm) estimates of O(h2 log( 1h )), see [17] with an extension to
arabolic equations.
Regarding the numerical solution, we have the following

Suh
i = ei and S̃ũi = ei, where S̃ = (S̃−1)−1. (19)

ere uh
i and ũi, respectively, represent the finite element solution and the solution to the differential equation with the

irac delta distribution. From the definition of ei, it immediately follows that

uh
i =

⎛⎜⎝(S−1)1,i
(S−1)2,i

. . .

(S−1)n,i

⎞⎟⎠ , and ũi =

⎛⎜⎜⎝
(S̃−1)1,i
(S̃−1)2,i

. . .

(S̃−1)n,i

⎞⎟⎟⎠ (20)

ence we have

(S−1)ji = (uh
i )j = uh

i (xj), and (S̃−1)ji = (ũh
i )j = ũh

i (xj). (21)

sing the pointwise error approximation (EA), gives

|(S̃−1)ij − (S−1)ij| = |ũh
i (xj) − uh

i (xj)| = O(h3/2), (22)

here we exploited symmetry of S−1 and S̃−1, and hence the approximate inverse converges to the real inverse as h −→ 0,
hich is summarised in the following theorem:

heorem 4.1. Consider a linear Lagrangian finite element method for the boundary value problem (12) with β > 0, then the
pproximate inverse of the discretisation matrix S̃−1 converges to the inverse S−1 as the mesh size h tends to zero, that is

lim
h−→0

(S̃−1)ij = (S−1)ij,

where the approximate inverse is defined in Eq. (18). Further, we have

|(S̃−1)ij − (S−1)ij| = O(h3/2)

We remark that sharper bounds for the max norm of the finite element error based on linear Lagrangian elements in
domain in R2 can be found in, among others, [18], which reads as:
For all ε > 0, there is a Cε > 0, such that ∥u − uh∥∞ ≤ Cεh2−ε

∥f ∥H2(0,1), where f is the right-hand function. Since the
orm on the right-hand side does not exist for the Dirac delta distribution, this sharp bound is not used. Furthermore,
he matrix columns of the inverse of S represent the finite element solutions upon setting the Dirac pulses on the finite
element mesh points, hence this bound also shows that the finite element errors are of order O(h3/2) if the actions of the
irac pulses are located on the mesh points.
7
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Fig. 2. Left: the behaviour of the error ε as a function of the number of nodal points for α1 = α2 = 1. The upper red curve is the arithmetic mean
f the error of 1000 samples with randomised meshes, the lower blue curve is for equidistant meshes; Right: histogram of the logarithm with basis
0 of the error for randomised meshes after 1000 samples with a mesh of 768 nodes. (For interpretation of the references to colour in this figure
egend, the reader is referred to the web version of this article.)

. Numerical examples, discussion and conclusions

.1. Numerical case studies

In all the simulations, we use α1 = α2 = 1. For other values of these α–values, the behaviour of the solution is
imilar. We start with a 2 × 2 matrix. The mesh points are located on x = 0 and on x = 1. The resulting finite element
iscretisation matrix, and its inverse computed from Theorem 3.1 are given by

S =

(
2 −1

−1 2

)
⇐⇒ S−1

=

(
2/3 1/3
1/3 2/3

)
,

which is consistent with the classical formula for the inversion of a 2 × 2 matrix, where the entries on the main diagonal
re interchanged and the sign of the off diagonals is flipped after division by the determinant. For a discretisation with
hree unknowns, we obtain the following 3 × 3 matrix as well as its inverse

S =

( 3 −2 0
−2 4 −2
0 −2 3

)
⇐⇒ S−1

=

(2/3 1/2 1/3
1/2 3/4 1/2
1/3 1/2 2/3

)
.

We have done this for larger number of nodal points, both in an equidistant mesh and a randomised mesh. We compute
the residual matrix

R = I − S−1S.

This matrix should be zero under infinite precision. Rounding errors will cause deviations from zero. We define the error
by

ε =

⎛⎝ 1
n2

n∑
i=1

n∑
j=1

R2
ij

⎞⎠1/2

.

e have done some simulations with different mesh sizes for both equidistant and randomised meshes. The results can
e seen in Fig. 2. It can be seen that for both randomised and equidistant meshes, the error increases with the same order
s the size of the matrix increases. This is caused by the propagation of rounding errors, from which we conclude that for
arger resolutions, the impact of rounding errors increases. The increase is sharper for randomised meshes. It is believed
hat this error increase is caused by having a smaller minimal finite element mesh size in a randomised mesh than the
esh size for equidistant meshes using the same number of mesh points. Similar observations were obtained in [19]
here the propagation of rounding errors in adaptive finite element meshes was studied. The histogram of the error has
een plotted as well in Fig. 2. From the histogram it can be seen that there is some variation in the errors, however,
or all meshes that we used, the errors stay within the order of 10−10, which is very small to possible numerical (finite
element) errors, which, in case of infinite precision decrease to zero quadratically upon using Lagrangian finite element
basis functions. These results numerically confirm the validity of Theorem 3.1.
8
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Fig. 3. The behaviour of the error ε as a function of β for α1 = α2 = 1. Each curve represents a number of finite element nodes: 48, 192, 768 and
072 nodes (from top to bottom). Left: equidistant mesh; Right: one sample with a randomised mesh.

Fig. 4. The error for the approximate inverse as a function of the finite element mesh size for an equidistant mesh for α1 = α2 = 1 and β = 10.

Next, we quantitatively analyse the approximate inverse in Theorem 4.1, see also Eq. (18), from the linear steady-state
1D reaction–diffusion Eq. (12). As in the previous problem, we use the values α1 = α2 = 1 and we take different values
f the reaction rate parameter β to study the error of the approximate inverse. We have done simulations for equidistant
nd randomised meshes, and the results for different values of β have been plotted in Fig. 3. The results are shown for
ifferent numbers of mesh points. It is clear that the error increases with increasing value of β . The increase is more or
ess linear. Furthermore, it can be observed that the error decreases when the number of mesh points increases (hence
he mesh size decreases), see also Fig. 4. From Fig. 4, it can be seen that the experimental order of convergence is about
. This is consistent with Theorem 4.1.

.2. Discussion

The fundamental solutions to this class of boundary value problems in R1 can be formulated by

LG(x; s) = δ(x − s),
9
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where L denotes a linear operator pending homogeneous boundary conditions. Here G is the fundamental solution. Using
inearity of the operator, and the nature of the Dirac delta distribution, one can formally write the solution to a generic
oundary value with the same homogeneous boundary conditions

Lu = f (x),

y convolution of the function f (x) and fundamental solution G(x; s), that is,

u(x) =

∫
Ω

f (s) G(x; s)ds,

f one uses a finite element method with n unknowns (degrees of freedom) to approximate the solution to the boundary
value problem, then one arrives at

Sc = b.

The idea in the current study is to express the fundamental solutions that are obtained by letting the Dirac delta
distributions act on the finite element mesh points. Subsequently, these fundamental solutions define the inverse of the
discretisation matrix. This means that

(S−1)ij = G(xi; xj).

hen the i–th entry of the discrete solution can be expressed by

ci =

n∑
j=1

(S−1)ijbj =

n∑
j=1

G(xi; xj)bj.

This equation gives an explicit formula for the finite element solution with piecewise linear basis functions, and this
equation can be applied in general to construct explicit (closed form) expressions for the finite element solution under
general functions in the right-hand side and general boundary conditions. As an example, we consider the following
boundary value problem:{

−u′′
= 1, x ∈ (0, 1),

u(0) = 0, u(1) = 1,

then the exact solution is given by

u(x) =
1
2

x (1 − x) + x.

Using an equidistant mesh (mesh size h) with n unknowns with piecewise linear basis functions, this gives for the
right-hand side

bj = h =
1

n + 1
, for j = 1, . . . , n and bn = h +

1
h

=
1

n + 1
+ n + 1.

hen using the expression G(xi; xj) =
n+1−j
n+1 i − (i − j)+ at mesh point xi = ih, one recovers the finite element solution by

ci =

n∑
j=1

G(xi; xj)bj =

n∑
j=1

(
n + 1 − j
n + 1

i − (i − j)+

)
bj.

rom this expression, it can be seen that in order to obtain the entire solution vector, that is ci for i = 1, . . . , n, the amount
of work is of the order O(n2) floating point operations (flops) (note that S−1 is a full matrix). In order to obtain the solution
sing Gaussian elimination or the LU decomposition, the number of floating point operations is of order O(n3), see [20].
owever, for a band matrix S, like in this case, the number of flops becomes O(n) (in particular O(2nb) where b is half
he bandwidth of the matrix). From this point of view, the use of the inverse is not advantageous. The current explicit
ersion of the inverse, or its approximation, allows to compute (approximate) the solution just at the point of interest.
hat is, the total solution vector does not have to computed. This can be advantageous from a theoretical point of view.
e intend to use the insights that were developed in this paper for the analysis of poro-elastic problems with general
oundary conditions.
The method of fundamental solutions is feasible as long as the fundamental solutions can be evaluated easily and as

ong as the resulting finite element error is zero or converges to zero as the mesh size h −→ 0. For higher dimensional
ases, the fundamental solution may be expressed in terms of Fourier series for rectangular geometries in R2, which reads
s

G(x; xj) =
4
π2

∞∑ ∞∑ sin(nπx) sin(mπy) sin(nπxj) sin(mπyj)
n2 + m2 .
n=1 m=1

10
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The above equation represents the solution to the Poisson equation on a unit rectangle with a pulse on xj = (xj, yj). An
lternative representation is written in terms of the sum of the Green’s function, being

G∞(x; xj) = −
1
2π

ln(∥x − xj∥),

for the infinite case, and the solution to the Laplace equation with the opposite sign of the Green’s function for the infinite
case on the boundary, which is defined by⎧⎨⎩ −∆v = 0, in (0, 1)2,

v|Γ = −G∞(x; xj).

Here Γ represents the boundary of (0, 1)2. Then G(x; xj) = G∞(x; xj) + v, which is just a different representation of G.
he latter approach may be useful in determining finite element solutions. In either case, these solutions involve infinite
ums, and therewith they are somewhat more elaborate. Furthermore, in practice, these solution formulas do not allow an
ccessible representation (or approximation) of the inverse. For this reason, this has not been worked out in the current
tudy.
For the sake of solving systems of linear equations, inversion of the system (discretisation) matrix is extremely

xpensive. The current one-dimensional case gives a tridiagonal matrix. Tridiagonal matrices can be treated very efficiently
y the use of the Thomas algorithm. Since the inversion of matrices is very expensive and needs the solution of n systems
f linear equations, one hardly ever determines the inverse of a matrix. A possible exception could be where one needs
o solve a huge number of systems of linear equations where the same system matrix is used in every solve. On the other
and, the inverse of a matrix could be important for theoretical reasons where one aims at proving certain properties
f discretisations of complicated systems. Important examples are Biot’s or Terzaghi’s system for poroelasticity, where
inite element solutions may loose monotonicity properties and where stabilisation may be needed to overcome spurious
scillations. The inverse of the Laplace matrix may help derive criteria for the mesh to have monotonic solutions.
Regarding elliptic equations with the Dirac delta distribution as the right hand side, finite element solutions have been

nalysed in several studies in Rd. Scott [21] proved that the L2 norm of the finite element error satisfies ∥u − uh∥L2(Ω) ≤

h2−d/2 for linear Lagrangian elements. Later Erikson [22] extended the result to ∥u− uh∥L1(Ω) ≤ Chk+1 for Pk elements in
wo spatial dimensions (d = 2). Apel et al. [23] proved that ∥u−uh∥L2(Ω) ≤ Ch2√

| log(h)| for linear Lagrangian elements in
2. D’Angelo [24] demonstrated stability and convergence of finite element solutions in weighted Sobolev spaces to Dirac
elta problems. Köppl and Wohlmuth [25] proved convergence of the L2-error away from the singularity, that is, away
rom the location of action of the Dirac delta distribution. Their main result can be summarised by ∥u−uh∥L2(Ω0) ≤ Chk+1

here Ω0 ⊂ Ω is a proper open subset of Ω that does not contain the singularity for Pk–elements. Their proof was
xtended to the finite element error in the H1 norm away from the singularity by Bertulozza et al. [26]. All this work was
one in R2. The result by Wahlbin [18] does not express the error in a Sobolev norm, however, it does in a max norm,
nd it is only valid under strict regularity conditions, which do not hold in our case. Furthermore, the result by [18] has
een obtained for two dimensions. Since the results of the current paper estimate the error of the inverse Laplacian for
linear one-dimensional reaction–diffusion equation with generic boundary conditions, it also estimates the point wise
rror of the finite element solution to O(h3/2). From this it can be concluded that the finite element error of the max norm
ver the mesh points is also given by O(h3/2).

.3. Conclusions

We have illustrated that the use of fundamental solutions is a straightforward procedure to derive the inverse of the
ne-dimensional Laplace matrix. This technique can be applied for general homogeneous boundary conditions, hence for
ombinations of Dirichlet, Neumann and Robin boundary conditions. Furthermore, this procedure can be applied to derive
n approximate inverse of a linear 1D reaction-Laplace equation, which is an approximation to the real inverse. It has been
emonstrated that the approximate inverse converges to the inverse as the mesh size, h, tends to zero.
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