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"When our time is up, I think we will all regret the time that was wasted, lost, in
senseless arguments, in trivial distractions, in the grip of addictions, in pursuing the

valueless. We will regret not doing life in a way that leaves us having tasted its
beauty & depth."

Farheen





Contents
Summary xi

Samenvatting xiii

1 Introduction 1
1.1 Genomics & genome analysis . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Problem description and scope . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Research contributions . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.4 Dissertation outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Background 13
2.1 Sequencing technologies and applications . . . . . . . . . . . . . . . 14
2.2 Sequence alignment and genome assembly . . . . . . . . . . . . . . 15
2.3 Variant calling analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.4 Computing systems for genome analysis . . . . . . . . . . . . . . . . 16

2.4.1 Modern processors (Multicores, SIMD) . . . . . . . . . . . . . . 17
2.4.2 Heterogeneous computing (FPGA, GPU) . . . . . . . . . . . . . 17
2.4.3 Applications-specific integrated circuit (ASIC) . . . . . . . . . . 18

2.5 Genome analysis on distributed and parallel computing systems . . 19
2.5.1 High performance computing (HPC) and supercomputers . . . 20
2.5.2 Parallel programming models (MPI, SHMEM & PGAS) . . . . . . 20
2.5.3 Data centers and cloud computing . . . . . . . . . . . . . . . . 21
2.5.4 Big data analytics frameworks (Hadoop, Spark, Arrow) . . . . 21

2.6 Data, compute and sequencing: A perspective . . . . . . . . . . . . . 23

3 Node-level performance optimizations using Apache Arrow 33
3.1 ArrowSAM and variant calling pre-processing . . . . . . . . . . . . . . 34

3.1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.1.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.1.3 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.1.4 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.1.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.1.6 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.1.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.2 Performance optimization of GATK best practices pipeline . . . . . . 45
3.2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.2.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.2.3 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . 50
3.2.4 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

vii



viii Contents

3.2.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
3.2.6 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
3.2.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4 Apache Spark & Apache Arrow based variant calling 73
4.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
4.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
4.3 Background and related work . . . . . . . . . . . . . . . . . . . . . . 77

4.3.1 Pre-processing NGS data . . . . . . . . . . . . . . . . . . . . . 77
4.3.2 Variant calling . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
4.3.3 Cluster scaled workflows . . . . . . . . . . . . . . . . . . . . . 78
4.3.4 Apache Arrow in Apache Spark . . . . . . . . . . . . . . . . . . 79

4.4 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
4.5 Results and evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . 85
4.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
4.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

5 Minimizing cluster data communication overhead 105
5.1 Benchmarking Arrow Flight Performance . . . . . . . . . . . . . . . . 106

5.1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
5.1.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
5.1.3 Data Transfer Benchmarks . . . . . . . . . . . . . . . . . . . . 111
5.1.4 Use Cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
5.1.5 Future Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
5.1.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

5.2 Arrow Flight based variant calling workflow . . . . . . . . . . . . . . . 122
5.2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
5.2.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
5.2.3 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
5.2.4 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . 127
5.2.5 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
5.2.6 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
5.2.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

6 MPI for scalability of aligners and variant calling 139
6.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
6.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
6.3 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

6.3.1 Short-reads variant calling workflow . . . . . . . . . . . . . . . 143
6.3.2 Long-reads variant calling workflow . . . . . . . . . . . . . . . 146

6.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
6.4.1 Runtime performance . . . . . . . . . . . . . . . . . . . . . . . 147
6.4.2 Accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

6.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
6.5.1 Runtimes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
6.5.2 Accuracy and reproducibility . . . . . . . . . . . . . . . . . . . 153



Contents ix

6.5.3 Scalability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
6.5.4 Portability and deployment . . . . . . . . . . . . . . . . . . . . 154
6.5.5 Cost efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
6.5.6 Memory consumption . . . . . . . . . . . . . . . . . . . . . . . 155
6.5.7 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

6.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

7 Conclusion & future work 163
7.1 Dissertation summary . . . . . . . . . . . . . . . . . . . . . . . . . . 163
7.2 Research contributions and future work . . . . . . . . . . . . . . . . . 164

List of Publications 167

Acknowledgements 169

Curriculum Vitæ 173
Education . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173





Summary

The ever increasing pace of advancements in sequencing technologies has en-
abled rapid DNA/genome sequencing to become much more accessible. In par-
ticular, next (second) and third generation sequencing technologies offer high
throughput, massively parallel and cost-effective sequencing solutions. Indi-
vidual sample sequencing data volumes as well as the number of assembled
genomes are also growing quickly. These advances in high-throughput sequenc-
ing technologies and demand for fast computational processing and downstream
analysis of sequencing data in clinical settings is widening the gap between the
time spent in sample collection and sequencing versus computational analysis.
At the same time, due to the physical limitations induced by the underlying CMOS
technology, single processor core performance is no longer improving at the rate
of increasing transistors count. In contrast to the traditional performance in-
creases enabled by Moore’s law and Dennard’s scaling, modern processors per-
formance increases today are coming primarily from adding more cores per pro-
cessor, instead of increases in the maximum achievable frequency and single-
core performance. To improve the scalability and performance optimizations of
genome variant calling analysis workflows on modern computing systems, in this
dissertation four potential research directions have been selected for further ex-
ploration.

The GATK best practices variant calling pipelines often incur huge performance
bottlenecks due to repeated storage access in intermediate applications and from
inefficient multi-threading performance. First, to exploit the performance of mod-
ern processors hardware features like multi-core and vector units on the GATK
best practices variant calling pipelines, we introduce ArrowSAM, a columnar in-
memory data format to place and process genomics data in-memory thus remov-
ing the need for repeated file storage accesses in intermediate variant calling
pipeline applications. This format gives better performance and parallel process-
ing capability resulting in reduction in the overall runtime by 4.85x and 4.76x for
the WGS and WES datasets, respectively.

In terms of big data scalability, a number of cluster scaled variant calling work-
flows have been developed using Apache Spark as a scheduling and execution
engine. However, the Java environment in an Apache Spark cluster process data
on a row-by-row basis, making runtime vectorized execution of data not possi-
ble with this execution model. Our second contribution focuses on integration of
the Apache Arrow based columnar in-memory data format in the PySpark API to
enable exploiting the benefits of vectorized operations in the Python language
using user-defined functions on Spark dataframes. This approach outperforms
the state-of-the-art by more than 2x for the pre-processing stages.

xi



xii Summary

Arrow Flight, a submodule in the Apache Arrow project, offers high perfor-
mance, secure, parallel and cross-platform language support for bulk data
(Apache Arrow in-memory columnar format) transfers across the network. For
our third research contribution, we tested and benchmarked both the scalabil-
ity and performance of Arrow Flight for client-server as well as cluster scaled
communication. For Apache Arrow data, it achieves more than 92% of the max-
imum possible interconnect throughput. We describe a variant calling workflow
on HPC clusters using the Slurm workload manager and Arrow Flight as the data
communication framework. This architecture outperforms Apache Spark based
workflows achieving both less communication overhead (more than 20-60% de-
pending on cluster size) and better scalability resulting in a 2x speedup.

For our final research contribution reported in this dissertation, we imple-
mented an orthogonal approach that is even more scalable than Apache Spark
and Arrow Flight based solutions and offers flexibility to use many different vari-
ant callers. We implemented MPI in both BWA-MEM and Minimap2 aligners and
created a highly scalable variant calling workflow using existing pre-processing
applications accessing a chromosome-based queue that uses MPI-RMA atomic
operations. Our approach allows the flexibility to use any variant caller and
we have tested DeepVariant, Octopus, GATK HaplotypeCaller and Clair3 variant
callers. The resulting approach provides higher performance, better scalability
and ease-of-use with reproducibility and accuracy. This approach is 20% faster
than other MPI-based implementations for BWA-MEM, and provides better scala-
bility for the rest of the variant calling workflows.



Samenvatting

Door de steeds snellere vooruitgang in sequencing-technologieën is snelle DNA-
/genoom-sequencing veel toegankelijker geworden. Met name de next (tweede)
en derde generatie sequencing-technologieën bieden hoge doorvoer, massaal
parallelle en kosteneffectieve sequencing-oplossingen. Individuele sample se-
quencing datavolumes en het aantal geassembleerde genomen groeien ook snel.
Deze vooruitgang in high-throughput sequencing-technologieën en de vraag
naar snelle computationele verwerking en downstream-analyse van sequencing-
gegevens in klinische omgevingen vergroot de kloof tussen de tijd die wordt be-
steed aan het verzamelen van monsters en sequencing versus computationele
analyse. Tegelijkertijd, vanwege de fysieke beperkingen die worden veroorzaakt
door de onderliggende CMOS-technologie, verbeteren de prestaties van de en-
kele processor niet langer in het tempo waarin het aantal transistors toeneemt. In
tegenstelling tot de traditionele prestatieverbeteringen die mogelijk worden ge-
maakt door de wetten van Moore en van Dennard, komen de prestatieverbeterin-
gen van moderne processors tegenwoordig voort uit het toevoegen van meer co-
res per processor, in plaats van verhogingen van de maximaal haalbare frequen-
tie en single-core prestaties. Om de schaalbaarheid en prestatie-optimalisaties
van workflows voor het aanroepen van genoomvarianten op moderne computer-
systemen te verbeteren, zijn in dit proefschrift vier mogelijke onderzoeksrichtin-
gen geselecteerd.

De GATK best-practice pipeline voor het bepalen van genomische varianten,
leidt vaak tot enorme prestatieknelpunten vanwege herhaalde toegang tot op-
slag tussen de componenten van de pipeline en tot inefficiënte multi-threading-
prestaties. Ten eerste hebben we, om de prestaties van moderne processor-
hardwarefuncties zoals multi-core en vectoreenheden op de GATK best-practice-
variant voor het aanroepen van pijplijnen te benutten, ArrowSAM geïntroduceerd,
een kolom-georienteerd in-memory gegevensformaat om genomics-gegevens in
het geheugen te plaatsen en te verwerken door het verwijderen van de behoefte
aan herhaalde toegang tot file-gebaseerde storage tussen de componenten van
de pipeline. Dit formaat biedt betere prestaties en parallelle verwerkingscapaci-
teit, wat resulteert in een vermindering van de totale runtime met respectievelijk
4,85x en 4,76x voor de WGS- en WES-datasets.

Wat de schaalbaarheid van big data betreft, zijn er een aantal clus-
tergeschaalde variant-calling workflows ontwikkeld met Apache Spark voor
scheduling- en uitvoering De Java-omgeving in een Apache Spark-cluster ver-
werkt gegevens echter rij voor rij, waardoor runtime-gevectoriseerde uitvoering
van gegevens niet mogelijk is met dit uitvoeringsmodel. Onze tweede bijdrage
richt zich op de integratie van het op Apache Arrow gebaseerde, kolomvormige

xiii



xiv Samenvatting

in-memory dataformaat in de PySpark API om de voordelen van gevectoriseerde
bewerkingen in de Python-taal te kunnen benutten met behulp van door de ge-
bruiker gedefinieerde functies op Spark-dataframes. Deze aanpak overtreft de
state-of-the-art met meer dan 2x voor de pre-processing fasen.

Arrow Flight, een submodule in het Apache Arrow-project, biedt hoogwaardige,
veilige, parallelle en platformonafhankelijke taalondersteuning voor bulkgege-
vensoverdracht (Apache Arrow in-memory kolomformaat) over het netwerk. Voor
onze derde onderzoeksbijdrage hebben we zowel de schaalbaarheid en pres-
taties van Arrow Flight voor client-server als clustergeschaalde communicatie
getest en gebenchmarkt. Voor Apache Arrow-gegevens bereikt het meer dan
92% van de maximaal mogelijke interconnect-doorvoer. We beschrijven een
variant die de workflow op HPC-clusters aanroept met behulp van de Slurm-
workloadmanager en Arrow Flight als datacommunicatieraamwerk. Deze archi-
tectuur presteert beter dan op Apache Spark gebaseerde workflows en biedt zo-
wel minder communicatieoverhead (meer dan 20-60% afhankelijk van de cluster-
grootte) als een betere schaalbaarheid, wat resulteert in een 2x betere snelheid.

Voor onze laatste onderzoeksbijdrage die in dit proefschrift wordt gerappor-
teerd, hebben we een orthogonale benadering geïmplementeerd die zelfs meer
schaalbaar is dan op Apache Spark en Arrow Flight gebaseerde oplossingen en
die flexibiliteit biedt om veel verschillende variant callers te gebruiken. We im-
plementeerden MPI in zowel BWA-MEM- als Minimap2-aligners en creëerden een
zeer schaalbare variant van de oproepworkflow met behulp van bestaande pre-
processing-applicaties die toegang hebben tot een op choromosome gebaseerde
queue die MPI-RMA-atomaire bewerkingen gebruikt. Onze aanpak biedt de flexi-
biliteit om een willekeurige variant caller te gebruiken en we hebben DeepVariant
en Octopus, GATK HaplotypeCaller en Clair3 variant bellers getest. De resul-
terende aanpak biedt hogere prestaties, betere schaalbaarheid en gebruiksge-
mak met reproduceerbaarheid en nauwkeurigheid. Deze aanpak is 20% sneller
dan andere MPI-gebaseerde implementaties voor BWA-MEM, en biedt een betere
schaalbaarheid voor variant-calling workflows.



1
Introduction

Prelude: Deoxyribonucleic acid (DNA) is the chemical name of the molecule that con-
tains the biological instructions that defines the characteristics of all living organisms.
DNA is a complex molecular structure represented by four chemical bases (A-C-G-T)
which contains all the information and instructions needed to create, maintain and
reproduce an organism throughout its life. Since the initial discovery of DNA struc-
ture, efforts have been made to understand the exact patterns of nucleotides (bases)
in a DNA fragment, called DNA sequencing. In the last five decades, many different
sequencing strategies and improvements have been made. The most prominent meth-
ods include early Maxam-Gilbert sequencing, Chain-termination (Sanger sequencing),
Shotgun sequencing and most recently high-throughput sequencing (HTS) methods in-
cluding next-generation sequencing (NGS) for "short-reads" and third-generation se-
quencing for "long-reads". Genome sequencing is changing the whole spectrum of our
understanding of health, disease, diagnosis and treatment. Rapid advancements
in sequencing technologies enabled development of targeted therapies and personal-
ized medicine. However, sequencing machines produce raw base-pair data, which
require further computational methods including quality-control, alignment, assembly
and variant calling to enable observing and visualizing variants of concern. Continu-
ous computational algorithmic development and improvements to analyze sequencing
data is an ongoing research field. New high performance and power efficient com-
puting infrastructures are necessary to meet the growing data and compute intensive
genomics workloads needs.

In this chapter, we provide a short description of genome sequencing and data pro-
cessing followed by a brief introduction of computational performance challenges
being faced on modern computing systems for processing large amounts of data,
particularly genomics datasets, where short time-to-diagnosis is becoming ever more
important in a clinical setting. Afterwards, we briefly present some propositions we
aim to discuss in this dissertation in the context of high performance and scalable
computation methods for genome sequence data processing. Finally, a short outline
describing the organization of this dissertation is presented.

1
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2 1. Introduction

The Human Genome Project [1], a first ever effort to sequence all human genes
in an individual, announced a final draft sequence of the euchromatic portion of
the human genome containing approximately 2.85 billion nucleotides in 2003. A
more recent effort to sequence the human genome for some remaining missing
repetitive regions completed in 2021 [2]. NGS technologies offer high through-
put and cheap sequencing methods like whole genome sequencing (WGS), whole
exome sequencing (WES), whole transcriptome - RNA sequencing (RNA-Seq) and
single-cell RNA sequencing (scRNA-Seq) for in-depth analysis. These methods
can be used to detect genetic variants related to genetic disease or tumors, be
used to help identify biomarkers and profiling of whole transcriptome and clus-
tering cell types in different organs and tissue, and be used to find cellular differ-
ences and individual cell functions with higher resolution. Generally, sequencing
includes the following main steps to extract meaningful (variants) information
from the genome: 1. sample collection (blood, saliva, tissue, cell culture etc.),
2. DNA extraction and library preparation from targeted samples, 3. sequencing
DNA samples, 4. quality control checks, and 5. raw data processing and down-
stream data analysis. These steps are shown in Figure 1.1. Our work in this
dissertation mainly focuses on the fifth step related to computational process-
ing of raw sequence data generated by sequencers to make this data clean for
post-processing analysis. Due to advancements in modern massively-parallel se-
quencing technologies, high throughput, low cost and immensely high volumes
of sequencing data is being produced. Adequate computational power is becom-
ing essential to process this data in a reasonable amount of time. On the other
hand, due to technology limitations, single CPU core performance cannot be im-
proved by adding more, smaller and power efficient transistors. Hence to keep
continue increasing performance, more CPU cores are being added to the proces-
sor. Additionally, new hardware features like vectorization called Single Instruc-
tion/Multiple Data (SIMDe) and co-processors/accelerators (FPGA/GPU) are being
utilized in/with processors for performance efficiency. Similarly, distributed and
parallel high performance computing (HPC) infrastructures are being rigorously
explored for these emerging data and compute intensive workloads.

In this context, we first re-design and optimize some of the genomics appli-
cations to better utilize modern processor hardware features (multi-core paral-
lelism, vectorized operations, in-memory format to avoid data serialization/de-
serialization between processes and frameworks, better cache locality exploita-
tion) for efficient and maximum resource utilization. Moreover, we also employ
scalable methods for these applications to deploy them on public clouds and HPC
clusters for high performance and better scalability.

1.1. Genomics & genome analysis
The genomics field emphasizes the understanding of structure, mapping and
function of individual genes (the genome) to get insights into their interaction
and evolution with respect to one’s environment. Different organisms genomes
have different number of base pairs (bps). Each cell in a human body contains a
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Figure 1.1 An overview of the variant calling process, from sample collection to variant
analysis.

complete replication of the approximately 3 billion bps of DNA. DNA is divided into
coding regions (or functional units) called genes and non-coding regions which
make up the rest of the genome. In many organisms, only a small fraction of
the genome consists of coding regions which help encode proteins. The human
genome is only composed of roughly 1.5% coding regions while some non-coding
regions that do not code proteins may still be used to regulate gene expression.
A gene can either result in the creation of a ribonucleic acid (RNA) or a protein
resulting from the gene’s expression. Gene expression is the most basic func-
tion in genetics where genotypes (the complete set of genetic material) gives
rise to phenotypes (observable characteristics or traits) in an organism. To un-
derstand the breadth and depth of the DNA as whole as well as RNA transcription
in an organism, the latest sequencing technologies pave the way froward in both
research and clinical application.

Comparative genomics reveal deep insights into nucleotide-level organismal
differences for some specific traits among populations from an individual genome
sequencing data. These differences are called single nucleotide variants (SNVs),
single nucleotide polymorphisms (SNPs) and single base insertions and dele-
tions (InDels), with their corresponding computational method is often called
variant calling, which is the focus of this dissertation. A detailed description of
somatic short variant calling (SNVs+InDels) and germline short variant calling
(SNPs+InDels) is given in Section 2.3.

For both WGS and WES analysis, after performing sequencing on a DNA sam-
ple and generating raw sequencing data, typical applied computational variant
discovery pipelines include pre-processing, variant calling and variant analysis
steps. Pre-processing includes alignment, sorting, GATK best practices specific
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applications. Afterwards variant calling is performed on pre-processed data fol-
lowed by the variant analysis as shown in Figure 1.1. Algorithms and applica-
tions used in above steps and their corresponding input and output data formats
(FASTQ, SAM, BAM and VCF) are also shown in the figure.

In this dissertation, we focus on creating scalable and high performance meth-
ods to optimize this variant calling pipeline on both single-node and multi-node
computing systems. For single-node computers, we have employed methods to
exploit modern hardware features (multi-core, caching, vectorization). We incor-
porated Apache Arrow (a unified columnar in-memory data format) into existing
applications in variant calling pipeline to represent SAM data as columnar in-
memory data and called it ArrowSAM [3]. We also used Plasma Object Store for
parallelization and inter-process communication (IPC) of data between all the ap-
plications in this pipeline. This helped in avoiding intermediate local I/Os in each
application. Moreover, using this format, better parallelization is achieved and
data cache locality is exploited in all variant calling applications.

In addition to single-node optimizations, we explored multi-node clusters so-
lutions for variant calling. For this purpose first we integrated ArrowSAM into
Apache Spark (a unified cluster scaled big data analytics frameworks). The pur-
pose is to replace Apache Spark row-by-row execution with the Apache Arrow
columnar data format to exploit the vectorized user-defined functions (UDFs)
execution in PySpark and Pandas dataframes. Arrow Flight, a wire-speed data
transfer protocol has also been explored for inter-node ArrowSAM data transfer
and shuffling to implement variant calling workflows on clusters in Python envi-
ronment for flexibility and reproducibility purpose. We also used the MPI parallel
programming model to speed up different variant calling workflows on HPC clus-
ters. Figure 2.1 shows the overall design of all such implementations.

1.2. Problem description and scope
We outline the following key points providing an overview of the existing state-
of-the-art in computing systems, their usage, limitations and future perspective.

• Rapid advances in sequencing technologies enabled producing high-
throughput, cost effective and higher coverage sequencing data. This tends
to be a new trend in big data paradigms.

• Mainstream usage of genome sequencing for some critical disease diagnos-
tics and personalized medicine will require future computational systems to
be as fast and efficient as possible to process the huge amount of genomics
data timely.

• Fundamental limitations induced by CMOS technology on the performance
and scalability of general-purpose processors in-terms of single-thread per-
formance, maximum achievable frequency and number of cores per pro-
cessor have opened-up the era of co-processors and accelerators.

• Co-processors and accelerators integration with general-purpose proces-
sors is beneficial to some extent for some specific applications but it still
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limits the achievable performance scalability for big data applications and
particularly genomics data processing at the single node-level.

• Recent developments in high performance computing clusters and dis-
tributed cloud computing environments in data centers promise a potential
solution for big data processing challenges in the future.

• In conjunction with co-processors and accelerators, the high performance
cloud computing infrastructures can provide adequate performance and
scalability for genomics data processing.

• Application specific processors designed for genomics processing systems
are good candidates for high performance and energy efficient future solu-
tions for this purpose.

The following points more concisely elaborate the problems which this disser-
tation aims to explore more rigorously in the coming chapters.

• Problem 1: Often software programmers and developers focus on the al-
gorithmic aspects of the implementation. For better performance and to re-
duce power consumption, new processor designs are meant to exploit the
different modern architectural characteristics (multi-cores for parallelism,
better cache locality, less memory references, vector units usage) of the
processors. There exists a gap to map genomics algorithms efficiently on
such processors by keeping in-mind these modern processor features.

• Problem 2: Usually, local SSD I/O latency is considered almost 1000x more
than memory. GATK best practices pipelines recommend multiple applica-
tions to accomplish any type of variant calling. All these applications store
intermediate output data in SAM/BAM format and consequently each ap-
plication must read and parse this data again before processing it. This
creates overhead of reading/writing to and from I/Os. In some applications
the I/O time is more than 50% of the overall runtime.

Applications

In-memory & columnar format Parallel Programming
Model

Data Transport Protocol

bwa, minimap2, samtools, sambamba,
Picard, GATK, DeepVariant, Octopus, NeuSomatic

Apache Arrow

Arrow Flight

BigData Analytic Framework

Apache Spark

Message Passing 

Interface (MPI)

41

2 3

Figure 1.2 Representation of stack layers in genomics applications which include the
applications, Apache Arrow, Arrow Flight, Apache Spark and MPI.
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• Problem 3: Apache Arrow in-memory columnar data format supports zero-
copy reads for large datasets in inter-process communication without (de)-
serialization overheads. This could also help in efficient vectorized data
analytics operations and better cache locality. While row based format is
preferable in Apache Spark where JVM (Java virtual machine) executors pro-
cess data on a row-by-row basis. However, runtime vectorized execution of
data is not possible with this execution model. Interfacing and using colum-
nar data format (ArrowSAM) on row based execution frameworks (such as
Apache Spark) for vectorized execution is challenging but exhibits huge po-
tential performance benefits.

• Problem 4: Big data frameworks (Apache Hadoop and Apache Spark) have
been extensively used for the scalability (data shuffling and scheduling)
of genomics variant calling and other workflows. These frameworks come
with some additional computation, dependency and memory overheads by
default. Depending on the deployment infrastructure, other scalable, high
performance and memory efficient solutions could be explored.

1.3. Research contributions
In the context of the problems described above and their wider implications, we
briefly pose a couple of propositions and discuss our research contributions re-
lated to them in this dissertation:

Columnar in-memory data formats have already proven helpful in database
(transactional) and data-analytic systems.

• Proposition 1—Columnar in-memory data formats can also be beneficial
in genome variant calling applications for better cache locality, vectorized
operations and parallel execution on modern processors.

For this purpose we used GATK best practices variant calling pipeline. First we
shortly introduce the different applications in GATK best practices (germline vari-
ant calling) pipeline. These applications include: alignment (BWA-MEM/Bowtie2),
sorting (Samtools/sambmaba/Picard), duplicate reads removal (Picrd MarkDupli-
cate), base quality score recalibration (GATK BQSR, ApplyBQSR) and variant call-
ing (GATK HaplotypeCaller). Generally sequence alignment is the first compu-
tational stage where we align the raw FASTQ data against a reference genome.
BWA-MEM is commonly used algorithm for this purpose. If the output of these
tools is stored in columnar format instead of tab delimited text format, we can
achieve efficient cross application communication with low overhead. This is
done through fast in-memory communication instead of writing intermediate
data to I/O storage. Columnar data also speeds up sorting and duplicates removal
where we only need to process a subset of the data in SAM files. Section 3.1
addresses this solution in details.

Furthermore, we also focus on the applications in the GATK best practices
pipeline and show that these stages also benefit from columnar and in-memory
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SAM data (called ArrowSAM) on which Section 3.2 expands on our imple-
mentation further to achieve better cache locality, less or no additional I/O
overhead, multi-cores parallelization and vectorized operations which address
the challenges posed by Problem 1. This implementation is depicted in 1 of
Figure 5.13.

Columnar in-memory data formats such as Apache Arrow provide an efficient
alternative to store and access in-memory data among multiple big data frame-
works or applications by avoiding extra (de)-serialization overhead.

• Proposition 2—These formats should be integrated into big data frame-
works like Apache Spark to avoid (de)-serialization overhead and in-
memory data access during data transformation and processing when run-
ning different applications inside these frameworks.

Apache Hadoop and Apache Spark big data frameworks have been used exten-
sively to explore the opportunities for the scalability of genomics applications
and particularly GATK best practices based variant calling workflow on comput-
ing clusters as discussed in the previous contribution. Using Apache Spark just
for distributing data and scheduling applications does not exploit the full benefits
of Apache Spark in-memory processing. At the same time Spark native compu-
tation is row-based. In Chapter 4 we present the applicability of using Apache
Arrow in-memory and columnar data format inside Apache Spark to exploit the
benefits of vectorized operations in the Python language. This solution as shown
in 3 of Figure 5.13, utilizes PySpark UDFs and operates on dataframes for
both in-memory data storage and shuffling for alignment, sorting and duplicates
removal stages. Afterwards DeepVariant (a deep learning based variant caller)
has been loosely integrated into the whole workflow to accomplish germline
variant calling. As discussed in Problem 2, this approach efficiently utilizes
maximum system resources with both high performance and linear scalability.

Arrow Flight provides a high performance and parallel interface for bulk data
(Apache Arrow in-memory columnar format) transfers across networks. We
benchmark for maximum client-server and cluster throughput for this data com-
munications protocol.

• Proposition 3—Arrow Flight protocol can achieve high performance data
movement throughput for genomics variant calling workflows across com-
puting clusters as compared to big data frameworks such as Apache Spark.

Arrow Flight provides a high performance, secure, parallel and cross-platform
language support for bulk data (Apache Arrow in-memory columnar format)
transfers across networks. Instead of using big data frameworks (Hadoop and
Spark) for data shuffling and transformation on cluster environments as repre-
sented in 2 of Figure 5.13, we employed Arrow Flight as a microservice for data
transfer and processing on edge nodes in a local cluster without deserialization
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of Apache Arrow data. We used SLURM [4] as workload manager on clusters to
control the flow and scheduling between variant calling applications as discussed
in Chapter 5. This approach has huge potential to efficiently address the issues
mentioned in Problem 3 and Problem 4 with less memory overhead and better
linear scalability on clusters.

Genomics variant calling applications like genome alignment and variant call-
ing can be performed on data chunks independently without any data communi-
cation or synchronization.

• Proposition 4—MPI can be used to achieve bare-metal performance in se-
quence alignment algorithms and variant calling workflows overall.

MPI promises bare-metal performance for genomics applications on HPC clusters
as many genomics applications and algorithms are able to scale up using parallel
and distributed processing without the need for synchronization or data sharing.
In Chapter 6 we show the impact of integrating MPI in both short and long reads
aligners, BWA-MEM and minimap2 respectively followed by other pre-processing
and variant calling applications. The resultant solution provides a highly linear
scalable implementation of both aligners as well as variant calling workflows.
This solution mainly addresses the concerns described in Problem 4 and shown
in 4 of Figure 5.13.

1.4. Dissertation outline
The rest of this dissertation is organized as follows. A brief introduction to se-
quencing technologies and their applications, DNA sequence alignment, assem-
bly and variant calling algorithms and computational methods and infrastruc-
tures is presented in Chapter 2. A perspective and future vision for genomics
data growth and demanding computer power is also discussed in Section 2.6.
In Chapter 3, we mainly focus on node level optimization techniques including
in-memory, columnar data format for better cache locality, parallelization. We
first discuss how to avoid intermediate local file system I/O accesses for pre-
processing (alignment, sorting and duplicate removal) applications in Section 3.1,
followed by GATK best practices variant calling workflow in Section 3.2. Apache
Spark integration with Apache Arrow to exploit the in-memory columnar SAM for-
mat for short reads NGS data germline variant calling workflow is discussed in
Chapter 4. In Chapter 5, we first benchmark the different performance aspects
of Arrow Flight on a cluster in Section 5.1. This is followed by Section 5.2 where
we mainly focus on Arrow Flight microservice integration in-conjunction with the
SLURM workload manager on a locally deployed cluster for variant calling work-
flow scalability. Chapter 6 provides an in-depth description and implementation
details of MPI for integration into aligners and variant calling workflows with a
thorough comparison with other scalable cluster implementations. Finally, in
Chapter 7, we conclude our dissertation contribution with some important high-
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lights followed by a guide with a brief description of future research exploration
and directions.
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2
Background

Prelude: This chapter covers background knowledge necessary to understand the
context of this dissertation. First, we discuss briefly the genomics field and genome
analysis followed by a short description of genome sequencing technologies and their
emerging applications. A short introduction of genome DNA sequence alignment,
genome assembly and variant calling algorithms is presented. Afterwards, we fo-
cus on computing systems, addressing modern processors, hardware accelerators,
cloud computing and high performance computing clusters. In addition, we discuss
programming models and infrastructures used to run genomics algorithms efficiently.
Finally, we conclude this chapter by presenting a broader perspective on advance-
ments in sequencing technologies, growth of data in general and genomics data in
particular, while discussing future computing needs for these workloads.

13
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2.1. Sequencing technologies and applications
To analyze an organism’s DNA for the purpose of understanding and character-
izing the unique features it exhibits, the proper order of bases of its DNA should
be determined. To identify the DNA sequence, Microarrays are considered a pi-
oneering technology which can detect a relative concentration in a sample of a
known DNA sequence.

Further technological advancements led to the birth of Sanger sequencing
methods which can detect the order of bases in DNA more accurately. This tech-
nique has been deployed in the field for past couple of decades. Sanger sequenc-
ing can produce read lengths of approximately 800bp at a time and have been
used in multiple research domains from detecting smaller genomic regions in a
wide range of samples to variable regions in a genome. The next generation
sequencing (NGS) technologies provide higher throughput and lower costs, with
their massively parallel sequencing method. The NGS sequencing involves frag-
menting DNA/RNA into multiple pieces, adding adapters to the pieces for library
preparation, sequencing the libraries, and finally reassembling them to form a
genomic sequence. Illumina is a leading manufacturer of NGS technology, which
can sequence short-length reads with up to 300 bps (base-pairs). Longer read
third generation sequencing technologies are also emerging as a more competi-
tive alternative in terms of cost and throughput with improving accuracy as com-
pared to NGS. They can produce reads of up to hundreds of kilobases (kbps).
Of the two leading long reads sequencing manufacturers, Pacific Biosciences
(Pacbio) uses the single molecule real time sequencing (SMRT) method, while Ox-
ford Nanopore Technologies (ONT) employs nanoscale pore structures to detect
changes in the electrical field surrounding the pore. These technologies promise
to make new applications possible such as metagenomics (where very long DNA
strands need to be sequenced), as well as personalized medicine (where very
high throughput, low cost sequencing is needed).

The advances in DNA sequencing technologies and downstream statistical or
machine learning based analysis software are playing a vital role in making and
establishing sequencing as a fundamental tool for different types of applications
including but not limited to the following:

• to develop targeted molecular therapies using genomic tumor profiling and
precision oncology (cancer treatment)

• to detect fetus anomalies in prenatal and perinatal testing

• to find some rare hereditary disorders, genetic variants associated with spe-
cific diseases in newborn screening

• diagnosing genetic and hereditary defects and to repair these through
genes therapy

• to genetically modify crops for higher nutritional value and disease resilient
variants

• to improve the efficiency (production) of livestock and create environmen-
tally resilient breeds
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• to study microbiome cultures for viral and infectious disease control

in addition, many more applications in human and community health, agricultural
development and animal well-being are being considered.

2.2. Sequence alignment and genome assembly
Sequencing machines usually produce a large amount of raw sequences of a
genome. Aligning these sequences (against a reference genome or against each
other) by incorporating insertions and/or deletions within the targeted sequence
to find an approximate match is called sequence alignment. Generally, two types
of alignments are used, in global alignment a complete query sequence (end-
to-end) is aligned while in local alignment small fragments of large target se-
quences are matched for similar regions. Pair-wise sequence alignment uses
two sequences to find a local or global optimal alignment pattern between them.
BWA-MEM [1] and Bowtie2 [2] are widely used short read aligners while Min-
imap2 [3], Winno [4] and lra [5] are new long read aligners. Similarly stitching
small raw DNA fragments/sequences to reconstruct a large consensus/original
sequence of DNA through alignment and some heuristics is called genome as-
sembly. Shasta [6], Wtdbg2 [7], Flye [8], Hifiasm [9] and Canu [10] are some
of the latest long read assemblers. Alignment and assembly are the two most
important and fundamental steps for downstream analysis of target genomes.

2.3. Variant calling analysis
Variant calling is indispensable for comparative genomics studies as it reveals
deep insights into nucleotide-level organismal differences/variations among pop-
ulations from an individual’s genome sequencing data. Variant calling discerns
genetic and/or somatic variations in three categories; single nucleotide polymor-
phisms (SNPs), insertions and deletions (InDels), and/or structural variants (SVs,
may also include copy number variations (CNVs), duplication, translocation, etc).

DNA can mutate in any of the somatic cells (all cells in body except sperm
and egg cells) or in germinal or sex cells (eggs and sperm); such variations are
referred to as somatic and germline mutations, respectively. A single nucleotide
variant (SNV) is a substitution of a single nucleotide. SNVs can be rare in one pop-
ulation but common in other populations. SNPs are naturally occurring germline
variants and are present in > 1% of the population at least. These variants repre-
sent a single base (nucleotide) change. InDels are single bases which have been
inserted, or deleted in a genome when aligning to another reference genome.
Structural variants (SVs) are observed in an organism’s chromosome structures.
Generally defined as a region of DNA of approximately 1 kilo base-pairs (kbp)
or larger in size having variations (usually greater than 50 bps).One form of SVs
is copy number variants (CNVs) also called repeats or duplications which refer
to number of copies of a particular gene present in the genome of an individual.
DNA sequencing reveals that CNVs are commonly observed in various organisms,
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particularly in human, which vary from individual to individual. Approximately
two thirds of the whole human genome is composed of such repeats.

GATK HaplotypeCaller [11] and FreeBayes [12] are commonly used open-
source tools for germline variant calling analysis. Tools like VarScan [13], Var-
Dict [14], MuTect2 [15] are used for somatic variant calling analysis. FreeBayes,
SNVer [16] and LoFreq [17] are also used for both germline and somatic variant
calling analysis. Pisces [18] and Strelka2 [19] are recently developed open source
tools by Illumina for short variant calling to analyze both germline and somatic
variations. DeepVariant [20], NanoCaller [21] are deep convolutional neural net-
work (CNN) based germline variant callers, while NeuSomatic [22] is a CNN based
somatic variant caller.

Figure 2.1 shows different variant calling workflows that have been imple-
mented in the scope of this dissertation. The first row represents the GATK best
practices variant calling pipeline on a single node based on Apache Arrow in-
memory and columnar data format. The next three variant calling workflows are
cluster scaled (both public clouds and HPC clusters) and use different variant
callers other than GATK. These cluster scaled variant calling workflows use com-
binations of Apache Arrow–Apache Spark–SLURM, Apache Arrow–Arrow Flight–
SLURM and MPI–OpenPBS, respectively.

2.4. Computing systems for genome analysis
Bioinformatics and genomics are young research fields and are undergoing enor-
mous growth. Continuously, new algorithms are being developed and released.
Heng Li (a leading researcher in the field) recently noted that just in this last year
four new short-read mappers (accel-align, chromap, dragmap and snap v2) have
appeared and concluded that "Short-read mapping is not solved yet". Due to the
fast pace of development of new aligners, developers mainly focus on algorith-
mic aspects of the solution. At the same time, efforts to improve performance
and efficiency are happening rapidly in the context of modern hardware features
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Figure 2.1 Genome variant calling workflows implementation and representation in their
respective computing infrastructure explored in this dissertation.



2.4. Computing systems for genome analysis

2

17

in processors, accelerators usage and scalability of these algorithms. Here, we
mention some some of these computing technologies and genomics algorithms
developed for them.

2.4.1. Modern processors (Multicores, SIMD)
In the past two decades due to the limitations posed by design complexity, cool-
ing and power consumption, increasing processor frequency was not a viable so-
lution for better instructions per cycle (IPC) per watt performance. Performance
improvements now can mainly be achieved by increasing the number of cores on
a processor as shown in the microprocessors trend data in Figure 2.2. Both sym-
metric multiprocessing (SMP, i.e., using multiple identical processors on a single
board) and chip-multiprocessing (CMP, i.e., integrated multiple cores inside a sin-
gle processor), having a shared memory, uniform memory access (UMA) or non-
uniform memory access (NUMA) interconnects and techniques have been devel-
oped. In addition to increasing the number of cores, processors today implement
many powerful and innovative performance improvement techniques. These in-
clude scalar vs superscalar processing and in-order vs out-of-order instruction
execution pipelines to extract instruction level parallelism (ILP) from sequential
programs. Single-instruction multiple-data (SIMD) parallel processing technique
(presented in Flynn’s taxonomy) was introduced decades ago and being contin-
uously evolved. As in modern workloads matrix multiplication is highly used for
image and signal processing applications. BWA-MEM2 [23] and minimap2 [3] ex-
tensively and efficiently use multi-threading and SIMD instructions, the former
particularly on Intel while the latter also exploits vectorization on both x86 and
ARM architectures.

2.4.2. Heterogeneous computing (FPGA, GPU)
In heterogeneous computing systems, normally the CPU works as a host and of-
floads the highly parallelizable parts of an algorithm on the accelerators. On
GPUs and FPGAs these accelerated algorithms are called kernels. Kernels are
launched by the host on the device, and kernel data is transferred from host to
device (i.e., accelerator) memory. Once data processing on the device is finished,
the output is transferred back from device memory to the host again. GPU and
FPGA devices are usually connected to PCIe, peripheral to the host. Many pro-
gramming frameworks have been created for heterogeneous computing, some
are cross-vendor and cross-platform like OpenCL, while others are vendor-specific
(e.g., oneAPI DPC++ is an Intel specific CPU/GPU/FPGA programming framework).
CUDA is used for programming Nvidia GPU kernels. For FPGAs, traditionally Reg-
ister transfer level (RTL) languages (e.g., VHDL, VerilogHDL) have been used for
abstract level digital systems design on FPGAs but due to their high complexity
and the resulting longer time-to-market, many FPGA vendors and EDA (electronic
design automation) companies have created higher abstraction level program-
ming frameworks in C/C++ called high level-synthesis (HLS) like Intel Quartus,
Xilinx Vitis and Catapult.



2

18 2. Background

Figure 2.2 Microprocessors follow Moore’s law by increasing the number of cores, while
single thread performance and total power are saturating.

The Illumina DRAGEN Bio-IT [24] Platform which is developed on FPGAs offers
more efficient genomics sequencing analysis. The Falcon Accelerated Genomics
Pipeline (FAGP) [25] also leverages the power of FPGAs to accelerate genome pro-
cessing. Genetalks [26] provides FPGA based variant calling solutions for GATK
best practices pipelines. NVIDIA Clara Parabricks [27] variant calling pipelines
which are accelerated on GPUs also provide improved performance as compared
to CPU only processing.

2.4.3. Applications-specific integrated circuit (ASIC)
FPGA designs are considered flexibile, which means their hardware design is easy
to change or adapt with new updates in the algorithms. FPGA designs are gen-
erally considered good for prototyping purposes. However, ASICs are the ulti-
mate product level solutions for higher performance, lower power consumption
and cost efficiency (when produced in bulk). ASIC applications remain mainly
limited to embedded systems, but new data-driven and computer-vision tech-
nologies are pushing towards a faster development and replacement of general-
purpose computing with ASICs. Google’s Tensor Processing Unit (TPU) [28] and
YouTube’s Video (trans)Coding Unit (VCU) [29] are the latest examples of ASICs
used for machine learning and video processing applications, respectively. The
latest Green500 list top, the MN-3 HPC supercomputer, uses their custom ASIC,
MN-Core [30] (Accelerator for Deep Learning). Genomics is still a young field,
where new algorithmic approaches are being developed regularly. Therefore,
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Figure 2.3 A comprehensive comparison of CPUs, GPUs, FPGAs and ASICs from a perfor-
mance, parallelization, cost and throughput perspective.

it is too early to say when ASICs will make their way into genome process-
ing. However, ASICs represent the ultimate solution to enable high-performance
and low-power processing. In addition, the application specific nature of ge-
nomics pipelines, where applications are focused on identifying the variations
in a genome, makes them particularly well-suited for ASIC processing rather than
general purpose processing. Here, we mention some early efforts in ASIC devel-
opment for genome assembly and alignment applications. Darwin [31] performs
reference-guided and de-novo assembly, created in TSMC 40nm CMOS process.
Total calculated power consumption for this ASIC device is 15W while maintain-
ing an area of 412 mm2. In modern technology nodes like 14nm, this design will
consume 3x less power and 6x less area as reported in their work. A more de-
tailed and comprehensive comparison of CPUs, GPUs, FPGAs and ASICs for per-
formance capability, achievable parallelization, throughput, latency and power
consumption, product total cost and development time is given in Figure 2.3.

2.5. Genome analysis on distributed and parallel
computing systems

Generally genomics data formats permit independent compute and analytic op-
erations on a granular level, i.e., even smaller chunks can be processed without
any dependency issues with other cascaded data. This eventually helps to run
genome analysis algorithms on multiple data chunks in parallel. So storing ge-
nomics datasets in distributed file systems and processing it in a parallel and dis-
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tributed compute environment offers both flexibility and efficiency. This section
outlines some popular distributed and parallel computing systems architectures,
their programming models, data management and analytic platforms. Develop-
ment and adoption of methods for scalability of genomics applications on such
systems are also discussed.

2.5.1. High performance computing (HPC) and supercomputers
HPC infrastructure combines compute resources and storage by connecting them
through a highly parallel and optimized network to exploit parallel programming
models for high throughput and efficient large scale computing applications in
a non-distributed environment. Mainly HPC systems are deployed by R&D cen-
ters and governmental organizations with large capital investment and mainte-
nance costs. The TOP500 list measures the theoretical peak performance of the
world top 500 supercomputers bi-annually reported in floating-point operations
per second (FLOPS) performance on the LINPACK Benchmark.

2.5.2. Parallel programming models (MPI, SHMEM & PGAS)
A lot of parallel programming models for HPC applications have been devel-
oped. OpenMP is the most common shared-memory parallel programming model
for intra-node processing where tasks share a common address space, while
the message passing interface (MPI) is used in distributed memory systems
for inter-node processing where tasks have private memories and they commu-
nicate with each other through message exchange. A hybrid of both models
MPI-X (MPI+OpenMP) is often preferred for performance efficiency on both inter-
node and intra-node applications. MPI-RMA (remote memory access) and SHMEM
(shared-memory) programming models allow one-sided communication of data
without process synchronization. Partitioned global address space (PGAS) is a
shared and distributed memory programming model where a portion of logically
partitioned address space is shared between distributed processes or threads.
Figure 2.4 shows an overview of the architectural differences in different paral-
lel programming models in the shared and distributed memory context for pro-
cesses. There are many cluster scaled implementations available for alignment
using both MPI and PGAS parallel programming models. pBWA [32] and mpi-

P1 P2 P3 P1 P2 P3 P1 P2 P3

Logical Shared Memory Logical Shared Memory

Memory Memory Memory Memory Memory Memory Memory

MPI SHMEM PGAS

Figure 2.4 Popular parallel programming models for shared and distributed memory in-
terfaces for HPC: MPI (MPI-X, MPI-RMA), SHMEM, PGAS.
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BLAST [33] use MPI while CUSHAW3 [34] is based on UPC++ (a language based
on PGAS). One of the latest algorithms in this domain is QUARTIC mpiBWA [35],
which is a distributed BWA-MEM alignment algorithm by employing MPI function-
ality and uses MPI shared I/O for input/output on a parallel file system.

2.5.3. Data centers and cloud computing
As organizations strive to provide fast and uninterrupted internet communication,
compute and storage infrastructure to information technology (IT) operations
and telecommunications services, maintaining such infrastructure under a single
data center entity can be an efficient and cost effective way for emerging com-
pute demands. Data centers provide high availability, modularity and flexibility
to their customers. Data centers also host cloud computing components, which
enables on-demand availability and delivery of flexible compute resources (pro-
cessing, software, storage, network and databases) through the internet. Public
clouds services are offered by third-party cloud providers (Google Cloud, Amazon
AWS, Alibaba Cloud, Huawei Cloud, Microsoft Azure) to anyone on the public in-
ternet. These vendors allow customers to pay per usage of subscribed services.
On the other hand, private clouds offer compute resources through the internet
or private internal networks to specific customers or users. Private clouds give an
additional benefit of customization and control of on-premise hosted computing
resources with more security and privacy assurances. These clouds can deliver
services such as infrastructure as a service (IaaS) or platform as a service (PaaS)
offerings. Some data center vendors can even provide HPC-as-a-service solutions
in the cloud.

2.5.4. Big data analytics frameworks (Hadoop, Spark, Arrow)
The distributed data-parallel programming model MapReduce has been widely
used in big data frameworks where parallel data processing is achieved by man-
aging communications and data shuffling inside systems through redundancy
and fault tolerance. Apache Hadoop is an open-source implementation of such
programming paradigm which uses Hadoop distributed file system (HDFS) to
manage big data processing on a parallel and distributed system. Apache Spark
is a unified analytics engine to process streaming and batch big data process-
ing in a distributed computing environment, with built-in modules for streaming
data, distributed machine learning, SQL functions and graph processing. Spark
also provides a high-level APIs for the Java, Scala, Python and R languages. In
Spark, resilient distributed datasets (RDDs) are the core components that are dis-
tributed across the nodes of a cluster to be operated on in parallel. RDDs can be
cached/persisted in-memory across nodes to store intermediate results for itera-
tive processing. Spark commonly uses HDFS to read/write data, but also supports
other storage systems like NFS, HBase and Amazon’s S3. ADAM’s Cannoli [36]
and SparkBWA [37] are Apache Spark based BWA-MEM implementations that use
BWA-MEM as a loosely integrated application underneath these implementations,
while GATK BWASpark [38] modifies the original BWA-MEM to exploit the Spark
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Figure 2.5 The Apache Arrow eco-system provides a de-facto standard columnar and in-
memory data format for data analytics on a range of languages and big data frameworks
like Apache Spark, Hadoop and DASK.

scheduling and shuffling operations to run BWA-MEM instances in parallel on clus-
ters. On the other hand, the GATK pipeline is scaled up by Halvade [39], which
uses the Hadoop MapReduce API, while ADAM [36] and SparkGA2 [40] use the
Apache Spark framework and HDFS as a distributed file system. These are a few
of the implementations that can handle whole variant calling workflows based
on GATK best practices including alignment, sorting, duplicates removal, base
quality score recalibration and variant callers. Apache Arrow is an in-memory
standard columnar data format which provides API interfaces and functions to
process analytics workloads in the Go, C, C++, C#, Java, JavaScript, R, Rust,
MATLAB, Ruby and Python languages. Due to the columnar data storage format,
efficient vectorized data analytics operations and better cache locality can be ex-
ploited. This in-memory format also supports zero-copy reads for large datasets
in inter-process communication without serialization/deserialization overheads.
VC@Scale [41], a DeepVariant based variant calling workflow also uses Apache
Spark in-conjunction with Apache Arrow as an additional layer for columnar data
format and columnar vectorized processing in PySpark. Figure 3.5 elaborates on
how different programming languages and big data frameworks make use of a
single standard and unified columnar data format with a complete set of Arrow
enabled APIs and compute kernels in the eco-system.
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2.6. Data, compute and sequencing: A perspective
In the past decades particularly, advances in semiconductor technologies en-
abled explosive (exponential) increase in data generation. Broadband cellular
telecommunication networks (4G, 5G), industrial and home automation technolo-
gies like cyber-physical systems (CPS) and Internet of Things (IoT) devices, cloud
computing and storage infrastructures – artificial intelligence (AI) and machine
learning (ML) systems are being trained on more diverse and big amount of data
for improved prediction accuracy and classification on population scale analy-
sis. Data is now an essential part of new online business models, particularly
on social media platforms to monitor and analyze real-time social and behav-
ioral tendencies of customers to present related advertisement. To anticipate
customer behavior and market trends for business development and strategies,
financial institutions heavily rely on their own or third-party provided datasets.
Image datasets have gained a lot of value in this digital society. Satellite imagery
is used in defense, mapping and even for real-time observations. Time-lapsed
multi-satellites and/or collaborative imagery datasets can also be used to esti-
mate/simulate the past/future impact of climate change or to study other related
environmental impact. Medical imaging in the form of X-rays, CT-scans, Ultra-
sound and MRI is being used to detect complex diseases using AI & ML methods
for more accurate and precise diagnostic. Similarly existing datasets and trained
models or models to be trained with one’s own dataset in transportation, power
grids and cities planning and modeling have become an increasingly important
part of this new data-oriented or more precisely data-driven digital society. Ge-
nomics data follows the same growth trends as other big dataset, and is esti-
mated to produce between 2 and 40 exabytes of data in the next decade through
research activities only. As reported in [42], sequencing data being produced
worldwide is doubling every 7 months. Once sequencing becomes normal prac-
tice in clinical settings, genomics data will require sufficient resources to process
this data in a reasonable amount of time. As shown in Figure 2.6, raw sequenc-
ing data alone deposited in the three main sequencing archives GenBank, WGS
and SRA exceeds 6.12E-05 zetta Bases. At the same time, sequencing costs are
falling rapidly as shown in Figure 2.7, just in two decades the costs fell from $95
million to around $500 for a single human genome. This makes sequencing more
accessible as well as requires smart computing infrastructure for cost effective
and efficient downstream analysis. Although cloud computing is an immediate
solution for processing large amounts of data, there are more sustainable alter-
natives represented by embedded sequencing, data processing and analysis.

Data growth is outpacing computing growth. Big data growth is estimated to
double every two years, thereby creating every two years an amount of data
that is comparable to the amount of data that has been created in the whole
of recorded history. Figure 2.7 shows that the data volume created, captured,
consumed and/or copied worldwide is estimated more than 58 zetta Bytes in
the 2021 alone. At the same time, with the limitations to maintain the pace of
Dennard’s scaling (which refers to reducing transistor size that decreases total
chip area while keeping a constant power density) and at the twilight of Moore’s



2

24 2. Background

2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021
Year

1010

1011

1012

1013

1014

1015

1016

1017

Ge
no

m
ics

 D
at

a 
Gr

ow
th

 (b
as

es
)

GeneBank
WGS
SRA

Figure 2.6 A log scale plot of sequencing data deposited on GenBank (NIH genetic se-
quence database), Whole Genome Shotgun (WGS) and Sequence Read Archive (SRA)
repositories.

law (which refers to the doubling of the number of transistors on a chip every
two years), this explosive growth of data poses a serious challenge to compute
performance. To maintain an adequate and sustainable compute performance
growth for future needs we have to think differently.

Cloud computing is being considered an inevitable solution for big data pro-
cessing. Users and businesses can upload raw data from edge devices to the
cloud and can process huge datasets in real-time. The worldwide public cloud
computing market has grown from 6 to 250 billion US dollars in just the last
decade. However, this rapidly growing field also poses challenges to the envi-
ronment in-term of energy consumption. The latest top edition to the Top500 list,
the Fugaku supercomputer, which is powered by Fujitsu’s 48-core A64FX SoC op-
erating at 2.2GHz frequency gives an energy performance of 14.78 GFLOPS/watt
while the top contender on the Green500 list, the MN-3 from Preferred Networks
(PFN) powered by Intel Xeon Platinum 8260M, operates at 2.4GHz and is able to
achieve 39.379 GFLOPS/watt. This represents about a 3x difference in the power
efficiency of these two supercomputing systems. Figure 2.7 shows a logarithmic
plot of the sum of overall top500 worldwide supercomputers performance devel-
opment over the last two decades. The projected performance development line
shows that in last couple of years this become difficult to maintain the process-
ing performance improvements at the same pace. Both in the cloud as well as
for HPC infrastructures, design for energy efficiency should be considered as a
priority. This is necessary for providing energy efficiency to combat escalating
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Figure 2.7 Plot of human genome sequencing costs, big data and genomics data growth,
and compute performance (log scale) growth over the last two decades.

global energy consumption and ensure environmental protection.
RISC-V, an open-source processor ISA, provides an excellent opportunity for

processors in the embedded system design market to exploit and unearth po-
tential innovations in both research and industry. Developers in open-source
communities are more open to share and develop new ideas. This open revo-
lution can lead to many new processor architecture and design innovations even
beyond the von Neumann architecture to meet the future compute needs more
efficiently.

FPGA and ASIC-based solutions for genome analysis exhibit enormous advan-
tages over traditional CPU based analysis both in-terms of performance and
power efficiency. The Illumina DRAGEN Bio-IT Platform, which is developed on
FPGA, offers more efficient genomics sequencing analysis on-premise as well
as in the cloud. Falcon Accelerated Genomics Pipeline (FAGP) also leverage the
power of FPGAs to accelerate the genome processing on Intel Programmable Ac-
celeration Card (PAC) on Dell EMC machines. Genetalks also provides FPGA based
variant calling solutions for GATK best practices pipelines using the Xilinx Alveo
Acceleration Card in the cloud. These solutions give a promising prospect on how
FPGA/ASIC can revolutionize the computing challenges in genome sequencing
analysis.
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3
Node-level performance

optimizations using Apache
Arrow

Prelude: This chapter introduces node level performance optimization techniques
for germline variant calling pipelines. It includes a short overview of Apache Arrow,
a columnar in-memory data format, ArrowSAM (Apache Arrow based format for in-
memory SAM data storage and computation), GATK best practices variant calling
pipeline and issues related to its performance scalability. More specifically, Sec-
tion 3.1 discusses ArrowSAM integration into variant calling pre-processing applica-
tions including alignment, sorting and duplicate removal, while Section 3.2 describes
ArrowSAM integration into the whole GATK best practices pipeline. Performance
optimizations in terms of both runtime speedup as well as better system resource uti-
lization are also discussed. The contents of this chapter are based on our conference
paper entitled "ArrowSAM: In-Memory Genomics Data Processing Using Apache Ar-
row [1]" published in IEEE, ICCAIS in 2020 and the journal article entitled "Optimizing
performance of GATK workflows using Apache Arrow In-Memory data framework [2]"
which was published in BMC Genomics in 2020.
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3.1. ArrowSAM and variant calling pre-processing
The rapidly growing size of genomics datasets, driven by advances in sequenc-
ing technologies, demands fast and cost-effective processing. However, process-
ing this data creates many challenges, particularly in selecting appropriate al-
gorithms and computing platforms. Computing systems need data closer to the
processor for fast processing. Traditionally, due to cost, volatility and other phys-
ical constraints of DRAM, it was not feasible to place large amounts of working
data sets in memory. However, new emerging storage class memories allow stor-
ing and processing big data closer to the processor. In this work, we show how
the commonly used genomics data format, Sequence Alignment/Map (SAM), can
be presented in the Apache Arrow in-memory data representation to benefit of
in-memory processing and to ensure better scalability through shared memory
objects, by avoiding large (de)-serialization overheads in cross-language interop-
erability. To demonstrate the benefits of such a system, we propose ArrowSAM,
an in-memory SAM format that uses the Apache Arrow framework, and integrate
it into genome pre-processing pipelines including BWA-MEM, Picard and Sam-
bamba. Results show 15x and 2.4x speedups as compared to Picard and Sam-
bamba, respectively. The code and scripts for running all workflows are freely
available at: https://github.com/abs-tudelft/ArrowSAM

3.1.1. Introduction
Genomics is projected to generate the largest big data sets globally, which re-
quires modifying existing tools to take advantage of new developments in big
data analytics and new memory technologies to ensure better performance and
high throughput. In addition, new applications using DNA data are becoming ever
more complex, such as the study of large sets of complex genomics events like
gene isoform reconstruction and sequencing large numbers of individuals with
the aim of fully characterizing genomes at high resolution [3]. This underscores
the need for efficient and cost effective DNA analysis infrastructures.

At the same time, genomics is a young field. To process and analyze genomics
data, the research community is actively working to develop new, efficient and
optimized algorithms, techniques and tools, usually programmed in a variety of
languages, such as C, Java or Python. These tools share common character-
istics that impose limitations on the performance achievable by the genomics
pipelines.

• These tools are developed to use traditional I/O file systems which incur a
huge I/O bottleneck in computation due to disk bandwidth [4]. Each tool
reads from the I/O disks, computes and writes back to disk.

• Due to the virtualized nature of some popular languages used to develop
genomics tools (such as Java), these tools are not well suited to exploit
modern hardware features like Single-instruction multiple-data (SIMD) vec-
torization and accelerators (GPU or FPGAs).

https://github.com/abs-tudelft/ArrowSAM
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This paper proposes a new approach for representing genomics data sets,
based on recent developments in big data analytics to improve the performance
and efficiency of genomics pipelines. Our approach consists of the following main
contributions:

• We propose an in-memory SAM data representation, called ArrowSAM, cre-
ated in Apache Arrow to place genome data in RecordBatches of immutable
shared memory objects for inter-process communication. We use DRAM for
ArrowSAM placement and inter-process access.

• We adapt existing widely-used genomics data pre-processing applications
(for alignment, sorting and duplicates removal) to use the Apache Arrow
framework and to benefit from immutable shared memory plasma objects
in inter process communication.

• We compare various workflows for genome pre-processing, using different
techniques for in-memory data communication and placement (for inter-
mediate applications), and show that ArrowSAM in-memory columnar data
representation outperforms.

The rest of this paper is organized as follows. Section 3.1.2 discusses back-
ground information on genomics tools and Apache Arrow big data format as well
as presents the new ArrowSAM genomics data format. Section 3.1.3 shows how
to integrate Apache Arrow into existing genomics tools, while Section 3.1.4 dis-
cusses the measurement results of these new tools. Section 3.1.5 elaborates CPU
usage, memory access and usage patterns. Section 3.1.6 presents related work
in the field. Finally, Section 3.1.7 ends with the conclusions.

3.1.2. Background
This section provides a short description of DNA sequence data pre-processing
tools, followed by a brief introduction to the Apache Arrow framework.

DNA pre-processing: After DNA data is read by sequencing machines, align-
ment tools align reads to the different chromosomes of a reference genome and
generate an output file in the SAM format. BWA-MEM [5] is a widely used tools for
this purpose. The generated SAM file describes various aspects of the alignment
result, such as map position and map quality. SAM is the most commonly used
alignment/mapping format. To eliminate some systematic errors in the reads,
some additional data pre-processing and cleaning steps are subsequently per-
formed, like sorting the reads according to their chromosome name and position.
Picard [6] and Sambamba [7] are some tools commonly used for such opera-
tions. This is followed by the mark duplicates step, where duplicate reads are
removed by comparing the reads having the same map positions and orientation
and selecting the read with the highest quality score. Duplicate reads are gener-
ated due to the wetlab procedure of creating multiple copies of DNA molecules to
make sure there are enough samples of each molecule to facilitate the sequenc-
ing process. Again, Picard and Sambamba are commonly used here.
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Apache Arrow: To manage and process large data sets, many different big
data frameworks have been created. Some examples include Apache Hadoop,
Spark, Flink, MapReduce and Dask. These frameworks provide highly scalable,
portable and programmable environments to improve storage and scalability of
big data analytics pipelines. They are generally built on top of high-level lan-
guage frameworks such as Java and Python to ensure ease of programmability.
However, such high-level languages induce large processing overheads, forcing
programmers to resort to low-level languages such as C to process specific com-
putationally intensive parts of big data applications. On the other hand, hetero-
geneous components like FPGAs and GPUs are being increasingly used in cluster
and cloud computing environments to improve performance of big data process-
ing. These components are, however, programmed using very close-to-metal
languages like C/C++ or even hardware-description languages. The multitude
of technologies used often results in a highly heterogeneous system stack that
can be hard to optimize for performance. However, combining processes pro-
grammed in different languages induces large inter-process communication over-
heads (so called data (de)serialization) whenever the data is moved between
such processes.

To mitigate this problem, the Apache Arrow [8] project was initiated to provide
an open standardized format and interfaces for tabular data in-memory. Using
language-specific libraries, multiple languages can share in-memory data with-
out any copying or serialization. This is done using the plasma inter-process com-
munication component of Arrow, that handles shared memory pools across dif-
ferent processes in a pipeline [9].

ArrowSAM data format: This paper proposes a new in-memory genomics
SAM format based on Apache Arrow. Such a representation can benefit from two
aspects to improve overall system throughout: one is related to the tabular na-
ture of genomics data and the other related to cross-language interoperability.
Using Arrow ensures efficient genomics data placement in memory to gain max-
imum throughput and parallel data access efficiency. The tabular genomics data
format can benefit from the standardized, cross-languages in-memory data rep-
resentation of Arrow, that provides insight into the organization of the data sets
through its schema.

In order to enable genomics applications to use Apache Arrow, two different
contributions are needed. First, we need to define an Arrow in-memory represen-
tation of the corresponding genomics SAM data format. Second, the applications
and tools using the data need to be adapted to access the new format as shown
in Figure 3.1(a). In the following, these two contributions are discussed.

The SAM file format is an ASCII-based tab delimited text format to represent
DNA sequence data as shown in Figure 3.1(c). Its in-memory SAM representation
is a columnar format that consists of the same fields (columns) used in SAM to
store the corresponding sequence mapping data as shown in Figure 3.1(d). The
Arrow frameworks requires defining the data types for each field in a schema
stored as part of the data object, as shown in Figure 3.1(e). The schema defines
the ArrowSAM data format as listed more explicitly in Table 3.1.
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Table 3.1 ArrowSAM Schema

Index Field Datatype

0 QNAME String
1 FLAG Int32
2 RNAME Int32
3 POS Int32
4 MAPQ Int32
5 CIGAR String
6 RNEXT Int32
7 PNEXT Int32
8 TLEN Int32
9 SEQ String
10 QUAL String
11 TAG String

Arrow stores the columnar data fields in contiguous memory chunks in so-
called RecordBatches as shown in Figure 3.1(b). Each RecordBatch is a combi-
nation of a schema, which specifies the types of data fields of the ArrowSAM
record, the data itself, in addition to some meta data.

3.1.3. Implementation
BWA-MEM integration: BWA-MEM aligns the raw read sequences against a
large reference genome such as that of a human. We used ArrowSAM to store
the mapping data produced by BWA-MEM from query and reference genome files.
We modified BWA-MEM to use Arrow libraries to write each chromosome (1-22, X,
Y and M) sequence mapping data in a separate Arrow RecordBatch. At the end of
the alignment process, all the RecordBatches are assigned to a shared memory
pool of plasma objects. Each plasma object has its own identifications (objectID).
Tools that need to use the data generated by BWA-MEM can access this data
managed by plasma through zero-copy shared memory access [10]. Doing so
enables other tools to access all shared RecordBatches in parallel.

Sorting through pandas dataframes: Pandas is a powerful and easy to
use Python library, which provides data structures, data cleaning and analysis
tools. Dataframes is an in-memory data library that provides structures to store
different types of data in tabular format to perform operations on the data in
columns/rows. Any row in a dataframe can be accessed with its index, while a
column can be accessed by its name. A column can also be a series in pan-
das. Using dataframes illustrates the powerful capabilities of in-memory data
representation. First of all, dataframes is able to sort the chromosomes in par-
allel using pandas built-in sorting function with Python Arrow bindings (PyArrow)
while accessing data residing in-memory, which takes place across two applica-
tions written in different languages (one in C and the other in Python). Secondly,
tools like Picard and Sambamba are used to sort the SAM file according to the
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Figure 3.1 a) Genomics pipeline using ArrowSAM format for all intermediate steps to
allow in-memory intermediate data storage, which means I/O disk access is only needed
to load data into memory at the beginning and to write data back to disk at the end. b)
Arrow RecordBatch enclosed in plasma object store. c) SAM file in ASCII text format. d)
SAM file in RecordBatch format. e) Schema specifies the data types of ArrowSAM.

chromosome name and start positions of each chromosome. This type of sorting
becomes computationally intensive when the whole SAM file needs to be parsed
and sorted based on the values stored in only two fields of that file. This can be
parallelized and made more efficient in our approach. Using pandas dataframes,
sorting each individual chromosome is performed based on the start position of
reads in that particular chromosome. All the RecordBatches are fed to pandas
dataframes to sort all the chromosomes in parallel. After sorting, the sorted
chromosomes RecordBatches are assigned to plasma shared memory again for
subsequent applications to access.

Picard MarkDuplicate integration: After sorting the chromosomes data by
their coordinates, the duplicate reads with low quality should be removed. The
Picard MarkDuplicate tool is considered as a benchmark for this task. This tool
reads the SAM file two times, first when building the sorted read end lists and
then removing marked duplicates from the file. To overcome this I/O overhead,
we just read the data as ArrowSAM format in-memory once, accessing only five
fields (QNAME, FLAG, RNAME, POS, CIGAR and RNEXT) needed to perform the
MarkDuplicate operation. We modified htsjdk (a java API used in Picard and many
other tools for managing I/O access of DNA sequencing data files) and MarkDupli-
cate to read data from all RecordBatches in parallel from plasma shared memory.
Our implementation processes this data in parallel in Picard and writes back the
updated FLAG field in ArrowSAM which sets duplicate bit. After finishing this pro-
cess, the shared memory plasma objects are available for further variant calling
processes for in-memory and parallel execution.
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3.1.4. Evaluation
This section evaluates the speedup and efficiency achieved using ArrowSAM for
pre-processing of sequence data while mapping, sorting and marking duplicates
against existing frameworks.

Experimental setup

All the experiments and comparisons are performed on a dual socket Intel Xeon
server with E5-2680 v4 CPU running at 2.4 GHz. A total of 192 GB of DDR4 DRAM
with maximum of 76.8 GB/s bandwidth is available for whole system.

We use Illumina HiSeq generated NA12878 dataset of whole exome sequenc-
ing (WES) of human with 30x sequencing coverage with paired-end reads and a
read length of 100 bps. Similarly for whole genome sequencing (WGS), we use
Illumina HiSeq generated NA12878 dataset sample SRR622461 with sequenc-
ing coverage of 2x with paired-end reads and a read length of 100 bps. Human
Genome Reference, Build 37 (GRCh37/hg19) is used as a reference genome for
all workflows in our experiments for both WES and WGS.

The code and scripts for running all workflows is freely available at:
https://github.com/abs-tudelft/ArrowSAM. Tools and libraries and their version
numbers used in our experiments are listed in Table 3.2.

Table 3.2 Tools and libraries used in the experimental setup

Tools/APIs Version
BWA-MEM [5] 0.7.17
Picard [6] 2.18.14
Sambamba [7] v0.6.8
elPrep [11] v4.1.5
Arrow C/C++/Java [8] 0.11.0
PyArrow [12] 0.11.0
Plasma object store [9] 0.11.0

Performance evaluation

In this section, we compare our approach with state-of-the-art tools and ap-
proaches used for pre-processing of genomics sequencing data. All speedups
are compared for best performance scenarios.

Picard tools are considered as benchmarks in genome analysis pipelines, such
as Picard MarkDuplicate. This tool was adapted to use our ArrowSAM in-memory
format. The MarkDuplicate process is compute intensive but there is a signifi-
cant amount of time (approximately 30%) spent in I/O operations. Picard uses
htsjdk as a base library to read/write SAM files. We modified this tool from two
perspectives:

• Instead of reading from and writing to files, it now reads/writes from in-
memory RecordBatches, using only those fields/columns necessary for
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Figure 3.2 Execution time of Picard, Sambamba, elPrep and ArrowSAM based sorting and
MarkDuplicate for whole genome (top) and whole exome (bottom) data sets.
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MarkDuplicate operations.

• Picard is single threaded. We changed it to be multi-threaded so that each
thread can operate on a separate chromosome data set.

The first modification provides the benefit of using only the required fields to
perform MarkDuplicate operations instead of parsing all the reads in a SAM files.
As shown in Figure 3.2, our implementation gives 8x and 21x speedups on Pi-
card sorting for genome and exome data sets, respectively. Similarly for Picard
MarkDuplicate, we achieve 21x and 18x speed-ups on for genome and exome
data sets, respectively.

Sambamba is a multi-threaded tool to manipulate SAM files for pre-processing
steps in genomics pipelines. This tool gives close to linear speedup for up to 8
threads but adding more threads provides diminishing returns in performance on
a multi-core system. The main reason behind this is the file system itself. The I/O
communication gets saturated by initiating more threads and CPU performance
also degrades because of cache contention [7]. As shown in Figure 3.2, our imple-
mentation gives 2x speedup on Sambamba sorting for both genome and exome
data sets. Similarly for Sambamba MarkDup, we achieve 1.8x and 3x speedups
for genome and exome data sets, respectively.

elPrep is the latest set of multi-threaded tools for pre-processing SAM files in-
memory. We have also tested and compared these tools with our implementation
for pre-processing applications and results show that our implementation gives
more than 5x speedup over elPrep. elPrep performs sorting and mark duplicate
in a single command, with a total run-time for both stages equally divided in run-
time graphs Figure 3.2. Samblaster is yet another tool used for pre-processing
SAM files, which is faster than Sambamba, but has not been considered for perfor-
mance comparison here because it produces a different output for the MarkDu-
plicate stage than Picard.

3.1.5. Discussion
CPU usage: Figure 3.3 shows CPU utilization for standard Picard (left) as well as
ArrowSAM-based (bottom) sorting and MarkDuplicate for whole exome data. In
both sorting and duplicates removal stages, the parallelization offered by shared
memory plasma objects results in a large speedup. All 25 chromosomes are
sorted and duplicates are removed in parallel. In Picard sorting the CPU utilization
is poor and the tool is mostly waiting for I/O. The average CPU utilization is only
5%. The Picard MarkDuplicate also has very low CPU utilization, although better
than sorting. On the other hand, the CPU utilization of our implementation, which
uses pandas dataframes is much better than Picard sorting. The CPU utilization
of MarkDuplicate in our implementation remains close to 95% during the whole
execution stage. The improved CPU utilization is due to Arrow in-memory storage
and parallel execution of processes, each working on a different chromosome.

Memory access: Picard tools read a whole line from the SAM file and then
parse/extract all the fields from it. Using ArrowSAM, we only access those SAM
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Figure 3.3 CPU resources utilization for standard Picard (top) as well as ArrowSAM-based
(bottom) sorting and MarkDuplicate for whole exome data.
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fields which are required by that specific tool to process. In addition, due to the
columnar format of ArrowSAM, our implementation is able to better exploit cache
locality. Figure 3.4 shows a comparison of level-1 (L1), level-2 (L2), and last-
level cache (LLC) statistics for Picard as well as ArrowSAM-based sorting (left) and
MarkDuplicate (right) applications for whole exome data set. The figure shows
that, all levels of cache accesses decrease due to the fewer number of in-memory
fields that need to be accessed for the sorting and marking duplicates processes
in WES. Cache miss rate also decreases in all cache levels and particularly in L1
cache.

Memory usage: Unlike other tools, ArrowSAM data resides fully in-memory.
Therefore, all the data is placed in a shared memory pool of plasma objects. After
sorting, input plasma objects can be removed to free space for the new sorted
data which is used in subsequent applications. Other than this, no additional
memory is required for intermediate operations. elPrep is an alternative tool that
also uses in-memory processing. Memory used by ArrowSAM and elPrep for WES
and WGS data sets in pre-processing applications is shown in Table 3.5.

Table 3.3 Memory footprint for in-memory processing tools

Tool Exome Genome
elPrep 32GB 68GB
Arrow-based pandas and Picard 20GB 48GB

3.1.6. Related work
Many in-memory implementations of genomic variant discovery pipelines have
been proposed. Almost all these implementations are cluster scaled and do not
specifically exploit single node performance. Many use the input data parallelism
to distribute the jobs on a cluster [13] and some of them take the benefit of the
Apache Spark big data framework for in-memory data management [14, 15]. Our
focus is to exploit performance of single node systems.

In addition, some research focuses on creating new genomics tools and algo-
rithms that are more efficient than existing standard genomics pipelines [16].
ADAM [17], a set of formats and APIs uses Apache Avro and Parquet for storage
and the Spark programming model for in-memory data caching to reduce the I/O
overhead. The results show that ADAM is 3x slower than multi-threaded Sam-
bamba in small number of cluster cores up to 64. In elPrep [11], the authors
report 13x speedup over GATK best practices pipeline for whole-exome and 7.4x
faster for whole-genome using maximum memory and storage footprints. The
main drawback of these tools is lacking validation in the field which reduces their
impact.

Other research focuses on innovative hardware platforms to execute genomics
algorithms more efficiently [18]. In [19] a large pool of different types of memo-
ries are created and connected to processing resources through the Gen-Z com-
munication protocol to investigate the concept of memory-driven computing. The
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Figure 3.4 A comparison of level-1 (L1), level-2 (L2), and last-level cache (LLC) statistics
for Picard as well as ArrowSAM-based sorting (left) and MarkDuplicate (right) applications
for whole exome data set. (LLC ref. stands for LLC references)

memory is shared across running processes to avoid intermediate I/O operations.
This systems also allows byte-addressability and load/store instructions to ac-
cess memory. They reported 5.9x speedup on baseline implementation for some
assembly algorithms, the source code is not available. Some researchers use
high-performance hardware accelerators such as GPUs [20] and FPGAs [21] to
accelerate computationally intensive parts of genomics pipelines, but availabil-
ity of such accelerators in the field remains limited.

3.1.7. Conclusion
This paper proposed a new in-memory SAM data representation called ArrowSAM
that makes use of the columnar in-memory capabilities of Apache Arrow. The
paper showed the benefit of using ArrowSAM for genomic data storage and pro-
cessing for genomics data pre-processing: mapping, sorting and mark dupli-
cates. This allows us to process genomics data in-memory through shared mem-
ory plasma objects in parallel without the need for storing intermediate results
through I/O into disk. Results show speedup of 28x for sorting and 15x for mark
duplicates with respect to I/O based processing, more than 4x and 30% mem-
ory access reduction for sorting and mark duplicates, respectively, high CPU re-
sources utilization, as well as better cache locality. These results indicate the
potential of adopting a standard in-memory data format and shared memory ob-
jects for genomic pipeline processing. Future research will focus on extending our
work for the complete genomics variant calling pipeline. In addition, we plan to
integrate ArrowSAM into big data frameworks like Apache Spark to enable cluster
scale scalability of genomics applications.
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3.2. Performance optimization of GATK best practices
pipeline

Immense improvements in sequencing technologies enable producing large amo-
unts of high throughput and cost effective next-generation sequencing (NGS)
data. This data needs to be processed efficiently for further downstream anal-
yses. Computing systems need this large amounts of data closer to the pro-
cessor (with low latency) for fast and efficient processing. However, existing
workflows depend heavily on disk storage and access, to process this dataincurs
huge disk I/O overheads. Previously, due to the cost, volatility and other physical
constraints of DRAM memory, it was not feasible to place large amounts of work-
ing data sets in memory. However, recent developments in storage-class mem-
ory and non-volatile memory technologies have enabled computing systems to
place huge data in memory to process it directly from memory to avoid disk I/O
bottlenecks.

To exploit the benefits of such memory systems efficiently, proper formatted
data placement in memory and its high throughput access is necessary by avoid-
ing (de)-serialization and copy overheads in between processes. For this pur-
pose, we use the newly developed Apache Arrow, a cross-language development
framework that provides language-independent columnar in-memory data for-
mat for efficient in-memory big data analytics. This allows genomics applications
developed in different programming languages to communicate in-memory with-
out having to access disk storage and avoiding (de)-serialization and copy over-
heads. We integrate Apache Arrow in-memory based Sequence Alignment/Map
(SAM) format and its shared memory objects store library in widely used ge-
nomics high throughput data processing applications like BWA-MEM, Picard and
GATK to allow in-memory communication between these applications. In addi-
tion, this also allows us to exploit the cache locality of tabular data and parallel
processing capabilities through shared memory objects.

Our implementation shows that adopting in-memory SAM representation in ge-
nomics high throughput data processing applications results in better system
resource utilization, low number of memory accesses due to high cache local-
ity exploitation and parallel scalability due to shared memory objects. Our im-
plementation focuses on the GATK best practices recommended workflows for
germline analysis on whole genome sequencing (WGS) and whole exome se-
quencing (WES) data sets. We compare a number of existing in-memory data
placing and sharing techniques like ramDisk and Unix pipes to show how colum-
nar in-memory data representation outperforms both. We achieve a speedup of
4.85x and 4.76x for WGS and WES data, respectively, in overall execution time of
variant calling workflows. Similarly, a speedup of 1.45x and 1.27x for these data
sets, respectively, is achieved, as compared to the second fastest workflow. In
some individual tools, particularly in sorting, duplicates removal and base qual-
ity score recalibration the speedup is even more promising. The code and scripts
used in our experiments are available in both container and repository form at:
https://github.com/abs-tudelft/ArrowSAM

https://github.com/abs-tudelft/ArrowSAM
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3.2.1. Introduction
The genome of an organism is the complete set of its genetic material repre-
sented by its DNA sequence. Each cell in a human body contains a complete
replication of the approximately 3 billion base pairs (bps) of DNA. The genomics
field emphasizes on the understanding of structure, mapping and function of
individuals genes (the genome) to get insights into their interaction and evo-
lution with respect to one’s environment. In comparative genomics, complete
genome features of different spices are extensively compared (for example with
a reference genome) using computational tools. These comparisons can lead to
fully characterize the resemblances and differences in one’s genomic features,
trace down their origin or lineage, how the change or loss emerges throughout
the evolutionary lineages and discover ways to cure diseases caused by genetic
variations and developing personalized medicine and improving environmental
health [22].

Variant calling is indispensable for comparative genomics as it reveals deep in-
sights into nucleotide-level organismal differences in some specific traits among
populations from an individual genome sequence data. Variant calling dis-
cerns genetic variations in three categories like, single nucleotide polymorphisms
(SNPs), insertions and deletions (indels), and/or structural variants (SVs, may also
include Copy Number Variations (CNVs), duplication, translocation, etc). An SNP
reports a single base change in two genomes while the DNA around that base re-
mains unchanged. Indels are single bases which have been inserted, or deleted
in a genome when aligning to another reference genome. Structural variants are
observed in organism’s chromosome structures. Generally defined as a region
of DNA approximately 1 kilo base-pairs (kbp) or larger in size having variations
in the form of inversions, translocations or deletions, insertions and CNVs (also
called duplications). DNA sequencing reveals that CNVs are commonly observed
in various organisms, particularly in human, which vary from individual to indi-
vidual. Approximately two third of whole human genome is composed of such
repeats.

DNA can mutate in any of the somatic cells or in germinal cells (germ cells);
such variations are referred as somatic and germinal mutations, respectively.
Somatic analysis identifies the variations in normal and tumor affected tissues.
Somatic mutations/variations can cause cancer or other diseases. In germline
analysis the variations in an individual’s DNA inherited from parents are analyzed
to identify presence of inherited disease.

In whole-genome sequencing (WGS) the complete set of DNA sequences (both
the entire protein coding and the non-coding regions of the genome) of an organ-
ism are determined. This gives a comprehensive and precise fingerprint of the
whole DNA. Whole-exome sequencing (WES) instead just focuses on collecting
DNA sequences of some specific regions (like protein coding). WES samples are
typically sequenced at 100X or 30X coverage which focuses on less than ∼5% of
the complete genome. Both techniques have their own benefits. WES saves costs
and also gives more DNA coverage resulting in higher accuracy. WGS covers the
complete genome which is good for fully characterizing and understanding the
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genome.

Genome/Exome pre-processing

The pre-processed genomics data can be used for timely identification of gene
mutation, diagnosis of disease as well as the development of targeted thera-
pies. Generally pre-processing steps include alignment, sorting and duplicate
reads removal from target genome sequence data. Many tools have been de-
veloped for analysis of high throughput sequencing data, from local alignment
database search tools like BLAST [23], FASTA [24] to pairwise alignment tools
like MALIGN [25], EMBOSS [26], tools like BLAT [27] Bowtie2 [28] and BWA-
MEM [29] for short read sequence alignments and Minimap and Miniasm [30],
DALIGNER [31] and DARWIN [32] tools for long reads alignment and mapping.
Tools like SAMtools [33], Picard [6], Sambamba [7] and samblaster [34] are de-
veloped for alignment post-processing stages like indexing, sorting, duplicates
removal in SAM/BAM (Binary Alignment/Map) files.

Variant callers

GATK and FreeBayes are commonly used open-source tools for germline variant
calling analysis. Tools like VarScan [35], VarDict [36], MuTect2 [37] are used for
somatic variant calling analysis. FreeBayes [38], SNVer [39] and LoFreq [40] are
also used for both germline and somatic variant calling analysis. Pisces [41] and
Strelka2 [42] are recently developed open source tools by Illumina for short vari-
ant calling to analyze both germline and somatic variations. DeepVariant [43] is
deep convolutional neural network based variant caller.Both Strelka2 and Deep-
Variant variant callers outperform GATK, FreeBayes and SAMtools in PrecisionFDA
(pFDA) Challenges for precision and accuracy on indels and SNVs for different
data sets. The output of these tools is generated in the variant calling format
(VCF) to visualize and further analyze the detected variations.

Challenges in genomics data processing

Comparative genomics is a young field. To process and analyze genomics data,
the research community is actively working to develop new, efficient and op-
timized algorithms, techniques and tools, usually programmed in a variety of
languages, such as C, Java or Python. As we have mentioned earlier, in order
to construct a whole workflow for complete genome analysis, one has to use a
combination of different open-source tools. These tools share the following com-
mon characteristics that impose limitations on the performance achievable by
the genomics workflow.

• These tools are developed to use traditional I/O file systems, which incur
a huge I/O bottleneck in computation due to disk bandwidth [4]. Each tool
reads from the I/O disks, computes and writes back to disk.

• Due to the virtualized nature of some popular languages used to develop
genomics tools (such as Java and Python), these tools cannot exploit mod-
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ern hardware features like multi-core parallelization, Single instruction,
multiple data (SIMD) vectorization and accelerators (like GPU or FPGAs) per-
formance very well.

• In between processes data communication developed in different lan-
guages, a huge (de)-serialization and copy overheads incur.

Motivation

New storage-class memory (SCM) technologies will soon replace the existing
long latency and block-based data transfer HDDs/SSDs storage. Intel’s phase-
change memory (PCM) based Optane DC (Data Center) Persistent Memory is one
of the first candidates in this paradigm to accelerate big data workloads for in-
memory analytics and provide fast startup-times for legacy applications/virtual
machines in cloud environments [44–46]. Using these memories to store SAM
data in columnar format and shared memory objects can provide benefit in many
aspects to improve overall system throughout:

• One is related to the tabular nature of genomics data (SAM) in-memory.

• Second is related to underlying hardware technology to exploit the maxi-
mum cache spatial locality and SIMD vectorization capabilities of modern
multi-core systems.

• Third is to avoid (de)serialization of data when processing in different lan-
guages. Shared memory objects of SAM data can be processed in parallel.

We use DRAM as an alternative to such memory technologies for evaluation pur-
pose because of its same characteristics of byte-addressability (load/store access
to memory) and lower latency.

3.2.2. Background
This section provides a short description of widely-adopted GATK variant calling
workflow, NGS technologies and the amount of data they produce and the
challenges in processing this data. A brief introduction to the Apache Arrow
framework and its Plasma shared memory API is also given.

Genome Analysis Toolkit (GATK): GATK [47] from the Broad Institute is con-
sidered as a benchmark for variant calling discovery.As the SAM [48] is a de-facto
format for storing NGS data, its compressed and indexed BAM [48] version is
used in GATK tools as input file(s). GATK tools produce variant calling outputs in
many different formats like VCF, GVCF and different useful statistics in text for-
mat. GATK internal architecture is based on the philosophy of MapReduce [49]
functional programming paradigm to achieve maximum parallel efficiency by dis-
tributing data among processes. In MapReduce programming, the computations
are accomplished in two steps; first the problem is divided into many discrete
independent tasks which are fed to the map function. After completion of tasks
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their respective outputs are merged into a reduce function to generate a final
output product. GATK reads/writes data files through htsjdk library, divides and
prepares data in traversals then processes in walker modules. The walker mod-
ules provide the map and reduce functions for data consumption [50].

GATK best practices workflows: For the analysis and interpretation of NGS
data to be used in clinical settings, different tools and workflows have been cre-
ated. GATK recommended best practices for variant calling proposes BWA-MEM
for mapping reads, while Picard or Sambamba can be used for sorting and mark
duplicates removal in the reads. Base Quality Score Recalibration (BQSR) in GATK
adjusts the quality score of reads by employing machine learning algorithm. The
following common GATK workflows [51, 52] are available in GATK4 for different
types of variant calling. 1. For identifying germline short variants (SNPs and in-
dels) in one or more individuals the Haplotypecaller algorithm is used to generate
a joint callset in VCF format. 2. Similarly MuTect2 is used for somatic short vari-
ants (SNVs and indels) identification in one or more tumor samples in a single
individual, with or without a matched normal sample. 3. For germline short vari-
ants (SNPs and indels) discovery in human exome sequencing data the workflow
uses intervals file in BED format while the Haplotypecaller algorithm is used to
generate a joint callset in VCF format.

Next-generation sequencing: technologies and data: The first ever Hu-
man Genome Project [1990—2003] concluded an initial sequence draft of human
genome consisting of approximately 2.85 billion nucleotides [53]. Since then,
genomics data has been increasing rapidly due to the innovations in genome
sequencing technologies and analysis methods. Second Generation Sequencing
(NGS) technologies like Illumina’s HiSeqX and NextSeq produce whole genome,
high throughput and high quality short read data at a total cost of $1K per
genome, which is expected to drop down below $100 for more advanced se-
quencing technologies. Third generation sequencing technologies are now capa-
ble of sequencing reads of more than 10 kbp in length, such as Oxford Nanopore,
Single Molecule Real-Time and Pacific BioSciences sequencing technologies. The
ongoing pace of these technologies promises even more longer reads of ∼100
kbp on average. Long reads produced by third generation sequencing technolo-
gies provide the prospect to fully characterize genomes at high resolution for
precision medicine [3].

Apache Arrow: The Apache Arrow [8] project was initiated by the Apache
Foundation in 2016. This framework provides an open and a common standard-
ized format for different programming languages for reading/writing tabular data
in-memory. Through language-specific libraries, multiple languages can share
data without any copying or serialization. This in-memory access of data through
Apache Arrow is illustrated in Figure 3.5. At the time of writing, Apache Arrow
supports the following languages: Go, C, C++, C#, Java, JavaScript, R, Rust, MAT-
LAB, Ruby and Python. Interfaces exist for GPGPU programming, through Arrow
CUDA interfaces. External tools to support FPGA accelerators also exist through
the Fletcher project [54]. In the Arrow format, data entries (records) are stored
in a table called a RecordBatch. Each record field is stored in a separate column
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of the RecordBatch table in a manner that is as contiguous as possible in mem-
ory. This is called an Arrow Array which can store data of different types—i.e.
int, float, strings, binary, timestamps and lists, but also nested types (such as
lists of lists, etc.). Arrays may have different types of physical buffers to store
data. This layout provides higher spatial locality when iterating over column con-
tiguous data entries for better CPU cache performance. SIMD (Single instruction,
multiple data) vector operations can also benefit from such a layout as vector
elements are already aligned properly in memory.

Storage Network

 

JVM
          Memory
(Serialize/deserialize and copy)

Java Apps Python Apps

C/C++ Apps
FPGA/GPU 
Accelerators

PVM/Interpreter

Figure 3.5 Left: An example where (de)serialization and copy takes place when data is
exchanged between different languages and platforms. Right: Apache Arrow provides a
unified in-memory format for data placement which can be used in many languages and
platforms avoiding the (de)serialization and copy overhead.

Plasma in-memory object store: Plasma is an inter-process communication
(IPC) component of Arrow, that handles shared memory pools across different
heterogeneous systems [9]. To perform IPC, processes can create Plasma objects
inside the shared memory pool, that are typically data buffers underlying an Ar-
row RecordBatch. Through the shared memory pool, Plasma enables zero-copy
data sharing between processes.

3.2.3. Implementation
In order to enable genome pre-processing applications and GATK to use in-
memory SAM data, two main optimization are required. First, we need to define
an in-memory Arrow representation of the SAM data. Second, the applications
need to be adapted to access the new in-memory SAM data as shown in Fig-
ure 3.6. These applications access, update and create new data fields as shown
in Figure 3.7. In the following, these two optimizations are discussed.

In-memory SAM format

The SAM file format is an ASCII based, tab delimited text format to represent DNA
sequence data. We create an in-memory SAM representation using the Apache
Arrow columnar format that consists of the same fields (columns) used in SAM to
store the corresponding data, this format is also explicitly explained in our previ-
ous work [55]. We call this the ArrowSAM format, this stores the data in Record-
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Batches. Each RecordBatch is a combination of a schema, which specifies the
types of data fields of ArrowSAM and the data itself, more details of in-memory
Arrow data representation can be found in [55].

Genomics applications can use ArrowSAM to create RecordBatches of genomics
data in-memory.

RecordBatch columnar data can be deleted/updated in the same application
but to make data usable in other applications we have to use shared memory flat
buffers.

Memory
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Figure 3.6 In-memory architecture of GATK best practices recommended workflow using
Arrow in-memory SAM representation for all intermediate steps.

BWA-MEM integration: BWA-MEM is the most popular alignment algorithms
in the bioinformatics community due to its efficient and accurate alignment of
raw FASTQ data against a large reference genome. After performing alignment
of each read, it creates a SAM record of twelve data fields as shown in Figure 3.7.
Instead of writing these records in a SAM file, we modified BWA-MEM to use the
ArrowSAM format and Arrow libraries to store these records in Arrow Buffers. We
have created as many such buffers as number of chromosomes. So we check the
reference name (RNAME) of each record and insert to its respective buffer. At
the end of the alignment process, all the buffers are converted to RecordBatches
which are inserted into shared memory pool.

Sorting through Pandas Dataframes: Randomly generated SAM reads
need to be sorted by their respective chromosome and individual coordinates
(begin positions) within a chromosome. Pandas is a powerful and easy to use
python library, which provides data structures, data cleaning and analysis tools.
Dataframes is an in-memory data library that provides structures to store dif-
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ferent types of data in tabular format to perform operations on the data in
columns/rows. Any row in a dataframe can be accessed with its index, while a
column can be accessed by its name. A column can also be a series in pandas.
Using dataframes with python arrow bindings (PyArrow) illustrates the powerful
capabilities of in-memory data representation. Tools like Picard, SAMtools and
Sambamba are used to sort the reads in a SAM file according to the chromosome
name and start positions of each read. This type of sorting becomes computa-
tionally intensive when the whole SAM file needs to be parsed and sorted based
on these two fields. In contrast, our implementation uses pandas dataframes to
sort each individual chromosome based on the start position of reads in that par-
ticular chromosome. This reduces the computational effort needed to sort the
reads since we already assign them to the RecordBatch that belongs to their own
chromosome. Therefore, we only need to sort them based on their position. We
create new RecordBatches for each chromosome with sorted data as shown in
Figure 3.7.

All shared memory objects of chromosomes are fed to pandas dataframes to
sort in parallel. After sorting, the new sorted chromosomes RecordBatches are
stored in shared memory by deleting previous shared memory objects, to be
used by subsequent applications.

Picard MarkDuplicate integration: After sorting the reads by their coordi-
nates, the duplicate reads with low quality should be removed. The MarkDupli-
cate tool in the Picard package is considered as a standard algorithm for duplicate
reads removal. This tool reads the SAM files two times, first when building the
sorted read end lists and second when removing marked duplicates from those
lists by comparing each individual read in the file. This tool has two main limita-
tions: first it reads SAM data sequentially from the input file, second it converts all
input file reads data into their corresponding SAM records. SAM files are usually
stored in disk in compressed format (called BAM) that has a compression ratio of
about 30%. This means every time we read and write these files to disk, we have
to incur a the overhead of compression and decompression. To overcome these
overheads, we just read the data as ArrowSAM format in-memory once, accessing
only five fields (QNAME, FLAG, RNAME, POS, CIGAR and RNEXT) as shown
in Figure 3.7, which are actually needed to perform the MarkDuplicate operation.
For this purpose, We have modified the htsjdk (a java API used in Picard, GATK and
many other tools for managing I/O access of high-throughput sequencing data
files) to access shared memory stored plasma objects, and parse them to their
respective RecordBatch. Each SAM read with the above mentioned five fields is
accessed via index. Each shared memory object contains one chromosome SAM
data. To take advantage of this, our implementation processes all chromosomes
in parallel by initiating as many Picard instances as number of chromosomes.
After processing reads, MarkDuplicate sets the duplicate bit in the FLAG field,
so only the FLAG field is updated in this process which is written in a separate
shared memory object for each chromosome. After completion of the MarkDu-
plicate stage, the sorted and updated duplicate flag data is available in shared
memory objects for further analysis.
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Figure 3.7 In-memory SAM data placement for all chromosomes (1-22, X, Y and M) in
GATK best practices workflow. Applications access it through shared memory plasma ob-
jects. For higher sequencing coverage data i.e. WGS data, each chromosome with size
more than 2GB is further divided for scalability.

GATK BaseRecalibration integration: Variant calling heavily relies on the
assigned base quality scores per base in individual reads. These scores are esti-
mates of sequencing machine errors in producing bases. However, these scores
are also affected due to systematic errors in the sequencing machines. BaseRe-
calibration finds systematic error patterns by analyzing how these errors vary
over all bases. Only seven fields are accessed: six fields (RNAME, POS, MAPQ,
CIGAR, SEQ and QUAL) from ArrowSAM records of shared memory objects
created in the ’Sorting’ process, and one (FLAG) field created in MarkDuplicate
process as shown in Figure 3.7. We have also modified the access to the htsjdk
library for this application similar to the MarkDuplicate application. All shared
memory objects of individual chromosomes are processed in parallel by initiating
as many as BaseRecalibration instances as number of chromosomes. All relevant
information generated by this tool is recorded in tables.

GATK ApplyBQSR integration: ApplyBQSR applies numerical corrections to
each individual base call based on the patterns identified in BaseRecalibration ta-
bles. This application generates new QUAL and INDEX fields which are written in
a separate shared memory object. In this application, the same seven fields are
accessed: six fields (RNAME, POS, MAPQ, CIGAR, SEQ and QUAL) from in-
memory SAM records of shared memory objects created in ’Sorting’ process and
one (FLAG) field created in MarkDuplicate process as shown in Figure 3.7. We
have also modified htsjdk library for this process similar to previous processes
except in generating output. Because we limit our processing to specific parts
of the genome by filtering out unused intervals as provided in a special filtering
file (called bed file), only those reads which fall in these specific intervals are
forwarded for further processing. To properly map the newly created QUAL field
output with that of original in-memory ArrowSAM data of the sorting process (to
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be used in the next application), we have appended an additional field ’index’.
This field stores the index of the original read. All shared memory objects of indi-
vidual chromosomes are processed in parallel by initiating as many as ApplyBQSR
instances as the number of chromosomes.

GATK Haplotypecaller integration: Haplotypecaller calls SNPs and indels
through local de-novo assembly in active regions. Active regions are those which
have some sufficient probability of variation. Here eight fields are accessed:
five fields (RNAME, POS, MAPQ, CIGAR and SEQ) from ArrowSAM records of
shared memory objects created in the ’Sorting’ application, one (FLAG) field cre-
ated in the MarkDuplicate application and two (QUAL and INDEX) field created in
the ApplyBQSR application as shown in Figure 3.7. We have also modified access
to the htsjdk library for this process similar to previous processes like ApplyBQSR.
First, the INDEX field is checked as an alternative to intervals, so that particular
index in the original ArrowSAM object created in the ’Sorting’ process is accessed.
This indexing technique has one benefit and also one drawback. In terms of ben-
efit, using the index field, we access only those fields which fall in given bed file
intervals for exome analysis. Drawback is related to cache performance. Due
to repeatedly changing the index during reads access, the cache spatial locality
cannot be exploited efficiently. The output of this process is generated in VCF file
format. Because we are processing all the shared memory objects of individual
chromosomes in parallel, separate chromosome files are generated which need
to be merged for further variants analysis.

3.2.4. Methods
We compare our ArrowSAM-based workflow to a number of popular workflows
used in the field. For alignment we use BWA-MEM for all workflows due to its high
accuracy and efficiency. For sorting and duplicate removal, Picard, Sambamba
and elPrep (sfm) have been used. GATK and elPrep are used for the base re-
calibration and variant discovery stages. The reason behind selecting elPrep for
performance comparison is the fact that it uses in-memory, and multi-threading
techniques for pre-processing and variant discovery, while reporting to produce
the same accuracy as that of GATK [11]. In contrast, our implementation also
facilitates in-memory and multi-threading features while using the exact same
Picard and GATK applications. The reason for selecting Sambamba for the com-
parison is its multi-threaded nature and for being more efficient than other open
source tools available for sorting and mark duplicate operations with the same
accuracy as Picard.

In the following subsections, we discuss the workflows used in comparison to
ArrowSAM based implementation.

Storage (BWA-MEM - Picard - GATK)

This combination of tools is used in almost all GATK recommended best practices
workflows for both whole genome and whole exome sequencing analysis. Both
reference and query raw data sets are placed in local storage and all applications



3.2. Performance optimization of GATK best practices pipeline

3

55

access data through local disk I/O. All the immediate results of each application
are also written in local disk in standard SAM/BAM files.

Storage (BWA-MEM - Sambamba - GATK)

Sambamba is used here as an alternative to Picard for sorting and mark dupli-
cates operations. Sambamba as mentioned earlier is faster than Picard for both
of these applications because of multi-threading. But unfortunately parallel per-
formance of Sambamba is limited and not scalable due to I/O saturation. All data
sets and immediate results of each application are using local storage for I/O.

ramDisk (BWA-MEM - Sambamba - GATK)

In this workflow, we use ramDisk (memory-mapped disk) instead of local storage,
since we can improve performance of these applications by placing data closer to
the processor. This way, all data sets and immediate results of each application
are kept in ramDisk in standard SAM/BAM files.

ramDisk (BWA-MEM - Sambamba - GATK (Parallel))

We can use some sort of naive parallelism for performance improvement in some
GATK applications. For example in whole exome sequencing, BaseRecalibration
application uses an interval file with -L option. If we split the interval file for
each chromosome and pass the individual interval files to multiple instances of
the BaseRecalibration application each executed for an individual chromosome
in parallel, it will generate output ’tables’ separate for each chromosome. Then,
ApplyBQSR can also use the individual chromosomes interval files and ’tables’.
So running the ApplyBQSR instances in parallel will generate new BAM files for
each individual chromosome separately. These individual chromosome BAMs and
interval files can be passed to parallel instances of Haplotypecallers, which will
generate separate VCF files for individual chromosomes. These VCF files can then
be merged in GATK.

ramDisk (BWA-MEM - Sambamba (Pipes) - GATK (Parallel))

We can use Unix pipes in some intermediate applications to redirect their stan-
dard output to other application in the workflow as their input to save the I/O time
and disk resources of local storage. Using Unix pipes, the output of an application
is not stored in disk, but is buffered in memory temporarily until it is consumed
by the next application in the pipe. We also naive parallelism for performance
improvement in some GATK applications as mentioned in above method.

ArrowSAM

This is our implementation proposed by this paper which uses in-memory Ar-
rowSAM format and shared memory plasma objects to exploit cache spatial lo-
cality and multi-core efficiency. 1) Alignment is done in BWA-MEM which has
already multi-threading support and output ArrowSAM data is placed in shared



3

56 3. Node-level performance optimizations using Apache Arrow

memory objects in respective chromosomes boundaries, 2) followed by coordi-
nates based sorting using Plasma dataframes on all chromosomes (chromosomes
greater than 2GB in WGS data sets are further divided with zero-copy overhead)
to run sorting algorithm in parallel. 3) Picard MarkDuplicate is then run on result-
ing shared memory data chunks in parallel creating new FLAG field in-memory.
4) GATK BaseRecalibration generates tables for all ArrowSAM data chunks in par-
allel, 5) ApplyBQSR creates QUAL field by running parallel on all ArrowSAM data
chunks and finally Haplotypecaller generates separate VCF files for each chromo-
some/chunk (in case chromosome greater than 2GB). These files are merged to
generate a final VCF using GATK for further analysis.

elPrep

As discussed earlier, elPrep [11] is a multi-threaded pre-processing tool to op-
erate on SAM/BAM data in-memory. In this tool, sorting, duplicate marking and
base quality score recalibration algorithms are optimized for parallel execution.
This tool has two runtime options, one is sfm, which uses less memory as com-
pare to the other one called filter, which uses a large memory pool for in-memory
processing. As reported in the paper, this tool has the same accuracy for pre-
processing of SAM/BAM data as that of the GATK recommended best practices
workflow. Therefore, we included this workflow for speedup comparison with all
other workflows as this tool is more closely related to our implementation in the
context of multi-threading and in-memory data placement and execution. Finally,
GATK Haplotypecaller is used for variant calling.

3.2.5. Results
For evaluation of our in-memory SAM format and Apache Arrow integration into
BWA-MEM, Picard and GATK tools, we have created a number of different work-
flows using state-of-the-art tools and techniques in accordance with GATK best
practices workflow for whole genome and exome sequencing. We have run all
these workflows with their recommended settings. In the "Performance evalua-
tion" section below we describe the measured performance, while we discuss the
results in the "Discussion" section.

The individual applications execution times of the various workflows for WES
are shown in Figure 3.8 while Figure 3.9 shows the execution times for individual
application for WGS. Similarly, the total execution times of the workflows are
shown in Figure 3.10 and Figure 3.11 for WES and WGS data sets, respectively.

Performance evaluation

In this section, we compare execution time of our GATK recommended best prac-
tices variant calling workflow using ArrowSAM with other state-of-the-art work-
flows as discussed in the "Methods" section on high throughput genome and ex-
ome data sets.
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Figure 3.8 Runtimes (in seconds) of individual variant calling applications on whole ex-
ome data set using different workflow options (i.e. ramDisk, Pipes for Sambamba and
chromosome wise parallelism in GATK).

Figure 3.9 Runtimes (in minutes) of individual variant calling applications on whole
genome data set using different workflow options (i.e. ramDisk, Pipes for Sambamba and
chromosome wise parallelism in GATK).

Storage (BWA-MEM - Picard - GATK)

This represents the baseline workflow. The main performance bottleneck in this
workflow is single-threaded disk I/O access of SAM/BAM file(s) by the htsjdk li-
brary which is used in Picard and GATK tools. This workflow takes highest runtime
from pre-processing to variant calling among all workflows.

Storage (BWA-MEM - Sambamba - GATK)

Replacing Picard with Sambamba for sorting and duplicate removal gives signif-
icant speedup in overall workflow execution as shown in Figure 3.8 and 3.9. But
Sambamba’s performance does not scale very well since increasing the num-
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ber of threads above 12 for sorting and mark duplicate gives no performance
improvement. Still, the individual time of sorting and mark duplicate is signif-
icantly less than the baseline with 12 threads resulting in an overall execution
time speedup of 1.5x as compared to the baseline for whole workflow.

ramDisk (BWA-MEM - Sambamba - GATK)

ramDisk is frequently suggested as an alternative for fast processing. We have
observed that for GATK, only a small performance improvement is achieved. In
the case of using ramDisk with Sambamba, there is even a reduction in perfor-
mance for WES.

ramDisk (BWA-MEM - Sambamba - GATK (Parallel))

Using ramDisk for Sambamba while running GATK in parallel for all chromosomes
is able to achieve a better performance improvement as compared to all previous
workflows. The speedup is 3.5x and 3x for WES and WGS data as compared to
the baseline workflow, respectively.

ramDisk (BWA-MEM - Sambamba (Pipes) - GATK (Parallel))

Redirecting output of BWA-MEM to Sambamba using Unix pipes slightly improves
the performance of ramDisk. This is the best possible scenario of performance
improvement as compared to previous workflows. It gives an overall speedup of
3.7x and 3.1x for WES and WGS data over the baseline workflow, respectively.

ArrowSAM

ArrowSAM based workflow is the fastest among all workflows. This workflow
is made as scalable as possible by employing widely used pre-processing and
variant calling algorithms of Picard and GATK. We achieve a speedup of 4.76x
and 4.85x for WES and WGS data in overall execution time as compared to
baseline workflow, respectively. Compared to the fastest parallelized workflow
(ramDisk (BWA-MEM - Sambamba (Pipes) - GATK (Parallel))), our ArrowSAM work-
flow achieves a speedup of 1.27x and 1.45x with WES and WGS data, respec-
tively.

elPrep

elPrep is a single application that can be used as a plug-in replacement for all
pre-processing tools. That is the reason individual applications runtime is not
shown in Figure 3.8 and Figure 3.9.

When using the sfm option, elPrep gives a speedup of 2.49x and 3.26x over
the baseline for WES and WGS data, respectively. However, it is 1.91x and 1.45x
slower than ArrowSAM for WES and WGS data, respectively. This tool also has
a filter option, which gives 4.7x speedup over the baseline and is only slightly
slower than ArrowSAM for WES data at the expense of using 4x more memory
than ArrowSAM. We are not able to run the filter option on WGS data due to large
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memory requirement. In the elPrep paper [11], the authors also do not show the
results with the filter option for WGS data.

Evaluation system

All experiments and comparisons are performed on a dual socket Intel Xeon
Server with E5-2680 v4 CPU running at 2.40GHz. Each processor has 14 physical
cores with support of 28 hyper-threading jobs. Both processors are connected
through Intel QuickPath Interconnect and share memory through non-uniform
memory access architecture. A total of 192-GBytes of DDR4 DRAM with a maxi-
mum of 76.8 GB/s bandwidth is available for the whole system. A local storage of
1-TBytes and the same amount of network attached storage is available on the
system. CentOS 7.3 Minimal Server operating system is installed. All workflows
are executed through bash scripts.

Tools: The Apache Arrow framework and all its related libraries (like cglib,
PyArrow and arrow-java) are installed in a Singularity container for ease of use to
external users. The installed tools are listed in Table 3.4 with their versions for
future reference.

Table 3.4 Tools and libraries used in the experimental setup

Tools/APIs Version
BWA-MEM [29] 0.7.17
Picard [6] 2.18.14
GATK [47] 4.0.12.0
Sambamba [7] 0.6.8
elPrep [11] 4.1.5
Arrow C/C++/Java [8] 0.11.0
PyArrow [12] 0.11.0
Plasma Object Store [9] 0.11.0

Dataset: We use Illumina HiSeq generated NA12878 dataset [56] with paired-
end reads of WES of human with 30x sequencing coverage. Similarly for WGS, we
use Illumina HiSeq generated NA12878 dataset sample SRR622461 with paired-
end reads with sequencing coverage of 6x (we further lower the coverage to 2x
due to memory limit on our evaluation system). Read length of 100 base-pairs is
used for all data. Genome Human Genome Reference, Build 37 (GRCh37/hg19) is
used as a reference genome. All workflows in our experiments use this data set
for both WES and WGS.

Table 3.5 Peak memory usage for in-memory processing tools.

Tool Exome Genome
elPrep (sfm) 6.8GB 68GB
elPrep (filter) 26GB X
ArrowSAM 7.2GB 69GB



3

60 3. Node-level performance optimizations using Apache Arrow

Memory footprint: Our implementation is solely memory based, so all the
data between BWA-MEM and Haplotypecaller applications remains in memory.
We only compare runtime peak memory utilization of elPrep and ArrowSAM since
in-memory resource requirements vary for intermediate operations. Table 3.5
lists the memory usage for both tools. elPrep uses almost the same memory as
ArrowSAM on WES data with the sfm option enabled and uses 4x more memory
with the filter option. For WGS data elPrep (sfm) and ArrowSAM have the same
memory footprint but elPrep (filter) memory footprint is not available due to the
large memory requirements beyond available system memory resources. This
use case is also not covered in the original elPrep paper. The results show that
ArrowSAM only uses memory that is comparable to the size of the SAM file for
both WES and WGS data sets.

Discussion

Here we discuss some characteristics and limitations of our implementation in
context of future perspective of in-memory data formats and processing for vari-
ant calling applications.

Parallelization and scalability: In ArrowSAM, all applications are capable to
process data in parallel. The chunks of SAM data can be based on chromosomes
or on the required data size. So that the memory plasma objects can be shared
between different applications, which results in a large speedup in the overall
runtime of individual applications.

CPU utilization: Depending on data partition in ArrowSAM, the maximum
number of CPUs can be used for processing data in individual applications.

Cache locality: Due to the in-memory columnar data format, our implemen-
tation is able to exploit cache locality efficiently. All levels of cache accesses
decrease in the sorting and mark duplicate applications, particularly due to the
fewer number of in-memory fields (mostly integer type) access as discussed
in [55]. Cache miss rate also decreases in all cache levels and particularly in
level-1 cache. In BaseRecalibration, ApplyBQSR and Haplotypecaller applications
we also exploit cache locality but it is not much significant as compared to previ-
ous applications because of two reasons, 1. algorithms for these tools are not de-
veloped in such a way to exploit cache locality efficiently, and 2. base sequences
(SEQ) and qualities (QUAL) fields are also being accessed which pollute cache
lines early in these applications.

Accuracy: We did not change any part of actual algorithms in all Picard and
GATK applications. Therefore, our results are exactly the same as in the original
implementation of both tools.

Code and scripts availability

The code for the in-memory ArrowSAM representation, all related Apache Arrow
libraries for C, Java and Python languages and plasma shared memory process
are installed on a singularity container which is is freely available at:
https://github.com/abs-tudelft/ArrowSAM

https://github.com/abs-tudelft/ArrowSAM


3.2. Performance optimization of GATK best practices pipeline

3

61

Figure 3.10 Total runtimes (in seconds) for complete variant calling workflows using dif-
ferent efficient options (i.e. ramDisk, Pipes for Sambamba and chromosome wise paral-
lelism in GATK) on whole exome data set.

Figure 3.11 Total runtimes (in minutes) for complete variant calling workflows using dif-
ferent efficient options (i.e. ramDisk, Pipes for Sambamba and chromosome wise paral-
lelism in GATK) on whole genome data set.
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3.2.6. Related work
Many in-memory implementations of genomics variant discovery workflows have
been presented in the literature. Many of these implementations are cluster
scaled and do not exploit single node performance taking advantage of the
Apache Spark framework [57] for in-memory data management like SparkGA [15]
and ADAM [17]. These implementations are not discussed in this paper. Our focus
is to exploit the performance of single node systems.

Aginome IMP Platform [58], a GPU based sequence analysis tool set which uses
in-memory database to store intermediate results for further analysis. To use in-
memory database, the IMP Platform modifies FreeBayes [38] and GATK for use
in variant calling. IMP with GATK speeds up the variant detection workflow by
30x, while IMP with FreeBayes improves the performance by 100x as compared
to the BWA-GATK workflow. However, this tool is not open-sourced. The Sentieon
Genomics Tools [59], report 10x performance improvement over GATK, MuTect
and MuTect2 workflows by eliminating intermediate files merging. This tool also
reports improving the performance of BWA-MEM by 1.9x times. However, this
tool is also not available publicly and the paper does not discuss the details of
the implementation.

elPrep [60], is a set of tools for pre-processing SAM/BAM files for variant calling.
It is a multi-threaded, single command plug-in replacement tool which processes
the data in-memory instead of reading and writing to I/O for each operation. In
elPrep 4 [11], the authors reported 13x speedup over GATK best practices work-
flow for whole-exome and 7.4x speedup for whole-genome data using maximum
memory and storage footprints, at the expense of excessive memory utilization.
They also compare the results for a cluster deployment to show the scalability
for high performance computing infrastructure. In memory-driven computing,
a large pool of different types of memories are created and connected to the
processing resources through the Gen-Z communication protocol. The memory
is shared across the processes being executed to avoid intermediate I/O opera-
tions. This systems also allows byte-addressability and load/store instructions to
access memory. [19] used a Gen-Z enabled platform for genomics and reported
5.9x speedup over the SAMtools baseline implementation for a number of DNA
assembly algorithms. The source code is not available.

Some researchers use high-performance hardware accelerators such as
GPUs [61] and FPGAs [62] to accelerate computationally intensive parts of ge-
nomics pipelines, but availability of such accelerators in the field remains limited.

3.2.7. Conclusion
In this work, we integrate our Apache Arrow in-memory SAM representation (Ar-
rowSAM) into genomics pre-processing and variant calling applications.

Our implementation shows that adopting in-memory SAM representation in ge-
nomics high throughput data processing applications results in better system re-
source utilization, low number of memory accesses due to high cache locality ex-
ploitation and parallel scalability due to shared memory objects. We compare a
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number of existing in-memory data placing and sharing techniques like ramDisk
and Unix pipes to show how columnar in-memory data representation outper-
forms both. We achieve a speedup of 4.85x and 4.76x for WGS and WES data
sets in overall execution time of variant calling workflows, respectively. Similarly,
a speedup of 1.45x and 1.27x for these data sets is achieved, as compared to the
second fastest workflow.

In future work, to feed the processor fast and properly formatted data, in-
memory data management techniques will be explored more rigorously to lever-
age the benefits of modern hardware features like multi-cores, vector units and
to exploit cache locality in the presence of persistent memory technologies. We
also plan to use ArrowSAM in big data frameworks like Spark for cluster level
scalability of genomics applications.
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4
Apache Spark & Apache Arrow

based variant calling
Prelude: Based on the benefits of ArrowSAM integration into variant calling appli-
cations as discussed in the previous chapter, we widen the usage of this format for
big data frameworks like Apache Spark. Apache Spark leverages the benefits of
Apache Arrow for vectorized operations in user-defined functions using dataframes
in PySpark. We integrate the DeepVariant-based whole variant calling pipeline in-
cluding alignment, sorting, duplicate removal applications to process SAM data in-
memory. We introduce a highly scalable chromosome region-specific data partitioning
approach. We also compare both existing Apache Spark based variant calling work-
flows like ADAM and SparkGA2 with this implementation. The content of this chapter
is based on our journal article entitled, "VC@Scale: Scalable and high-performance
variant calling on cluster environments" [1] which was published in the Oxford Giga-
Science journal in 2021.
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4.1. Overview
In the past couple of years many new deep learning based variant calling meth-
ods like DeepVariant has emerged as more accurate method as compared to
conventional variant calling algorithms like GATK HaplotypeCaller, Sterlka2, Free-
bayes albeit at higher computational costs. Therefore, there is a need for more
scalable and higher performance workflows of these deep learning methods. Al-
most all existing cluster scaled variant calling workflows that use Apache Spark
and Apache Hadoop as big data frameworks loosely integrate existing single node
pre-processing and variant calling applications. Using Apache Spark just for dis-
tributing/scheduling data among loosely coupled applications or using I/O based
storage for storing intermediate applications output does not exploit the full ben-
efit of Apache Spark in-memory processing. In order to achieve this, we propose
a native Spark-based workflow that uses Python and Apache Arrow to enable ef-
ficient transfer of data between different workflow stages. This benefits from the
ease of programmability of Python and the high efficiency of Arrow’s columnar
in-memory data transformations.

Here we present a scalable, parallel and efficient implementation of next gen-
eration sequencing data pre-processing and variant calling workflows. Our de-
sign tightly integrates most pre-processing workflow stages, using Spark built-in
functions to sort reads by coordinates, and mark duplicates efficiently. Our ap-
proach outperforms state-of-the-art implementations by more than 2x for the
pre-processing stages, creating a scalable and high performance solution for
DeepVariant for both CPU-only and CPU+GPU clusters.

We show the feasibility and easy scalability of our approach to achieve high
performance and efficient resource utilization for variant calling analysis on HPC
clusters using the standardized Apache Arrow data representations. All codes,
scripts and configurations used to run our implementations are publicly available
and open sourced:
https://github.com/abs-tudelft/variant-calling-at-scale

4.2. Introduction
Immense improvements in Next Generation Sequencing (NGS) technologies en-
able producing large amounts of high throughput and cost-effective raw genome
datasets. On the one hand, this development paves the way to analyze more
genomes with higher accuracy, but at the same time this creates the compu-
tational challenge of processing such a large amount of data in a timely fashion.
The approximate raw data size of the human genome sequenced using NGS tech-
nologies is 300 GB when sequenced with 30x coverage, and can be more than 1
TB raw data with 300x sequencing coverage. The ongoing pace of development
of these technologies promises even longer reads of up to 100 kbp and with more
coverage depth.

To process and prepare raw data for downstream analysis, many open-source
and proprietary bioinformatics tools and workflow are available to run on single-
node machines. But due to the continuous growth in genomics datasets, process-

https://github.com/abs-tudelft/variant-calling-at-scale
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ing this data on a single node becomes inefficient and time consuming because
of Input/Output bottlenecks, limitations on the number of physical cores in a sin-
gle CPU and memory capacity constraints. To scale up these tools for distributed
computing environments, both high performance computing (HPC) programming
models (using MPI) and big data frameworks (using Hadoop and Spark) have been
explored in the past decade.

MPI (message passing interface) implementations leverage the benefits of dis-
tributed memory architectures in inter-node communication. The workflow can
exploit the maximum bare-metal performance of such multi-node clusters using
shared memory MPI implementations. Previously, too little emphasis has been
put on developing MPI based cluster scaled bioinformatics tools and workflows.
The reason can be the lack of fault-tolerance [2], redundant data replication, and
complexity to develop parallel algorithms in this approach. However, new fault-
tolerance models for MPI [3] can enable fault-tolerance mechanisms for such ap-
plications and workflows. Similarly, the availability of one-sided communication
in new MPI-3 RMA (Remote Memory Access) standard promises better perfor-
mance gains in the applications while requiring no (or very little) inter-node data
sharing and communication. Many tools in a variant calling workflow exhibit such
property of not sharing data between the nodes and may run independently (with
the exception of sorting).

Apache Hadoop [4] is a MapReduce framework used to process chunks of big
datasets in parallel on large cluster nodes in a fault-tolerant and reliable manner.
MapReduce usually splits the input data into smaller chunks, runs these chunks
completely independently in map tasks, sorts the output of these tasks which is
fed to a reduce task as input to generate the final output. MapReduce exclusively
uses key-value pair input data to process, sort and aggregate the output based
on keys. Hadoop Distributed File System (HDFS) is commonly used to store the in-
put and output data on local compute nodes or on network storage nodes. Some
early variant calling workflows like Halvade [5] use this approach to exploit com-
puting cluster resources by running multiple legacy application instances (loosely
integrated in the Apache Hadoop Framework) in parallel on chunked input data.

Apache Spark [6] is a unified analytics engine to process big data in a dis-
tributed computing environment, with built-in modules for streaming data, dis-
tributed machine learning, SQL functions and graph processing. Spark also pro-
vides high-level APIs for Java, Scala, Python and R languages. In Spark, resilient
distributed datasets (RDDs) are the core components that are distributed across
the nodes of a cluster to be operated on in parallel. RDDs can be cached/persisted
in-memory across nodes to store intermediate results for iterative processing.
Spark commonly uses HDFS to read/write data, but also supports other storage
systems like NFS, HBase and Amazon’s S3. Many variant calling workflows and
tools have been developed over the last decade since its first release, including
SparkGA2 [7], ADAM [8], SparkBWA [9], BWASpark [10], PipeBWA [11], etc.

In this article, we propose and implement a new framework that combines the
advantage of easy programmability of Apache Spark and the high efficiency of
MPI. The resulting framework integrates Apache Spark NGS data pre-processing



4

76 4. Apache Spark & Apache Arrow based variant calling

Figure 4.1 Single node total runtimes for complete variant calling workflow using Deep-
Variant for different datasets.

with the Apache Arrow in-memory data format. Our framework tightly integrates
pre-processing (reads sorting and duplicate removal) applications in Python using
distributed Dataframes (DF) based sorting and vectorization. This is the first ever
such implementation for genomics data to exploit the benefits of Apache Arrow
in-memory data format in Apache Spark. The key contributions of our approach
are as follows:

• The first scalable approach for DNA data pre-processing that uses Apache
Arrow for efficiently utilizing compute resources while preserving easy pro-
grammability

• Improved performance of up to 2x compared to state-of-the-art scalability
approaches

• Integration with DeepVariant to create the first scalable open source Deep-
Variant workflow on Apache Spark

This article is organized as follows. In Section "Background and related work",
we discuss single node and cluster scaled pre-processing and variant calling
workflows, followed by Section "Methods" which presents the in-depth details
of the new Apache Arrow based data format for NGS data. In Section "Design
and Implementation", the internal design flow and implementation details of our
new efficient workflow are discussed. Furthermore, Section "Results and Evalua-
tion" describes the results of our implementation using different nodes configu-
rations with different sequencing coverage/depth datasets to show the scalabil-
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Figure 4.2 a) Python programs in Spark require inefficient data serializa-
tion/deserialization between Python and JVM processes (using the Py4j library). b) Ef-
ficient data communication between frameworks/languages using Apache Arrow uni-
fied in-memory columnar data format with zero-copy overhead and different languages
APIs/interfaces availability in Spark cluster.

ity and the performance comparisons with state-of-the-art methods. In Section
"Discussion", more detailed insights on performance, scalability, resources uti-
lization and memory consumption are given. Finally, Section "Conclusion" ends
with some concluding remarks and possible future directions.

4.3. Background and related work
In this section, first we introduce and discuss some tools used to pre-process NGS
data followed by a discussion of some widely used cluster scale variant calling
workflows.

4.3.1. Pre-processing NGS data
Pre-processing of NGS data requires a number of steps: 1. alignment of raw
FASTQ data against a reference genome, 2. chromosome based coordinate
sorting, and 3. Polymerase Chain Reaction (PCR) duplicates removal (optional,
only required if data is not PCR-free or in some datasets for better accuracy).
These steps are common in all most every variant calling workflow. There are
many tools available publicly to pre-process NGS data efficiently on single node
machines. Bowtie2 [12] and BWA-MEM [13] tools are widely used for short
read sequence alignments.SAMtools [14], Picard [15], Sambamba [16] and sam-
blaster [17] are some of the most famous and widely used tools for the purpose
of indexing, sorting, and duplicates removal in SAM/BAM/CRAM files.
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4.3.2. Variant calling
Variant calling reveals deep insights into nucleotide-level organismal differences
in some specific traits among populations from an individual genome sequence
data. It discerns genetic variations in three categories like single nucleotide
polymorphisms (SNPs), insertions and deletions (indels), and/or structural vari-
ants (SVs, may also include Copy Number Variations (CNVs), duplication, translo-
cation, etc). The GATK HaplotypeCaller is a widely used variant caller to de-
tect germline variations. DeepVariant [18] is being considered a more accurate
germline variants caller for both short and long reads. Tools like VarScan [19],
VarDict [20], MuTect2 [21] are used for somatic variant calling analysis. NeuSo-
matic [22, 23] is deep convolutional neural networks based somatic variant caller
which runs in both standalone and ensemble modes (MuTect2, MuSE, Strelka2,
SomaticSniper, VarDict, and VarScan2) for accurate somatic variants detection.
Octopus [24], FreeBayes [25], Strelka2 [26], SNVer [27] and LoFreq [28] are also
used for both germline and somatic variant calling analysis. The DeepVariant
variant caller based workflow outperforms in both PrecisionFDA (pFDA) Chal-
lenges v1 [29] (highest SNP performance) and v2 [30] (all benchmark regions for
PacBio and multi, difficult-to-map regions for ONT). DeepVariant does not require
some additional pre-processing steps like base quality recalibration. Therefore
we selected this variant caller to integrate with our pre-processing workflow. As
shown in Figure 4.1, we run the fastest pre-processing tools with DeepVariant on
a single machine with different datasets to get an idea of individual tool runtime
in the workflow.

4.3.3. Cluster scaled workflows
There are many cluster scaled multi-node implementations available for align-
ment using both HPC languages like MPI/Unified Parallel C (UPC) as well as big
data framework like Hadoop MapReduce and Apache Spark. pBWA [31] and
mpiBLAST [32] use MPI and CUSHAW3 [33] uses UPC++. Similarly ADAM’s Can-
noli [8], SparkBWA [9] and PipeMEM [11] are a few Apache Spark based BWA-MEM
implementations that use BWA-MEM as loosely integrated underneath these im-
plementation while GATK BWASpark modifies the original BWA-MEM to exploit the
Spark scheduling and shuffling functionality to run BWA-MEM instances in parallel
on clusters.

ADAM, Halvade and SparkGA2 are few implementations that also handle whole
variant calling workflows based on GATK best practices including alignment, sort-
ing, duplicates removal and base quality score recalibration.

ADAM, Halvade and SparkGA2 use the built-in Scala API in Spark for sorting the
aligned reads. As Picard MarkDuplicate algorithm is considered as standard for
paired-end reads for duplicates removal, SparkGA2 and Halvade use this Picard
MarkDuplicate tool in Spark for distributed processing on cluster while ADAM has
implemented their own duplicates removal algorithm in Scala which is nearly
identical to the Picard MarkDuplicate algorithm. A more detailed comparison of
these workflows for each individual pre-processing stage output storage strategy
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is given in Table 4.1.

4.3.4. Apache Arrow in Apache Spark
Apache Arrow [34] is an in-memory standard columnar data format. Apache Ar-
row also provides API interfaces and functions to process datasets in Go, C, C++,
C#, Java, JavaScript, R, Rust, MATLAB, Ruby and Python languages. Due to the
columnar data storage, efficient vectorized data analytics operations and bet-
ter cache locality can be exploited. This in-memory format also supports zero-
copy reads for large datasets in inter-process communication without serializa-
tion/deserialization overheads. Figure 4.2 shows how a common Apache Arrow
based data format is being used in Apache Spark with different language inter-
faces.

Apache Spark leveraging Apache Arrow [35]: In this paper, we use Python
as the language to implement our workflow due to its high level of abstraction and
ease of implementation. It also has a stable API to Apache Arrow used in Apache
Spark to efficiently transfer data between JVM and Python processes.

Pandas user-defined functions (UDFs): The Python computation model in
PySpark on UDFs is scalar, i.e., during UDF evaluation, the JVM executor pro-
cess sends row data to PySpark workers which invoke UDFs on a row-by-row ba-
sis and send the results back to the executor process. However, the current
Spark/PySpark release uses immutable Arrow RecordBatches (RBs) data instead
of Spark built-in row based data. This enables vectorized UDFs evaluation on
these RBs using Pandas Dataframes, which in turn gives a huge performance im-
provement. Due to vectorized UDF operations, the reduced number of system
calls enables faster I/Os.

As traditionally Apache Spark uses a row based memory layout, using Arrow
RBs requires converting Spark row based data to Arrow RecordBatch and vice
versa to apply vectorized UDF operations in Pandas Dataframes. Some other
operations (like grouped data in Pandas Dataframes on UDFs, and converting
Spark Dataframes to/from Pandas Dataframes) are also becoming more efficient
using Arrow underneath, which is discussed in more details in Section "Methods".

Table 4.1 A comparison of NGS data pre-processing workflows with their output storage
approaches for each stage.

Framework Alignment (output) Sorting (output) Duplicates removal (output)

Halvade *.SAM in disk in-memory (elPrep) in-memory (elPrep)
SparkGA2 *.fq.gz in disk *.BAM in disk *.BAM in disk
ADAM ADAM Parquet in disk ADAM Parquet in memory ADAM Parquet in memory
VC@Scale (this work) in memory (Apache Arrow RecordBatches) in memory (PySpark DFs) in memory (PySpark DFs -> *.BAM)

Pandas function APIs: Python native functions can be applied on PyS-
park Dataframes, which input/output Pandas instances. Grouped map, map,
cogrouped map are a few Pandas API functions to apply on PySpark Dataframes.
These functions use Arrow to transfer data and Pandas to work on that data.
These functions share the same characteristics as those of Pandas UDFs.
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Figure 4.3 Performance comparison of Pandas dataframe to PySpark dataframe conver-
sion using Arrow and without Arrow and Python UDF (row-at-a-time) and Pandas vectorized
UDF (using Apache Arrow) operations: plus one, cdf and subtract mean.

UDF performance with/without Arrow: The Spark Python API supports
UDFs which operate one-row-at-a-time, resulting in a large serialization and in-
vocation overhead. Apache Arrow based unified memory format brings the ben-
efits of high performance and low overhead dataframes conversion (PySpark<-
>Pandas) and vectorized Pandas UDFs operations in Python native environments.
Because Spark inherently operates on row based memory layouts and Arrow data
format is columnar which requires row-column conversions (Spark row <-> Ar-
row RecordBatch) overhead when doing these operations. In Figure 4.3, we show
the performance comparison of 1) converting a Pandas dataframe to PySpark
dataframe with Arrow and without Arrow, 2) Python UDF (row-at-a-time) and Pan-
das vectorized UDF (using Apache Arrow) for plus one, 3) cumulative probability
distribution function (cdf), and 4) subtract mean examples [36].

4.4. Methods
In this section, we discuss the details of architectural approaches we have
adopted in this work for processing the variant calling workflow.
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Figure 4.4 Static load balancing technique adopted in this work for BWA-MEM output
which divides chromosomes based regions to join and process them in parallel for all fur-
ther workflow stages.

Overview
The benefits of using distributed big data frameworks to process genomics data
are fourfold: they provide easy and flexible deployment, efficient cluster scala-
bility, fault-tolerance, as well as cheaper costs on public clouds and private HPC
clusters. Traditionally, these frameworks use distributed file systems like the
Hadoop distributed file system (HDFS) or the Network File System (NFS) for stor-
age. The intermediate processing stages place data in-memory on-demand if
enough memory is available in the form of RDDs. RDDs generally store data in
their internal row format while Apache Arrow provides an efficient columnar data
format to create distributed RDDs of Arrow RecordBatches object types.

To validate the scalability and performance advantage of our Apache Arrow
based in-memory data placement, shuffling, conversion and computation tech-
niques in Apache Spark using PySpark, we present the design methods for a full
variant calling workflow. We have also developed high performance and scalable
but very simple, portable and stand-alone methods for BWA-MEM and DeepVari-
ant scalability on HPC clusters using traditional I/O based storage.

Variant calling workflow
In this subsection, we describe the various stages of the variant calling workflow
that we designed, as shown in Figure 4.5. We start with the implementation of the
pre-processing stages (alignment, sorting and duplicate removal) using Apache
Arrow in-memory data format for temporary data storage in Plasma Stores, shuf-
fling/conversion of data and transformations/computations on this data. The re-
sultant data from these pre-processing stages is saved in BAM format. Each BAM
file contains the reads of a particular chromosome and a specific region inside a
chromosome. Variant caller (DeepVariant) instances process these BAM files on
worker nodes and produce VCF files which are merged to produce a final VCF file.
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FASTQ chunks streaming
We use the SeqKit [37] to create the FASTQ input chunks in parallel with BWA-MEM
for input paired-end NGS data as shown in 1 of Figure 4.5. SeqKit is an efficient
multi-threaded utility, through which we provide this FASTQ data to BWA-MEM
instances in streaming fashion, without the need to create FASTQ chunks sep-
arately. The number of created FASTQ chunks can be configured in the SeqKit
command option, depending on the number of nodes available in the Spark clus-
ter.

Arrow integration in BWA-MEM
BWA-MEM is the most popular alignment tool in the bioinformatics community
due to its efficient and accurate alignment algorithm for short reads. In our im-
plementation, each Spark cluster worker node runs one BWA-MEM instance as
shown in 2 of Figure 4.5. We have modified BWA-MEM to output in-memory
key-value pair SAM data instead of creating tab-delimited SAM files.

Key-value pairs: Key-value pair based data has proven efficient sorting per-
formance as compared to text/columnar data structures. For every read, after
creating its respective SAM fields we convert the whole read SAM data into a
key-value pair <POS:SAM> and with RNAME, an extra information in the structure
to store it in a designated immutable Arrow RecordBatch. Each RecordBatch is a
combination of a schema, which specifies the types of data fields and the data
itself. In our case, POS field is integer (Int) type while SAM and RNAME fields are
String type.

Static load balancing: Due to the size differences in the chromosomes of the
human genome, we created chromosomes regions for efficient scalability in BWA-
MEM and the same such trend is followed in subsequent pre-processing stages
as well. The number of regions is different for each chromosome to store reads
corresponding to their respective regions as shown in Figure 4.4. Each region in
each chromosome is on average equal to 40-50 million bps.

Plasma Object Store: The Plasma Object Store is an inter-process commu-
nication (IPC) component of Apache Arrow that handles shared memory pools
across different heterogeneous systems [38]. To perform IPC, processes can cre-
ate Plasma objects inside the shared memory pool that are typically data buffers
underlying an Arrow RecordBatch. We cannot use more than half of overall sys-
tem memory for these Plasma Stores. Through the shared memory pool, Plasma
enables zero-copy data sharing between the processes. The output SAM data
from BWA-MEM instances on each node is being stored in key-value pairs in re-
spective chromosomal regions using the Arrow in-memory format as shown in 3
of Figure 4.5.

flatMap() on BWA-MEM: We apply the PySpark flatMap() function on BWA-
MEM instances which use an already SparkContext parallelized/distributed col-
lection of input FASTQ chunks described in Section FASTQ chunks streaming. All
the BWA-MEM instances create Arrow RecordBatches of regions individual chro-
mosomes on their own respective nodes. These Batches are temporarily placed
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Figure 4.5 Complete design flow of the variant calling workflow implementation in
VC@Scale, this design encompasses Slurm Spark/GCP DataProc cluster, Lustre/GCP File-
store as file system, Apache Arrow as in-memory data format for pre-processing and Deep-
Variant as variant caller.
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in Plasma Object Stores on each node.
RDDs of Arrow RecordBatches: As soon as the alignment process on Apache

Spark worker nodes finishes, we create distributed RDDs of these Arrow Record-
Batch objects available across all the Spark worker nodes as shown in 4 of Fig-
ure 4.5. Each RDD occupies the RecordBatches of a particular chromosome (with
its specific region) distributed among all the worker nodes. Arrow RecordBatches
are filtered out in this step and cached into the Spark context of the master node.

RDDs to Dataframe: These RecordBatches in RDDs are serialized and a
PySpark schema is generated through corresponding Arrow schema enclosed in
these RecordBatches. Python objects to Java object conversion on RDDs is then
applied as shown in 5 of Figure 4.5. Finally, these resultant RDDs are converted
to Spark Dataframe through Scala PythonSQLUtils methods. At this point, we
have distributed Spark Dataframes of specific regions of each chromosome. We
process these specific chromosomes regions independently and in parallel in the
next sorting and duplicate removal stages.

Sorting
All the Spark Dataframes containing specific chromosome regions are sorted
( 6 Figure 4.5) by coordinates through df[n].orderBy(’beginPos’,
ascending=True) function. This function is very fast and efficient in sorting
huge distributed Dataframes. All the Dataframes are sorted in parallel using the
Python multiprocessing library Pool method.

Duplicates removal
Duplicate removal algorithms in this implementation were written from scratch
in Python for both single and paired-end reads. These algorithms are developed
using Pandas UDFs to apply on PySpark Dataframes which can use the Pandas
function APIs (df[n].groupby().applyInPandas()) to leverage the benefits
of Arrow for data transfer/conversion and transformations ( 7 Figure 4.5). For
paired-end reads, a Picard MarkDuplicate compatible algorithm has been devel-
oped. The accuracy of this algorithm is validated using different datasets, so
that they can be used as a cluster scalable replacement for the existing Picard
MarkDuplicate algorithm.

DeepVariant integration
DeepVariant is a being considered as an accurate variant caller for detection
of both SNPs and indels variants in germline datasets. Their published re-
sults show that DeeVariant performs best for most PrecisionFDA Truth Challenge
datasets [39]. We have observed that on a single node, DeepVariant scales very
well up to 6-12 threads. Therefore we have enabled running multiple DeepVari-
ant instances on each Spark worker node using the PySpark flatMap() function
( 8 Figure 4.5). Each of DeepVariant instance takes input BAM (and BED as well
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in case of WES data) and reference FASTA from the I/O based NFS and produces
individual VCF/gVCF files.

VCFs merge
Finally, the individual VCFs created through DeepVariant instances are merged
( 9 Figure 4.5) through Samtools to produce a final complete VCF file(s) for
further downstream analysis.

Standalone implementations
In addition to implementing the complete workflow, we can also use BWA-MEM
and DeepVariant as scalable stand-alone implementations capable of scaling al-
most linearly on HPC clusters depending on the input data size and number of
nodes available.

BWA-MEM: Almost all BWA-MEM cluster scaled implementations
(SparkBWA [9], BWASpark [10], PipeMEM [11], ADAM [8], and SparkGA2 [7]) run
multiple BWA-MEM instances on each Spark worker node as Spark tasks, which
degrades the underlying efficient single node multi-threaded scalability of this
tool. Instead we use one BWA-MEM instance on each Spark worker node, storing
output SAM files on storage and merging these SAM files to generate a single
output SAM file.

DeepVariant: We use Samtools to generate different BAM files representing
chromosome regions from a single BAM file in accordance with our human chro-
mosome regions based approach as discussed earlier in Section Arrow integration
in BWA-MEM. Similarly, we have divided the reference FASTA into individual chro-
mosome based FASTA files using faSplit [40]. The VCF/gVCF output files of these
instances can be merged through Mergevcf or Samtools.

4.5. Results and evaluation
In this section, first we shortly describe the datasets and HPC infrastructure
used in the evaluation of our techniques. In addition, we compare our results
with other state-of-the-art frameworks for both pre-processing and variant calling
stages followed by a detailed analysis and comparison of scalability, performance
and speedups with these frameworks.

Datasets
We use multiple whole genome sequencing datasets with varying coverage depth
to analyze the maximum possible scalability and performance of our methods.
The first dataset is sample ERR001268 from the 1000 Genomes Project (phase 3)
Illumina HiSeq generated WGS paired-end read data of NA12878 [41]. In addi-
tion, we used Illumina HiSeq 2000 paired-end NA12878 cell line data sequencing
sample ERR194003 [42] with sequencing coverage of 30x. We also used 300x
sequencing coverage WGS data from Genome in a Bottle (GIAB) aligned with
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novoalign for the Illumina HiSeq 300x reads for NA12878 [43] to analyze the scal-
ability of DeepVariant. Human Genome Reference, Build 37 (GRCh37/hg19) [44]
is used as a reference genome.

Evaluation HPC cluster
All experiments and comparisons are performed on the SurfSara Cartesius [45]
HPC cluster (part of the Dutch national supercomputing infrastructure). Each
CPU-only node is equipped with a dual socket Intel Xeon Processor (E5-2695 v2
or E5-2690 v3) running at 2.4/2.6GHz. Each processor has 12 physical cores with
support of 24 hyper-threading jobs. Similarly, each CPU+GPU node is equipped
with a dual socket Intel Xeon Processor (E5-2450 v2) running at 2.5GHz and 2x
NVIDIA Tesla K40m GPGPUs. Each processor has 8 physical cores with support of
16 hyper-threading jobs. A total of 64-GBytes (E5-2695 v2/E5-2690 v3) and 96-
GBytes (E5-2450 v2) of DDR4 DRAM with a maximum of 59.7 GB/s bandwidth is
available for the whole system. A local storage of 1-TBytes and the same amount
of network attached storage is available on the system. All nodes are connected
through Mellanox ConnectX-3 or Connect-IB InfiniBand adapter.

Lustre [46] distributed and parallel file system is attached to our evaluation
HPC cluster. Lustre file system has similar performance as of HDFS/YARN-based
Hadoop cluster for shuffle-heavy workloads in Apache Spark.

Red Hat Enterprise Linux operating system is installed on all nodes. Apache
Spark cluster is created in deploy-mode ’client’ thorough Slurm [47] Workload
Manager and all workflows are executed through bash scripts.

We also used a Google GCP DataProc cluster and Google cloud Filestore, a net-
work attached storage (NAS) to reproduce and run this approach on public cloud
environments. All the required applications are installed on Dataproc custom im-
age which is based on the DataProc 2.0.1-ubuntu18 operating system. A detailed
description and quick start guide to run all methods in this approach are given on
the project github page.

Pre-processing (BWA-MEM, Sorting, Duplicates removal)
Our approach performs pre-processing in a more tightly coupled fashion (i.e.,
using native PySpark functions) as compared to alternative solutions such as
SparkGA2 which stores the output of each of the pre-processing stages to stor-
age and loads it again for subsequent stages. We have tested the scalability and
performance of our architectural choices with that of SparkGA2 and ADAM for
different cluster sizes; 2, 4, 8 and 16 nodes have been used in almost all com-
parisons. Storing BWA-MEM output to in-memory key-value pairs using the Arrow
format involves almost zero cost overhead for loading data to the next sorting
stage. The only data transformation that happens between the alignment and
sorting stages is the conversion of RDDs containing Arrow RecordBatch objects
to PySpark Dataframes. This transformation is handled through the Apache Ar-
row APIs internally. A similar key-value pairs transformation of sorted Dataframes
to SAM values occurs before the MarkDuplicate stage. Compared to SparkGA2
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Figure 4.6 VC@Scale, SparkGA2 and ADAM comparisons of scalability for pre-processing
stages using different number of nodes for ERR194003 (2x) dataset.

and ADAM pre-processing results, more than 2x speedup is achieved for all clus-
ter sizes and for both ERR001268, and ERR194003 (2x) datasets for SparkGA2
while 2-4x speedup is achieved as compared to ADAM workflow pre-processing,
as shown Figure 4.6 and Figure 4.7, respectively.

Variant calling (DeepVariant)
DeepVariant is about 3x to 4x slower than GATK’s HaplotypeCaller on CPU-only
machines [48]. To make it scalable for clusters, we run each chromosome region
independently on a different Spark worker node. In our pre-processing stage, we
already store the load-balanced BAMs as individual chromosome regions. This
approach provides a very fruitful base for a subsequent variant calling stage
(DeepVariant in our case). For DeepVariant CPU-only version, we used a CPU clus-
ter with different number of nodes (2, 4, 8, 16, and 32) and with multiple datasets
like ERR001268, ERR194003 (2x), ERR194003 (30x) and NA12878 (300x). In Fig-
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Figure 4.7 VC@Scale, SparkGA2 and ADAM comparisons of scalability for pre-processing
stages using different number of nodes for ERR001268 dataset.

ure 4.10, the results show an increasing speedup for DeepVariant scalability on
a Spark cluster. In DeepVariant some smaller datasets perform best with just 16
nodes, while the processing trend of other datasets show even more scalability
when we increase the nodes from 16 to 32. The total runtime is decreased up to
8x as compared to a single CPU machine. DeepVariant consist of three steps: 1)
make_examples, 2) call_variants and 3) postprocess_variants. The first two steps
are the most time consuming (see Figure 4.1). To improve their performance, the
make_examples step is multi-threaded for reading inputs and creating examples,
while call_variants has been accelerated for GPUs. As shown in Figure 4.8, we
have observed in some datasets like ERR194003 (30x) that the call_variants step
takes up to 95% of the total time of DeepVariant. This step can be accelerated
on GPUs with almost 10x as shown in the GPU accelerated results of Figure 4.8.
Such acceleration makes DeepVariant more feasible to be adopted in practice.
We also use a GPU cluster to test our approach for DeepVariant scalability as
well as acceleration. Results in Figure 4.11 show more than 2x speedup with
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Figure 4.8 Single node CPU-only and GPU accelerated DeepVariant for ERR194003 (30x)
dataset.

Figure 4.9 Total runtime for DeepVariant based complete variant calling workflow
(VC@Scale) which uses best performance combination of nodes. For both datasets pre-
processing (BWA-MEM, Sorting and MarkDuplicate) is using 16 nodes while 32 nodes are
used for DeepVariant.
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GPU accelerated DeepVariant for the ERR194003 (30x) dataset as compared to
CPU-only.

Variant calling workflow
The total runtime results for whole variant calling workflow using BWA-MEM, Sort-
ing, MarkDuplicate and DeepVariant are shown in the Figure 4.9. Here we show
the best possible nodes configuration for both, pre-processing and variant calling
stages. For the dataset ERR194003 (2x), in pre-processing 16 nodes are the best
fit while 32 nodes give better scalability in variant calling. Similarly for dataset
ERR001268, 16 nodes provides best performance and scalability. The total run-
time is decreased by up to 5x as compared to a single CPU machine.

Standalone BWA-MEM & DeepVariant
Our workflow can also be used as two independent components: a standalone
BWA-MEM and a standalone DeepVariant component. The BWA-MEM component
represents the fastest standalone Spark-based scalable implementation com-
pared to other state-of-the-art BWA-MEM cluster solutions. In this solution we
achieve almost linear speedups with increasing the number of nodes. The output
is saved into separate SAM files which can be merged through Samtools to output
a single SAM file.

In this solution, an already created BAM file can be used with DeepVariant for
variant calling on cluster. As discussed earlier in Section Standalone implemen-
tations, we used Samtools to split the BAM file into our pre-defined chromosome
regions to generate load-balanced chromosome regions parts. In this way we ran
DeepVariant instances on Spark worker nodes. The output speedup and scalabil-
ity results are the same as mentioned in Section Variant calling (DeepVariant).

Standalone pre-processing (Piped)
In a standalone pre-processing pipeline, we use the following tools: BWA-MEM,
Sambamba (sorting, markdup) & Samtools (merge). This is a simple and efficient
implementation of pre-processing stages (alignment, sorting and markduplicate)
on a Spark cluster. We integrated already existing and widely used tools in this
workflow. Sambamba sorting and MarkDuplicate algorithms produce the same
output as Picard’s. In this approach, the master node streams the FASTQ data
to all worker nodes as discussed in Section FASTQ chunks streaming. All worker
nodes initiate one BWA-MEM instance. The BWA-MEM output is then piped into
Sambamba which performs both SAM to BAM conversion and sorting. The Sam-
bamba MarkDuplicate stage is optional. After these stages, we use the Samtools
merge algorithm to combine all the resultant BAM files into a single BAM file.
We have developed a demo with different nodes on a Google GCP DataProc clus-
ter, which is publicly available and can be tested with GCP. A complete guide to
execute this workflow is available on our project github page [49].
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Figure 4.10 VC@Scale-DeepVariant scalability for different datasets and the number of
nodes used in each run.
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Figure 4.11 GPUs accelerated VC@Scale-DeepVariant scalability for ERR194003 (30x)
dataset.
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Other variant callers support/integration
Any variant caller which can support region-specific variant calling can be inte-
grated into this workflow. We integrate Octopus [24], a recent and accurate/fast
variant caller as a use case to demonstrate the feasibility of integrating other
variant callers in this approach. We also performed a comparison on DeepVariant
and Octopus on Chr20 - HG003 Illumina WGS reads publicly available from the
PrecisionFDA Truth v2 Challenge and we found Octopus accuracy is almost iden-
tical to DeepVariant for both SNP and INDEL variants. We also provide a guide to
reproduce these both use cases on github.

4.6. Discussion
Here we discuss some of the advantages and limitations of our approach, in ad-
dition to the advantages of using Apache Arrow as a common in-memory data
format for variant calling workflows.

Portability of the implementation
The workflow implementations discussed in this paper are portable to many HPC
cluster environments. We use standard cluster solutions such as the Singularity
container, and the Slurm Workload Manager to deploy and reproduce them with
ease on other cluster environments.

Accuracy
To compare the small variants detection accuracy both in single node (default)
method and VC@Scale (distributed method), we used HG002 (NA24385 sample
with 50x coverage taken from PrecisionFDA challenge V2) dataset to detect SNP
and INDEL variants using DeepVariant (v1.1.0), against GIAB v4.2 benchmark set
for HG002 dataset. The GA4GH small variant benchmarking tool hap.py [50] has
been used to compare the resulting variants in both methods. Table 4.2 and Ta-
ble 4.3 list the accuracy analysis results in terms of recall, precision and F1-score.
The tables show that in general VC@Scale has very comparable accuracy results
to the baseline. Detailed inspection of the results shows that VC@Scale detects
the same number of INDEL true positives and false negatives, and a slightly lower
number of false positives compared to the baseline. This gives the same recall re-
sults, but ensures a slightly improved precision and F1-score. For SNPs, however,
VC@Scale detects slightly less true positives but more false negatives and false
positives. This gives a marginally degraded SNP recall, precision and F1-score.

Parallelization and scalability
Due to dividing chromosomes based on regions for load-balancing in the align-
ment stage, better parallelization is achieved per node in both pre-processing
and variant calling stages. In the examples in this paper, we created a total of
65 such regions, which allows us to scale up to 32 nodes for the pre-processing
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Table 4.2 Accuracy evaluation of small variants of HG002 (NA24385 with 50x coverage
taken from PrecisionFDA challenge V2 datasets) against GIAB HG002 v4.2 benchmarking
set. This table shows the SNP and INDEL results for "Chr1" on a single node (default) run.

Variant Truth total TP FN FP Recall Precision F1-Score

INDEL 42689 42390 299 131 0.992996 0.997053 0.995020
SNP 264143 262367 1776 351 0.993276 0.998665 0.995963

Table 4.3 Accuracy evaluation of small variants of HG002 (NA24385 with 50x coverage
taken from PrecisionFDA challenge V2 datasets) against GIAB HG002 v4.2 benchmarking
set. This table shows the SNP and INDEL results for "Chr1" on a cluster scaled (distributed)
VC@Scale implementation. "Chr1" has been chunked into ten parts.

Variant Truth total TP FN FP Recall Precision F1-Score

INDEL 42689 42390 299 127 0.992996 0.997142 0.995065
SNP 264143 262365 1778 355 0.993269 0.998649 0.995952

and DeepVariant stages. When using 32 nodes, two regions are being mapped to
each worker node. The total runtime of the workflow is determined by the slow-
est node in the cluster. As the size of the input data increases, making smaller
regions can give more scalability for higher number of nodes.

Two points are important to understand the scalability and performance pre-
dictability of such applications when using the Apache Spark framework. 1. Spark
always takes some fraction of time to initialize the underlying processes on its
worker nodes and also spends a similar amount of time in scheduling and col-
lecting the result. Therefore, increasing the number of nodes Spark uses, also
increases this overhead time. If increasing the number of nodes results in a small
overall processing time then it reaches a point where the above mentioned over-
head time surpasses the processing time. 2. Data size also influences the scal-
ability and performance of these applications and this is directly linked to our
previous point. When we increase the number of nodes, the data size is always
divided by the number of nodes being used. So we have to figure out the best
possible scenario of performance on the cluster when choosing the number of
nodes and data size being used.

System resources utilization
Existing Spark based variant calling workflows like ADAM, SparkGA2 and Halvade
launch multiple instances of BWA-MEM on each Spark worker nodes which de-
grades the actual performance of BWA-MEM instances on each individual node.
These workflows store the output of each stage to the disk which incurs some-
times I/O wait overheads as well as reading and writing to I/Os for each stage and
parsing text SAM or compressed BAM also involves some additional overheads as
shown in Figure 4.12. The figure uses the ERR194003 (2x) dataset with 16 nodes
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Figure 4.12 SparkGA2 cluster wide system resources utilization graph for pre-processing
stages.

Figure 4.13 VC@Scale cluster wide system resources utilization graph for pre-processing
stages.

cluster (the best scalable and optimized use case for both SparkGA2 and in our
approach). For comparison, we also show the system resource utilization for our
approach in Figure 4.13. In both approaches, the first 50 seconds are spent to
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load the FASTA index and to read the first FASTQ data chunk. In SparkGA2, the
I/O wait time is a bit higher than ours because it loads multiple indices for mul-
tiple BWA-MEM instances on each node while we just load one FASTA index on
each node. After loading the files, the actual alignment process starts. The fig-
ures show that in SparkGA2, a maximum of 78% CPU resources are being used for
BWA-MEM while in our approach almost 95% on average CPU resources are be-
ing used for BWA-MEM. Similarly, in Sorting only about 10% and in MarkDuplicate
50% on average CPU resources are being used in SparkGA2. In our approach, tim-
ing graph shows almost both stages take half of the total time with an average
of 60-65% utilization. Because Spark uses lazy evaluations of Dataframes op-
erations, we cannot distinguish exactly the timing for each operation separately.
Due to some internal shuffling and the PySpark to Pandas Dataframes conversion
via Apache Arrow, a slightly bigger amount of system time is being spent there.

Memory consumption
We use Plasma Object Store to place temporary BWA-MEM output data in-
memory on each node. These objects are removed when the Spark Dataframes
creation is accomplished. During this intermediate step we use a memory space
that is 2x the size of the SAM file. Similarly, during the sorting process, Spark
does a lot of internal shuffling which requires additional memory. In MarkDupli-
cate, we use Pandas UDFs which internally use the Arrow data format for PySpark
Dataframes to Pandas Dataframes conversion and vice versa. This step is also
memory intensive. This workflow in pre-processing stages, requires 2x memory
size as compared to SAM data produced by BWA-MEM stage on that worker node
while the master node requires memory size equal to total size of the SAM data
produced by all worker nodes. For DeepVariant stage, it only requires a couple of
GBytes memory on both worker and master nodes.

4.7. Conclusion
A scalable and high performance DeepVariant based variant calling workflow
for cluster scaled environments is presented in this paper. We employ FASTQ
data streaming technique to feed data to an alignment stage followed by an in-
memory data load-balancing method to store alignment output. Sorting and
mark duplicate stages are implemented in such a way to get benefits from
the Apache Arrow data format. The load-balanced BAM files output of the pre-
processing stages is used in DeepVariant, making variant calling more efficient
on a compute cluster.

Scalability analysis of our approach shows significant reduction in runtime com-
pared to a single node. For pre-processing stages, ERR001268 and ERR194003
(2x) datasets provide up to 7x and 8x for 16 nodes, respectively. For DeepVariant,
ERR001268 (1x coverage) gives 5x, ERR194003 (2x) gives nearly 8x, ERR194003
(30x) and NA12878 (300x) gives 12x speedup for 32 nodes as compared to sin-
gle node runtime. Similarly, our approach is faster than state-of-the-art work-
flows, such as SparkGA2, resulting in 1.8x and 2x speedup for ERR001268 (1x)
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and ERR194003 (2x) for pre-processing stages on 16 nodes, respectively. Our
architectural approache also increase efficient system resource utilization. For
pre-processing stages, we achieve 20% to 25% better processor utilization which
in turn helps to speedup overall processing. The variants accuracy analysis on
PrecisionFDA V2 challenge datasets against the GIAB truth v4.2 benchmark truth
data shows almost identical results as compared to single node runs. We also
show the flexibility of this approach to adopt other variant callers. We integrate
the Octopus variant caller as a use case for this purpose. We also demonstrate
the deployment of this approach on public clouds, currently, Google GCP Dat-
aProc cluster has been used for this purpose.
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5
Minimizing cluster data

communication overhead
Prelude: In the previous two chapters, we showed the benefits of the Apache Arrow
(in-memory columnar data format) based ArrowSAM format for optimizing compute
system resource utilization in variant calling pipelines. Arrow Flight is a submod-
ule in the Apache Arrow project which provides a data transfer protocol for high
performance, secure, parallel and cross-platform language support for bulk Arrow
data transfers across the networks. In Section 5.1, we briefly introduce this protocol
and provide detailed benchmarks for the client-server architecture and some recent
examples where Arrow Flight is being used as a microservice for data transfer in
distributed computing environments. In Section 5.2, we describe an Arrow Flight
based cluster scalable variant calling solution, which does not require any big data
or parallel programming language interface for genomics data processing in a cluster
environment. We compare the runtime and communication performance results with
MPI and Apache Spark based variant calling implementations. The content of this
chapter is based on our papers, entitled "Benchmarking Apache Arrow Flight – A fast
data transfer, query and microservices protocol" which is accepted for publication in
ACM SIGPLAN "Benchmarking in the Data Center" workshop at PPoPP 2022, and the
paper entitled, "Communication-Efficient Cluster Scalable Genomics Data Processing
Using Arrow Flight" which is under review.

105



5

106 5. Minimizing cluster data communication overhead

5.1. Benchmarking Arrow Flight Performance
Moving structured data between different big data frameworks and/or data ware-
houses/storage systems often cause significant overhead. Most of the time more
than 80% of the total time spent in accessing data is elapsed in serialization/de-
serialization step. Columnar data formats are gaining popularity in both analyt-
ics and transactional databases. Apache Arrow, a unified columnar in-memory
data format promises to provide efficient data storage, access, manipulation and
transport. In addition, with the introduction of the Arrow Flight communication
capabilities, which is built on top of gRPC, Arrow enables high performance data
transfer over TCP networks. Arrow Flight allows parallel Arrow RecordBatch trans-
fer over networks in a platform and language-independent way, and offers high
performance, parallelism and security based on open-source standards. In this
paper, we bring together some recently implemented use cases of Arrow Flight
with their benchmarking results. These use cases include bulk Arrow data trans-
fer, querying subsystems and Flight as a microservice integration into different
frameworks to show the throughput and scalability results of this protocol. We
show that Flight is able to achieve up to 6000 MB/s and 4800 MB/s through-
put for DoGet() and DoPut() operations respectively. On Mellanox ConnectX-3 or
Connect-IB interconnect nodes Flight can utilize upto 95% of the total available
bandwidth. Flight is scalable and can use upto half of the available system cores
efficiently for a bidirectional communication. For query systems like Dremio,
Flight is order of magnitude faster than ODBC and turbodbc protocols. Arrow
Flight based implementation on Dremio performs 20x and 30x better as com-
pared to turbodbc and ODBC connections respectively. We briefly outline some
recent Flight based use cases both in big data frameworks like Apache Spark and
Dask and remote Arrow data processing tools. We also discuss some limitations
and future outlook of Apache Arrow and Arrow Flight as a whole. Test codes and
scripts are available at
https://github.com/abs-tudelft/time-to-fly-high

5.1.1. Introduction
Transferring data between databases/data storage systems and client programs
in bulk amounts for machine learning applications or statistical analysis, is a com-
mon task in data-science. This operation is rather expensive as compared to sub-
sequent operations and becomes even more expensive when the data storage
server runs on a different machine or in a cloud environment. Open-source data
science developers/researchers and organizations heavily rely on the Python/R-
based data-science eco-system. Apache Parquet, ORC, Avro, and HDFS are com-
monly used binary formats to store data in compressed form other than text
based CSV format. Data serialization and de-serializations on different data pro-
cessing pipelines (e.g., converting to Pandas Dataframes) built in this eco-system
add an additional overhead before actual data can be processed. If data has to be
transferred from a remote DBMS server using the DBMS network protocol to these
applications, it becomes more expensive due to: i. reading from row-oriented

https://github.com/abs-tudelft/time-to-fly-high
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DBMS, ii. transferring via slower ODBC/JDBC network protocols, iii. converting it
to required columnar format. So converting row-store data to columnar format
is always a major source of inefficiency in data analytics pipelines [1]. As these
formats are designed to store imputable data structures (write-once and read-
many), because of this reason they are supposed to be helpful in data analytics
workloads only and are not susceptible for transactional workloads. Convention-
ally, row-store DBMS has been used for OLTP workloads, however recent work by
SAP HANA [2] paves the way to bring up column-oriented databases to the main-
stream by introducing a highly scalable and efficient query processing engine for
both transactional and analytics workloads. TiDB [3] is an open-source example
of such a hybrid database system, that supports both transactional and analyti-
cal workloads. It is both distributed and MySQL compatible, featuring horizontal
scalability, strong consistency, and high availability.

Apache Arrow provides an open-standard unified in-memory and columnar data
format. It alleviates the need of serialization/de-serialization of data through a
common format and by providing interfaces for different languages, which makes
zero-copy inter-process communication possible. Although Arrow targets mainly
OLAP (read-only) workloads, OLTP workloads can still benefit from it. Arrow Flight
a submodule in Arrow project provides a protocol to implement a service which
can send and receive Arrow (RecordBatches) data streams over the network.

In this work, we discuss the current state-of-the-art for Arrow Flight in terms
of development and its applications. We benchmark the performance of Arrow
Flight on both the client-server model as well as on the cluster environment and
examine the actual speed and bottlenecks in Arrow data transfer, query execu-
tion and in microservices usage in different distributed big-data/machine learning
frameworks.

The reminder of this paper is organized as follows: In section "Background", we
discuss the Apache Arrow and Arrow Flight internals and architecture in details,
followed by a "Data Transfer Benchmarks" sections, where Arrow Flight localhost
and client-server benchmarks are discussed. We then describe query subsystem
and Arrow Flight as microservice integration into some data analytic frameworks
in "Use Cases" section. In section "Future Outlook" a short future perspective
is given. At the end in "Conclusion" section we conclude this work by outlining
some future approaches and use cases.

5.1.2. Background
In this section, we outline the architectural and design aspects of Apache Arrow
and its APIs, particularly Arrow Flight, in detail.

Apache Arrow: Apache Arrow [4] intends to become a standard columnar
format for in-memory data analytics. Introduced in 2015, Arrow provides cross-
language interoperability and IPC by supporting different languages, C, C++, C#,
Go, Java, JavaScript, MATLAB, Python, R, Ruby, and Rust. Arrow also provides
support for heterogeneous platforms in the form of rapids.ai for GP-GPUs and
Fletcher for FPGA systems [5]. Apache Arrow is increasingly extending its eco-
system by supporting different APIs (e.g., Parquet, Plasma Object Store, Arrow



5

108 5. Minimizing cluster data communication overhead

Table 5.1 Example table stored as an Arrow RecordBatch

X Y Z
555 "Arrow" 5.7866
56565 "Data" 0.0
null "!" 3.14

Table 5.2 Arrow Buffers layout for data in Table 5.1

Arrow Buffers for:
Field X Field Y Field Z

Index
Validity
(bit)

Values
(Int32)

Offsets
(Int32)

Values
(Utf8)

Values
(Double)

0 1 555 0 A 5.7866
1 1 56565 5 r 0.0
2 0 null 9 r 3.14
3 o
4 w
5 D
6 a
7 t
8 a
9 !

Table 5.3 Schema for RecordBatch in Table 5.1

Field X: Int32 (nullable),
Field Y: Utf8,
Field Z: Double
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Compute, etc.) and many open-source libraries/tools are integrating Arrow in-
side them for efficient data manipulation and transfer. For example, TensorFlow
has recently introduced the TensorFlow I/O [6] module to support the Arrow data
format, the Dremio big data framework is built around the Apache Arrow eco-
system, pg2arrow (a utility to query PostgreSQL relational database), turbodbc
which supports queries in Arrow format, etc.

Arrow stores data in contiguous memory locations to make the most efficient
use of CPU’s cache and vector (SIMD) operations. In the Arrow format, data en-
tries (records) are stored in a table called a RecordBatch. An example of a Record-
Batch with three records (rows) and three fields (columns) is shown in Table 5.1.
As shown in Table 5.2, each field in the RecordBatch table is stored in a separate
memory region in a manner that is as contiguous as possible in memory. This
memory region is called an Arrow Field or Array which can store data of differ-
ent types—i.e., int, float, UTF8 characters, binary, timestamps, lists and nested
types. Depending on the data types, fields can have multiple Arrow Buffers to
store extra information about the data, such as a validity bit for nullable data
types, or offsets in the case of variable-sized lists. Through this approach, ac-
cessing data from random locations and in parallel with a minimum amount of
pointers traversing becomes possible. This approach makes Arrow less efficient
particularly in large write-updates of variable length strings which is a point of
concern for using Arrow in transactional workloads.

Each RecordBatch contains metadata, called a schema, that represents the
data types and names of stored fields in the RecordBatch. Table 5.3 shows the
schema of the example Arrow RecordBatch shown in Table 5.1.

Arrow Flight: Arrow Flight [7] provides a high performance, secure, paral-
lel and cross-platform language support (using the Apache Arrow data format)
for bulk data transfers particularly for analytics workloads across geographically
distributed networks. Using Apache Arrow as standard data format across all
languages/frameworks as well as on the wire, Arrow Flight data (Arrow Record-
Batches) does not require any serialization/de-serialization when it crosses pro-
cess boundaries. As Arrow Flight operates directly on Arrow RecordBatches with-
out accessing data of individual rows as compared to traditional ODBC/JDBC in-
terfaces, it is able to provide high performance bulk operations. Arrow Flight
supports encryption out of the box using gRPC’s built in TLS/OpenSSL capabili-
ties. Simple user/password authentication scheme is provided out-of-the-box in
Arrow Flight and provides extensible authentication handlers for some advanced
authentication schemes like Kerberos.

In basic Arrow Flight communication, a client initiates the communication by
sending the GetFlightInfo() command to the server. In case of a suc-
cessful connection, the server replies with available Flights by sending back
FlightInfo information, which contains so-called Tickets that define loca-
tions (or Endpoints) of streams of RecordBatches at the server side. Then, the
DoPut() command is used by the client to send a stream of RecordBatches to
the server, and the DoGet() command is used by the server to send a stream
back to the client. Both these commands are initiated by the client. Figure 5.1(a)
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Figure 5.1 a) Arrow Flight client-server communication protocol dataflow diagram for Do-
Get() operation. b) In depth Flight streams communication dataflow for accessing Record-
Batches in a stream. c) Flight streams endpoint. d) Inter-process communication format.
e) Arrow Flight cluster communication protocol dataflow diagram with multiple nodes and
a single planner node for DoGet() operation.

shows the data flow protocol diagram for an example Flight communication with
the GetFlightInfo() and DoGet() commands. In Figure 5.1(b), the client
uses the GetStream command to request one or more streams of RecordBatches
by calling their Ticket information. Figure 5.1(c) shows the internal structure of
Flight communication. Figure 5.1(d) shows the Flight protocol description within
each stream, which contains the stream metadata and RecordBatches.

Flight services can handle multiple Flight connections in a cluster environment
and can differentiate between them using a Flight descriptor, which can define
the composition of Flight connections with batch size, and either file name or SQL
query command as shown in Figure 5.1(e).

Distributed Columnar-store and Analytics

Relational databases are optimized for transactional workloads, which makes
them less efficient to support the needs of modern analytics applications. Query-
ing billions of rows on demand from a row-oriented database for analytics and
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statistical purposes becomes a bottleneck in real-time column-oriented data
analytics workloads. Moreover, production-ready analytics workloads and ML
pipelines mostly use public clusters and cloud computing infrastructures for a
couple of reasons including security, scalability, high-availability, lower costs and
on-demand easy to deploy functionality. All major cloud service providers present
their own distributed datastores like Google (Cloud SQL for OLTP and BigQuery
for OLAP systems), Amazon (AWS Redshift and AWS S3) and Azure (Cosmos DB
and Synapse Analytics) for both analytics and SQL. Apache Hive, Dremio, Presto
and Apache Impala are a couple of BI/data science SQL based engines built to
communicate with distributed datasets using different storage formats. The sup-
port of universal storage formats (like HDFS, ORC, CSV, Parquet) makes these
systems flexible to export data in any form and to any system for further pro-
cessing. For such a distributed data-store environment, it essential to provide
high-throughput methods to communicate large datasets between systems. The
Arrow format also supports local, Parquet, HDFS and S3 distributed file systems,
which makes Arrow Flight an important differentiator for Arrow-based applica-
tions.

DB-X Data Export to External tool: As reported in [1], the authors evaluate
the data export (to an external tool) performance of DB-X. They compared four
different export methods, (1) client-side RDMA, (2) Arrow Flight RPC, (3) vector-
ized wire protocol from [8], and (4) row-based PostgreSQL wire protocol. They
used the TPC-C ORDER_LINE table with 6000 blocks (approximately 7 GB total
size) on the server. By varying the % of frozen blocks in DB-X they study the
impact of concurrent transactions on export speeds. Figure 5.2 shows when all
the blocks are frozen, RDMA saturates the bandwidth while Flight uses up to 80%
of the available bandwidth. When the system has to materialize every block, the
performance of Arrow Flight drops to be equivalent to the vectorized wire proto-
col. RDMA performs slightly worse than Arrow Flight with a large number of hot
blocks, because Flight has the materialized block in its CPU cache, whereas the
NIC bypasses this cache when sending data. Overall the experiment shows that
(de)-serialization is the main bottleneck in achieving better data export speeds
in DBMS. Using a common data format in DBMS like Arrow can boost the export
speeds in-conjunction with the Arrow Flight wire protocol.

5.1.3. Data Transfer Benchmarks
Bulk data transfers over long-haul networks has become an integral part of mod-
ern data science applications. Reading and extracting required data from re-
mote datasets through remote data services like ODBC or JDBC is inefficient and
lacks support for current applications and frameworks. Although in the past
decade, file-based (text formats like CSV, JSON and binary formats like Avro,
ORC and Parquet) data warehousing has become popular, still raw data needs
serialization/de-serialization to a particular format when accessed/used by dif-
ferent applications on remote/local servers. With Arrow Flight, a unified Arrow
columnar data format can be used, which provides both over-the-wire data rep-
resentation as well as a public API for different languages and frameworks. This in
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Figure 5.2 Data Export – Measurements of export speed with different export mecha-
nisms in DB-X, varying % of hot blocks [1].

DoPut() [localhost] DoGet() [localhost]

Figure 5.3 Arrow Flight DoPut() and DoGet() throughput with multiple stream/threads
with varying number of records per stream (10-90 million) on a localhost.

turn eliminates much of the serializations overheads associated with data trans-
port.

Evaluation system: Arrow Flight based bulk data transfer benchmarks in this
section are executed on the SurfSara Cartesius [9] HPC cluster (part of the Dutch
national supercomputing infrastructure). Each CPU-only node is equipped with a
dual socket Intel Xeon Processor (E5-4650) running at 2.7 GHz. Each processor
has 32 physical cores with support of 64 hyper-threading jobs. A total of 256-
GBytes of DDR4 DRAM with a maximum of 59.7 GB/s bandwidth is available for
each node. All nodes are connected through Mellanox ConnectX-3 or Connect-IB
InfiniBand adapter providing 4×FDR (Fourteen DataRate) resulting in 56 Gbit/s
inter-node bandwidth.
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DoGet() [remote]DoPut() [remote]

Figure 5.4 Arrow Flight DoPut() and DoGet() throughput with multiple stream/threads
with varying number of records per stream (0.2-90 million) on a remote client-server nodes
connected through a Mellanox ConnectX-3 or Connect-IB InfiniBand adapter.

Client-Server Microbenchmarks

To measure the absolute speed and performance of Arrow Flight, we use the
Flight built-in performance benchmark written in C++ in both localhost and on
a network in a client-server setting. In localhost, a loopback network interface

Figure 5.5 iPerf3 based client/server benchmarking of TCP data send/receive overall
transfer throughput on a Mellanox ConnectX-3 or Connect-IB InfiniBand adapter based
system.

is established on a single computer node. Usually, in client-server model server
controls the communication between associated client(s) over the network. Fig-
ure 5.3 shows throughput variation of Arrow Flight data transport for localhost
while Figure 5.4 shows throughput for client-server settings. We use 1, 2, 4, 8
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Figure 5.6 Throughput comparison of IPoIB using iPerf3, Flight-over-IB and RDMA (Infina-
band) on a Connect-IB InfiniBand adapter based client-server remote system.

and 16 streams in parallel with each stream having 10-90 million records. Each
record contains 32 bytes. On localhost, both DoPut() and DoGet() functions
give a throughput in the order of 1GB/s for single stream up to 10GB/s with 16
streams in parallel. As the localhost processor has 16 physical cores on two sock-
ets with support of 32 hyper-threading jobs. So Arrow Flight performance shows
a significant increase in throughput when more parallel streams are employed.
We also observe that increasing the parallel streams more than 16 decreases
the overall performance. We run the client-server benchmark in a network [9] in
which every node has a Mellanox ConnectX-3 or Connect-IB (Haswell thin nodes)
InfiniBand adapter providing 4 × FDR (Fourteen Data Rate) resulting in 56 Gbit/s
inter-node bandwidth. We see the same trend in this remote data transfer setting
with throughput increasing from 1.2GB/s to 1.65GB/s for DoPut()while DoGet()
achieves 1.5GB/s to 2GB/s throughput with up to 16 streams in parallel.

To compare the throughput of Arrow Flight with other common communication
protocols, Figure 5.6 measures the throughput of Flight over InfiniBand (Flight-
o-IB) and two other communication protocols on the same network for remote
client-server communication: 1. the TCP protocol over InfiniBand (TCP-o-IB), com-
monly used for long-haul data communication, and 2. RDMA over InfiniBand
(RDMA-o-IB) protocol, commonly used for high-throughput cluster-based com-
munication. To measure TCP throughput, we use the iPerf3 [10] network per-
formance measurement tool with multiple parallel streams, which is able to mea-
sures raw TCP throughput with minimal overhead. For RDMA throughput, we use
the ib_write_bw (InfiniBand write bandwidth) tool which is part of the Perftest
Package [11]. Figure 5.6 shows that RDMA is able to achieve a high through-
put of 6.2GB/s (close to the theoretical max of 7GB/s) for a wide range of data
sizes. TCP, on the other hand, has a low throughput of about 2GB/s for small
data sizes (256B) that increases slowly as the data size increases, consistently
suffering from high overhead for a wide range of data sizes. In contrast, Flight
has extremely low bandwidth for very small data sizes of up to 1KB, but then
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Figure 5.7 A typical client-server communication for query execution [8]. (a) Without
Flight: a large amount of time spent in (de)-serialization of the result set is shown. (b)
With Flight: the total time spent in query execution on Arrow data with Arrow Flight based
communication eliminates any (de)-serialization overhead.

consistently outperforms TCP for larger sizes and is able to achieve about 95% of
the RDMA bandwidth (or more than 80% of the maximum achievable bandwidth)
for data sizes of 2.6GB or larger. This shows the capabilities of Flights to ensure
high throughput for bulk data transfers that is comparable to high-throughput
protocols such as RDMA over InfiniBand, while retaining the benefits of ease of
programmability, security, and allowing access to a wide range of web-based
services.

In addition, the figures show that Flight allows improving the throughput by
increasing the number of parallel streams. However, this is not the case for TCP,
as increasing the number of streams results in more network congestion and a
slight reduction in throughout.

5.1.4. Use Cases

This section presents some common use cases of Arrow Flight related to query
data transfer from a remote data service, and to Arrow Flight usage in big data
frameworks for distributed data transfers in a cluster to be consumed in microser-
vices.
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Query Subsystem

Transferring big amounts of data from a local/remote server to a querying client
is a common task in both analytics (statistical analysis or machine learning ap-
plications) and transactional database systems. As described in [8], a typical
client-server data communication scenario is shown in Figure 5.7, where the com-
munication time is heavily influenced by data serialization overhead.

Arrow Flight provides a standard in-memory unified columnar data format. Ex-
porting Arrow tables to any client language interface avoids (de)-serialization
overhead. Better columnar compression techniques and parallel Arrow streams
transfer make Arrow Flight ideal for efficient big data transfers.

In this section, we focus on Dremio, an production grade Arrow native ana-
lytics framework. We measure the performance metrics of different client side
protocols (ODBC and turbodbc) for querying on the Dremio remote client-server
and compare the results with Arrow Flight as shown in Figure 5.8. We also look
at two systems under development: Arrow Datafusion (an Arrow Flight based
client-server query API), and FlightSQL (a native SQL API for Arrow data).

Figure 5.8 Total time spent in querying NYC Taxi dataset on a remote Dremio client-server
nodes with varying number of records (1-16 millions) through ODBC, turbodbc and Flight
connections.

Dremio - ODBC: Dremio provides a custom ODBC driver for different client
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types. We used a Linux based Dremio ODBC driver and used it with the pyodbc
Python API to query the NYC Taxi database (in parquet format) from a Dremio
server running remotely in a cluster.

Dremio - turbodbc: We also used the Dremio ODBC driver to connect with
a Dremio client through the turbodbc Python API. Here too, we queried the NYC
Taxi database (in parquet format) from a Dremio server running remotely in the
same cluster.

Dremio - Flight: Dremio offers client and server Flight endpoint support for Ar-
row Flight connections that is also authentication OAuth2.0 compliant. Moreover
this implementation provides TLS encryption to establish an encrypted connec-
tion.

The runtime performance comparison results for all three methods on a sin-
gle select query are shown in Figure 5.8. Arrow Flight based implementation on
Dremio performs 20x and 30x better as compared to turbodbc and ODBC con-
nections respectively.

Data-Fusion - Flight: DataFusion is an in-memory, Arrow-native query engine
implemented in Rust. Though this framework is in its initial phases of develop-
ment, it does support SQL queries against iterators of RecordBatch in both CSV
and Parquet file formats. Both the Arrow Flight client and server implementations
are available. Figure 5.9 shows the results we obtained by running the Arrow
Flight client-server benchmark provided in Data-Fusion repository. We converted
NYC Taxi dataset used in previous Dremio demo to Parquet format and query the
same dataset for specific elements in each iteration.

Figure 5.9 Total time spent in querying NYC Taxi dataset on a remote Arrow Flight based
client-server nodes implemented in Data-fusion project with varying number of records
(0.1-16 millions).

Apache Arrow - FlightSQL: FlightSQL is a new proposal being implemented
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by the Apache Arrow community to become a standard way of accessing Arrow
data via SQL-like semantics over Flight. The main idea of this framework is to use
ODBC and JDBC data access best practices while maintaining the high throughput
facilitated by Arrow Flight.

Microservices Integration

Arrow Flight can be integrated into data transfer and remote data analytics mi-
croservices for efficient and parallel processing of Arrow columnar data using
many different frameworks like Dask and Spark, as discussed next.

Flight Data Microservice - Apache Spark [12]: This Arrow Flight based
microservice implementation is an early prototype test to showcase the read-
ing of columnar Arrow data, reading in parallel many Flight endpoints as Spark
partitions, this design uses the Spark Datasource V2 API to connect to Flight end-
points. Figure 5.10 shows performance comparisons in terms of total time for
default JDBC, serial flight, parallel flight and parallel flight with 8 nodes. This test
returns n rows to Spark executors and then performs a non-trivial calculation on
them. This test was performed on a 4x node EMR with querying a 4x node Dremio
AWS Edition (m5d.8xlarge) by the developer.

Flight Data Microservice - Apache Spark/TensorFlow Clients [13]: A ba-
sic Apache Arrow Flight data service with Apache Spark and TensorFlow clients
has been demonstrated. In this demo a simple data producer with an InMemo-
ryStore allows clients to put/get Arrow streams to an in-memory store. Existing
PySpark DataFrame partitions are mapped by a Spark client to produce an Ar-
row stream of each partition which are put under the FlightDescriptor. A PyArrow
client reads these streams and convert them into Pandas Dataframes. Similarly,
a TensorFlow client reads each Arrow stream, one at a time, into an ArrowStream-
Dataset so records can be iterated over as Tensors [13].

XGBatch - Pandas/Dask [14]: ML model deployment generally consists of
two phases. First, models are trained and validated with existing datasets to un-
cover pattern and correlations within the data. Then, the best performing trained
model is applied to new datasets, to perform various tasks, such as predicting the
probability scores in the case of classification problems, or estimating averages in
the case of regression problems [15]. In production environments, ML based ap-
plications usually have separate deployment methods for real time model needs
(e.g., an API or gRPC service, etc.) vs batch scoring (e.g., some form of Spark
or Dask based solution) [14]. Real time use cases need low latency for process-
ing millions of records each row at a time, while batch processes need to take
advantage of modern hardware features like multi-cores, vectorization, acceler-
ators (GPUs/FPGAs) and high throughput interconnects on cluster environments
to process and transfer the large amount of data quickly. XGBATCH as shown
in Figure 5.11 uses Apache Arrow’s Flight framework (which is built on the gRPC
protocol under the hood) to stream batches of data to the scoring service, which
in-turn scores it as a batch, and finally streams the batch back to the client. Using
Flight ensures low latency for real time use cases, as well as an efficient method
for scoring large batches of data.
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Figure 5.10 Performance results of Apache Arrow Flight endpoints integration in Apache
Spark using the Spark Datasource V2 interface. The results show the total time spent in
Spark default JDBC, serial Flight, parallel Flight and parallel Flight with 8-node connections.

FlightGrid/PyGrid - AI Models Training [16]: PyGrid is a peer-to-peer plat-
form for secure, privacy-preserving and decentralized data science and analyt-
ics. Data owners and scientists can collectively train AI models using the PySyft
framework. In PyGrid data-centric federated learning (FL) use cases, a lot of data
movement between domain and workers network is involved. In a FlightGrid im-
plementation for a simple network using mnist dataset with batch size 1024 and
pre-trained model with Arrow data format on Arrow Flight nodes shows more than
5x speedup with the same accuracy as compared to regular grid data.

The Mesh for Data platform - Arrow/Flight module [17]: The Mesh for
Data is a cloud-native platform to control the data usage within an organization
premises. It provides a platform to unify data access, governance and orchestra-
tion, enabling business agility while securing enterprise data. The arrow-flight-
module (AFM) for The Mesh for Data brings enforcement of data governance poli-
cies to the world of Apache Arrow Flight for fast and efficient data movement and
analytics within applications to consume tabular data from the data sources. Cur-
rently, AFM provides support for a couple of different file-systems, formats and
queries for Arrow datasets.

5.1.5. Future Outlook
Currently Flight service operations rely only on TCP data transport layer. Using
gRPC to coordinate get and put transfers on protocols other than TCP like RDMA
have huge potential to speed up bulk data transfers over the networks with RDMA
support. As shown in [1] for some typical databases, the data export speed to
some external applications while the majority of the blocks is in a frozen state can
utilize up to 80% of total available network bandwidth. This result suggests that
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Figure 5.11 A remote scoring microservice using Arrow data batches and communicating
via Arrow Flight.

bypassing the network stack for Arrow bulk data transfers via RDMA can easily
saturate high bandwidths networks. The Flight SQL proposal [18] which is being
implemented paves the way for client-server databases to directly communicate
with SQL-like semantics. This feature will enable browsing database metadata
and execution of queries while transferring data streams with Arrow Flight.

In the context of distributed systems, many different distributed columnar
databases and query engines also propose to integrate an Arrow Flight layer
support for data export to external applications/transfer bulk data in Arrow sup-
ported frameworks. In addition, many distributed AI/ML training and inference
workloads [6, 14] are also being equipped with Arrow Flight functionality.

Limitations of this work: This work is an early of what is possible with
Arrow format and Arrow Flight as an Arrow data transfer, querying and microser-
vice context. Arrow APIs including Arrow Flight are under heavily development
process for both new features addition and performance improvements. At the
same time all the projects discussed in this article are also under development.
We believe in coming months these projects will be matured enough to be inte-
grated into existing frameworks for both better performance and scalability.

5.1.6. Conclusion
Apache Arrow is a columnar in-memory data format which provides cross-
language support for data analytic applications and frameworks. It enables
fast data movement within big data frameworks eco-system by avoiding (de)-
serialization overheads. Arrow Flight is gRPC based framework which provides
high speed data communication services for Arrow data transfer over the net-
works. In this article, we demonstrated and benchmarked a couple of Arrow
Flight use cases. For bulk Arrow data transfer we benchmarked the throughput on
both local and remote hosts with varying batch sizes on a 7000 MB/s inter-node
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bandwidth. The maximum 1650 MB/s throughput achieved for DoPut() while Do-
Get() achieves upto 2000 MB/s throughput with upto 16 streams in parallel on
remote hosts. On local machine Arrow Flight achieves upto 10K MB/s through-
put. In genomics pipeline, the distributed regions specific chromosomes sorting
of ArrowSAM data achieves upto 500 MB/s throughput. Note that in this particular
scenario, all nodes are connected through Flight endpoints and sending/receiving
Arrow RecordBatch streams at the same time in parallel. We also included the
results of DB-X bulk data export speeds of different (client-side RDMA, Arrow
Flight, vectorized wire protocol and row-based PostgreSQL wire protocol) proto-
cols, where Flight protocol uses nearly 80% of total available bandwidth in case
all blocks are frozen. By comparing the results of different data querying APIs
like ODBC, turbodbc and Flight on a Dremio client also shows a significant perfor-
mance/data transfer time improvement when accessing/querying somehow big
size datasets. Arrow Flight based implementation on Dremio performs 20x and
30x better as compared to turbodbc and ODBC connections respectively. Rust
based Datafusion Flight API also provides client-server implementation for SQL
querying on CSV and Parquet data over Flight. Moreover, we also analysed some
microservices uses cases like Apache Spark and TensorFlow clients to put/get Ar-
row data streams in parallel where Flight can be used as a fast Arrow data trans-
fer layer to speedup the analytical processes on batches. Reading multiple Flight
endpoints in parallel as Spark partitions in a multi-node cluster as compared to
existing serial JDBC approach in Spark improves the performance by many folds.
Batch scoring/processing and remote ML models training/testing on single as well
as multi-node cluster environments on Arrow data through Flight has potential to
improve the performance of existing algorithms by an orders-of-magnitude.
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5.2. Arrow Flight based variant calling workflow
Current cluster scaled genomics data processing solutions rely on big data frame-
works like Apache Spark, Hadoop and HDFS for data scheduling, processing and
storage. These frameworks come with additional computation and memory over-
heads by default. It has been observed that scaling genomics dataset processing
beyond 32 nodes is not efficient on such frameworks.

To overcome the inefficiencies of big data frameworks for processing genomics
data on clusters, we introduce a low-overhead and highly scalable solution on a
SLURM based HPC batch system. This solution uses Apache Arrow as in-memory
columnar data format to store genomics data efficiently and Arrow Flight as a
network protocol to move and schedule this data across the HPC nodes with low
communication overhead.

As a use case, we use NGS short reads DNA sequencing data for pre-processing
and variant calling applications. This solution outperforms existing Apache Spark
based big data solutions in term of both computation time (2x) and lower commu-
nication overhead (more than 20-60% depending on cluster size). Our solution
has similar performance to MPI-based HPC solutions, with the added advantage
of easy programmability and transparent big data scalability. The whole solution
is Python and shell script based, which makes it flexible to update and integrate
alternative variant callers. Our solution is publicly available on GitHub at
https://github.com/abs-tudelft/time-to-fly-high/genomics

5.2.1. Introduction
Due to massively parallel sequencing methods used in high throughput sequenc-
ing (HTS) technologies are making their way from research to the field in a wide
range of applications ranging from clinical diagnostics to agriculture research.
Next Generation Sequencing (NGS) technologies like Illumina short-reads (a cou-
ple of hundred bases), can produce high throughput and higher depth DNA se-
quence coverage at low cost. Similarly, longer read third generation sequencing
technologies are also emerging as a more competitive alternative in terms of
cost and throughput with improving accuracy as compared to NGS. They can pro-
duce reads of up to hundreds of kilobases (kbps). Depending on the experiment
design, the need of sequencing coverage varies [19]. A typical 300x coverage
human genome dataset size exceeds 2 TBytes [19]. Processing this amount of
data on a single computing machine can take multiple days to complete.

High-throughput sequencing technologies are also enabling cancer diagnoses
and treatment beyond histopathology and traditional standard-of-care therapies.
Molecular and genomic profiling for patients and tumours at time of diagnosis
help in improving diagnostic accuracy, better predict outcome, and personalize
therapy [20]. Sequencing coverage influence both the accuracy and sensitivity
of such genomics analysis. In pediatric brain-tumor studies [20], more than 200x
coverage for the tumor sample, and more than 100x coverage for the normal
sample are collected for better focus on the concerned tumors.

In the coming years, as sequencing becomes a normal practice for human

https://github.com/abs-tudelft/time-to-fly-high/genomics
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health and other types of research, single node compute resources to any organi-
zation will not be adequate to fulfill the sequencing requirements. The increased
need for data processing will lead to use cluster scaled solutions and outsourc-
ing genomics computations to external private and public cloud services on data
centers.

Genonmics data processing pipelines (e.g, short-variants, structural variants
and copy-number variants discovery) involve many computational processing
steps. Sequence alignment and variant calling are two important steps while
intermediate steps like sorting, duplicates removal and base quality score recal-
ibration which use row-based SAM/BAM format to store the outcome of these
algorithms on I/Os. Generally genomics data formats (FASTQ/SAM/BAM) per-
mit independent compute and analytic operations on a granular level, i.e., even
smaller chunks can be processed without any dependency issues. This eventu-
ally helps to run genome analysis algorithms on multiple data chunks in paral-
lel. Halvade [21], which uses the Hadoop MapReduce API, while ADAM [22] and
SparkGA2 [23] use the Apache Spark framework and HDFS as a distributed file
system are few examples of frameworks which use big data frameworks to scale-
up variant calling pipelines on clusters. Because big data scalability requires
moving a lot of data between nodes in a big data analytics infrastructure, the
current row-based data storage formats and processing row-by-row make these
frameworks less efficient for linear scalability and high performance. These solu-
tions use Apache Spark/Hadoop as big data frameworks loosely integrate existing
single node pre-processing and variant calling applications. ADAM [22], for ex-
ample, introduces its own formats, APIs and processing engines. It is built on top
of Avro and Parquet for columnar I/O based storage. These solutions come with
extra memory overhead and scalability issues.

In order to address these overhead challenges, Apache Arrow in-memory
columnar data format in genomics applications has been shown to provide for
efficient storage, in-memory analytics and better cache locality exploitation in
addition to improved parallel computation [24, 25]. However, limitations in com-
munication overhead remain a challenge, thereby limiting scalability potential
of these solutions compared to their custom-made MPI-based HPC alternatives.
In this work we establish a case for low-overhead communication using Apache
Arrow Flight, enabling efficient scalability of pre-processing and variant calling
applications for NGS data on a cluster. This solution leverages the benefits of the
Arrow in-memory columnar data format and Arrow Flight wire-speed protocol for
shuffling data (between nodes) to sort reads after alignment. The whole workflow
is created in Python and Pandas dataframes, which enable computation/analytics
like sorting and duplicates removal of NGS data. This solution combines the easy
programmability and flexibility of big data pipelines with the high performance
and scalability of it HPC-based alternatives. The main contributions of this work
are as follows:

• BWA-MEM, a sequence alignment algorithm has been modified to output
Arrow in-memory columnar data instead of SAM file. Each BWA-MEM in-
stance on each executor creates 128 Arrow RecordBatches corresponding
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to chromosomes. This approach stores chromosomes regions level sorted
SAM reads.

• Arrow Flight data communication (receiver and transfer protocol) applica-
tions have been developed, which communicate with each other to shuffle
data through Arrow Flight end-points.

• On each executor node, Arrow data is converted to Pandas dataframes
through PyArrow APIs. A Picard MarkDuplicate compatible algorithm for
short-reads duplicates removal is developed in Python.

• The whole variant calling pipeline (alignment, sorting, duplicates removal
and variant caller) is managed through SLURM workload manager scripts to
use in-memory data for intermediate applications.

In summary, this implementation has following advantages over the existing
Apache Spark and MPI based workflows:

• As compared to Apache Spark based frameworks, this approach provides
more than 2x speedup, better cluster scalability, less memory footprints,
efficient system resource utilization and low communication overhead for
data shuffling in intermediate applications.

• When comparing with MPI based solutions, this approach has similar perfor-
mance for runtime but exhibits better cluster scalability. However, Python
ease of programmability and simple Arrow Flight based cluster creation
through SLURM or with any other workload manager makes this approach
more attractive and suitable for people with little knowledge of HPC sys-
tems and performance scalability.

This paper is organized as follows. In Section 5.2.2, a brief introduction of the
Apache Arrow in-memory data format, the Arrow Flight protocol and the SLURM
scheduler is given. Section 5.2.3 outlines some big data based pipelines for NGS
data processing. Our implementation for both pre-processing and variant calling
is described in Section 5.2.4, followed by Section 5.2.5, where we compare this
approach with existing frameworks in both performance and accuracy. In Sec-
tion 5.2.6, we discussed the results related to speedup, scalability, memory con-
sumption, Arrow Flight throughput. Finally we conclude this work in Section 5.2.7.

5.2.2. Background
In this section, we introduce genome sequencing technologies, NGS data, pre-
processing and variant calling followed by a short discussion on Apache Arrow
data format, Arrow Flight communication protocol and SLURM workload manager.

Genome sequencing and NGS data: To analyze an organism DNA for the
purpose of understanding and characterizing the unique features it exhibits, the
proper order of bases of its DNA should be determined. Different sequencing
technologies have been invented for this purpose. Previously widely used Sanger
sequencing, next generation sequencing (short reads) from Illumina and the lat-
est third generation sequencing technologies (long reads) from PacBio and Ox-
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ford Nanopore are most common technologies. These technologies produce mas-
sive amounts of raw genome sequencing data. To understand it and extract use-
ful information about the DNA bases variations in a genome, multiple computa-
tional processing steps are necessary to clean and arrange this data for down
stream analysis.

Pre-processing and variant calling: In comparative genomics, variant call-
ing analysis reveals deep insights into nucleotide-level organismal differences
in some specific traits among populations from an individual genome sequence
data. To accomplish this analysis NGS data requires a number of pre-processing
steps including sequence alignment, chromosome based coordinate sorting,
PolymeraseChain Reaction (PCR) duplicates removal and sometimes base qual-
ity score re-calibration. These steps are common in all most every variant calling
workflow.

Apache Arrow: Apache Arrow is an in-memory standard columnar data for-
mat. Due to the columnar data storage, efficient vectorized data analytics op-
erations and better cache locality can be exploited using this format. Apache
Arrow [4] is becoming a standard columnar format for in-memory data analyt-
ics. Introduced in 2015, Arrow provides cross-language interoperability and IPC
by supporting many languages such as C, C++, C#, Go, Java, JavaScript, MAT-
LAB, Python, R, Ruby, and Rust. Arrow also provides support for heterogeneous
platforms in the form of rapids.ai for GP-GPUs and Fletcher for FPGA systems
[5]. Apache Arrow is increasingly extending its eco-system by supporting differ-
ent APIs (e.g., Parquet, Plasma Object Store, Arrow Compute, etc.) and many
open-source libraries/tools are integrating Arrow inside them for efficient data
manipulation and transfer. For example, TensorFlow has recently introduced the
TensorFlow I/O [6] module to support the Arrow data format, the Dremio big data
framework is built around the Apache Arrow eco-system, pg2arrow (a utility to
query PostgreSQL relational database), turbodbc which supports queries in Ar-
row format, etc.

Arrow stores data in contiguous memory locations to make the most efficient
use of CPU cache and vector (SIMD) operations. Moreover, Arrow can efficiently
manage big chunks of memory on its own without any interaction with a specific
software language run-time, particularly garbage-collected methods. This way,
large data sets can be stored outside heaps of virtual machines or interpreters,
which are often optimized to work with few short-lived objects, rather than the
many large objects used throughout big data processing pipelines. Furthermore,
movement or non-functional copies of large data sets across heterogeneous com-
ponent boundaries are prevented, including changing the form of the data (seri-
alization overhead).

Arrow Flight: Arrow Flight is a submodule in the Apache Arrow project which
provides a protocol for transferring bulk Arrow format data across the network.
Apache Arrow is also being integrated into Apache Spark for efficient analytics for
columnar in-memory data. Arrow Flight [7] provides a high performance, secure,
parallel and cross-platform language support (using the Apache Arrow data for-
mat) for bulk data transfers particularly for analytics workloads across geograph-
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Figure 5.12 A simple Flight setup might consist of a single server to which clients connect
and make DoGet requests.

ically distributed networks. Using Apache Arrow as standard data format across
all languages/frameworks as well as on the wire allows Arrow Flight data (Ar-
row RecordBatches) to prevent any serialization/de-serialization when it crosses
process boundaries. As Arrow Flight operates directly on Arrow RecordBatches
without accessing data of individual rows as compared to traditional database
interfaces, it is able to provide high performance bulk operations. Arrow Flight
supports encryption out of the box using gRPC built in TLS/OpenSSL capabili-
ties. A simple user/password authentication scheme is provided out-of-the-box in
Arrow Flight and provides extensible authentication handlers for some advanced
authentication schemes like Kerberos. A simple Arrow Flight client-server setup in
which clients connect and establish connection to a server and preform DoGet()
operations is shown in Figure 5.12. The performance efficiency and throughput
of Arrow Flight connection in a remote client-server architecture have been ana-
lyzed. The throughput of DoPut() (client send a stream of RecordBatches to the
server) and the DoGet() (client receives a stream back from the server) opera-
tions is measured and shown in Figure 5.4. DoPut() throughput increasing from
1.9GB/s to 4.5GB/s while DoGet() achieves 2.5GB/s to 6GB/s throughput with 1
up to 16 Arrow streams in parallel.

SLURM Scheduler: SLURM is a portable and highly scalable cluster resources
management framework. Setting up jobs and resources in SLURM to get bare-
metal performance is easy and simple and it also provide both the robustness as
well as security needed for HPC applications.

5.2.3. Related Work
In the past two decades, both high performance computing (HPC) programming
models (using MPI) and big data frameworks (like Apache Hadoop and Spark)
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based solutions have been explored rigorously for genomics applications. Many
variant calling workflows and tools have been developed over the past decade,
including SparkGA2 [23], ADAM [22], SparkBWA [26], BWASpark [27], etc. Simi-
larly, MPI based parallel versions of the BWA aligner have been developed, such
as pBWA [28] as well as QUARTIC, the most recent MPI based BWA-MEM (align-
ment and sorting) [29] algorithm.

5.2.4. Implementation
While Apache Hadoop and Spark based solutions provide a simple and straightfor-
ward method for data parallelization for genomics workflows and particularly so-
matic/germline variant calling pipelines, still the overheads related to data com-
munication, memory usage and better scalability issues for big clusters remain
unsolved for such big data frameworks. We combine the benefits of the Apache
Arrow columnar in-memory data format in-conjunction with the high performance
wire-speed data transfer protocol, Arrow Flight. SLURM’s managed private cluster
is used for distributed and parallel NGS data processing. In the following, the im-
plementation details of pre-processing (alignment, sorting, duplicates removal)
applications and variant calling are discussed.

FASTQ Streaming and BWA-MEM: SeqKit [30] is an efficient multi-threaded
command line FASTQ/FASTA data manipulation software. SeqKit runs on a dedi-
cated node and streams out the same number of FASTQ data files as the number
of executor nodes available in the cluster in parallel. Each BWA-MEM instance
runs on a separate node in a cluster for performance purposes as shown in Fig-
ure 5.13. Each BWA-MEM instance produces in total 128 Arrow RecordBatches in
ArrowSAM [24] format. For human genomes, this division into separate chromo-
some chunks is derived from the ability of load-balanced parallel and indepen-
dent processing of NGS data on multi-cores and multi-nodes computing systems.

Arrow Flight Data Shuffling: Once the distributed BWA-MEM instances finish
the alignment task, Arrow Flight sender and receiver applications on each node
start sending/receiving a designated number of Arrow RecordBatches from all the
connected nodes through an Arrow Flight connection. Each node sends [128/N]
RecordBatches to all available executor nodes, where ’N’ is the total number of
executor nodes connected through Arrow Flight endpoints.

Arrow Data Merging: Flight receiver application on each node collects total
of 128 RecordBatches, coming from its own sender and the sender applications
of the rest of the executors. All RecordBatches of specific partitions are then
merged through pyarrow APIs and converted to pyarrow tables. The resultant
tables are efficiently converted to Pandas dataframes for some further sorting
and duplicate removal operations/analytics.

Pandas Dataframe Sorting: All dataframes on each node are sorted by co-
ordinates with the ’beginPos’ key in parallel. Sorting on Pandas dataframes
with size less than 2GB is efficient.

Pandas Dataframe MarkDuplicate: A Picard "MarkDuplicate" compatible
algorithm is developed for duplicate reads removal in pair-end short reads NGS



5

128 5. Minimizing cluster data communication overhead

 

Variant calling 

Store Sorted Dataframes to Files Sort Pandas Dataframes Merge PyArrow Tables Parallel Files Creation Storage I/O Memory (ArrowSAM) 

ArrowSAM ArrowSAM ArrowSAM 

output (*.sam, *.bam, *.vcf.gz, *.arrow, *.parquet) input (*.fastq and *.fasta) 

  Flight data merge, sort & store processes 
Alignment 

Streaming 

Arrow Flight Connections Arrow Flight Connections Arrow Flight Connections 

Figure 5.13 Detailed architectural design of pre-processing and variant calling workflow.
Input FASTQ data is being streamed to multiple BWA-MEM instances, which create the
ArrowSAM output. Arrow RecordBatches are being transferred/received through Arrow
Flight. These Arrow RecordBatches are finally merged, sorted, duplicates removed and
resultant output is written on IO, followed by variant calling.

data. The sorted dataframes go through this algorithm by updating the ’Flag’
field in case the read in a specific reads bundle is detected as a duplicate.

Intermediate Output: For further downstream variant analysis, any
variant caller can be selected in this workflow. All mainstream germline
(Strelka2, DeepVariant, Octopus) and somatic (Strelka2, Octopus, Neu-
Somatic) variant callers use (region-specific) chromosome coordinates like
"chr20:10,000,000-10,010,000". Since this approach outputs data to the
I/O with a total of 128 files, this partition is useful when multiple nodes are used
for variant calling. The resultant dataframe(s) can be stored on disk in the con-
ventional BAM file format and/or a columnar output file format options like Arrow,
Parquet and compressed Parquet for further downstream analysis. The columnar
formats are particularly suited for high performance I/O writing/reading.

Variant Calling: Any variant caller which can support region-specific variant
calling can be used in this approach. We use DeepVariant a recent and accu-
rate/fast variant caller as a use case to demonstrate the feasibility of using vari-
ant caller in this framework.

5.2.5. Evaluation
This section evaluates the scalability, throughput and speedup we have achieved
for pre-processing of NGS sequencing data in alignment, sorting and marking
duplicates stages against the existing frameworks. Here we compare two other
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existing state-of-the-art cluster scaled pre-processing implementations namely,
SparkGA2 [23] and QUARTIC [29].

SparkGA2: SparkGA2 [23] is a Apache Spark based cluster scaled implemen-
tation of GATK best practices variant calling pipeline. SparkGA2 starts FASTQ
streaming application and initiates multiple BWA-MEM instances on Spark execu-
tor nodes in parallel. It uses the built-in Scala API in Spark for sorting the aligned
reads. As Picard MarkDuplicate algorithm is considered as standard for paired-
end reads for duplicates removal, SparkGA2 uses this Picard MarkDuplicate in
Spark for distributed processing on cluster.

QUARTIC: QUARTIC (QUick pArallel algoRithms for high-Throughput sequenc-
Ing data proCessing) is implemented using MPI. Though this implementation uses
I/Os between pre-processing (alignment, sorting and mark duplicate) stages, it
still performs better than other Apache Spark based frameworks. These imple-
mentations efficiently exploit the multi-cores and multi-nodes parallelization on
HPC infrastructure. An MPI wrapper is created for the original BWA-MEM algorithm
while using parallel IO and shared memory for alignment. Sorting implements a
parallel version of the bitonic sort from scratch in MPI. Their duplicate removal
algorithm is based on Picard [31] MarkDuplicate written in MPI.

Experimental Setup

We have performed all the experiments and comparisons on the SurfSara Carte-
sius [9] HPC cluster (part of the Dutch national supercomputing infrastructure)
with each node is a dual socket Intel Xeon server with E5-2680 v4 CPU running
at 2.40GHz. Each processor has 14 physical cores with support of 28 hyper-
threading jobs. Both processors are connected through Intel QPI (QuickPath In-
terconnect) and share memory through NUMA (non-uniform memory access) ar-
chitecture. A total of 192-GBytes of DDR4 DRAM with a maximum of 76.8 GB/s
bandwidth is available for whole system. A local storage of 1-TBytes is avail-
able on the system. CentOS 7.3 Minimal Server operating system is installed.
All nodes are connected through Mellanox ConnectX-3 or Connect-IB InfiniBand
adapter.

Dataset: We use Illumina HiSeq generated NA12878 dataset with paired-
end reads of WES of human with 30x sequencing coverage. Read length of
100 base-pairs is used for all data. The Human Genome Reference, Build 37
(GRCh37/hg19), is used as a reference genome.

5.2.6. Results
Performance Evaluation

This section evaluates the performance gains in term of runtime speedups, ef-
ficiency and cluster scalability as compared to existing frameworks as well as
the Arrow Flight throughput over the network which enables the better overall
performance of this approach on clusters.

Runtime Speedup: For pre-processing applications, breakdown of execution
time of individual applications is shown in Figure 5.14. A scalable trend is ob-
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Figure 5.14 Breakdown of execution time for different pre-processing stages on the
HG002 dataset. A scalable trend is observed by increasing the number of nodes, also
for the communication part which traditionally is a bottleneck for scalability [23].

Figure 5.15 Overall pre-processing runtime performance comparison of different ap-
proaches by increasing the number of nodes. Apache Spark (SparkGA2), MPI (QUARTIC)
and this approach (Apache Arrow and Arrow Flight) are compared.
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Figure 5.16 Left figure shows the throughput (on each node) in MB/s with different pay-
load sizes (88-11 GB) with varying number of nodes from 4 to 32, while right figure demon-
strates the continued increase in throughput (on each node) when increasing input data
size from 11 to 88 GB on a 4 node cluster.

served by increasing the number of nodes, also for the communication and data
shuffling part in sorting which is explicitly measured here to show a linear de-
crease in it that is traditionally a bottleneck for scalability on Apache Spark clus-
ter. We also compared the overall runtime of pre-processing applications includ-
ing BWA-MEM, sorting and duplicates removal with the existing state-of-the-art
cluster scaled frameworks. Both the Apache Spark based framework (SparkGA2)
and MPI implementation (mpiBWA, mpiSORT and mpiMarkDup) have been run on
the same cluster with same datasets. Compared to SparkGA2 pre-processing re-
sults, more than 2x and 1.5x speedups are achieved, respectively, for all cluster
sizes as shown Figure 5.15. Regarding MPI based comparisons, our approach in-
curs a marginal overhead for 2 and 4 nodes cluster however increasing the nodes
size in cluster to 8 or more nodes, the overall execution time of our approach is
decreasing 20%-60%.

Cluster scalability: If the data size remains constant the overall runtime of
pre-processing applications can be scaled efficiently by doubling the number of
nodes. The total data size also influences the overall performance. As discussed
below, Arrow Flight gives better throughput when the Arrow data packet size is
big. Normally the Figure 5.15 does not highlight that linear scalability because the
total input data is also being being divided by the factor of nodes being increased.

Memory consumption: With the limited memory available per core on clus-
ters, using the Apache Spark framework incurs additional memory overhead due
to its built-in Java and Scala codebase which makes it inefficient to process both
computation and memory-bound applications. To prevent this extra memory
overhead we replace Apache Spark by SLURM, which is a memory-efficient alter-
native for cluster environments. As shown in Figure 5.13 after BWA-MEM (align-
ment) application, data shuffling, merging and sorting and finally duplicates re-
moval is solely being done inside memory. Though this requires almost two folds
extra memory of total data size but still this is much less than what is used in
Apache Spark based implementations.
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Table 5.4 Accuracy evaluation of small variants of HG002 (NA24385 with 50x coverage
taken from PrecisionFDA challenge V2 datasets) against GIAB HG002 v4.2 benchmarking
set. This table shows the SNP and INDEL results for "Chr1" on a single node (default) run.

Variant Truth total TP FN FP Recall Precision F1-Score

INDEL 42689 42390 299 131 0.992996 0.997053 0.995020
SNP 264143 262367 1776 351 0.993276 0.998665 0.995963

Table 5.5 Accuracy evaluation of small variants of HG002 (NA24385 with 50x coverage
taken from PrecisionFDA challenge V2 datasets) against GIAB HG002 v4.2 benchmarking
set.

Variant Truth total TP FN FP Recall Precision F1-Score

INDEL 42689 42390 299 127 0.992996 0.997142 0.995065
SNP 264143 262365 1778 355 0.993269 0.998649 0.995952

Arrow Flight Throughput: It has been observed that a maximum of 4.5GB/s
throughput is achievable for DoPut() while DoGet() achieves up to 6GB/s through-
put with up to 16 streams in parallel on remote hosts as shown in Figure 5.4. But
increasing the Flight connections in a cluster also effects this throughput. In
this implementation, every Arrow Flight connection on each node communicate
(sends and receives) with all available Arrow Flight end-points on all the nodes in
a cluster. This Arrow Flights connections scenario creates a network congestion
but achieves efficient data shuffling. As shown in Figure 5.16, a maximum 500
MB/s throughput was achievable in a 4 nodes cluster when each node is send-
ing more than total regions files (128) / number of nodes (4) in each iteration
to its neighboring nodes at the same time. This also shows that with increasing
the Arrow data packet size in each Arrow Flight steams promises much better
throughput on even small cluster.

Accuracy

SNP and INDEL variants detection accuracy of DeepVariant variant caller has
been compared in a single node and distributed environment. We used HG002
(NA24385 sample with 50x coverage taken from PrecisionFDA challenge V2)
dataset to detect SNP and INDEL variants using DeepVariant (v1.1.0), against
GIAB v4.2 benchmark set for HG002 dataset. The GA4GH small variant bench-
marking tool hap.py [32] has been used to compare the resulting variants in both
methods. Table 5.4 and Table 5.5 list the accuracy analysis results in terms of
recall, precision and F1-score for the single node and distributed approach, re-
spectively.
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5.2.7. Conclusion
This work demonstrates the efficient usage of the Apache Arrow data format and
Arrow Flight communication protocol to ensure low-latency communication of ge-
nomics data in a cluster environment. Arrow Flight allows for effective scalability
of genomics pipelines on large clusters, while eliminating communication time as
a scalability bottleneck.

Almost all existing frameworks for processing genomics data are built around
big data frameworks like Apache Hadoop and Apache Spark, which does not ben-
efit from columnar in-memory data processing on vector units nor exploit the
caches locality efficiently. These frameworks also cost extra memory overheads.
Our solution uses the SLURM workload manager as an application handler and
data scheduler to replace Apache Spark framework or MPI based implementa-
tion of genomics applications. Our approach allows to process more columnar
data in-memory without worrying about the extra memory costs. Using SeqKit
to create chunks and streaming the resultant FASTQ input to BWA-MEM instances
eliminates the additional processing time. We have shown that BWA-MEM is be-
ing scaled almost linearly while initiating only one instance per node. Through
this approach we are also able to achieve 1.5x and 2x speedup over existing
state of the art frameworks like SparkGA2. The performance comparisons of this
approach with MPI based implementation gives similar run-times with better clus-
ters scalability and applications flexibility. Integrating Arrow Flight microservices
into existing data transfer and analytics frameworks (Apache Spark, TensorFlow,
XGBoost, etc.,) for distributed and scalable processing exhibits both parallel and
high throughput data transfer and compute capabilities. Also Arrow Flight based
distributed Apache Arrow data scheduling, compute and query services like Data-
Fusion and Ballista present applications for this purpose.
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6
MPI for scalability of aligners

and variant calling
Prelude: In the previous chapters, we have extensively explored the performance op-
timization paradigms for genome variant calling workflows using Apache Arrow for
both single node and cluster scalability in big data frameworks like Apache Spark.
In this chapter, we adopt an orthogonal approach (GenMPI) of using parallel program-
ming model like MPI to investigate the performance and scalability of the BWA-MEM
and Minimap2 aligners for short and long reads, respectively, as well as the com-
plete variant calling pipeline. GenMPI ensures the exact same accuracy of variants
as compared to the original single node methods. In contrast, other big data based
solutions cause a slight degradation in variant accuracy in order to achieve better
scalability. For the pre-processing steps like sorting and indexing we use Samtools
while Sambamba is used for duplicate reads removal. For pair-end short-reads (Il-
lumina) data, we integrate the BWA-MEM aligner and three variant callers (GATK
HaplotypeCaller, DeepVariant and Octopus), while for long-reads data, we integrate
the Minimap2 aligner and three different variant callers (DeepVariant, DeepVariant
with WhatsHap for phasing (PacBio) and Clair3 (ONT)). The contents of this chap-
ter are based on our article entitled "MPI-based Cluster Scalable Variant Calling for
Short/Long Reads Sequencing Data" which has been submitted for publication.
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6.1. Overview
Rapid technological advancements in sequencing technologies allow producing
cost effective and high volume sequencing data. Processing this data for real-
time clinical diagnosis is potentially time-consuming if done on a single comput-
ing node. This work presents a complete variant calling workflow, implemented
using the Message Passing Interface (MPI) to leverage the benefits of high band-
width interconnects. This solution (GenMPI) is portable and flexible, meaning it
can be deployed to any private or public cluster/cloud infrastructure. GenMPI
ensures the exact same accuracy of variants as compared to the original sin-
gle node methods. In contrast, other big data based solutions result in a slight
degradation in variant accuracy in order to achieve better scalability. GenMPI al-
lows using any alignment or variant calling application with minimal adaptation.
To achieve high performance, compressed input data can be streamed in paral-
lel to alignment applications while uncompressed data can use internal file seek
functionality to eliminate the bottleneck of streaming input data from a separate
node. Alignment output can be directly stored in multiple chromosome-specific
SAM files or a single SAM file. After alignment, a distributed queue using MPI
RMA (Remote Memory Access) atomic operations is created for sorting, index-
ing, marking of duplicates (if necessary) and variant calling applications. We
also show that for 300x coverage data, alignment scales almost linearly up to 64
nodes (8192 CPU cores). Overall, this work outperforms existing big data based
workflows by a factor of two and is almost 20% faster than other MPI-based imple-
mentations for alignment without any extra memory overheads. Sorting, index-
ing, duplicate removal and variant calling is also scalable up to 8 nodes cluster.
For pair-end short-reads (Illumina) data, we integrated the BWA-MEM aligner and
three variant callers (GATK HaplotypeCaller, DeepVariant and Octopus), while for
long-reads data, we integrated the Minimap2 aligner and three different variant
callers (DeepVariant, DeepVariant with WhatsHap for phasing (PacBio) and Clair3
(ONT)). All codes and scripts are available at:
https://github.com/abs-tudelft/gen-mpi

6.2. Introduction
Next Generation Sequencing (NGS) technologies can produce high throughput,
less erroneous and higher depth/coverage sequencing data at low costs. These
high-throughput sequencing technologies are making their way from research to
the field in a wide range of applications ranging from clinical diagnostics to agri-
culture. Depending on the experiment design type, the need of sequencing cov-
erage varies. A typical 300x coverage human genome dataset size exceeds 2.3
TBytes [1]. Processing such large datasets on a single-node can take up to sev-
eral days. For a number of applications employing higher coverage sequencing
data and/or requiring urgent sequencing results, this exceeds acceptable time
constraints.

Sequencing coverage influences both accuracy and the sensitivity of genomics
analysis. In pediatric brain-tumor studies [2], more than 200x coverage for the

https://github.com/abs-tudelft/gen-mpi
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tumor sample and more than 100x coverage for the normal sample are collected
for better precision for the tumors of concern. Recent studies show that whole
exome sequencing (WES)/whole genome sequencing (WGS) helps with diagnosis,
decision making, and treatment of fetal diseases [3]. Although WES is normally
used to detect fetal anomalies in prenatal and perinatal testing, which only tar-
gets protein-coding regions of genes in a genome, this type of sequencing needs
urgent and fast sequencing analysis due to the time-critical nature of these tests.
Sequencing can also enable finding some rare hereditary disorders and genetic
variants associated with specific diseases in newborn screening. A recent study
that uses genomic sequencing for newborn screening [4] showed that some of
enrolled healthy newborns and children with metabolic diseases or hearing loss
exhibited pathogenic variants associated with hereditary breast or ovarian can-
cer and a pathogenic variant in the gene associated with Lowe syndrome. This
shows that sequencing in newborn screening can play a vital role in timely diag-
nosis and treatment of diseases and ultimately will lead to urgent need of pro-
cessing genomics data in such time-critical clinical settings.

Many consortia, associations and government disease diagnosis and drug regu-
latory agencies stipulate guidelines/protocols for genomics sequencing as a stan-
dard tool in diagnosis and treatment of some fatal diseases [5]. Many medical
and diagnosis centers, particularly in developed countries, have started sequenc-
ing as a regular practice for prenatal and perinatal testing, newborn screening,
genetic and cancerous disease diagnostic and personalized treatments. In the
coming decades, as sequencing becomes a normal practice for human health
and other types of research, locally available compute infrastructure to any orga-
nization will not be adequate to fulfill the sequencing requirements. At the same
time, large computing infrastructure also requires human resources and incurs
power and maintenance costs.

Mostly, genome sequencing machines produce FASTQ format raw data for a
given sample [6]. Mapping this raw data to a reference genome, sorting the resul-
tant Sequence Alignment/Map (SAM) reads according to chromosomes and their
positions, and finally removing the duplicate reads are some of the standard prac-
tices before actual variant detection. A large number of tools is available for the
aforementioned methods but almost all are developed for use in a single compute
node context. Scaling these tools for cluster environments for both scalability and
reproducibility is an ongoing challenge. In the past decade, many cluster-scaled
solutions have been created. Almost all these solutions use big data frameworks
like Apache Spark [7] or Apache Hadoop [8, 9] for distributing and work schedul-
ing. Data formats like Apache Parquet, Apache Arrow, Apache Avro have been
explored extensively in conjunction with these frameworks to store and process
genomic data efficiently. These frameworks include ADAM [10], SparkGA2 [11],
VC@Scale [12] and Halvade [13]. Due to many underlying dependencies, ineffi-
cient memory usage, issues related to scalability, cluster deployment challenges
as well as incompatible data formats, solutions based on these frameworks are
still not widely used in the mainstream Bioinformatics community. While the Mes-
sage Passing Interface (MPI) has been used previously for parallelization of older
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genomic algorithms on HPC systems like pBWA [14], in this work we propose a
comprehensive approach towards using MPI for cluster scale parallelization of
state-of-the-art genomics applications and complete variant calling workflows.

We expect to benefit from the following advantages that MPI has over tradi-
tional big data frameworks for genomics workflows.

• Bare-metal performance and linear scalability of existing applications;

• Portable access to low-level network capabilities;

• Little to no extra memory overheads otherwise incurred in big data frame-
works;

• Efficient MPI I/O performance on parallel file systems (like Lustre [15],
GPFS [16]).

In the following, we list the main contributions of this work.

• MPI-based parallelization of BWA-MEM [17] and Minimap2 [18], compressed
input FASTQ files can be provided as separate files to parallelize streaming
of input while reading of uncompressed FASTQ will be parallelized internally.
SAM output is tested on both POSIX and shared MPI I/O.

• Sorting, indexing and duplicate reads removal (if necessary) can be per-
formed through a queue employing low-level network atomic operations
(if input is already chunked based on chromosomes) or through MPI based
bitonic sorting.

• For short reads, GATK HaplotypeCaller [19], Octopus [20], and DeepVari-
ant [21] are used in combination with the MPI RMA-based queue for parallel
chromosomes processing on a cluster.

• For long reads, DeepVariant, DeepVariant with WhatsHap [22] for phasing,
and Clair3 [23] variant callers are used in combination with the MPI RMA-
based queue for parallel chromosome processing on a cluster.

• Resultant VCFs are merged through Bcftools [24] to generate a single com-
bined VCF (variant calling file) and to insure variants correctness.

• SNP/INDEL accuracy/precision/F1 tests are performed through hap.py [25]
against GIAB v4.2.1 [26] benchmark set for the HG002 dataset.

The rest of this article is organized as follows. In Section 6.3 we describe our
implemented methods in detail for both pre-processing and variant calling for
short and long reads NGS data, followed by Section 6.4 where we compare the
methods integrated into this approach with the existing workflows for both perfor-
mance, accuracy, and scalability. In Section 6.5, run-time, accuracy, scalability,
portability, and cost efficiency are discussed briefly. Finally we conclude this work
in Section 6.6.
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Figure 6.1 Architectural description of short and long reads based NGS data variant call-
ing workflows.

6.3. Methods
We have constructed both short and long reads based cluster scalable variant
calling workflows. For pre-processing of short and long reads NGS data, the
BWA-MEM [17] aligner with sorting (Samtools [27]) and mark duplicate (Sam-
bamba [28]) are used for the former, while Minimap2 [18] with sorting (Samtools)
is used for the latter. As shown in Figure 6.1, for short reads we use three differ-
ent variant callers like Octopus and DeepVariant as well as GATK best practices
variant calling pipeline using HaplotypeCaller. Similarly, for PacBio long reads,
DeepVariant and DeepVariant with chromosomes phasing using WhatsHap have
been used while Clair3 variant caller is used for Oxford Nanopore Technologies
(ONT) data as recommended by ONT [29]. These workflows can be run through
both cluster workload managers like Slurm [30] and PBS [31]. The following sec-
tions provide a more detailed description of both short and long reads workflows
implementation.

6.3.1. Short-reads variant calling workflow
In the following subsections, we describe in details how MPI has been integrated
with the BWA-MEM short read aligner and how different pre-processing applica-
tions are used in the variant calling workflow.

Alignment: The complete algorithmic implementation details of integrating
the alignment applications is given in pseudo-code representation in Algorithms 1
and 2. Normally, pair-end short reads are used for variant detection, consisting
of two FASTQ raw NGS data files. As shown in Algorithm 1, we start MPI after
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Algorithm 1: Part-1: MPI integration into BWA-MEM and Minimap2 for
reading compressed and uncompressed FASTQ input files.
// BWA-MEM/Minimap2 basic initialization

1 MPI_Init(NULL, NULL) ▷ MPI initialization
2 P ← size (total number of processes);
3 N ← rank (process number);
4 ▷ Check if user needs a single SAM or chromosomes-based SAM file(s) to write output
5 if chromosomes← output then
6 for CHRM ← 1 to chromosomes do
7 files[CHRM]← fopen(CHRM);
8 end for

9 else
10 file← fopen(outputfile)
11 end if
12 ▷ Compressed or uncompressed input FASTQ file(s) check
13 if input(compressed (*.gz/*.tar.gz/*.zip)) then

// FASTQ streaming from an external process
14 Seekable← FALSE;
15 parts[n]← scandir(./parts);
16 FASTQ_INPUT ← parts[P];
17 else

// SEEK_SET pointer initialization
18 Seekable← TRUE;
19 size (bytes)← Calculate file(s) size;
20 SEEK pointer*← size (bytes)/P;
21 gzseek(file, SEEK pointer*);
22 end if

basic parameter initialization. First, we check (Lines 5–10) if the user enabled
chromosomes-based output into separate SAM files. By default this option is dis-
abled and only single output SAM file generation is enabled. For compressed
FASTQ input files (Lines 13–16), each BWA-MEM process expects equally chunked
FASTQ pairs in a directory "parts" in the path of the original FASTQ files. This is
done through an extra FASTQ streaming process. For streaming purpose, the user
has to start an additional process; we used SeqKit [32] for this purpose. SeqKit
is an efficient multi-threaded command line FASTQ/FASTA data manipulation tool.
In the case of uncompressed FASTQ files (Lines 18–21), we used gzseek() function
which sets the file position to a given offset. We get this offset by dividing the
total FASTQ file size to the number of total MPI processes. Through this technique
the kseq_read() function may encounter a broken first read, which we simply dis-
card because process N −1 will read the last read even if it reaches a break point
for total number of bytes it can read, as shown in Algorithm 2 (Lines 1–8) in pro-
cess() function step-0. In this way, we ensure that none of the input reads is
dropped by any process. We calculate the size of each read and increment the
bytes counter until it reaches the required number of bytes for each BWA-MEM
process. Afterwards, BWA-MEM starts processing these sequences (Lines 9) in
process() function step-1. Finally, we distinguish the chromosomes id for each
read if writing to individual chromosome files is enabled (Lines 10–17) in pro-
cess() function step-2. The output files should be written on a parallel file system
with either POSIX or shared MPI I/O, depending on the best possible performance
scenarios for the user.

MPI RMA-based chrosome queue: The MPI RMA interface provides applica-
tions with access to advanced features of modern high-performance networks,
including direct access to remote memory through puts, gets, and atomic opera-
tions [33]. We utilize the atomic fetch-and-add functionality of MPI RMA to assign
chromosomes to processes. Processes continuously increment the chromosome
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Algorithm 2: Part-2: MPI integration into BWA-MEM and Minimap2 for
processing FASTQ data and saving output to SAM single or chromosome-
based file.

1 while (SEQs , ∅) & (FASTQ(compressed_file_chunk) , END ∥ FASTQ(SEEK_SET) , END) do
2 SEQs← bseq_read(FASTQ_INPUT ) // process() -> Step:0
3 if Seekable = TRUE then
4 bytes+=Bytes count for each read (seq, comment and qual length);
5 if bytes ≥ max(SEEK_SET) then
6 break;
7 end if

8 end if
9 SAM ← mem_process_seqs(SEQs)// process() -> Step:1

10 if chromosomes← output // process() -> Step:2
11 then
12 for CHRM ← 1 to chromosomes do
13 files[CHRM]← err_fputs(files[CHRM], SAMs);
14 end for

15 else
16 file← err_fputs(file, SAMs);
17 end if

18 end while
19 ▷ Close the output SAM file(s)
20 if chromosomes← output then
21 for CHRM ← 1 to chromosomes do
22 files[CHRM]← fclose(CHRM);
23 end for

24 else
25 file← fclose(outputfile);
26 end if
27 MPI_Finalize() ▷ MPI finalization
28 return 0;

counter atomically until the returned value is equal to or larger than the num-
ber of chromosomes. Algorithm 3 shows the algorithm for allocating a suitable
window and then querying chromosome numbers and processing them until all
chromosomes have been assigned to a process. The respective window is al-
located using the "osc_rdma_acc_single_intrinsic" info key set to true
(Lines 1–2), which is supported by Open MPI and allows the implementation to
utilize low-level hardware atomic operations by signaling the use of a single data
element [34]. Processes continuously increment a variable using an atomic fetch-
and-op in the window to acquire the next chromosome to process (Lines 5–7) and
stop once the counter exceeds the number of chromosomes available (Line 9).

Algorithm 3: MPI RMA atomic operations for creating a chromosome
queue for pre-procssing and variant calling

Input: NumChromosomes – Number of chromosomes
1 info← MPI_Info_create();
2 MPI_Info_set(info, "osc_rdma_acc_single_intrinsic", "true") win← MPI_Win_allocate(sizeof(int), 1, info) X ← 0
3 one ← 1
4 while true do
5 X ← MPI_Fetch_and_op(&one, MPI_SUM, win) ▷ Next Chromosome
6 if X < NumChromosomes then
7 process_chromosome(X ) ▷ Process Chromosome (sort, index, duplicates, variant call)
8 else
9 break ▷ All chromosomes have been assigned, stop.

10 end if

11 end while
12 MPI_Win_free(win) ▷ Free window resources

Sorting, duplicates removal, indexing and variant calling: As described
above, the MPI atomic operations based queue algorithm continuously pools the
input chromosomes SAM files and operates on them for sorting, mark duplicate,
index generation and variant calling algorithms. We used and integrated the
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sorting algorithm from Samtools and the mark duplicate algorithm from Sam-
bamba because both perform better and have multi-threading capabilities. For
variant calling, we use three different tools (GATK HaplotypeCaller, DeepVariant
and Octopus) for germline variant calling of short reads. As discussed above,
generating SAM files for individual chromosomes in the alignment process is not
necessary, since we can also use a single SAM file. If the user wants to use all
other pre-processing (sorting, mark duplicate, BAM indexing) and variant calling
tools in this workflow, it is also possible to parallelize these by providing the con-
tigs/chromosome numbers, even in the case of using a single SAM file. Finally, the
individual VCFs created are merged through Bcftools to produce a final complete
VCF file for further downstream analysis.

6.3.2. Long-reads variant calling workflow
In the following subsections, we describe in detail how MPI has been integrated
with the long read aligner Minimap2, and how different pre-processing applica-
tions are used in the variant calling workflow.

Alignment: Circular consensus sequencing (CCS) based PacBio HiFi reads and
Oxford Nanopore technologies (ONT) long reads are making their way from re-
search to clinical applications. They provide more in-depth and better consensus
particularly in more complex repetitive regions of the genome [35]. The Min-
imap2 long reads aligner (with or without some additional parameter settings) is
mainly being used for both PacBio and ONT long reads data. The complete al-
gorithmic implementation details of this integration are given in pseudo-code in
Algorithms 1 and 2, the detail description of Minimap2 implementation is similar
to BWA-MEM as described in Section 6.3.1.

Sorting, indexing and variant calling: For long reads after alignment, only
sorting and index generation for BAM is necessary. MPI atomic operations based
queue algorithm continuously polls the input chromosomes SAM files, or other-
wise contigs/chromosomes number can also be used in case a single SAM file
is generated through Minimap2. Then the queue algorithm operates on those
files/contigs/chromosomes for sorting, BAM index generation and variant call-
ing algorithms. We used and integrated the sorting algorithm from Samtools.
For variant calling, we used three algorithms for germline variant calling of long
reads (DeepVariant, DeepVariant with WhatsHap for phasing on PacBio dataset,
and Clair3 for ONT dataset). These variant callers are commonly recommended
by the corresponding sequencing vendors. Finally, the individual VCFs created
are merged using Bcftools to produce a final complete VCF file for further down-
stream analysis.

6.4. Results
Evaluation cluster: We used both HLRS Hawk [36] (an HPE Apollo 9000 system
at the High Performance Computing Center Stuttgart (HLRS) in Germany) and the
SurfSara Snellius [37] (part of the Dutch national supercomputing infrastructure)
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HPC clusters. Each compute node of Hawk is equipped with a dual socket AMD
EPYC 7742 processors (64 cores/socket) running at 2.25 GHz. All nodes are con-
nected through Mellanox HDR200 (interconnect bandwidth 200 Gbit/s) Infiniband
adapter. Likewise, on SurfSara Snellius, each compute node is equipped with
a dual socket AMD EPYC 7H12 (64 cores/socket) processors running at 2.6 GHz.
All nodes are connected through Mellanox HDR100 (interconnect bandwidth 100
Gbit/s) Infiniband adapter. A local storage of 1-TBytes and the same amount of
network attached storage is available on both systems.

The parallel file system available on HLRS Hawk is based on Lustre while Surf-
Sara Snellius is equipped with IBM Spectrum Scale (GPFS) [16]. The SLURM
Workload Manager is installed on SurfSara Snellius while HLRS Hawk uses PBSPro
workload manager and job scheduler.

Datasets: We used the Illumina, PacBio HiFi, and ONT HG002 datasets taken
from the PrecisionFDA challenge V2 [38]) dataset for variant calling workflows.
We also used 300x sequencing coverage WGS data from Genome in a Bottle
(GIAB) aligned with novoalign for the Illumina HiSeq 300x reads for NA12878 [39]
to analyze the scalability of BWA-MEM aligners. Human genome reference
GRCh38 [40] is used as a reference genome. For accuracy comparisons, the
GIAB v4.2.1 [26] benchmark set for HG002 dataset is used.

6.4.1. Runtime performance
In this section, we analyze and compare the runtime performance of MPI based
aligners (BWA-MEM and Minimap2) with existing state-of-the-art MPI and Apache
Spark based implementations. We also benchmark the performance of variant
calling workflows using different variant callers on a cluster of up to 8 nodes.

Short reads alignment: We compare the scalability and runtime perfor-
mance of GenMPI with those based on Apache Spark (ADAM’s Cannoli [10] align-
ment) and another MPI-based implementation, QUARTIC [41] (mpiBWA). We use
different numbers of nodes; 2, 4, 8 and 16 nodes for runtime performance com-
parisons. ADAM’s Cannoli uses the built-in Scala API from the Apache Spark
backend for distributing and scheduling data for parallel processing. The Cannoli
wrapper encompasses many different aligners and variant callers for distributed
processing. Apache Spark based implementations use HDFS or NFS for I/O op-
erations. QUARTIC (mpiBWA) is a distributed BWA-MEM alignment algorithm em-
ploying MPI functionality and uses MPI shared I/O for input/output on parallel file
system. In Figure 6.2 (left bar), we show the BWA-MEM runtime on a single node
utilizing all 128 system CPU cores with one thread for each core. We consider
this time as an ideal runtime for a single node. When we compare this runtime
by increasing the number of nodes in a cluster as shown in Figure 6.2, we see
QUARTIC and GenMPI perform better than this ideal runtime, while ADAM Cannoli
BWA-MEM implementation has less than ideal scalability. We attribute the super-
linear scaling of both QUARTIC and GenMPI to scalability issues of BWA-MEM when
utilizing all cores on a single node using a single process (128 threads). As a con-
sequence, we use two MPI processes on each node to overcome this inefficiency
for all other runs. Overall GenMPI outperforms QUARTIC by almost 20% in terms
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of runtime by reducing read/write I/O time, and outperforms Apache Spark based
ADAM Cannoli BWA-MEM by 2x in terms of runtime.

Short-reads variant calling workflow: As discussed in the alignment sec-
tion, we store BWA-MEM SAM output in chromosomes files. Sorting can be per-
formed using existing tools on these chromosome files in parallel on the cluster.
We use Samtools’ sorting algorithm since it is one of the most efficient due to
its in-memory and multi-threading functionality. Similarly, for duplicate removal
we use Picard’s MarkDuplicate compatible algorithm Sambamba, which is also
multi-threaded. We also use GATK best practices pipeline applications like Base
quality score recalibration (BQSR), ApplyBQSR, and HaplotypeCaller afterwards.
Moreover, we integrate DeepVariant and Octopus, both recent and accurate vari-
ant callers, in this workflow. Their published results show high accuracy and
F1-score compared to other state-of-the-art variant callers like GATK4 Haplotype-
Caller [19], Strelka2 [42], or FreeBayes [43].

We compare the total runtime of these workflows on varying numbers of nodes.
As shown in Figure 6.3, moving from a single node to two nodes a more than 3x
runtime speedup is achieved because we allocated multiple MPI processes for
pre-processing and variant calling applications on each node as these tools have
some single node (128 CPU cores) scalability limitations. Increasing the clus-
ter size from 4 to 8 nodes yields only 70-80% runtime improvements because
of poor chromosome load-balance. The same runtime speedup is observed for
DeepVariant instead of Octopus. On the other hand, GATK best practices pipeline
applications are either slow or single-threaded; therefore we only focus on opti-
mizing the workflow by insuring accuracy while running with maximum efficiency
on a single node. As shown in Figure 6.4, using alternative application like Sam-
tools/Sambamba instead of Picard (sort and markdup) respectively, and parallel
execution of GATK BQSR, ApplyBQSR and HaplotypeCaller applications for chro-
mosomes we have achieved more than 6.5x runtime speedup compared to the
baseline. Since GATK processes chromosomes using a single thread, distributing
it’s execution across multiple nodes is not worthwhile due to the limited number
of chromosomes. We have only 25 chromosomes that can be ran in parallel on a
single node more efficiently.

Long reads alignment: GenMPI is the first-ever cluster scale implementa-
tion of any long reads aligners. As discussed in Section 6.3, both chromosomes
based SAM files and a single SAM file output options are implemented in Min-
imap2. Figure 6.5 shows the total runtime for long-reads aligner, Miniamap2,
which exhibits close to linear scalability when increasing the number of nodes in
the cluster. The ideal theoretical values for linear scalability are also shown. As
shown in the figure, there is a minor performance degradation compared to ideal
runtimes that is caused by read/write I/O operations for long reads. Due to the
efficient performance of network-attached parallel file system, the overhead of
storing SAM data in multiple chromosomes file is minimal compared to a single
SAM file generation from all the MPI processes.

Long reads variant calling workflow: Almost all new long reads variant
callers only require aligned and sorted reads. Long reads sorting is performed
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Figure 6.8 INDEL performance compari-
son of different short and long reads vari-
ant calling methods on HG002 dataset.

Figure 6.9 SNP performance comparison
of different short and long reads variant
calling methods on HG002 dataset.

through Samtools ’sort’ algorithm. As mentioned before, for PacBio data, we
used DeepVariant and DeepVariant with WhatsHap [22]. WhatsHap is used to
reconstruct the chromosomes haplotypes and then write out the input VCF aug-
mented with phasing information in its first pass, in the second pass WhatsHap
haplotag writes information of reads along with the variants. This information can
be used again in DeepVariant for better INDEL detection and accuracy purposes.
In Figure 6.6, we show the scalability results of long reads variant calling work-
flow (Minimap2, Samtools sorting and DeepVariant) on a cluster where more than
2.25x runtime speedup is achieved from 1 node to 2 node cluster and a total of
5x speedup is achieved on a 8 node cluster. This scalability is again only valid up
to 8 nodes since we aim at reproducing the exact same variant output as that of
a single node, which means that we do not sub-divide chromosomes into smaller
pieces. Similarly, for ONT dataset we used Clair3 which provides better accuracy
and performance for both SNP and INDEL variants as compared to other variant
callers on ONT data. As shown in Figure 6.7 due to some internal scalability limi-
tations of Clair3 we are only able to achieve 1.5x runtime speedup for two nodes
cluster as compared to a single node runtime and similar limited scalability trend
is shown for more nodes.

6.4.2. Accuracy
In this subsection, we present small variants (SNP and INDEL) detection accuracy.
The GA4GH small variant benchmarking tool hap.py has been used to compare
the variants in all methods. We compared all these statistics on Chr1-22 and X,
Y for each dataset. We compared the small variants (SNP and INDEL) detection
accuracy for both short and long reads on HG002 (PrecisionFDA challenge V2)
dataset against GIAB v4.2.1 benchmark set. We only tested the accuracy metrics
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for all-benchmarking region of GIAB v4.2.1 benchmark.

SNP accuracy

Figure 6.8 shows the accuracy performance of SNPs in terms of precision and
recall for short reads methods (GATK HaplotypeCaller, Octopus and DeepVari-
ant) on Illumina dataset and long reads methods (DeepVariant, DeepVariant with
WhatsHap and Clair3) on PacBio and ONT datasets respectively. Both DeepVari-
ant and DeepVariant with WhatsHap on PacBio data perform best as compared
to other methods while GATK HaplotypeCaller SNP performance is well below all
other methods. Overall, the best SNP F1 score is 0.999283 for PacBio dataset
using DeepVariant variant caller, as shown in Table 6.2.

INDELs accuracy

Similarly in Figure 6.9 the accuracy performance in terms of precision and recall
of INDELs for short reads methods (GATK HaplotypeCaller, Octopus and DeepVari-
ant) on Illumina dataset and long reads methods (DeepVariant, DeepVariant with
WhatsHap and Clair3) on PacBio and ONT datasets respectively has been shown.
We have observed for INDEL performance that Illumina short read dataset seems
to performs best as compared to other datasets for both DeepVariant and Octo-
pus methods. ONT dataset INDEL performance is lower than any other datasets.
Overall the best INDEL F1 score is 0.995957 for Illumina dataset using Octopus
variant caller as shown in Table 6.1.

6.5. Discussion
This section further elaborates on the benefits of this approach in a broader con-
text of its applicability in real-time usage on HPC clusters.

6.5.1. Runtimes
Total runtimes of the used aligners show a good linear scalability on small to big
clusters in both single SAM output as well as for chromosomes based SAM out-
put. Similarly, for complete variant calling workflows almost all methods provide
more than 2x to 6x lower runtime when executed on 2 to 8 cluster nodes, respec-
tively. Because GATK best practices pipeline applications are not multi-threaded,

Table 6.1 Accuracy evaluation of small variants for HG002 (pair-end Illumina short reads)
against GIAB HG002 v4.2 benchmarking set for different methods adopted in this work-
flow. This table shows the SNP and INDEL results for all benchmarking regions.

Method Variant type Truth total TP FN FP Recall Precision F1 -Score

DeepVariant INDEL 525469 522169 944037 1238 0.993720 0.997731 0.995721
- SNP 3365127 3345702 3815162 4125 0.994228 0.998769 0.996493

GATK INDEL 525469 510602 913193 3671 0.971707 0.993147 0.982310
- SNP 3365127 3261925 3800121 21703 0.969332 0.993393 0.981215

Octopus INDEL 525469 522366 935701 1195 0.994095 0.997825 0.995957
- SNP 3365127 3339460 3719754 4455 0.992373 0.998662 0.995507
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Table 6.2 Accuracy evaluation of small variants for HG002 (PacBio) against GIAB HG002
v4.2 benchmarking set for different methods adopted in this workflow. This table shows
the SNP and INDEL results for all benchmarking regions.

Method Variant type Truth total TP FN FP Recall Precision F1 -Score

DeepVariant INDEL 525469 518336 970119 7560 0.986425 0.986187 0.986306
- SNP 3365127 3362077 4054200 1778 0.999094 0.999472 0.999283

DV-WH-DV INDEL 525469 521828 981392 3844 0.993071 0.992977 0.993024
- SNP 3365127 3362239 4060995 2199 0.999142 0.999347 0.999244

Table 6.3 Accuracy evaluation of small variants for HG002 (ONT) against GIAB HG002
v4.2 benchmarking set for different methods adopted in this workflow. This table shows
the SNP and INDEL results for all benchmarking regions.

Method Variant type Truth total TP FN FP Recall Precision F1 -Score

Clair3 INDEL 525469 351200 554604 26874 0.668355 0.930726 0.778016
- SNP 3365127 3355502 4148864 10306 0.997140 0.996939 0.997039

cluster scalability is not possible. Neverthelesse, we have achieved more than
6.5x speedup when executing in parallel on a single node. Similarly, Clair3 has
multi-threading limitations that preclude proper scaling across multiple nodes of
a cluster.

6.5.2. Accuracy and reproducibility
Accuracy results for all benchmarking regions (Chr1-Chr22, X and Y) for the Illu-
mina short-read dataset using GATK HaplotypeCaller, Octopus, and DeepVariant
variant callers are shown in Table 6.1. Similarly, Table 6.2 shows accuracy results
for the PacBio dataset using the DeepVariant and DeepVariant with WhatsHap
variant callers. Table 6.3 lists the accuracy results for the ONT dataset using the
Clair3 variant caller. These results are obtained through GA4GH small variant
benchmarking tool hap.py.

The accuracy comparisons between the MPI versions of the pipelines and their
single node baseline show that these workflows produce the exact same recall,
precision, and F1-score for both short and long reads based variant calling work-
flows. This ensures the reproducibility of original BWA-MEM and Minimap2 func-
tionality when using GenMPI.

6.5.3. Scalability
The MPI parallelization of both aligners (BWA-MEM and Minimap2) is highly scal-
able. To further evaluate the scalability of both aligners, we tested the GIAB
300x coverage whole genome sample NA12878 for HG001 with the GenMPI us-
ing BWA-MEM. Figure 6.10 shows scalability results of aligning almost 2.5 TBytes
data in just 10 minutes walltime on a 64 nodes. We show both computation and
I/O time for both aligners separately. In both aligners, the resultant graphs show
that increasing the number of nodes in the cluster, the runtime of alignments
decreases almost linearly. We also observed that I/O time is increasing slightly
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Figure 6.10 GenMPI BWA-MEM performance and scalability measurements for 300x se-
quencing coverage WGS data from Genome in a Bottle (GIAB) aligned with novoalign for
the Illumina HiSeq 300x reads for NA12878 [39].

when increasing the number of nodes but it is not a bottleneck for the scalability.
The only issue is in shared MPI I/O, particularly in writing and reading part of

Minimap2 for long reads is a limiting factor for linear scalability. Both MPI I/O and
POSIX file system options to output a single SAM file, chromosomes-based SAM
output and chromosomes-regions specific SAM output have been implemented
as shown in Figure 6.11. We have observed significant overhead due to synchro-
nization effects in writing to POSIX I/O as well as MPI I/O when a single output SAM
file is written, as shown in Figure 6.11(a). For per-chromosome SAM output (Fig-
ure 6.11(b)), the best suitable option is using POSIX I/O. For the chromosomes-
regions specific SAM output option (Figure 6.11(c)), we used 128 output files,
which provides comparable results to per-chromosome SAM output with POSIX
I/O but still affects the overall performance compared to ideal runtime. The rea-
son behind this is inner reads identification and writing loops which direct reads
to a specific file. We have tested both MPI I/O blocking and non-blocking I/O oper-
ations for writing SAM output. Due to processes synchronization for wiring SAM
data chunks to I/O, an extra overhead slows down the writing of results. This
overhead can be mitigated by directly integrating aligners with sorting and in-
dexing applications without relying on file I/O. This will be part of our future work
(Section 6.5.7).

6.5.4. Portability and deployment
By using the MPI standard, this workflow is portable and easily deployable to
any HPC cluster. A detailed description and quick start guide to run all methods
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a b c

Figure 6.11 Performance and scalability comparisons when using MPI shared I/O and
POSIX I/O for (a) single SAM output (b) chromosomes based SAM output and (c) chromo-
somes regions specific SAM output.

in this approach are given on the project github page. We also tested this im-
plementation with OpenMPI, Intel MPI and HPE MPI flavors and it compiles/runs
appropriately.

6.5.5. Cost efficiency
Our cost estimations predict that a significant amount can be saved when opting
for public clouds clusters instead of a single large node in the cloud. Particularly
in BWA-MEM alignment, clusters utilize maximum system resources resulting in
cost saving of more than 50%. Similarly, DeepVariant and Octopus variant callers
have some limitation in single node performance for a higher number of cores
per socket. More than 20-30% cost can be saved using these variant callers on a
cluster with each node having two sockets each with 64 CPU cores.

6.5.6. Memory consumption
MPI based scalable implementations can have a large edge over Apache Spark
based variant calling workflows in terms of memory consumption. The MPI im-
plementations do not need extra memory for the platform itself nor to store the
data during data shuffling in Spark based implementations.

6.5.7. Future work
This whole workflow implementation (GenMPI) uses storage for intermediate ap-
plications I/O read and write operations in form of SAM/BAM files. For future
work, integrating pre-processing applications like GenMPI BWA-MEM with sorting
(mpiSORT [41]) and index generation would yield further performance gains. We
have observed that 5-10% of the total time in GenMPI BWA-MEM and 50% of the
total time in mpiSORT are spent on file I/O, which could be mitigated through this
approach.
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6.6. Conclusion
In this work, we have implemented GenMPI, an MPI based scalable method for
both widely used short and long reads aligners, BWA-MEM and Minimap2, re-
spectively. One of the main goals of GenMPI is to ensure 100% identical variant
output compared to the single node baseline. In addition, GenMPI provides a flexi-
ble architecture which can be used to integrate a variety of alignment and variant
calling tools. Compressed and uncompressed FASTQ input is supported and out-
put can be a single SAM file or chromosomes-based SAM files generated by MPI
processes. This output can be stored on network attached storage through both
POSIX and MPI shared I/O, whichever is convenient and efficient for the underly-
ing HPC system. Results show that these implementations outperform existing
Apache Spark based implementation of alignment algorithms by 2x and yield a
20% speedup over state-of-the-art MPI implementations of the BWA-MEM algo-
rithm. Likewise, we also integrate pre-processing applications (sorting, indexing,
duplicates removal (for short reads)) as well as variant callers like GATK Haplo-
typeCaller, DeepVariant, Octopus and Clair3 for both short (Illumina) and long
reads (PacBio and ONT) datasets. The variant calling workflows are scalable for
up to 8 nodes cluster while giving 2x to 6x total runtime speedups.

Particularly, we show that the distribution of chromosomes across aligners is
almost linearly scalable, even when tested using 300x coverage datasets on up
to 64 nodes cluster for BWA-MEM. At scale, the alignment completes in under
10 minutes walltime. Thanks to the use of MPI, the workflow implementation is
portable and easily deployable on any public cloud or private HPC cluster with
minimal effort. Memory requirements do not exceed the actual software needs.
The final accuracy results (Recall, Precision, and F1 score) for variant calling have
been reproduced with hap.py against latest GIAB benchmarks set and are shown
to be identical to those of the baseline pipeline.
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7
Conclusion & future work

7.1. Dissertation summary
This dissertation presents scalable and high performance computational meth-
ods for the optimization of genomics applications and algorithms, particularly for
whole genome/exome sequencing, data processing and analysis. We optimized
BWA-MEM and Minimap2 sequence alignment algorithms as well as different al-
ternatives for pre-processing tools like Samtools, Sambamba and Picard. In ad-
dition, we used innovative high performance computational methods to improve
the performance and scalability of variant callers like the GATK HaplotypeCaller,
DeepVariant, Octopus and Clair3. These methods focus on many performance op-
timization aspects, especially in-memory, data-parallel and distributed process-
ing of genomics data. We used extensively both single and multi-node public
clouds and HPCs computing systems to test and validate the reproducibility and
scalability of these methods.

Human understanding of complex DNA structure and its genes is still in an
initial stage. Higher throughput, enhanced accuracy and dropping costs of next
and third generation sequencing technologies makes sequence analysis more
viable to be adopted in research and development and for clinical and diagnostic
applications.

As discussed in Chapter 3, refining and cleaning sequencing data for genome
analysis is still a time consuming step. To make efficient use of computing re-
sources in genomics pipelines to process genomics data in a reasonable amount
of time is achievable through (i) in-memory fast data access, (ii) optimized inter-
process communication by avoiding unnecessary I/Os communication overhead
(iii) by employing load-balancing in data-parallel processing and (iv) vectorized
execution where-ever possible. Tab-delimited text-based SAM and random ac-
cess in BAM data formats enable the characteristics of processing independent
and parallel tasks on fine-grained data elements or reads without the need of
process synchronization or recursively inner-loops rewriting in complex algo-
rithms. Similarly, for HPC clusters and clouds scalability, converting of these
data formats to distributed file systems like HDFS and NFS provides fast data ac-
cess and efficient communication by minimizing the overhead of I/O operations.
Apache Arrow is a unified in-memory columnar data format that enables exploit-
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ing the performance of modern processor hardware components. Representing
and accessing SAM/BAM data through the columnar in-memory data formats is
found to be highly efficient for the GATK best practices variant calling pipeline
by avoiding intermediate I/O operations, enabling parallel processing on single
node and better cache locality exploitation. Previously, Apache Spark based in-
memory and distributed data analytics frameworks for genomics applications
and pipelines have been explored extensively. However, row-based processing
of these frameworks limits both scalability and efficient resource utilization for
many algorithms. Leveraging the columnar in-memory format like Apache Arrow
in Apache Spark analytics operations show better scalability and highly efficient
system resource utilization, particularly vectorized operations and cache local-
ity, this has been discussed in Chapter 4 of this dissertation. Further, extending
the Apache Arrow data format for the scalability of clusters for variant calling
pipelines, in-conjunction with Arrow Flight, a wire-speed data transfer protocol
was used to shuffle and schedule data across cluster nodes. This combination of
both the Apache Arrow format and Arrow Flight as data communication service
provides high performance and better scalability as compared to Apache Spark
based frameworks and comparable performance with respect to MPI implemen-
tation as explored in Chapter 5. Higher memory consumption, communication
overheads, additional software dependencies/complexities and data format con-
version issues in distributed big data frameworks are considered the main bottle-
necks for their adaptivity. Parallel programming models like the Message Passing
Interface (MPI) provide bare-metal performance for the applications that do not
require process level data sharing and synchronization. Both higher scalability
and efficient system resource utilization can be improved at the cost of tuning
existing algorithms or writing from scratch as described in Chapter 6.

7.2. Research contributions and future work
The propositions presented in Chapter 1 have been discussed extensively in this
dissertation. Below, here again we conclude these propositions briefly with a
short description for their respective future work.

Columnar in-memory data formats have already proven helpful in database
(transactional) and data-analytic systems.
Proposition: Columnar in-memory data formats can also be beneficial in

genome variant calling applications for better cache locality, vectorized opera-
tions and parallel execution on modern processors.

Two major performance bottlenecks in GATK best practices variant calling
pipelines have been observed. One is related to I/O overhead (reading/writing
and parsing SAM/BAM data) which we incur when running intermediate applica-
tions. The second is related to the lack of multi-threading and parallelism in some
Picard and GATK applications. To overcome these limitations, we have described
how Apache Arrow, a unified in-memory columnar data format and Plasma Ob-
ject Store (an API inside the Arrow project) can be integrated in all variant calling
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applications to achieve both almost zero I/O overhead and better parallel perfor-
mance. Moreover, this integration guarantees better cache locality and efficient
vectorized operations utilization in many applications.

• For future work, variant calling applications could be redesigned to get the
maximum benefits of columnar data, cache locality and vectorized opera-
tions. Apache Parquet, a compressed columnar storage format, provides
distributed and low latency data access and better compression ratios as
compared to the BAM format. Parquet could be used as an alternative to
Apache Arrow for big genomics datasets on small memory systems.

Columnar in-memory data formats such as Apache Arrow provide an efficient
alternative to store and access in-memory data among multiple big data frame-
works or applications by avoiding extra (de)-serialization overhead.
Proposition: These formats should be integrated into big data frameworks

like Apache Spark to avoid (de)-serialization overhead and in-memory data ac-
cess during data transformation and processing when running different applica-
tions inside these frameworks.

We benefited from combining the ease-of-use of the Python programming lan-
guage, the ease-of-scalability of big data frameworks like Apache Spark and effi-
cient columnar data formats like Apache Arrow to make a user friendly version of
the genomics pipelines eco-system. Vectorized and scalable UDFs execution al-
lows creating an even higher performance and efficient version of the pipelines.
We analyzed the potential impact of this approach and implemented a whole
variant calling pipeline using these technologies. The resultant pipeline is fast,
scalable and efficient in its resource utilization.

• For future work, we could use this combination of technologies to improve
the performance of many widely-used variant calling pipelines. In addition,
we also observed that the common practice of repeatedly writing interme-
diate results to BAM files on disk after sorting and duplicate removal appli-
cations is computationally expensive. Instead of creating BAMs, we could
use dataframes directly in Python-based variant callers like DeepVariant to
improve the overall speedup of the complete pipelines.

Arrow Flight provides a high performance and parallel interface for bulk data
(Apache Arrow in-memory columnar format) transfers across networks. We
benchmark for maximum client-server and cluster throughput for this data com-
munications protocol.
Proposition: Arrow Flight protocol can achieve high performance data move-

ment throughput for genomics variant calling workflows across computing clus-
ters as compared to big data frameworks such as Apache Spark.

Arrow Flight allows for effective scalability of genomics variant calling pipelines
on large clusters, by eliminating communication overhead which pose a scala-
bility bottleneck. Today, almost all existing frameworks for processing genomics
data are built around big data frameworks like Apache Hadoop and Apache Spark.
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We have demonstrated the feasibility of a simple and easy-to-use implementa-
tion using a cluster workload manager (e.g., SLURM or OpenPBS) as an applica-
tion handler and data scheduler to replace the Apache Spark framework or MPI
based implementation of genomics variant calling pipelines.

• Arrow Flight could reshape future distributed big data systems, online ana-
lytical processing (OLAP), distributed query as well as data warehouse sys-
tems. However, Arrow Flight uses a heavy stack of gRPC on TCP proto-
col. Future work can use more efficient protocols like RDMA to reduce the
communication overhead even further. Also Arrow Flight based distributed
Apache Arrow data scheduling, compute and query frameworks like Data-
Fusion and Ballista can be used instead of Apache Spark as distributed en-
gines for easy scalability and scheduling of genomics pipelines.

Genomics variant calling applications like genome alignment and variant call-
ing can be performed on data chunks independently without any data communi-
cation or synchronization.
Proposition: MPI can be used to achieve bare-metal performance in sequence

alignment algorithms and variant calling workflows overall.
We have described the methods and algorithmic changes required to integrate

MPI in widely used short-reads (BWA-MEM) and long-reads (Minimap2) aligners
to gain high performance and efficient cluster scalability. For sorting and du-
plicate removal, we used existing Samtools and Sambamaba for chromosomal
level scalability on clusters. Similarly, variant calling applications like Octopus
and DeepVariant have been integrated into an MPI-RMA based queue to process
data on clusters.

• A valuable future contribution would be to keep intermediate data gener-
ated by pre-processing applications in in-memory buffers such that variant
calling applications can access this data using MPI-RMA interfaces. This
avoids intermediate I/O read/write operations for individual applications.
Other future work could focus on integrating Apache Arrow Flight into an
MPI communication protocol to benefit from the best of both worlds: a high-
abstraction level programming interface, combined with a low-level low-
overhead communication protocol.
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