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ABSTRACT
Wave energy converters have yet to reach broad market via-

bility. Traditionally, levelized cost of energy has been considered
the ultimate stage gate through which wave energy developers
must pass in order to find success (i.e., the levelized cost of wave
energy must be less than that of solar and wind). However, real
world energy decisions are not based solely on levelized cost of
energy. In this study, we consider the energy mix in California in
the year 2045, upon which the state plans to achieve zero carbon
energy production. By considering temporal electricity produc-
tion and consumption, we are able to perform a more informed
analysis of the decision process to address this challenge. The
results show that, due to high level of ocean wave energy in the
winter months, wave energy provides a valuable complement to
solar and wind, which have higher production in the summer.
Thus, based on this complementary temporal aspect, wave en-
ergy appears cost-effective, even when the cost of installation
and maintenance is twice that of solar and wind.

NOMENCLATURE
EIA Energy Information Administration
LACE levelized avoided cost of energy
LCOE levelized cost of energy
LCOS levelized cost of storage
RPS renewable portfolio standard
WEC wave energy converter
Ji(t) monthly generation for source i
gi additional generation capacity for source i
ci cost of gi
ri(t) monthly renewable resource for source i
γi average capacity factor for source i

INTRODUCTION
To-date, a large majority of the techno-economic assess-

ments on wave energy have focused on levelized cost of energy
(LCOE). A reduction in LCOE below or near that of other com-
peting energy generation technologies, such as natural gas, so-
lar and wind, is often held as the key barrier for the success of
wave energy converters (WECs). However, LCOE is not a per-
fect measure of market viability for an energy generation asset.
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The US Energy Information Administration (EIA) directly
warns against using LCOE as the sole measure for comparing
energy generation technologies (“LCOE does not capture all of
the factors that contribute to actual investment decisions, making
the direct comparison of LCOE across technologies problematic
and misleading as a method to assess the economic competitive-
ness of various generation alternatives” [1]), and instead recom-
mends that LCOE be used along with additional metrics such
as levelized avoided cost of energy (LACE) and levelized cost
of storage (LCOS). While LCOE looks directly at the cost of a
potential generator asset by taking the ratio of costs, including
capital, financing, operations, and maintenance costs, against the
amount of energy produced by the asset of its lifetime, LACE
helps capture the relative value of one generation option against
available alternatives.

In this brief study, we build off recent efforts [2, 3] to con-
sider a LACE analysis for the state of California, with a focus
towards understanding market viability of WECs. California is a
particularly interesting location for such an analysis because of
its renewable energy portfolio standard (RPS), which requires
utilities to have 60% retail electricity delivered by renewable
sources by 2030 and 100% by 2045.1 Thus, we consider the
problem of eliminating the fossil fuel based generation sources
from the grid. We quantify the amount of power generation ca-
pacity that must be displaced by 2045, and use this to perform a
LACE-style analysis considering the relative cost of fulfilling the
energy deficit with WECs, wind turbines, and solar photovoltaic
panels.

LITERATURE REVIEW
Wave energy is an untapped renewable energy resource, that

to date has been under-utilized, in part due to its high resource
dependence and operational “complexity.” To achieve grid pen-
etration, WECs must not to only survive amongst the harshest
resources (i.e., large loadings from waves, corrosion from salt
concentration, etc.), but must also produce power at comparable
levels to other more mature renewables (e.g., solar and wind).
While the challenge is substantial, the wave energy resource is
amongst the most dense and predictable resources [4, 5]. To un-
derstand the intricacies of WECs, several studies have discussed
the challenges scaling deployments [6, 7, 8, 9].

Numerous studies have considered integration of wave en-
ergy into energy systems and found that it provides grid sta-
bility and can reduce the cost of energy storage ∼40-60%
[10, 11, 12, 13, 14, 15]. This can also lead to huge benefits, as the
current costs for energy storage systems, when located “behind
the meter,” can run up as high as 485-1000 $/MWh (as stand-
alone solutions), 223-384 $/MWh as part of storing electricity

1For a listing of RPSs within the United States, see,
e.g., https://www.ncsl.org/research/energy/
renewable-portfolio-standards.aspx.

by photovoltaics for industrial applications, and 457-663 $/MWh
for residential solutions [16]. Coastal regions may also see ben-
efits in terms of reduced usage of existing transmission lines and
a reduction of single point failures [14]. For wave energy, the re-
ported LCOE values have a range of 80-600 $/MWh underlying
the uncertainties which are dependent on WEC archetype, re-
source, installed capacity, and other assumptions [17, 18, 19, 20].

A LACE ANALYSIS IN CALIFORNIA
A typical LACE analysis is driven by the marginal genera-

tion price along with capacity payments.

LACE = (marginal generation payment)+(capacity payment)
(1)

If one is considering a LACE analysis for present-day, it is possi-
ble to obtain a good estimate via (1). However, it is a fundamen-
tal point our 2045 analysis that the cost/value of energy will be
dramatically changed by the need to remove carbon producing
generation assets. Thus, we must pursue a different approach.

First, we consider the current status of electricity produc-
tion in California. Next, we use this information to execute two
types of analyses to predict ways in which the deficit created by
removing carbon producing generation assets from the grid can
be dealt with. An explicit approach is first used to consider the
additional solar/wind generation that would be needed. A con-
strained optimization approached is then used to solve for the
least expensive means of adding renewable generation capacity
to meet California’s RPS.

Before proceeding further, it is necessary to state a set of
assumptions on which the analyses performed within this study
will be based. Firstly, we consider a finite set of renewable en-
ergy technologies that may be built. While both hydroelectric
dams and nuclear power plants have many attractive qualities as
dispatchable based loads, both are limited in their application
due to social/political limitations. Therefore, we consider only
solar, wind, and wave energy in our analyses. In this study, we
consider the monthly average electricity generation and demand.
While shorter times-scales are indeed important and should be
considered in subsequent studies, a monthly analysis can provide
useful insights. Storage has the effect of smoothing the power
generation or demand profile. Most large-scale energy storage
technologies are not well-suited to storing energy over the time-
scale of months; pumped hydro and compressed air storage are
likely the most viable solutions (see, e.g., [21]). Thus, we do
not consider storage in this paper. Another consideration is grid
expansion, but the obvious limitation of this option is the large
capital cost and socio-political challenges.
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FIGURE 1. ELECTRICITY GENERATION CAPACITY OVER TIME IN CALIFORNIA, SOURCE: EIA. GREY SHADED AREA SHOWS PE-
RIOD OF 2014-2020 CONSIDERED FOR THIS STUDY.

102 103 104

Installed capacity [MW]

petroleum coke

waste heat

coal

oil

biomass

nuclear

geothermal

wind

solar

hydro

natural gas

FIGURE 2. MEAN CALIFORNIA GENERATION CAPACITY BY
SOURCE (2014-2020), SOURCE: EIA.

Current status
Figure 1 shows the electricity generation by source in Cali-

fornia for the period of 2001-2020. In an attempt to use data from
a period over which changes in the electricity grid were less dra-
matic, in this study we will consider data from 2014-2020, which
is highlighted in gray in Figure 1. The average power production
for each source during the 2014-2020 period is shown in Fig-
ure 2. We can see that natural gas is the largest generation source

TABLE 1. AVERAGE INSTALLED CAPACITIES AND CAPAC-
ITY FACTORS 2014-2020, SOURCE: EIA.

Capacity [GW] Capacity factor [-]

fossil 43.74 0.77

solar 10.44 0.24

wind 5.88 0.26

in California during this period, followed by hydroelectric dams
and utility-scale solar.

Of particular interest in this study are the installed capacities
of all fossil fuel generation assets (coal, natural gas, and oil),
solar, and wind; these are shown in Table 1. Additionally, Table 1
shows the average capacity factors for each of these generation
types. These capacity factor values computed directly from the
data used in this study are in line with those reported elsewhere
in literature [1, 22].

We see that the installed capacity of fossil fuel type genera-
tors is three times greater than that of solar and wind combined.
Additionally, the capacity factor of the fossil fuel generators is
much higher than that of solar and wind. Thus, for 1 GW of ca-
pacity, the yearly output of a fossil fuel plant will (on average),
be 0.77 GW whereas the output of similarly rated solar array or
wind turbine farm will be closer to 0.25 GW. Along with the bulk
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capacity factor, one must also consider temporal variation (“in-
termittency”) in electricity production from various sources.

Monthly electricity balance
Electricity is a heterogeneous good [23, 24, 25], in that

1 kWh of electricity generated in November in Texas is not ex-
changeable for 1 kWh of electricity generated in California in
May. For our present study, we will focus on the temporal aspect
of this heterogeneous nature. The upper-most axes in Figure 3
show the average monthly electricity generation for fossil (coal,
natural gas, and oil), solar, wind, and wave (which is zero). Solar
and wind generation peak in the summer months, whereas fos-
sil generation is an order of magnitude larger and peaks in the
fall/winter.

This data may be distilled to consider what percentage of
the total monthly electrical generation comes from fossil sources
(second axes in Figure 3). In May, only 35% of California’s elec-
trical generation is derived from fossil sources, but in December
the level is 58%.

Taking this logic one step further, we may determine how
many times more solar/wind generation would need to be added
to offset that electricity produced by fossil sources. If the demand
for electricity is considered to be similar in 2045,2 this problem
can be considered in terms of offsetting the deficit created by re-
moving the fossil based generation from the grid. If J f (t), Js(t),
and Jw(t) are the monthly fossil, solar, and wind production, re-
spectively, we may find

α(t) =
J f (t)

Jw(t)+ Js(t)
, (2)

where α(t) is the monthly multiplier of new solar/wind genera-
tion capacity. The results of (2) are shown in the third set of axes
in Figure 3. In May, one must only add 136% to the existing so-
lar panels and wind turbines to offset the fossil generation. How-
ever, to maintain a positive energy balance in December would
require an additional 485% of the existing solar/wind generation
capacity.

As a final step in this analysis, we may infer the resource
for solar and wind in California by normalizing the monthly pro-
duction levels (lowest axes in Figure 3). Additionally, based on
hindcast data, we can include the wave energy resource contri-
bution [26]. From the lowest axes in Figure 3, it is immediately
clear that the wave energy resource in California is complemen-
tary to solar and wind (which have very similar resource curves).

2Recent trends indicate that electricity demand in California is neither grow-
ing nor decreasing.

Constrained optimization problems
The previous analysis was able to give a solution in terms of

a simple factor of the existing solar and wind generation capacity,
but the best solution may involve some arbitrary mixture of addi-
tional capacity. To solve for this optimal mixture, a constrained
optimization problem can be formulated.

min
g

(
∑

i
gi · ci

)
(3a)

s.t. ∑
i

ri(t) · γi ·gi ≥ J f (t) (3b)

Here, gi and ci are additional renewable generation capacity and
the cost of that capacity for source i∈ (solar, wave, wind). Thus,
objective function (3a) represents the total cost of additional re-
newable generation. The normalized monthly resource for each
technology (solar, wind, and wave) is ri(t) and the average ca-
pacity factor is γi. The monthly energy deficit created by the
removal of fossil generation assets is J f (t). We constrain the so-
lution of the problem with (3b) such that the monthly net energy
balance is positive. In practice, (3) was solved via a sequential
least squares programming algorithm.

We use (3) to conduct two case studies. First, we examine
the scenario where wind and solar generation capacity can be
added to satisfy (3). Next, we consider (3) with wave energy
generation capacity.

Case study I: solar/wind As reported by [22], the price
of onshore US wind turbine installations is on the order of
1000 $/kW of nameplate capacity. According to the EIA Annual
Energy Outlook 2020 [1], the capital costs of solar and onshore
wind and solar are, respectively, 1331 and 1319 $/kW of name-
plate capacity. Note that these values represent the installation
cost, but do not include other important costs such as operations
and maintenance (“O&M”). Since the costs are similar, we will
consider them as equal initially (cs = cw).

Applying (3) gives the optimal solution illustrated in Fig-
ure 4. Here, we see the initial deficit created by removing fossil
generation assets, which is effectively the initial condition for
our optimization problem if gs = gw = 0. The optimal solution
shown in Figure 4 ensures that demand for electricity is met each
month while minimizing costs. We can see that in November
and December the optimal solution results in a monthly electric-
ity balance that is close to zero, but positive. This result aligns
with that seen using (2) and illustrated in the third set of axes in
Figure 3.

In this case, in which the cost of solar and wind are taken to
be equal, the optimal solution is to use wind to meet the unmet
electrical demand. This is likely due to the mean capacity factor
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FIGURE 3. MEAN CALIFORNIA FOSSIL (COAL, NATURAL GAS, OIL), SOLAR, AND WIND GENERATION (2014-2020), ALONG WITH
ADDITIONAL FACTOR OF EXISTING WIND/SOLAR NEEDED TO DISPLACE FOSSIL GENERATION SOURCES. NORMALIZED RE-
SOURCE CURVES FOR SOLAR AND WIND TAKEN BASED ON PREVIOUS GENERATION, WAVE RESOURCE CURVE TAKE FROM HIND-
CAST DATA.

of wind (0.258) being slightly greater than that of solar (0.240).
If we consider a case where the cost of solar is slightly less than
that of wind (cs = 0.9cw), the optimal solution uses only addi-
tional solar capacity.

It is interesting to note that the optimal solution uses a mix-
ture of both solar and wind for only a narrow range of relative
costs (0.9061 < cs/cw < 0.9079). In other words, the solution is
very sensitive to the relative costs of these two generation types,
likely because their resource curves (lowest axes in Figure 3)
are so similar. Note again that, while this analysis looks only at
monthly electricity production/demand, smaller time-scales may
also be important (e.g., diurnal variation in both solar irradiance
and wind).

Case study II: solar/wind/wave Finally, we may apply
(3) to study the potential penetration of wave energy generation

assets. We consider a range of wave energy costs and average
capacity factor values as no reliable data is available for the cost
or intermittency of wave energy. Thus, we consider (3) for a
range of wave energy cost and average capacity factor values.

The results of this analysis are shown in Figure 5. The rela-
tive utilization of each generation type is shown for wave energy
costs ranging from one tenth that of solar and wind to ten times
that of solar and wind. The different sets of axes in Figure 5 show
the results of this analysis for different average capacity factors
for wave energy (0.25, 0.50, 0.75).

As expected, when the cost of wave energy is very low,
WECs compose the entire optimal solution. Conversely, if the
cost of wave energy is very high, the optimal solution relies en-
tirely on new wind turbines as seen in Case-study I. However, if
the capacity factor of wave energy is on par with solar and wind
(0.25: the upper-most axes in Figure 5), WECs provide 20% of

5 Copyright © 2022 by ASME and 
The United States Government



1 2 3 4 5 6 7 8 9 10 11 12

Month

−1.0

−0.5

0.0

0.5

1.0

1.5

M
o
n
th

ly
el

ec
.

[M
W

h
]

×107

Fossil deficit

Optimal solution

FIGURE 4. CASE-STUDY I: INITIAL DEFICIT DUE TO RE-
MOVAL OF FOSSIL GENERATION AND OPTIMAL SOLUTION
FOR MEETING ELECTRICITY DEMAND WITH SOLAR/WIND.

the optimal solution even when they cost twice as much as solar
and wind. This is due to the complementary nature of the wave
energy resource curve with respect to that of solar and wind. If
the capacity factor of wave energy is higher, which may indeed
be possible given the nature of ocean waves [2], wave energy can
be viable with even higher costs – at a capacity factor of 0.75,
wave energy still contributes 10% of the optimal solution when
the cost is 5× that of solar and wind.

CONCLUSION
In this study, we analyzed the decision process for meet-

ing California’s 2045 renewable portfolio standard to completely
eliminate fossil fuel based electricity generation. Via a con-
strained optimization problem, we find that even when the costs
of wave energy are higher than that of wind or solar, it may be
a cost effective solution. This is due to the fact that while wind
and solar have their highest output in California in the summer
months, wave energy has the highest output in the winter.

This study considered only monthly electricity de-
mand/production, but future analyses should consider smaller
smaller time-scales (e.g., hourly). Additionally, it may be pos-
sible to include the effects of energy storage in the optimization
problem and to reflect other value/cost considerations, such as in-
tegration costs. Furthermore, it may be possible to consider the
output of specific WEC devices and/or device types to provide
more detailed results.
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