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SUMMARY

The genome is the blueprint of life and has a detailed genotype and phenotype descrip-
tion of any organism. This in itself attributes sensitivity to genetic data, be it in the bio-
logical or electronic format. The possibility of sequencing the genome has opened doors
to further probing of the data in its electronic form. Post sequencing of the biological
genome sample, the electronic genome is stored, processed, and transmitted for variety
of purposes including but not limited to Medicare, research, solving crimes and enter-
tainment. However, due to the sensitivity of the genome data, security and privacy of the
electronic data is considered to be imperative.

Owing to the privacy and security concerns associated with sharing genome data
with third-party entities for processing, various secure and privacy-preserving solutions
have been considered. Such scenarios include, a researcher obtains research data which
includes genome of individuals, or when a healthcare institution outsources the genome
of its patients to a cloud environment for storage and processing. In all of these scenar-
ios, it is important that the utility (accuracy and efficiency) of the data is maintained
while preserving privacy (confidentiality and unlinkability) simultaneously.

In this thesis, we focus on maintaining data utility when processing electronic genome
data as well as preserving the privacy of the individuals whose data are analysed. We
employ privacy enhancing techniques such as secure multi-party computation and ho-
momorphic encryption to existing problems and develop provably secure cryptographic
protocols that are fit for purpose for each scenario.

1
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SAMENVATTING

Het genoom is de blauwdruk van het leven en bevat een gedetailleerde beschrijving van
het genotype en fenotype van elk organisme. Dit gegeven maakt dat genetische gege-
vens zeer gevoelige informatie is, of dit nu in biologische of elektronische vorm is. De
mogelijkheid om het genoom te sequentieren heeft deuren geopend voor het verder
onderzoeken van de gegevens in hun elektronische vorm. Na sequentiebepaling van
het biologische genoommonster wordt het elektronische genoom opgeslagen, verwerkt
en verzonden voor verschillende doeleinden, inclusief maar niet beperkt tot medische
doeleinden, onderzoek, het oplossen van misdaden en vermaak. Vanwege de gevoelig-
heid van de genoomgegevens worden beveiliging en privacy van de elektronische gege-
vens echter als noodzakelijk beschouwd.

Vanwege de privacy- en beveiligingsproblemen die gepaard gaan met het delen van
genoomgegevens met externe entiteiten voor verwerking, zijn verschillende beveiligings-
en privacybeschermende oplossingen overwogen. Dergelijke scenario’s zijn onder meer:
een onderzoeker verkrijgt onderzoeksgegevens die het genoom van individuen bevat-
ten, of wanneer een zorginstelling het genoom van zijn patiënten uitbesteedt aan een
cloudomgeving voor opslag en verwerking. In al deze scenario’s is het belangrijk dat zo-
wel de bruikbaarheid (nauwkeurigheid en efficiëntie) van de gegevens, als ook de privacy
(vertrouwelijkheid en onkoppelbaarheid) behouden blijft.

In dit proefschrift richten we ons op het behouden van de bruikbaarheid van gege-
vens bij het verwerken van elektronische genoomgegevens en op het beschermen van
de privacy van de individuen van wie de gegevens worden geanalyseerd. We gebruiken
technieken om de privacy te verbeteren, zoals secure multi-party computation en ho-
momorphic encryption voor bestaande problemen, en ontwikkelen aantoonbaar veilige
cryptografische protocollen die geschikt zijn voor elk scenario

3
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1
INTRODUCTION

Investigating the human genome in the hopes of understanding its basic compositions,
history and evolution can be considered as a daring feat by our species to unlock the
secret to what makes us exceptional but vulnerable to simple diseases. In fact, the suc-
cesses recorded while exploring the genome has presented humans with one major out-
come. This being the harvest of explosive information previously locked within the hu-
man genome, but surprisingly tailgated by the unplanned privacy-invasive potentials of
investigating the genome of a non-consenting individual. This thesis focuses on pro-
viding provable solutions via cryptography, that allow for humans to enjoy the utilities
that accompany genome data research while preventing the security/privacy-invasion
of participating members.

5
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1.1. GENOME DATA PROCESSING
A comprehensive set of any organism’s deoxyribonucleic acid (DNA) is known as that or-
ganism’s genome [1]. The human genome has been accorded huge attention within the
last two decades, and this is a direct consequence of the revolutionary corner turned by
the research community with the realisation of whole genome sequencing [1–4]. There-
fore, the possibility of having an electronic copy of the genome (in silico genome) has not
only become common, but interestingly, is available for quite affordable units of time
and money [5–7]. With digital copies of genomes easily obtainable, genome data pro-
cessing (GDP) becomes inevitable, and has been commonly adopted both in research
and industry. This adoption owes it to the rich information embedded in the genome,
which is relevant for bio-research [8]. Some of the motivations for adopting GDP in-
cludes its potentials: personalised healthcare, disease predisposition, patients response
to treatments and maybe early discovery and cure for diseases such as cancer [9–12].
Due to the increasing popularity of electronic copies of genome data, various domains
of expertise in research and industry have been involved in one or more aspects of GDP,
including faster sequencing techniques[13] and genotype-trait association discoveries
[14, 15]. Interestingly, the idea of an integrated genomic and proteomic security proto-
col has been proposed and patented, towards the use of genomes for the construction of
authentication and encryption suit [16].

1.1.1. PROPERTIES OF THE GENOME
There are properties of the genome that make it peculiar and attractive for interested
parties who wish to investigate and utilize the genome data. Some of these properties
include:

• Immutability: the genome of an individual is stable and does not change over time.
This means that in the event that a person loses his genome to an adversary, it is
not possible to make changes to obtain a new set of genome.

• Uniqueness: the genome is considered the blueprint of life. It is unique for every
individual, even for identical (monozygotic) twins.

• Shared properties: even though the genome is unique to the sequenced individual,
information about close relatives of the individual is contained in the genome.
This means that siblings carry around a genetic information of one another and
this widens the surface of attack for an adversary.

• Predictive power: the genome houses a great deal of information. It can be used to
predict phenotypes which are not currently expressed on the individual.

• Longevity: the usefulness of the genome persist even after the direct owner who
was sequenced is long dead. It means that information obtained from a deceased
individual can always be useful for relatives who are alive or other purposes.

1.1.2. RELEVANCE OF GENOME DATA PROCESSING
In the context of this thesis, genome data processing describes those activities that in-
volve the digital version of the genome all through the lifespan of the genome. A typical
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life cycle of a digital genome includes four major phases:

1. Sequencing: the process of reading a biological sample of an individual, and repro-
ducing an electronic representation of the the biological genome.

2. Storage: the ability to securely store the electronic genome data, for efficient use of
the data. This is done immediately after sequencing the biological sample of the
genome owner.

3. Processing: of the genome either, independently, as a part of a large dataset or in
combination with other non-genomic dataset.

4. Publishing: results that might have included genome data as input data during
processing.

On account of the list above, we encapsulate our concept of GDP to represent any
operation that involves the electronic genome which can be categorized into either se-
quencing, storage, processing or publishing phase.

Sequencing is the initialization phase of the entire life cycle of a typical electronic
genome. This phase is exclusively handled by the experts from the biology domain, and
often relies on the integrity of the biologist. The implication being that there is very little
that can be done by means of security or privacy to protect possible abuse in this phase.
In fact, this thesis is written with the assumption that the sequencing phase is handled
by a party who does not have the incentive to misrepresent the genome of the customer,
which is supported by the ethics guidelines of handling health data [17–19].

The storage phase refers to the efficient methods for securely storing the genome data
in such a way that the genome data can be easily accessed for use. The cost of storing
one individual’s complete genome is estimated at 150 gigabytes of space [20], making
it non-trivial to access and use the data. Such usage might include viewing, insertion,
deletion, editing, updating, transfer or sharing the digital genome.

The processing phase represents a broader spectrum of operations, which can in-
clude: i) Simple analysis of the genome data against a reference genome. ii) The use of
genome data alongside a pool of other genome data for an association study involving
thousands of participants. iii) Using genome data independently, to compute a desirable
status for the genome owner. The operations in the processing phase typically requires
mathematical, statistical and machine learning functions/algorithms. For example, a
relatively simple statistical function like Pearson Goodness-Of-Fit test can be computed
using genome data [21, 22], the result is thereafter utilized in making critical decisions
such as the significance of a gene to a disease [22]. Other complex operations such as
logistic regression and deep learning can be observed in [23–25], where machine learn-
ing is utilized in combination with genome data, and in developing machine learning
models that are of interest to researchers.

In the publishing phase, the results obtained from any of the previous phases can be
made public to either a select group of individuals or the general public, depending on
what the objective of the entity that publishes the result [26]. An example would include
publishing a newly discovered association between genes and diseases, or just reporting
the status of a clinical test result to a patient.
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Therefore, one can argue that genome data processing is commonly dependent on
machine learning algorithms. In fact, machine learning has remained an integral part of
most operations that involve the genome. This is because the huge amount of data very
typical of genome research begs for optimal, fast, and complex algorithms that would
identify complex relationships, and make sense of the large data in order to reduce time
which might be spent investigating uninteresting data [20, 24]. The adoption of machine
learning by computational biologist and bio-statisticians in processing genome data of-
fers the robustness and big data processing ability, which would otherwise be unattain-
able if traditional data-processing applications software were to be used [27].

With GDP, the possibilities are boundless [16, 28, 29], with seemingly as many pos-
itive contributions as there are perceived threats. On one hand, through the research
on genome data, it is expected that personalized medicine will be improved such that
every individual receives medications that are tailored to their genomic composition as
opposed to that of a population [30]. Also, individuals could test for their predisposi-
tion to diseases by examining their genome or that of their relations, using genome data
processing [12]. This will lead to early diagnosis, and eventually preventive medicare,
rather than the reactive medicare commonly obtainable. This list of positive contribu-
tions includes test for ancestry information, paternity or maternity determination, pa-
tients response to treatment, and better understanding of diseases like cancer[8], just to
mention a few. On the other hand, the possibility of an individual exposing his genome
data to the public raises realistic privacy concerns. For instance, consider a participant
Alice, who had contributed his genome data for a large cancer research study, if he is
publicly identified. If Alice were to be re-identified publicly to have participated in the
study, notwithstanding if she was grouped in the case or control group of the study, she
is very likely to deal with the abuse of privacy-inversion.

The importance of genome data processing cannot be overemphasised as it touches
multiple domains, hence, widening the circle of stakeholders to be considered during
the lifespan of a genome data. Genome data processing spans its relevance to individu-
als, patients, medical personnel, data scientists, bioinformaticians, biostatisticians, bio-
researchers, commercial companies, pharmaceutical companies, lifestyle coaches, en-
vironmental researchers [6]. Each stakeholder may have different interests in GDP as
the next stakeholder. Sometimes, these interests tend to conflict thereby requiring novel
ideas on how to resolve such conflicts without disrupting the utility of the data [11]. A
depiction of such a conflict can be observed in the scenario where a researcher wishes
to conduct a machine learning study using the genome data of multiple participants,
and these participants care about their privacy and wish to only provide the data in a
protected form that cannot be abused by the researcher [31].

Summarily, the plummeting in cost of sequencing the genome has brought about
the proliferation of in silico genome and genome data processing. Thereby, inviting pre-
viously non-interested parties into the discourse by ways of intensive research, novelty
in data analytic techniques, and of course offering genome data processing services for
profit [11].

The rest of this Chapter is structured as follows: first we introduce the stakehold-
ers commonly found in literature and industry, in order to establish their roles. Then,
we present the research motivation for investigating genome data processing, followed
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by the business motivation explaining its wide attraction in the industry. Furthermore,
we present the concept of genome data as a service, followed by the associated privacy
threats. Thereafter, existing solutions to the identified threats are presented alongside
the open problems to be addressed in this thesis. From the identified open problem, a
problem statement is formulated for this thesis with a clearly stated research question
to be addressed. Finally, the contributions of this thesis are present and quickly followed
with an outline for the rest of the chapters.

1.2. RESEARCH AND MEDICAL INCENTIVES
The genome has been studied in medical research and related fields, and the success of
whole genome sequencing has accelerated genome related research since the turn of the
21st century [6, 32]. Consequently, the advent of digital genome has aided the research
community in making significant progress due to the comparative ease of analysing the
digital genome as against the use of biological samples [33–35]. As a result, various stud-
ies conducted using the genome have impacted medicine in the following ways:

1. Providing scientists with significant understanding of the basic building blocks of
life [36].

2. Aided in investigating relationships between genes and phenotypes [37]. With the
aid of genome-wide association study (GWAS), researchers have been able to es-
tablish relationships associations between genetic variations and specific pheno-
types [38].

3. Improved our knowledge of diseases and their causes [39].

4. Helped in study of patients response to treatment and personalized medicine [40].

5. Stands in the frontier for the development of preventive medicare [41].

GlaxoSmithKline, a pharmaceutical giant, recently announced that DNA results from the
5 million customer base of 23andMe [42] will be used to design new drugs. This, suggests
that the interest in genome data processing persist and the possibilities are convincing,
even for big pharmaceuticals [43]. In support of the research toward promoting privacy
for genome data, a body known as integrating data for analysis, anonymization, and
sharing (iDASH) [44], whose focus is on privacy-preserving algorithms and solutions for
data sharing, have continued to push the boundaries of unresolved problems in genome
data processing research and algorithms. One way iDASH does this is by announcing
open problems as challenges yearly, and accepting contributions from all over the world
in hope of closing some research gaps, solving previously open problem, and realizing
more secure, privacy-preserving, and efficient solutions to genome data processing.

1.3. FINANCIAL AND BUSINESS MOTIVATION
Ever since the successful completion of whole genome sequencing [1] about two decades
ago, the cost for sequencing the genome has continued on a downward trend, making it
even more affordable for people, see Fig 1.1. While it can be argued that more individuals
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now seek to use GDP services due to the sheer affordability of these services, some group
of people equally choose to patronize the companies out of curiosity and fun.

As a result, investors have taken advantage of the possibility of genome sequencing
to offer genome related services. These commercial entities have clearly taken advan-
tage of the existing demand, by commodification of the genome and genome related
services. Hence, offering services such as sequencing, ancestry testing, disease suscep-
tibility testing and many more for a token, to a readily available customer base. This has
led to the proliferation of in silico genome, while also pushing the boundaries of research
towards exploring other uses for the genome. It can be said that these companies invest
to offer commercial services to individual in a market that has naturally found its niche.

For as low as $100, commercial companies such as Helix, MyHeritage and 23andMe
state that they are able to unlock your genome and deliver health and ancestry ser-
vices directly to customers [42, 45, 46], without the intervention of your medical doctor.
GlaxoSmithKline are reported to have invested $300 million in 23andMe, even though
23andMe are already valued at about $1.75 billion [47, 48]. As of December, 2019, 23andMe
recorded an estimated annual revenue of $475 million, with a total funding of $877.7 mil-
lion as against its total funding of $27.8 million in 2009 [49]. The numbers clearly support
the argument that genome data processing is a financially viable area for investment. In
fact, what the commercial companies such as 23andMe and Helix have done is to offer
genome data processing as a Service (GDPaaS). We mention that existing market models
that are found in the wild at the time of writing this thesis is such that the commercial
companies play the roles of Sequencer and Storage and Processing Unit.

Figure 1.1: The plummeting in cost of genome sequencing

1.3.1. GENOME DATA PROCESSING-AS-A-SERVICE
Many of the customers who patronise the storage and processing unit are Data Owners,
who seek these services for their personal interests. However, Medical Personnel and
Researchers equally benefit from these services. For instance, a medical doctor might
require a specific genome related test for a patient. Where such tests are not readily
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obtainable in their hospitals, the medical doctor would refer the patient to one of the
commercial companies. For more complex processing, where huge data is required or
specialized computing hardware and software are needed, these computationally and
time intensive computations are better outsourced to a Storage and Processing Unit that
offer the corresponding services. This scenario of transferring data processing to a third
party can be qualified as outsourced computation.

Outsourced computation allows for a computationally limited client to delegate com-
putationally demanding functions to a highly resourced party such as a cloud infrastruc-
ture. In this scenario, the cloud infrastructure represents the company offering GDPaaS,
and is expected to compute the functions correctly and return result to the client. A list
of services offered under GDPaaS includes the following:

• Sequencing: This is usually the first of many services purchased by customers.
This typifies the contact between the Data Owner and the Sequencer. The biolog-
ical sample presented by the Data Owner is sequenced to obtain a digital copy of
the genome. The result of the sequencing step can be a suit of single nucleotide
polymorphism (SNP) of the customer. SNPs are genetic markers and are gener-
ated by comparing each locus of the customer’s genome against a set of reference
genomes [50], and the result is a fraction of the customers genome. It is estimated
that every individual has about 4 to 5 million SNPs in their genome [51]. Another
result of the sequencing step could also be the whole genome of the customer,
this requires that all the nucleotide base pairs of a customer is obtained and this
numbers about 3 billion base pairs.

• Storage: After sequencing a Data Owner’s genome to obtain either SNP values or
the complete genome, the storage and management of the electronic genome can
be offered as a service to the customers. This is because a customer might not have
the hardware needed to manage these large dataset especially if it is an individual.
In some cases where special software are required to access the data, even large
medical institutions are happy to outsource this function to the commercial com-
pany. Since they are not expected to have the expertise and resources required for
the management of genome data of multiple people.

• Analysis: Sequencing the genome is usually not the end goal, neither is storage.
The aim is generally to analyse the data for one purpose or another, be it for popu-
lation study or a medical diagnosis. The analysis varies depending on the need of
the client, which means that the companies provides a suit of analyses as part of it
GDPaaS, and the customers only pay for the services they seek. The analysis ser-
vices can also vary in complexity, from basic comparison that reports similarities
with another genome, to complex models that takes a customer’s genome as in-
put and outputs the degree of the customer’s susceptibility to a disease of interest.
Genome wide association study (GWAS) can also be outsourced by institutions to
the commercial companies. GWAS is typically computationally intensive because
of the complex statistical function and machine learning models involved, and
also it utilizes huge dataset [35, 38, 52]. This makes GWAS a preferable candidate
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of GDPaaS, since it is cheaper for institutions to outsource these operations rather
than spend money and time in building an in-house team with the requisite ex-
pertise.

Inasmuch as correctness is an important criteria for cloud infrastructure during out-
sourced computation, an ever present concern is that of protection of the outsourced
data from abuse, especially in the face of critically sensitive dataset like the genome.

1.4. PRIVACY CONCERNS IN GENOME DATA PROCESSING
The genome is a highly identifying data, with the ability to uniquely identify any indi-
vidual, making it necessary to seek the consent of its owner before using them [10, 53,
54]. With the proliferation of gathering genomic dataset and the continuous growth of
databases of genomic data held at diverse locations across the globe, it raises serious
privacy concerns amongst researchers, participants and even governments. The possi-
ble catastrophe of the misuse of such an important dataset, should better be imagined
[55]. Therefore, it has necessitated the search for procedures that would allow viable re-
search involving genomic data, while not compromising the privacy of participants [56].

The threats towards abuse of genome data is well documented [57–61], and efforts
have been made to address some of these threats. As an example, in 2013 Gymrek et al.
demonstrated the possibility of re-identifying participant or their close family members
by analyzing chromosome sequences which are readily available on public genetic ge-
nealogy websites [62]. Thereby, de-anonymizing the participants and threatening their
privacy. At least, this shows that simple anonymization techniques are not enough to
protect genome data, and in extension the privacy of the owners. A comprehensive suit
of solution for protecting genome data requires contributions which is multi-disciplinary.
This requires dedicated and collaborative efforts from, social sciences, legal, and infor-
mation technology to properly regulate the use of genetic data [11, 26, 56]. The reason
for promoting a multi-disciplinary solution include:

• The protection of genome data while seeking to preserve its utility is a difficult
problem that requires a non-trivial solution [11, 63]. Its property to uniquely iden-
tify any individual makes it really attractive for adversaries, and these adversaries
can target the weakest link in the life cycle of the genome. And this includes creat-
ing awareness on the possible risks of exposing genome data.

• Because the genome originates from a biological sample, it becomes almost im-
possible to apply only information technology protection to its life cycle. This is
the reason laws such as the Genetic Information Nondiscrimination Act of 2008
have been established to assist in genome data protection [64, 65].

• A genome data obtained for the use of specific purpose, can equally be used for a
variety of other purposes. This opens the door for potential abuse, hence, calling
for more elaborate and comprehensive approaches for protecting genome data
[66].

A complete boycott of analyses of genome data due to the privacy threats would be
counterproductive, because the research community and humans would lose out on as-
sociated innovations. It boils down to the trade-off between the privacy versus the utility
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of genome data processing that is acceptable for relevant stakeholders [31]. This the-
sis therefore provides an information technology solution to privacy-threats in genome
data processing, through the use of provable cryptographic techniques.

1.4.1. THREATS
The availability of digital genome data to the general public has resulted in the sprout-
ing of terms such as “cybergenetics", which in turn has pushed for more conversations
on the awareness of genome data processing. The conversation about processing the
genome often differs depending on whom the audience is currently paying attention to.
For example, while participants of a large research would appreciate not revealing their
identity in a dataset used for a cancer study, the commercial company who offers ser-
vices like tests for disease susceptibility wishes to protect the algorithms they deploy in
order to protect trade secrets.

Concerns for potential abuse of genome data are rife, and this reaffirms the call for
protection of genome data [26, 57, 61]. The entire genome data processing community
share one concern or another that requires protection of identified assets.

• Re-identification: Participants of a large dataset used for a research study would
wish that they are not identified as having partook in such studies and would wish
for their identity to be confidential and anonymous [31, 57, 62].

• Stigmatization: An individual who undertakes a disease susceptibility test using
genome data, expects that the results of such tests are accurate and prefers not to
be stigmatized for having requested the test for a particular disease. Another ex-
ample can be seen in a scenario where institutions share unprotected data with
other institution when jointly performing new studies. The institutions would
insist on the privacy and confidentiality of participants in their dataset [67, 68].
Hence, they will demand privacy and security measures consistent with the re-
quest of the participants.

• Discrimination: An individual does not want to be discriminated by an insurance
company or to be attributed high premium on the basis of his genetic composition
[31, 67].

• Confidentiality: Finally, as an addendum, we have considered the security risks
associated with the commercial companies where it may be relevant. For instance,
a commercial entities may wish to protect their proprietary algorithms when used
to render services to the public. Therefore, they insist on the confidentiality of
their algorithm since it can be considered a trade secret, with huge financial im-
plications if it were to be leaked.

Depending on the peculiarity of the scenario, threat models differ and are often de-
termined by parties and the interactions amongst such parties. The listed threats above
can be summarised into the desired security properties relevant in the genome data pro-
cessing ecosystem. These properties are integrity, confidentiality, and privacy.
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1.4.2. EXISTING SOLUTIONS AND OPEN PROBLEMS:
Although some common scenarios have been discussed in literature are and often fol-
lowed by proposed solutions, there are still research gaps even in some of the proposed
solutions [57]. We introduce the scenarios we attempt to address and the open problems
associated with them.

• Scenario 1: Consider a scenario where a research institution sources genome data
from volunteers, and wishes to outsource the GWAS to an untrusted cloud infras-
tructure. In this case, the volunteers are happy to partake in the study, with the
caveat that they cannot be re-identified from the dataset nor from the published
results. This problem has been presented with different information technology
solutions over the years. A commonly adopted approach has been the introduc-
tion of special encryption algorithms known as homomorphic encryption, in or-
der to provide confidentiality and equally allow for basic mathematical operations
to be carried out on the ciphertext [22, 69]. However, homomorphic encryption
comes at a huge costs and can equally be limited. This means that where the func-
tion to be computed requires more than additions, subtraction, and scalar multi-
plications, the costs of a homomorphic solution accelerates from very expensive
to practically impossible. Therefore, there is still the need for privacy-preserving
but efficient solutions to this problem.

• Scenario 2: In this scenario, a customer already owns electronic copy of his genome,
and wishes to utilize a GDPaaS for testing his susceptibility for a disease. If the al-
gorithm for computing the susceptibility testing were developed by the commer-
cial company and therefore treated as a trade secret, the company will be inter-
ested in protecting the algorithm. This means the customer may need to transfer
the genome data to the company in order to benefit from the services. Here, we see
that the data privacy requirement of the customer tends to conflict with the algo-
rithm’s confidentiality requirement expected by the customer. Existing solutions
[70, 71] have proposed the use of homomorphic encryption to solve this problem,
while others have recommended the use of secret sharing technique. Notwith-
standing the contributions of these proposals, they commonly suffer from inef-
ficiency and sometime out-rightly relaxing the security requirements, therefore
making them unsuitable for deployment in the wild.

• Scenario 3: Let us assume that two or more research institutes wish to jointly con-
duct a study using genome data. The aim of the study is to compute a collaborative
machine learning model using contributed genome dataset. Also, the parties do
not wish to share their data unprotected, but are happy to share the models re-
sulting from the study so long as the original data cannot be reconstructed from
the published models. At the time of writing this thesis, this scenario remained a
challenge both in industry and academia, and an efficient, provable, and privacy-
preserving solution remains an open problem, so much so that it appeared as a
task in the 2019 iDASH challenge.
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1.5. PROBLEM STATEMENT
The primary aim of this thesis is to proffer provable information technology related so-
lutions that allow for the protection of genome data. And, at the same time encourage
stakeholders who need genome data to have regulated access while they continue to en-
joy the utility afforded by genome dataset.

As part of a technological contribution to protection methods in genome data pro-
cessing, we propose solutions to the privacy and security threats inherent in the genome
data processing ecosystem. We tailor our proposals to concentrate on adopting cryp-
tographic primitives to develop provably-secure and privacy-preserving protocols for
genome data processing. However, for problems which have existing solutions or proof
of concepts that address our identified problems, we seek to improve on those solutions,
but where such improvements are not feasible, and create novel protocols where im-
provements are not realistic.

Primitives such as homomorphic encryption, secret sharing and other privacy pre-
serving technologies will be considered as means of computing the underlying algo-
rithms already used within genome data processing sphere. We do not pursue the inven-
tion of novel algorithms for genome data processing, but we hope to wrap the existing
techniques with a privacy preserving primitives, in order to allow for the same computa-
tions with these genomic dataset in privacy safe manners. Finally, we anticipate that the
privacy preserving results must not be significantly worse off than is currently obtainable
in the unprotected versions.

With respect to the identified open problems in 1.4.2, we formulate the following
research question.

For every party in our defined setting/scenario of genome data processing, how can we
utilize cryptographic primitives to provide provable privacy and security for all identified
assets within the threat model, and still realize the utility of the protocol as a relatively
efficient alternative?

There are three core objectives of this research question, and we summarize them in
the following sub-questions:

1. Privacy and Security: How do we design protocols with the aim of providing prov-
able privacy and security guarantee, and equally optimize the computational, com-
munication, and storage cost of realizing such a protocol?

2. Acceptable Accuracy: How can we preserve the utility of genome data services
even in the protected domain, such that our privacy-preserving variants can repli-
cate the accuracy obtainable in the non-protected variants of the protocols.

3. Performance: How can we realize privacy-preserving protocols that are not be-
deviled by poor performances, but rather enhance performance by supporting
efficient storage, acceptable communication complexity, and practical computa-
tional efficiency.
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1.6. CONTRIBUTION OF THIS THESIS
This thesis draws attention to the security and privacy threats existing in the ecosystem
of genome data processing. Then, it addresses some of the identified privacy and secu-
rity threats by introducing provable, secure, and privacy-preserving protocols as proof-
of-concepts. Listed below are some of the core contributions of this thesis:

1. We propose one of the first privacy-preserving, non-interactive and parallelized
Machine Learning-as-a-Service protocol, that is able to offer learning on labelled
dataset, model generation, classification, and statistical significance computation
on encrypted dataset. This proposal was submitted as a solution to iDASH 2018
challenge, where it was ranked in the 6th position with respect to accuracy and
resource optimization. The details of this proposal is presented in Chapter 5.

2. In this thesis, we show how machine learning can still be efficiently performed
over protected dataset, and in some cases, even the machine learning algorithms
can be generated and used for data classification even while preserving privacy for
the model. Our work in Chapter 4 demonstrates this contribution.

3. We show that some genome data processes and algorithm can be executed in the
privacy-protection domain without having to lose significant efficiency nor accu-
racy of results. In fact, we argue with a proof of concept that in certain scenarios,
with a smart choice of machine learning algorithm, some privacy-preserving solu-
tions can outperform some unprotected solutions of the machine learning prob-
lem. The solution as described in Chapter 5 was submitted to the iDASH 2019
challenge, where it was ranked 5th in its category.

4. We demonstrate that privacy-preserving solutions can equally be obtained with-
out the use of expensive primitives such as homomorphic encryption. We do this
by replacing homomorphic schemes with data masking and obfuscation in order
to greatly improve on the speed and resources optimization of the novel proto-
col. In this work as described in Chapter 4, our approach outperforms an existing
state-of-the-art solution by more than 98%.

5. We adapt multiple privacy-enhancing techniques to solve problem that have pre-
viously been classified as computationally expensive. By this, we show the feasibil-
ity of merging various techniques towards the aim of providing privacy guarantees
for sensitive data. Our adaptation of multi-party computation techniques allow us
to demonstrate how simulation-based security proofs can be utilized in providing
security and privacy arguments even for solutions with integrated techniques. We
demonstrate this technique in Appendix A, also this work presents the first division
protocol with all encrypted operands.

6. We realize privacy-preserving collaborative machine learning model generation,
using private data contributed by various institutions to enhance the usefulness
of genome data research through collaboration? The details of this proposal is
presented in Chapter 5.
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1.7. THESIS OUTLINE
The rest of this thesis is composed of five chapters an appendices. Each chapter in-
troduces one or more independently written papers. Whereas, some of these papers
have been peer reviewed and published, some are currently under review, this means
these papers have been submitted to conferences for peer review. Due to the fact that
all the works presented in the chapters were independently produced publication, it is
expected that notations may not be consistent across the entire thesis. However, each
paper will introduce its own notation table to aid in understanding the discussed proto-
cols.

CHAPTER 2
In Chapter 2, we introduce the background to the building blocks required in this thesis.
Introduction to basic genome data processing computations and algorithms are pro-
vided. Also, cryptographic primitives are introduced and discussed, only to the extent
that these primitives are relevant to some section of this thesis. Most importantly, we
introduce the concrete scenarios that are of interest to us with a brief discussion on ex-
isting solutions that have been proposed to address those scenarios.

CHAPTER 3
In Chapter 3 titled “Privacy-Preserving GWAS", we present three independently writ-
ten papers. First, a literature survey paper on the threats to genome data processing is
provided to present an overview of the domain of privacy-preserving solutions to pri-
vacy threats in genome data processing. Second, a peer-reviewed paper on privacy-
preserving approach to computing linkage disequilibrium is presented. Third, a peer-
reviewed paper that addresses a privacy-preserving association study is presented.

CHAPTER 4
Chapter 4 is titled “Post-GWAS Computation on Privacy-Preserving Data", and discusses
post-GWAS computations in a privacy-safe solution. Also, the general concept and so-
lution is presented in the form of a peer-reviewed and published paper, which proffers a
solution for disease susceptibility testing.

CHAPTER 5
In Chapter 5 titled “Machine Learning on Protected Genome Data", the concept of in-
tegrating privacy-preserving machine learning with privacy-sensitive data is extensively
discussed. Various solutions are presented in two different papers. Firstly, the problem
of outsourcing machine learning models with private genome data is presented in a pa-
per with a protocol called REDACT. REDACT is a response to a track in the iDASH 2018
competition in which that solution was ranked 6th globally. Secondly, another solution
called SCOTML, that equally featured in the iDASH 2019 challenge, where it was ranked
5th is presented. SCOTML focuses on collaboratively generating public machine learning
models, using privacy-sensitive dataset from mistrusting parties.

CHAPTER 6
In Chapter 6, we conclude this thesis by discussing the successes achieve with respect to
our stated objectives. And also, we discuss open problems that have not been address in
this thesis, but have rather been left as future work.
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APPENDIX A
In Appendix A, we provide a secure multiparty computation protocol for the aid of per-
forming fixed-point division of encrypted operands. This solution describes the first at-
tempt to compute division using all homomorphically encrypted operands, with proto-
type implementations for both partial homomorphic and fully homomorphic schemes.

APPENDIX B
In Appendix B, we provide a privacy-preserving solution for collaboratively learning from
machine learning models owned by mutually mistrusting parties. This work demon-
strates how parties could leverage on already trained models to generate an optimized
new global model without having to sacrifice the privacy of their individual dataset.
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2
GENOME DATA PROCESSING AND

PRIVACY TECHNIQUES

Genome data processing constitutes the use of genome data as input to an algorithm in
order to obtain a desired output. This Chapter throws more light on genome data pro-
cessing techniques and common algorithms that are utilized in genome data processing
as well as the associated privacy preserving techniques that can be deployed in protect-
ing the privacy and security of assets identified. We introduce the idea of genome wide
association study (GWAS) and the machine learning algorithms common to this branch
of genome data processing. We introduce the concept of post-GWAS, and also present
algorithms that fit into this classification. Typical scenarios that are common in litera-
ture are introduced to provide a high level overview of the problem to which we propose
our solutions.
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2.1. TECHNIQUES IN GENOME DATA PROCESSING

2.1.1. DATA COLLECTION AND STORAGE
After a biological sample is sequenced, the data is stored in its electronic format for fur-
ther processing and analysis by bioinformaticians, biostatisticians, etc. We can cate-
gorise the primary aim of genome sequencing into two steps:

• Step 1: For the purpose of advancement of genome related research, that may lead
to discovery of previously unknown associations.

• Step 2: The use of the knowledge gained in the above step to answer specific
genome related questions.

Although individuals and laboratories sequence genome data and retain these data,
the biggest reservoir of genome data are institutions like National Center for Biotechnol-
goy Information (NCBI), The European Bioinformatics Institute (EBI), DNA Data Bank of
Japan (DDBJ) and China National GeneBank (CNGB) [1]. And these institutions mostly
utilize their huge biorepositories for the purposes of Step 1 above [2–5]. These insti-
tutions serve as a biorepository to genome related dataset such as DNAs, genes, single
nucleotide polymorphism (SNPs) etc. They allow for submission of new data to improve
the quality of their dataset, while granting access to researcher to utilize their data in
scientific research. For instance, EBI states that they already have up to 273 petabytes of
raw data. It is the sheer amount of data and resources at the disposal of these institu-
tions that make it possible for them to engage in cutting edge research and discoveries,
that would otherwise be impossible for a small laboratory. In fact, one of the common
analysis conducted on these trove of data, is that of discovering genotype phenotype
associations, using statistical algorithms and machine learning algorithms.

Individuals and smaller laboratories are more disposed pursue the goal in Step 2.
Here, an individual might seek to use existing knowledge from genome related research,
to determine the paternity of a baby, or perhaps investigate his ancestry. Observe that
the success of this step is dependent on possibility and advancements made possible
by Step 1, and data obtained in this step can always be used to improve the reliability
of Step 1. We can conclude that both steps are in cycle that continues to improve the
general understanding of the genome via genome data processing.

2.1.2. GWAS ANALYSIS
A genome-wide association study (GWAS) is a study that seeks to identify an associa-
tion between a phenotype/trait and the variant of a gene locus [6–9]. Usually, these as-
sociation could be that between a genetic risk factor and a complex diseases such as
schizophrenia or for even a rare Mendelian diseases such as sickle cell anemia [9]. Con-
sider a setup where a Researcher wishes to investigate the relationship between a disease
and a some gene loci in hope of establishing an association. The Researcher would utilize
GWAS in other to identify possible associations between the disease and a subset of the
loci, thereafter further biological experiments can be directed towards the candidate loci
in hopes of confirming the GWAS result. Interestingly, GWAS has been used in the field of
pharmacogenetics to identify associations between DNA sequence variations and drug
metabolism, efficacy, and adverse effects [9]. GWAS commonly require the collection of
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cases and control groups to represent the group that exhibit the phenotype and another
group that does not, respectively. In conducting association tests between gene locus,
the statistical analysis can take the form of a quantitative traits analysis or dichotomous
trait analysis [9, 10]. The quantitative traits analysis depends on statistical functions such
as linear regression and p-value tests, while the case/control analysis can be done using
logistic regression, contingency table, deep learning [11–14].

CHI-SQUARED TEST

This is a test used for determining a statistical significance margin between the expected
frequency and the observed frequency of a particular study, with the use of a contingency
table. For a particular SNP of interest which has two alleles, a recessive allele B and a
dominant allele A . In order to test for association between a disease D and the SNP. A
healthy group and a disease carrying group of participants are genotyped to obtain their
genotype at the SNP locus. This data is used to compute a contingency table like the one
in Table 2.1, where ri , si , and, ni represent genotype counts [15].

Table 2.1: A 2 x 3 genotype contingency table

A A AB BB Total
Cases r0 r1 r2 R
Controls s0 s1 s2 S
Total n0 n1 n2 N

Table 2.2: Observed allele counts

A B Total
Cases 2r0 + r1 r1 +2r2 2R
Controls 2s0 + s1 s1 +2s2 2S
Total 2n0 +n1 n1 +2n2 2N

Table 2.3: Expected allele counts

A B
Cases 2R(2n0 +n1)/(2N ) 2R(n1 +2n2)/(2N )
Controls 2S(2n0 +n1)/(2N ) 2S(n1 +2n2)/(2N )

To compute the observed allele counts for A and B , we generate a table similar to
Table 2.2. However, the expected allele counts for the genotype is represented in Table
2.3

The Chi-square test (¬2) is computed as:

¬2 =
mX

i=0

(Obser ved °E xpected)2

E xpected
· (2.1)
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LINEAR REGRESSION

When the test of association is between a genotype and a continuous-valued phenotype,
generalized linear models such as linear regression technique is adopted [9, 12]. A typical
logistic regression equation takes the form:

y =
kX

i=1
xiØi +Ø0 +≤ . (2.2)

From Eq. 2.1, k is the number of genotype loci considered, xi values are the values
of the genotypes, Øi values represent the coefficients of the corresponding genotypes
also known as model parameters, while Ø0 is the intercept on y-axis, and ≤ is the error
variable. Where k = 1 , which means only one genotype is analyzed, we have a univari-
ate regression model and where k > 1 , it is considered a multivariate regression model
with more than one genotype simultaneously analyzed [15, 16]. In [12], Sikorska et. al
demonstrate how other non-genotype covariates such as age, weight and height can be
combined alongside a genotype variable in order to predict a dependent variable y , as
shown in Eq. 2.2

LOGISTIC REGRESSION

Logistic regression is closely related to its linear counterpart but is rather used for di-
chotomous outcomes unlike the linear model preferred for continuous-valued outcomes.
Let the response variable y represent the disease D in an individual. For individual i ,
where (1 ∑ i ∑ N ) , and genotype loci j , where (1 ∑ j ∑ k) , we have:

y =
Ω

0, if D = 1
1, otherwise · (2.3)

xi , j =

8
><

>:

0, if genotype j = A A
1, if genotype j = AB
2, if genotype j = BB ·

(2.4)

For a logistic regression model that predicts the value of trait y given the values for the
genotypes xi s, we proceed as follows. Let pi = Pr (yi |x1 , . . . , x j ) represent the probability
of the trait being yi for the genotypes (x1 , . . . , x j ) . We define the logit function as:

log i t (pi ) = loge

∑
pi

1°pi

∏
=

kX

j=1
x jØ j +Ø0 +≤ · (2.5)

pi =
1

1+e°(
Pk

j=1 x jØ j +Ø0+≤)
· (2.6)

The logistic model is common in medical epidemiology due to its ability to clearly
classify the occurrence of an event using the sigmoid function as presented in Eq. 2.6
[12, 16].
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Both the linear regression model and the logistic variant offer the advantages of par-
allelization in some part, due to their linear combination properties [12, 17]. Even though
these analyses assume that the data sources xi values originate from a single database or
institution, the converse is equally obtainable in the wild. In most cases, more than one
institution will own and house the data, and they often seek for efficient and protected
means for data sharing in a collaborative setting.

2.1.3. POST-GWAS ANALYSIS
Once information is extracted from the genome during the GWAS phase, these informa-
tion is now data to be utilized in the Post-GWAS phase for further computations such as
predicting trait susceptibility [18, 19]. This phase of post-GWAS analysis can be viewed as
the prediction phase of a machine learning process [20]. Data generated for the models
during the GWAS phase can then be put to use by predicting status of previously unclas-
sified individuals [21]. Other applications are paternity testing, diagnosis of diseases,
and forensic evidence for solving criminal cases.

2.2. PRIVACY ENHANCING TECHNOLOGIES
Due to the privacy concerns listed in Section 1.4 and the analyses of data described in
2.1.2 the need for efficient privacy-preserving techniques that are applicable to genome
dataset becomes obvious. The research community as well as industry players look
for methods for providing privacy-guarantees in the face of assumed privacy-threats.
Even though there are multiple techniques that can provide privacy guarantees inde-
pendently, they are often accompanied by costs. These costs can assume the form of
computational overhead due to the complexity of the implementation, storage overhead
as a result of data expansion, and communication overhead by virtue of multiple rounds
of communications. The choice of a suitable privacy enhancing technique is usually
determined by the trade-off between utility versus privacy that is obtainable. In this sec-
tion, we briefly introduce some of these privacy-preserving techniques utilized for the
protection of sensitive data. We first introduce the concept of security model as will be
utilized by the various settings where the privacy enhancing technologies are adopted.

2.2.1. SECURITY MODEL
In order to process genome data in any useful scenario, data is often required to be trans-
mitted from one party to another. In some case, data transfer could be just for the sake
of storage, while in other scenarios it might be for analysis. Because of this, it becomes
pertinent to clearly define the roles of each party, as well as the security assumptions
that are acceptable in any such scenario, which includes the capability and behaviour
of the adversaries [22]. This is encapsulated in the concept of security model. There are
two major types of adversaries [23]:

• Semi-honest adversary: This adversarial model assumes that all parties defined in
a protocol will follow the specifications of the protocol and never deviate from it.
This can be considered as a passive adversary who does not intentionally act mali-
ciously during the protocol execution, but can observe transcripts of the protocol
in order to deduce private information from them [23–25]. In this model, there
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is some degree of trust amongst the parties hence the name honest-but-curious
adversary. This adversary is weak and usually does not require extreme privacy
measures to guarantee privacy.

• Malicious adversary: Contrary to the weak adversary described as honest-but-
curious, the malicious setting defines a very strong adversary who can decide to
deviate extensively from the protocol description [23–26]. In this model, there is
no trust whatsoever amongst the parties, and every operation would require a ver-
ification mechanism before trusting the output. This is an active adversary and
more difficult to protect against without degrading the efficiency of the protocol.

Other than the two major models listed above, an intermediary adversary known as
a covert adversary is also possible [23, 27]. The covert adversary lies in between the semi-
honest and the malicious adversaries. In this model, the adversary is allowed to deviate
from the protocol. However, the malicious will be caught cheating by the honest par-
ties with some define probability. This is an active adversary operating in an high risk
environment with a substantial probability of being caught.

2.2.2. MASKING
Masking is a cryptographic technique utilized to obfuscate the value of a secret, such
that when the masked value is viewed by an adversary, it obfuscates the original secret
[25, 28, 29]. This method offers statistical security and can be achieved either by additive
masking or multiplicative masking. Given a secret value m , and a random value r ,
additive and multiplicative masking can be achieved as follows:

ms = m + r mod N , (2.7)

ms = m · r mod N . (2.8)

Data masking is commonly adopted for data aggregation protocols, where little dis-
tortions in the value of the secret helps in obfuscation while the aggregate value can still
be obtained by subtracting the aggregate noise. However, where more complex opera-
tions other than addition is required, masking do not offer a lot towards the utility of the
data.

2.2.3. SECRET SHARING
This is a privacy enhancing technique that provides theoretical security by distributing
the information amongst various parties whom are considered to be non-collaborating.
The non-collusion assumption is relevant to the security of this scheme, since parties
could simply collude to recover some part or whole of the secret [30]. In such schemes,
only a predefined number of the set can come together to recover the secret, and it
is commonly denoted as t-out-of-n schemes. Where some well known n secret shar-
ing schemes include the Shamir’s secret sharing [31] and the multi-linear secret sharing
scheme [32, 33]. Although this scheme is usually fast and easy to implement, the draw-
backs usually include finding multiple parties that are non-colluding, and the commu-
nication overhead associated with evaluating any meaningful function.
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2.2.4. DIFFERENTIAL PRIVACY
This technique offers statistical protection to data by minimizing the amount of infor-
mation made public, hence its name, statistical disclosure control [34, 35]. Although this
is a commonly applied technique for data protection [36], it does not provide the prov-
able security/privacy guarantees that are obtainable in some other privacy enhancing
techniques. Also, applying differential privacy to a dataset adds noise to the data and
could constrain the utility of such data [34, 37].

2.2.5. HOMOMORPHIC ENCRYPTION
A homomorphic encryption (HE) scheme allows for arbitrary algebraic operations to be
performed on ciphertexts. Let Encpk (·) and Decsk (·) represent encryption and decryp-
tion functions respectively. (m1 ,m2) are two messages and k is a scalar value, while� , ⇢
and ⇥ are arbitrary operations on the ciphertexts. Then, homomorphism is defined as
follows:

Decsk (Encpk (m1)�Encpk (m2)) = m1 +m2 , (2.9)

Decsk (Encpk (m1)⇢Encpk (m2)) = m1 ·m2 , (2.10)

Decsk (Encpk (m1)⇥k) = m1 ·k . (2.11)

HE schemes can further be classified into two types:

• Partial homomorphic schemes: In this class of homomorphic encryption scheme,
only one of addition or multiplication operation is obtainable [38]. These types of
schemes are usually limited in operations and can be combine with other schemes
in an interactive setting in other to achieve the properties they lack. Examples of
these schemes include Paillier homomorphic scheme [39] which offers only ad-
dition properties, the additively homomorphic scheme by Peters et. al [40], and
the DGK scheme [41]. Other multiplicatively homomorphic schemes include the
ElGamal scheme [42] and the commonly used RSA scheme [43].

• Fully homomorphic schemes: Fully HE schemes allow for addition and multipli-
cation operations to be executed on ciphertexts. The properties of fully homo-
morphic schemes make them much suitable for evaluating functions in an ideal
environment, unlike the partial homomorphic schemes [38, 44]. Despite the ad-
vantages that accompany the fully homomorphic schemes, their major drawback
comes in the form of computational overhead. Due to the complexity of realizing
a fully homomorphic evaluation, the computation cost and the data expansion
properties make them inefficient for deployment in the wild when compared to
other privacy enhancing techniques. Craig Gentry was the first to realise a fully
homomorphic scheme with the proposal in [45], thereafter, other fully homomor-
phic schemes [38, 46–48] have been proposed. Most fully homomorphic schemes
are designed using lattice structures and their security are based on the hardness
of learning with errors (LWE) problem. Fully homomorphic constructions have
been considered to be quantum resistant schemes, due to the fact that no known
quantum attack has been proven successful [49].
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• Levelled homomorphic schemes: This is a variant of the fully homomorphic scheme,
with some limitation on number of operations. In fact, the levelled homomorphic
scheme, also known as somewhat homomorphic scheme is the practical variant
of the fully homomorphic scheme. The idea is to limit the number multiplication
operations to a predefined threshold, known as depth. The depth of a levelled ho-
momorphic scheme is determined by the parameters during the setup phase of
the scheme. Unlike the fully homomorphic variant, the levelled schemes are com-
monly designed by replacing the lattice structure with a large polynomial, and as a
result, relying on the hardness of ring learning with errors problem (ring-LWE) for
the security. Levelled homomorphic schemes offer better efficiency both with re-
spect to computational and storage overheads, when compared to their fully vari-
ants. For this reasons, they have been adopted both in research community and in
industry. Example of these schemes include the BGV scheme [50], the FV scheme
[51], the Brakerski’s scheme [52], the YASHE scheme [53], and the HEAAN scheme
[54].

Even though homomorphic encryption provides provable security based on some
computationally hard problem, they are usually associated with huge computational
overheads when compared to other privacy enhancing technologies. The choice of im-
plementing a homomorphic scheme depends on the specific problem scenario and how
much utility can be traded for the privacy guarantees.

2.2.6. SECURE MULTI-PARTY COMPUTATION
A secure multi-party computation is an interactive cryptographic protocol that allows for
two or more mistrusting parties to jointly compute a function using their private data
as input [23, 55, 56]. It allows for the output of the desired function to be public but
the contributed inputs remains private upon the assumption that each party does not
digress from the rules of the protocol. Secure multi-party computations are commonly
designed in a semi-honest security model, because the adversary is considered to be able
to control some parties in the protocol. However, there have been attempts to design
secure multi-party computation protocols that are secure under the malicious model
[57, 58]. Depending on the problem setting, secure multi-party computation protocols
can utilize any of the above mentioned privacy enhancing techniques as a sub-protocol
in order to solve the problem. Examples of secure multi-party computation protocols
can be seen in [58–60].

2.3. PRIVACY-PRESERVING SCENARIOS
In order to succinctly discuss the common scenarios encountered during genome data
processing, we first introduce the entities or stakeholders of a typical genome ecosystem,
at least, to the extent that it is discussed in this thesis.

2.3.1. STAKEHOLDERS
The entities introduced here have been well introduced and discussed in privacy-preserving-
genomics related literature [61–64].

• Patient/Data Owner: this represents the entity/parties who owns a set of genome
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data. It does not necessarily need to be a sick individual, since genome data pro-
cessing can also be carried out with the genome of a healthy individual. While a
set of genome data primarily belongs to a unique individual, our definition of a
genome data owner is expanded to include close relatives of the original owner.
This definition is valid because an individual shares some part of his genome with
his parents and even sibling, making it feasible for such relationships to be iden-
tified through genome data processing. Depending on the specific scenario, the
genome data can be stored on a device which is securely preserved by the Data
Owner, or, it can be stored with a cloud infrastructure on behalf of the Data Owner.

Figure 2.1: A Patient or Data Owner

• Certified Authority/Sequencer: this entity represents a known authority, who is cer-
tified to sequence the in vitro sample of a genome in order to obtain the in silico
version of the same genome. This authority may be a commercial company that
provides these services for profit, but is expected to operate within the dictates of
the laws and observe ethical standards.

Figure 2.2: A Certified Authority or Sequencer

• Storage and Processing Unit: this party serves as a cloud infrastructure that offers
services such as: data storage and data processing for both high-storage-demanding
data and computationally intensive operations. This party can be a commercial
company whose interest is in making profit. As a result of the sensitivity of the
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data, this party is expected to provide protection for the data resident with it,
where such data is stored non-encrypted. And in cases where the genome data
is encrypted before storing with this party, it is expected that operations required
for processing the genome returns results that are consistent with the actual com-
putations. The storage and processing unit is assumed to own the software and
hardware necessary to manage the data, and always has sufficient resources to
perform his functions.

Figure 2.3: Storage and Processing Unit

• Medical Personnel: this party constitutes hospitals and medical staff who might
be interested in recommending treatment for a patient or offering other related
services to data owners. Although they do not own the data nor store them, the
rest of the parties rely on the expertise of the Medical Personnel when deciding
which medical tests to undergo and also for the interpretation of results.

Figure 2.4: Storage and Processing Unit

• Researcher: this party describes the role of a research institution or that of a phar-
maceutical institution where the interest would include: studying the genome,
identifying new genes, investigating gene-phenotype relations and many more.
While these parties may not own the genome, they are interested in using clus-
ters of genome data in available data banks in order to aid their research and new
discoveries.
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Figure 2.5: A Researcher

2.3.2. SCENARIOS
We present some common scenarios where demands for privacy-preserving genome
data processing has been rife.

• Scenario 1: How can a patient privately compute a diseases susceptibility test
without leaking sensitive data to other participating entities?

SNPs

Disease Susceptibility
 

Percentage

Figure 2.6: Scenario One: A patient utilizing the DST services with private genome data

This is a commonly described problem scenario within the privacy-preserving genome
data processing community, hence the various solutions that have previously been
contributed towards it. Most notable is the work by Ayday et al. [62] where the
first attempt was made to provide privacy for this scenario. The solution by Ayday
adopted homomorphic encryption and multi-party computation as the privacy
enhancing techniques for solving this problem. While their solution provides pri-
vacy for the sensitive data, it accumulates computational and storage costs due to
the data expansion and computational complexity properties associated with ho-
momorphic encryption. Other attempts to propose solutions to this problem can
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be seen in [18, 63, 64]. In this thesis, we seek to develop novel protocols that do not
suffer from the inefficiency nor privacy gaps observed in existing proposals.

• Scenario 2: How can a storage and processing unit perform simple statistical com-
putations such as chi-square analysis without learning privacy-invasive informa-
tion from the genome?

X1
<latexit sha1_base64="diza5GdqIfcxWIMfMPioJ6DpfFk=">AAAB6nicbZBNS8NAEIYn9avWr6hHL4tF8FQSEfRY9OKxov2ANpTNdtMu3WzC7kQooT/BiwdFvPqLvPlv3LY5aOsLCw/vzLAzb5hKYdDzvp3S2vrG5lZ5u7Kzu7d/4B4etUySacabLJGJ7oTUcCkUb6JAyTup5jQOJW+H49tZvf3EtRGJesRJyoOYDpWIBKNorYdO3++7Va/mzUVWwS+gCoUafferN0hYFnOFTFJjur6XYpBTjYJJPq30MsNTysZ0yLsWFY25CfL5qlNyZp0BiRJtn0Iyd39P5DQ2ZhKHtjOmODLLtZn5X62bYXQd5EKlGXLFFh9FmSSYkNndZCA0ZygnFijTwu5K2IhqytCmU7Eh+Msnr0LrouZbvr+s1m+KOMpwAqdwDj5cQR3uoAFNYDCEZ3iFN0c6L86787FoLTnFzDH8kfP5A9rjjYA=</latexit><latexit sha1_base64="diza5GdqIfcxWIMfMPioJ6DpfFk=">AAAB6nicbZBNS8NAEIYn9avWr6hHL4tF8FQSEfRY9OKxov2ANpTNdtMu3WzC7kQooT/BiwdFvPqLvPlv3LY5aOsLCw/vzLAzb5hKYdDzvp3S2vrG5lZ5u7Kzu7d/4B4etUySacabLJGJ7oTUcCkUb6JAyTup5jQOJW+H49tZvf3EtRGJesRJyoOYDpWIBKNorYdO3++7Va/mzUVWwS+gCoUafferN0hYFnOFTFJjur6XYpBTjYJJPq30MsNTysZ0yLsWFY25CfL5qlNyZp0BiRJtn0Iyd39P5DQ2ZhKHtjOmODLLtZn5X62bYXQd5EKlGXLFFh9FmSSYkNndZCA0ZygnFijTwu5K2IhqytCmU7Eh+Msnr0LrouZbvr+s1m+KOMpwAqdwDj5cQR3uoAFNYDCEZ3iFN0c6L86787FoLTnFzDH8kfP5A9rjjYA=</latexit><latexit sha1_base64="diza5GdqIfcxWIMfMPioJ6DpfFk=">AAAB6nicbZBNS8NAEIYn9avWr6hHL4tF8FQSEfRY9OKxov2ANpTNdtMu3WzC7kQooT/BiwdFvPqLvPlv3LY5aOsLCw/vzLAzb5hKYdDzvp3S2vrG5lZ5u7Kzu7d/4B4etUySacabLJGJ7oTUcCkUb6JAyTup5jQOJW+H49tZvf3EtRGJesRJyoOYDpWIBKNorYdO3++7Va/mzUVWwS+gCoUafferN0hYFnOFTFJjur6XYpBTjYJJPq30MsNTysZ0yLsWFY25CfL5qlNyZp0BiRJtn0Iyd39P5DQ2ZhKHtjOmODLLtZn5X62bYXQd5EKlGXLFFh9FmSSYkNndZCA0ZygnFijTwu5K2IhqytCmU7Eh+Msnr0LrouZbvr+s1m+KOMpwAqdwDj5cQR3uoAFNYDCEZ3iFN0c6L86787FoLTnFzDH8kfP5A9rjjYA=</latexit><latexit sha1_base64="ck8pdC+ekZH4nUmSP+ZG7r8lEyk=">AAAB2XicbZDNSgMxFIXv1L86Vq1rN8EiuCozbnQpuHFZwbZCO5RM5k4bmskMyR2hDH0BF25EfC93vo3pz0JbDwQ+zknIvSculLQUBN9ebWd3b/+gfugfNfzjk9Nmo2fz0gjsilzl5jnmFpXU2CVJCp8LgzyLFfbj6f0i77+gsTLXTzQrMMr4WMtUCk7O6oyaraAdLMW2IVxDC9YaNb+GSS7KDDUJxa0dhEFBUcUNSaFw7g9LiwUXUz7GgUPNM7RRtRxzzi6dk7A0N+5oYkv394uKZ9bOstjdzDhN7Ga2MP/LBiWlt1EldVESarH6KC0Vo5wtdmaJNChIzRxwYaSblYkJN1yQa8Z3HYSbG29D77odOn4MoA7ncAFXEMIN3MEDdKALAhJ4hXdv4r15H6uuat66tDP4I+/zBzjGijg=</latexit><latexit sha1_base64="wsWwdCIKZvyBuKxza38QjvB1rI0=">AAAB33icbZBLSwMxFIXv1FetVatbN8EiuCozbnQpuHFZ0T6gHUomvdOGZjJDckcoQ3+CGxeK+K/c+W9MHwttPRD4OCch954oU9KS7397pa3tnd298n7loHp4dFw7qbZtmhuBLZGq1HQjblFJjS2SpLCbGeRJpLATTe7meecZjZWpfqJphmHCR1rGUnBy1mN3EAxqdb/hL8Q2IVhBHVZqDmpf/WEq8gQ1CcWt7QV+RmHBDUmhcFbp5xYzLiZ8hD2Hmidow2Ix6oxdOGfI4tS4o4kt3N8vCp5YO00idzPhNLbr2dz8L+vlFN+EhdRZTqjF8qM4V4xSNt+bDaVBQWrqgAsj3axMjLnhglw7FVdCsL7yJrSvGoHjBx/KcAbncAkBXMMt3EMTWiBgBC/wBu+e8l69j2VdJW/V2yn8kff5A8DtjCs=</latexit><latexit sha1_base64="wsWwdCIKZvyBuKxza38QjvB1rI0=">AAAB33icbZBLSwMxFIXv1FetVatbN8EiuCozbnQpuHFZ0T6gHUomvdOGZjJDckcoQ3+CGxeK+K/c+W9MHwttPRD4OCch954oU9KS7397pa3tnd298n7loHp4dFw7qbZtmhuBLZGq1HQjblFJjS2SpLCbGeRJpLATTe7meecZjZWpfqJphmHCR1rGUnBy1mN3EAxqdb/hL8Q2IVhBHVZqDmpf/WEq8gQ1CcWt7QV+RmHBDUmhcFbp5xYzLiZ8hD2Hmidow2Ix6oxdOGfI4tS4o4kt3N8vCp5YO00idzPhNLbr2dz8L+vlFN+EhdRZTqjF8qM4V4xSNt+bDaVBQWrqgAsj3axMjLnhglw7FVdCsL7yJrSvGoHjBx/KcAbncAkBXMMt3EMTWiBgBC/wBu+e8l69j2VdJW/V2yn8kff5A8DtjCs=</latexit><latexit sha1_base64="yR+n1hmRfszT5MIW9njieBo6ejg=">AAAB6nicbZBNTwIxEIan+IX4hXr00khMPJFdL3okevGIUZAENqRbZqGh2920XROy4Sd48aAxXv1F3vw3FtiDgm/S5Mk7M+nMG6ZSGOt536S0tr6xuVXeruzs7u0fVA+P2ibJNMcWT2SiOyEzKIXClhVWYifVyOJQ4mM4vpnVH59QG5GoBztJMYjZUIlIcGaddd/p+/1qzat7c9FV8AuoQaFmv/rVGyQ8i1FZLpkxXd9LbZAzbQWXOK30MoMp42M2xK5DxWI0QT5fdUrPnDOgUaLdU5bO3d8TOYuNmcSh64yZHZnl2sz8r9bNbHQV5EKlmUXFFx9FmaQ2obO76UBo5FZOHDCuhduV8hHTjFuXTsWF4C+fvArti7rv+M6rNa6LOMpwAqdwDj5cQgNuoQkt4DCEZ3iFNyLJC3knH4vWEilmjuGPyOcP2aONfA==</latexit><latexit sha1_base64="diza5GdqIfcxWIMfMPioJ6DpfFk=">AAAB6nicbZBNS8NAEIYn9avWr6hHL4tF8FQSEfRY9OKxov2ANpTNdtMu3WzC7kQooT/BiwdFvPqLvPlv3LY5aOsLCw/vzLAzb5hKYdDzvp3S2vrG5lZ5u7Kzu7d/4B4etUySacabLJGJ7oTUcCkUb6JAyTup5jQOJW+H49tZvf3EtRGJesRJyoOYDpWIBKNorYdO3++7Va/mzUVWwS+gCoUafferN0hYFnOFTFJjur6XYpBTjYJJPq30MsNTysZ0yLsWFY25CfL5qlNyZp0BiRJtn0Iyd39P5DQ2ZhKHtjOmODLLtZn5X62bYXQd5EKlGXLFFh9FmSSYkNndZCA0ZygnFijTwu5K2IhqytCmU7Eh+Msnr0LrouZbvr+s1m+KOMpwAqdwDj5cQR3uoAFNYDCEZ3iFN0c6L86787FoLTnFzDH8kfP5A9rjjYA=</latexit><latexit sha1_base64="diza5GdqIfcxWIMfMPioJ6DpfFk=">AAAB6nicbZBNS8NAEIYn9avWr6hHL4tF8FQSEfRY9OKxov2ANpTNdtMu3WzC7kQooT/BiwdFvPqLvPlv3LY5aOsLCw/vzLAzb5hKYdDzvp3S2vrG5lZ5u7Kzu7d/4B4etUySacabLJGJ7oTUcCkUb6JAyTup5jQOJW+H49tZvf3EtRGJesRJyoOYDpWIBKNorYdO3++7Va/mzUVWwS+gCoUafferN0hYFnOFTFJjur6XYpBTjYJJPq30MsNTysZ0yLsWFY25CfL5qlNyZp0BiRJtn0Iyd39P5DQ2ZhKHtjOmODLLtZn5X62bYXQd5EKlGXLFFh9FmSSYkNndZCA0ZygnFijTwu5K2IhqytCmU7Eh+Msnr0LrouZbvr+s1m+KOMpwAqdwDj5cQR3uoAFNYDCEZ3iFN0c6L86787FoLTnFzDH8kfP5A9rjjYA=</latexit><latexit sha1_base64="diza5GdqIfcxWIMfMPioJ6DpfFk=">AAAB6nicbZBNS8NAEIYn9avWr6hHL4tF8FQSEfRY9OKxov2ANpTNdtMu3WzC7kQooT/BiwdFvPqLvPlv3LY5aOsLCw/vzLAzb5hKYdDzvp3S2vrG5lZ5u7Kzu7d/4B4etUySacabLJGJ7oTUcCkUb6JAyTup5jQOJW+H49tZvf3EtRGJesRJyoOYDpWIBKNorYdO3++7Va/mzUVWwS+gCoUafferN0hYFnOFTFJjur6XYpBTjYJJPq30MsNTysZ0yLsWFY25CfL5qlNyZp0BiRJtn0Iyd39P5DQ2ZhKHtjOmODLLtZn5X62bYXQd5EKlGXLFFh9FmSSYkNndZCA0ZygnFijTwu5K2IhqytCmU7Eh+Msnr0LrouZbvr+s1m+KOMpwAqdwDj5cQR3uoAFNYDCEZ3iFN0c6L86787FoLTnFzDH8kfP5A9rjjYA=</latexit><latexit sha1_base64="diza5GdqIfcxWIMfMPioJ6DpfFk=">AAAB6nicbZBNS8NAEIYn9avWr6hHL4tF8FQSEfRY9OKxov2ANpTNdtMu3WzC7kQooT/BiwdFvPqLvPlv3LY5aOsLCw/vzLAzb5hKYdDzvp3S2vrG5lZ5u7Kzu7d/4B4etUySacabLJGJ7oTUcCkUb6JAyTup5jQOJW+H49tZvf3EtRGJesRJyoOYDpWIBKNorYdO3++7Va/mzUVWwS+gCoUafferN0hYFnOFTFJjur6XYpBTjYJJPq30MsNTysZ0yLsWFY25CfL5qlNyZp0BiRJtn0Iyd39P5DQ2ZhKHtjOmODLLtZn5X62bYXQd5EKlGXLFFh9FmSSYkNndZCA0ZygnFijTwu5K2IhqytCmU7Eh+Msnr0LrouZbvr+s1m+KOMpwAqdwDj5cQR3uoAFNYDCEZ3iFN0c6L86787FoLTnFzDH8kfP5A9rjjYA=</latexit><latexit sha1_base64="diza5GdqIfcxWIMfMPioJ6DpfFk=">AAAB6nicbZBNS8NAEIYn9avWr6hHL4tF8FQSEfRY9OKxov2ANpTNdtMu3WzC7kQooT/BiwdFvPqLvPlv3LY5aOsLCw/vzLAzb5hKYdDzvp3S2vrG5lZ5u7Kzu7d/4B4etUySacabLJGJ7oTUcCkUb6JAyTup5jQOJW+H49tZvf3EtRGJesRJyoOYDpWIBKNorYdO3++7Va/mzUVWwS+gCoUafferN0hYFnOFTFJjur6XYpBTjYJJPq30MsNTysZ0yLsWFY25CfL5qlNyZp0BiRJtn0Iyd39P5DQ2ZhKHtjOmODLLtZn5X62bYXQd5EKlGXLFFh9FmSSYkNndZCA0ZygnFijTwu5K2IhqytCmU7Eh+Msnr0LrouZbvr+s1m+KOMpwAqdwDj5cQR3uoAFNYDCEZ3iFN0c6L86787FoLTnFzDH8kfP5A9rjjYA=</latexit><latexit sha1_base64="diza5GdqIfcxWIMfMPioJ6DpfFk=">AAAB6nicbZBNS8NAEIYn9avWr6hHL4tF8FQSEfRY9OKxov2ANpTNdtMu3WzC7kQooT/BiwdFvPqLvPlv3LY5aOsLCw/vzLAzb5hKYdDzvp3S2vrG5lZ5u7Kzu7d/4B4etUySacabLJGJ7oTUcCkUb6JAyTup5jQOJW+H49tZvf3EtRGJesRJyoOYDpWIBKNorYdO3++7Va/mzUVWwS+gCoUafferN0hYFnOFTFJjur6XYpBTjYJJPq30MsNTysZ0yLsWFY25CfL5qlNyZp0BiRJtn0Iyd39P5DQ2ZhKHtjOmODLLtZn5X62bYXQd5EKlGXLFFh9FmSSYkNndZCA0ZygnFijTwu5K2IhqytCmU7Eh+Msnr0LrouZbvr+s1m+KOMpwAqdwDj5cQR3uoAFNYDCEZ3iFN0c6L86787FoLTnFzDH8kfP5A9rjjYA=</latexit>

X
2

<latexit sha1_base64="Wx8xhR0LTUlbwSGKb3npAiQODI4=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tF8FSSItRj0YvHivYD2lA220m7dLMJuxuhhP4ELx4U8eov8ua/cdvmoK0vLDy8M8POvEEiuDau++0UNja3tneKu6W9/YPDo/LxSVvHqWLYYrGIVTegGgWX2DLcCOwmCmkUCOwEk9t5vfOESvNYPpppgn5ER5KHnFFjrYfuoDYoV9yquxBZBy+HCuRqDspf/WHM0gilYYJq3fPcxPgZVYYzgbNSP9WYUDahI+xZlDRC7WeLVWfkwjpDEsbKPmnIwv09kdFI62kU2M6ImrFerc3N/2q91ITXfsZlkhqUbPlRmApiYjK/mwy5QmbE1AJlittdCRtTRZmx6ZRsCN7qyevQrlU9y/dXlcZNHkcRzuAcLsGDOjTgDprQAgYjeIZXeHOE8+K8Ox/L1oKTz5zCHzmfP9xnjYE=</latexit><latexit sha1_base64="Wx8xhR0LTUlbwSGKb3npAiQODI4=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tF8FSSItRj0YvHivYD2lA220m7dLMJuxuhhP4ELx4U8eov8ua/cdvmoK0vLDy8M8POvEEiuDau++0UNja3tneKu6W9/YPDo/LxSVvHqWLYYrGIVTegGgWX2DLcCOwmCmkUCOwEk9t5vfOESvNYPpppgn5ER5KHnFFjrYfuoDYoV9yquxBZBy+HCuRqDspf/WHM0gilYYJq3fPcxPgZVYYzgbNSP9WYUDahI+xZlDRC7WeLVWfkwjpDEsbKPmnIwv09kdFI62kU2M6ImrFerc3N/2q91ITXfsZlkhqUbPlRmApiYjK/mwy5QmbE1AJlittdCRtTRZmx6ZRsCN7qyevQrlU9y/dXlcZNHkcRzuAcLsGDOjTgDprQAgYjeIZXeHOE8+K8Ox/L1oKTz5zCHzmfP9xnjYE=</latexit><latexit sha1_base64="Wx8xhR0LTUlbwSGKb3npAiQODI4=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tF8FSSItRj0YvHivYD2lA220m7dLMJuxuhhP4ELx4U8eov8ua/cdvmoK0vLDy8M8POvEEiuDau++0UNja3tneKu6W9/YPDo/LxSVvHqWLYYrGIVTegGgWX2DLcCOwmCmkUCOwEk9t5vfOESvNYPpppgn5ER5KHnFFjrYfuoDYoV9yquxBZBy+HCuRqDspf/WHM0gilYYJq3fPcxPgZVYYzgbNSP9WYUDahI+xZlDRC7WeLVWfkwjpDEsbKPmnIwv09kdFI62kU2M6ImrFerc3N/2q91ITXfsZlkhqUbPlRmApiYjK/mwy5QmbE1AJlittdCRtTRZmx6ZRsCN7qyevQrlU9y/dXlcZNHkcRzuAcLsGDOjTgDprQAgYjeIZXeHOE8+K8Ox/L1oKTz5zCHzmfP9xnjYE=</latexit><latexit sha1_base64="Wx8xhR0LTUlbwSGKb3npAiQODI4=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tF8FSSItRj0YvHivYD2lA220m7dLMJuxuhhP4ELx4U8eov8ua/cdvmoK0vLDy8M8POvEEiuDau++0UNja3tneKu6W9/YPDo/LxSVvHqWLYYrGIVTegGgWX2DLcCOwmCmkUCOwEk9t5vfOESvNYPpppgn5ER5KHnFFjrYfuoDYoV9yquxBZBy+HCuRqDspf/WHM0gilYYJq3fPcxPgZVYYzgbNSP9WYUDahI+xZlDRC7WeLVWfkwjpDEsbKPmnIwv09kdFI62kU2M6ImrFerc3N/2q91ITXfsZlkhqUbPlRmApiYjK/mwy5QmbE1AJlittdCRtTRZmx6ZRsCN7qyevQrlU9y/dXlcZNHkcRzuAcLsGDOjTgDprQAgYjeIZXeHOE8+K8Ox/L1oKTz5zCHzmfP9xnjYE=</latexit> X3
<latexit sha1_base64="dcKLvXnh/pCQWaW17PEDo88jZdw=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tF8FQSLeix6MVjRfsBbSib7aZdutmE3YlQQn+CFw+KePUXefPfuG1z0NYXFh7emWFn3iCRwqDrfjuFtfWNza3idmlnd2//oHx41DJxqhlvsljGuhNQw6VQvIkCJe8kmtMokLwdjG9n9fYT10bE6hEnCfcjOlQiFIyitR46/ct+ueJW3bnIKng5VCBXo1/+6g1ilkZcIZPUmK7nJuhnVKNgkk9LvdTwhLIxHfKuRUUjbvxsvuqUnFlnQMJY26eQzN3fExmNjJlEge2MKI7Mcm1m/lfrphhe+5lQSYpcscVHYSoJxmR2NxkIzRnKiQXKtLC7EjaimjK06ZRsCN7yyavQuqh6lu9rlfpNHkcRTuAUzsGDK6jDHTSgCQyG8Ayv8OZI58V5dz4WrQUnnzmGP3I+fwDd642C</latexit><latexit sha1_base64="dcKLvXnh/pCQWaW17PEDo88jZdw=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tF8FQSLeix6MVjRfsBbSib7aZdutmE3YlQQn+CFw+KePUXefPfuG1z0NYXFh7emWFn3iCRwqDrfjuFtfWNza3idmlnd2//oHx41DJxqhlvsljGuhNQw6VQvIkCJe8kmtMokLwdjG9n9fYT10bE6hEnCfcjOlQiFIyitR46/ct+ueJW3bnIKng5VCBXo1/+6g1ilkZcIZPUmK7nJuhnVKNgkk9LvdTwhLIxHfKuRUUjbvxsvuqUnFlnQMJY26eQzN3fExmNjJlEge2MKI7Mcm1m/lfrphhe+5lQSYpcscVHYSoJxmR2NxkIzRnKiQXKtLC7EjaimjK06ZRsCN7yyavQuqh6lu9rlfpNHkcRTuAUzsGDK6jDHTSgCQyG8Ayv8OZI58V5dz4WrQUnnzmGP3I+fwDd642C</latexit><latexit sha1_base64="dcKLvXnh/pCQWaW17PEDo88jZdw=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tF8FQSLeix6MVjRfsBbSib7aZdutmE3YlQQn+CFw+KePUXefPfuG1z0NYXFh7emWFn3iCRwqDrfjuFtfWNza3idmlnd2//oHx41DJxqhlvsljGuhNQw6VQvIkCJe8kmtMokLwdjG9n9fYT10bE6hEnCfcjOlQiFIyitR46/ct+ueJW3bnIKng5VCBXo1/+6g1ilkZcIZPUmK7nJuhnVKNgkk9LvdTwhLIxHfKuRUUjbvxsvuqUnFlnQMJY26eQzN3fExmNjJlEge2MKI7Mcm1m/lfrphhe+5lQSYpcscVHYSoJxmR2NxkIzRnKiQXKtLC7EjaimjK06ZRsCN7yyavQuqh6lu9rlfpNHkcRTuAUzsGDK6jDHTSgCQyG8Ayv8OZI58V5dz4WrQUnnzmGP3I+fwDd642C</latexit><latexit sha1_base64="dcKLvXnh/pCQWaW17PEDo88jZdw=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tF8FQSLeix6MVjRfsBbSib7aZdutmE3YlQQn+CFw+KePUXefPfuG1z0NYXFh7emWFn3iCRwqDrfjuFtfWNza3idmlnd2//oHx41DJxqhlvsljGuhNQw6VQvIkCJe8kmtMokLwdjG9n9fYT10bE6hEnCfcjOlQiFIyitR46/ct+ueJW3bnIKng5VCBXo1/+6g1ilkZcIZPUmK7nJuhnVKNgkk9LvdTwhLIxHfKuRUUjbvxsvuqUnFlnQMJY26eQzN3fExmNjJlEge2MKI7Mcm1m/lfrphhe+5lQSYpcscVHYSoJxmR2NxkIzRnKiQXKtLC7EjaimjK06ZRsCN7yyavQuqh6lu9rlfpNHkcRTuAUzsGDK6jDHTSgCQyG8Ayv8OZI58V5dz4WrQUnnzmGP3I+fwDd642C</latexit>

X
4

<latexit sha1_base64="a3lfAGnCM6JO3z9SqrJ4Hj8pESc=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tF8FQSKdRj0YvHivYD2lA220m7dLMJuxuhhP4ELx4U8eov8ua/cdvmoK0vLDy8M8POvEEiuDau++0UNja3tneKu6W9/YPDo/LxSVvHqWLYYrGIVTegGgWX2DLcCOwmCmkUCOwEk9t5vfOESvNYPpppgn5ER5KHnFFjrYfuoDYoV9yquxBZBy+HCuRqDspf/WHM0gilYYJq3fPcxPgZVYYzgbNSP9WYUDahI+xZlDRC7WeLVWfkwjpDEsbKPmnIwv09kdFI62kU2M6ImrFerc3N/2q91ITXfsZlkhqUbPlRmApiYjK/mwy5QmbE1AJlittdCRtTRZmx6ZRsCN7qyevQvqp6lu9rlcZNHkcRzuAcLsGDOjTgDprQAgYjeIZXeHOE8+K8Ox/L1oKTz5zCHzmfP99vjYM=</latexit><latexit sha1_base64="a3lfAGnCM6JO3z9SqrJ4Hj8pESc=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tF8FQSKdRj0YvHivYD2lA220m7dLMJuxuhhP4ELx4U8eov8ua/cdvmoK0vLDy8M8POvEEiuDau++0UNja3tneKu6W9/YPDo/LxSVvHqWLYYrGIVTegGgWX2DLcCOwmCmkUCOwEk9t5vfOESvNYPpppgn5ER5KHnFFjrYfuoDYoV9yquxBZBy+HCuRqDspf/WHM0gilYYJq3fPcxPgZVYYzgbNSP9WYUDahI+xZlDRC7WeLVWfkwjpDEsbKPmnIwv09kdFI62kU2M6ImrFerc3N/2q91ITXfsZlkhqUbPlRmApiYjK/mwy5QmbE1AJlittdCRtTRZmx6ZRsCN7qyevQvqp6lu9rlcZNHkcRzuAcLsGDOjTgDprQAgYjeIZXeHOE8+K8Ox/L1oKTz5zCHzmfP99vjYM=</latexit><latexit sha1_base64="a3lfAGnCM6JO3z9SqrJ4Hj8pESc=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tF8FQSKdRj0YvHivYD2lA220m7dLMJuxuhhP4ELx4U8eov8ua/cdvmoK0vLDy8M8POvEEiuDau++0UNja3tneKu6W9/YPDo/LxSVvHqWLYYrGIVTegGgWX2DLcCOwmCmkUCOwEk9t5vfOESvNYPpppgn5ER5KHnFFjrYfuoDYoV9yquxBZBy+HCuRqDspf/WHM0gilYYJq3fPcxPgZVYYzgbNSP9WYUDahI+xZlDRC7WeLVWfkwjpDEsbKPmnIwv09kdFI62kU2M6ImrFerc3N/2q91ITXfsZlkhqUbPlRmApiYjK/mwy5QmbE1AJlittdCRtTRZmx6ZRsCN7qyevQvqp6lu9rlcZNHkcRzuAcLsGDOjTgDprQAgYjeIZXeHOE8+K8Ox/L1oKTz5zCHzmfP99vjYM=</latexit><latexit sha1_base64="a3lfAGnCM6JO3z9SqrJ4Hj8pESc=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tF8FQSKdRj0YvHivYD2lA220m7dLMJuxuhhP4ELx4U8eov8ua/cdvmoK0vLDy8M8POvEEiuDau++0UNja3tneKu6W9/YPDo/LxSVvHqWLYYrGIVTegGgWX2DLcCOwmCmkUCOwEk9t5vfOESvNYPpppgn5ER5KHnFFjrYfuoDYoV9yquxBZBy+HCuRqDspf/WHM0gilYYJq3fPcxPgZVYYzgbNSP9WYUDahI+xZlDRC7WeLVWfkwjpDEsbKPmnIwv09kdFI62kU2M6ImrFerc3N/2q91ITXfsZlkhqUbPlRmApiYjK/mwy5QmbE1AJlittdCRtTRZmx6ZRsCN7qyevQvqp6lu9rlcZNHkcRzuAcLsGDOjTgDprQAgYjeIZXeHOE8+K8Ox/L1oKTz5zCHzmfP99vjYM=</latexit>

X
5

<latexit sha1_base64="S7wik/T0P5UX1D7bwHpHY3S2tOw=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tF8FQSseix6MVjRfsBbSib7aZdutmE3YlQQn+CFw+KePUXefPfuG1z0NYXFh7emWFn3iCRwqDrfjuFtfWNza3idmlnd2//oHx41DJxqhlvsljGuhNQw6VQvIkCJe8kmtMokLwdjG9n9fYT10bE6hEnCfcjOlQiFIyitR46/Vq/XHGr7lxkFbwcKpCr0S9/9QYxSyOukElqTNdzE/QzqlEwyaelXmp4QtmYDnnXoqIRN342X3VKzqwzIGGs7VNI5u7viYxGxkyiwHZGFEdmuTYz/6t1Uwyv/UyoJEWu2OKjMJUEYzK7mwyE5gzlxAJlWthdCRtRTRnadEo2BG/55FVoXVQ9y/eXlfpNHkcRTuAUzsGDK6jDHTSgCQyG8Ayv8OZI58V5dz4WrQUnnzmGP3I+fwDg842E</latexit><latexit sha1_base64="S7wik/T0P5UX1D7bwHpHY3S2tOw=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tF8FQSseix6MVjRfsBbSib7aZdutmE3YlQQn+CFw+KePUXefPfuG1z0NYXFh7emWFn3iCRwqDrfjuFtfWNza3idmlnd2//oHx41DJxqhlvsljGuhNQw6VQvIkCJe8kmtMokLwdjG9n9fYT10bE6hEnCfcjOlQiFIyitR46/Vq/XHGr7lxkFbwcKpCr0S9/9QYxSyOukElqTNdzE/QzqlEwyaelXmp4QtmYDnnXoqIRN342X3VKzqwzIGGs7VNI5u7viYxGxkyiwHZGFEdmuTYz/6t1Uwyv/UyoJEWu2OKjMJUEYzK7mwyE5gzlxAJlWthdCRtRTRnadEo2BG/55FVoXVQ9y/eXlfpNHkcRTuAUzsGDK6jDHTSgCQyG8Ayv8OZI58V5dz4WrQUnnzmGP3I+fwDg842E</latexit><latexit sha1_base64="S7wik/T0P5UX1D7bwHpHY3S2tOw=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tF8FQSseix6MVjRfsBbSib7aZdutmE3YlQQn+CFw+KePUXefPfuG1z0NYXFh7emWFn3iCRwqDrfjuFtfWNza3idmlnd2//oHx41DJxqhlvsljGuhNQw6VQvIkCJe8kmtMokLwdjG9n9fYT10bE6hEnCfcjOlQiFIyitR46/Vq/XHGr7lxkFbwcKpCr0S9/9QYxSyOukElqTNdzE/QzqlEwyaelXmp4QtmYDnnXoqIRN342X3VKzqwzIGGs7VNI5u7viYxGxkyiwHZGFEdmuTYz/6t1Uwyv/UyoJEWu2OKjMJUEYzK7mwyE5gzlxAJlWthdCRtRTRnadEo2BG/55FVoXVQ9y/eXlfpNHkcRTuAUzsGDK6jDHTSgCQyG8Ayv8OZI58V5dz4WrQUnnzmGP3I+fwDg842E</latexit><latexit sha1_base64="S7wik/T0P5UX1D7bwHpHY3S2tOw=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tF8FQSseix6MVjRfsBbSib7aZdutmE3YlQQn+CFw+KePUXefPfuG1z0NYXFh7emWFn3iCRwqDrfjuFtfWNza3idmlnd2//oHx41DJxqhlvsljGuhNQw6VQvIkCJe8kmtMokLwdjG9n9fYT10bE6hEnCfcjOlQiFIyitR46/Vq/XHGr7lxkFbwcKpCr0S9/9QYxSyOukElqTNdzE/QzqlEwyaelXmp4QtmYDnnXoqIRN342X3VKzqwzIGGs7VNI5u7viYxGxkyiwHZGFEdmuTYz/6t1Uwyv/UyoJEWu2OKjMJUEYzK7mwyE5gzlxAJlWthdCRtRTRnadEo2BG/55FVoXVQ9y/eXlfpNHkcRTuAUzsGDK6jDHTSgCQyG8Ayv8OZI58V5dz4WrQUnnzmGP3I+fwDg842E</latexit>

y = X1 � X2 � X3 � X4 � X5
<latexit sha1_base64="kiQNamEFVmqdpeD8Ux0NJfg1xm4=">AAACHnicbZDLSgMxFIYzXmu9jbp0EyyCqzJTW3QjFN24rGAv0A5DJs20oZlkSDLCMPRJ3PgqblwoIrjStzFtB6ytPwQ+/nMOJ+cPYkaVdpxva2V1bX1js7BV3N7Z3du3Dw5bSiQSkyYWTMhOgBRhlJOmppqRTiwJigJG2sHoZlJvPxCpqOD3Oo2JF6EBpyHFSBvLt2spvIId34U9EbNEGawY1DQiEz7/tatzds23S07ZmQoug5tDCeRq+PZnry9wEhGuMUNKdV0n1l6GpKaYkXGxlygSIzxCA9I1yJFZ5GXT88bw1Dh9GAppHtdw6s5PZChSKo0C0xkhPVSLtYn5X62b6PDSyyiPE004ni0KEwa1gJOsYJ9KgjVLDSAsqfkrxEMkEdYm0aIJwV08eRlalbJr+K5aql/ncRTAMTgBZ8AFF6AObkEDNAEGj+AZvII368l6sd6tj1nripXPHIE/sr5+AHqAoD0=</latexit><latexit sha1_base64="kiQNamEFVmqdpeD8Ux0NJfg1xm4=">AAACHnicbZDLSgMxFIYzXmu9jbp0EyyCqzJTW3QjFN24rGAv0A5DJs20oZlkSDLCMPRJ3PgqblwoIrjStzFtB6ytPwQ+/nMOJ+cPYkaVdpxva2V1bX1js7BV3N7Z3du3Dw5bSiQSkyYWTMhOgBRhlJOmppqRTiwJigJG2sHoZlJvPxCpqOD3Oo2JF6EBpyHFSBvLt2spvIId34U9EbNEGawY1DQiEz7/tatzds23S07ZmQoug5tDCeRq+PZnry9wEhGuMUNKdV0n1l6GpKaYkXGxlygSIzxCA9I1yJFZ5GXT88bw1Dh9GAppHtdw6s5PZChSKo0C0xkhPVSLtYn5X62b6PDSyyiPE004ni0KEwa1gJOsYJ9KgjVLDSAsqfkrxEMkEdYm0aIJwV08eRlalbJr+K5aql/ncRTAMTgBZ8AFF6AObkEDNAEGj+AZvII368l6sd6tj1nripXPHIE/sr5+AHqAoD0=</latexit><latexit sha1_base64="kiQNamEFVmqdpeD8Ux0NJfg1xm4=">AAACHnicbZDLSgMxFIYzXmu9jbp0EyyCqzJTW3QjFN24rGAv0A5DJs20oZlkSDLCMPRJ3PgqblwoIrjStzFtB6ytPwQ+/nMOJ+cPYkaVdpxva2V1bX1js7BV3N7Z3du3Dw5bSiQSkyYWTMhOgBRhlJOmppqRTiwJigJG2sHoZlJvPxCpqOD3Oo2JF6EBpyHFSBvLt2spvIId34U9EbNEGawY1DQiEz7/tatzds23S07ZmQoug5tDCeRq+PZnry9wEhGuMUNKdV0n1l6GpKaYkXGxlygSIzxCA9I1yJFZ5GXT88bw1Dh9GAppHtdw6s5PZChSKo0C0xkhPVSLtYn5X62b6PDSyyiPE004ni0KEwa1gJOsYJ9KgjVLDSAsqfkrxEMkEdYm0aIJwV08eRlalbJr+K5aql/ncRTAMTgBZ8AFF6AObkEDNAEGj+AZvII368l6sd6tj1nripXPHIE/sr5+AHqAoD0=</latexit><latexit sha1_base64="kiQNamEFVmqdpeD8Ux0NJfg1xm4=">AAACHnicbZDLSgMxFIYzXmu9jbp0EyyCqzJTW3QjFN24rGAv0A5DJs20oZlkSDLCMPRJ3PgqblwoIrjStzFtB6ytPwQ+/nMOJ+cPYkaVdpxva2V1bX1js7BV3N7Z3du3Dw5bSiQSkyYWTMhOgBRhlJOmppqRTiwJigJG2sHoZlJvPxCpqOD3Oo2JF6EBpyHFSBvLt2spvIId34U9EbNEGawY1DQiEz7/tatzds23S07ZmQoug5tDCeRq+PZnry9wEhGuMUNKdV0n1l6GpKaYkXGxlygSIzxCA9I1yJFZ5GXT88bw1Dh9GAppHtdw6s5PZChSKo0C0xkhPVSLtYn5X62b6PDSyyiPE004ni0KEwa1gJOsYJ9KgjVLDSAsqfkrxEMkEdYm0aIJwV08eRlalbJr+K5aql/ncRTAMTgBZ8AFF6AObkEDNAEGj+AZvII368l6sd6tj1nripXPHIE/sr5+AHqAoD0=</latexit>

f 1
(y

)

<latexit sha1_base64="GDzuB/R8Y9nZ/Lq5/YMx/mgvM4s="></latexit><latexit sha1_base64="GDzuB/R8Y9nZ/Lq5/YMx/mgvM4s="></latexit><latexit sha1_base64="GDzuB/R8Y9nZ/Lq5/YMx/mgvM4s="></latexit><latexit sha1_base64="GDzuB/R8Y9nZ/Lq5/YMx/mgvM4s=">AAACRnicbZBLS8NAFIVv6qvGV9Slm8FSqJuStBXdCEU3LhVsLbQhTKYTHZw8mJkIIfjr3Lh2509w40IRt05qwNp6YTgf585l7hw/4Uwq234xKguLS8sr1VVzbX1jc8va3unLOBWE9kjMYzHwsaScRbSnmOJ0kAiKQ5/Ta//urOhf31MhWRxdqSyhbohvIhYwgpW2PMutZ+gEDTwHjeKEp1JjS6NiIS24/Wt3puxDM/CcRnZg1gOvVWq71E6ph1o9q2Y37UmheXBKqEFZF571PBrHJA1ppAjHUg4dO1FujoVihNMHc5RKmmByh2/oUGOE9T5uPonhAdW1M0ZBLPSJFJq40xM5DqXMQl/fDLG6lbO9wvyvN0xVcOzmLEpSRSPy81CQcqRiVGSKxkxQonimARPB9K6I3GKBidLJmzoEZ/bL89BvNR3Nl51a97SMowp7sA8NcOAIunAOF9ADAo/wCu/wYTwZb8an8fVztWKUM7vwpyrwDXtSqoM=</latexit>

f 2
(y

)

<latexit sha1_base64="xB96DuSpeOPjij1BpXLuykyoN3A="></latexit><latexit sha1_base64="xB96DuSpeOPjij1BpXLuykyoN3A=">AAACRnicbZBLSwMxEMdn66uur6pHL8FSqJey2wd6EYpePFawttAuSzbNamj2QZIVltJP58WzNz+CFw+KeDXbLqitA2F++c8Mmfy9mDOpLOvFKKysrq1vFDfNre2d3b3S/sGtjBJBaJdEPBJ9D0vKWUi7iilO+7GgOPA47Xnjy6zee6BCsii8UWlMnQDfhcxnBCstuSWnkqJz1HdtNIxinkiNdY2KBTTjxo/c/CW3zIrv2tX0xPTdepb0tZHnZp5bOrulslWzZoGWwc6hDHl03NLzcBSRJKChIhxLObCtWDkTLBQjnE7NYSJpjMkY39GBxhDrfZzJzIYpqmhlhPxI6BMqNFN/T0xwIGUaeLozwOpeLtYy8b/aIFH+mTNhYZwoGpL5Q37CkYpQ5ikaMUGJ4qkGTATTuyJyjwUmSjtvahPsxS8vw229Zmu+bpbbF7kdRTiCY6iCDafQhivoQBcIPMIrvMOH8WS8GZ/G17y1YOQzh/AnCvANeouqgw==</latexit><latexit sha1_base64="xB96DuSpeOPjij1BpXLuykyoN3A=">AAACRnicbZBLSwMxEMdn66uur6pHL8FSqJey2wd6EYpePFawttAuSzbNamj2QZIVltJP58WzNz+CFw+KeDXbLqitA2F++c8Mmfy9mDOpLOvFKKysrq1vFDfNre2d3b3S/sGtjBJBaJdEPBJ9D0vKWUi7iilO+7GgOPA47Xnjy6zee6BCsii8UWlMnQDfhcxnBCstuSWnkqJz1HdtNIxinkiNdY2KBTTjxo/c/CW3zIrv2tX0xPTdepb0tZHnZp5bOrulslWzZoGWwc6hDHl03NLzcBSRJKChIhxLObCtWDkTLBQjnE7NYSJpjMkY39GBxhDrfZzJzIYpqmhlhPxI6BMqNFN/T0xwIGUaeLozwOpeLtYy8b/aIFH+mTNhYZwoGpL5Q37CkYpQ5ikaMUGJ4qkGTATTuyJyjwUmSjtvahPsxS8vw229Zmu+bpbbF7kdRTiCY6iCDafQhivoQBcIPMIrvMOH8WS8GZ/G17y1YOQzh/AnCvANeouqgw==</latexit><latexit sha1_base64="xB96DuSpeOPjij1BpXLuykyoN3A="></latexit>

f3(y)
<latexit sha1_base64="mkx4cdC53Q8NqjIfGq4ktyGE2Ck="></latexit><latexit sha1_base64="mkx4cdC53Q8NqjIfGq4ktyGE2Ck="></latexit><latexit sha1_base64="mkx4cdC53Q8NqjIfGq4ktyGE2Ck="></latexit><latexit sha1_base64="mkx4cdC53Q8NqjIfGq4ktyGE2Ck=">AAACRnicbZBLSwMxEMdn66vW16pHL8FSqJey21b0IhS9eFSwD2iXJZtm29DsgyQrLMVP58WzNz+CFw+KeDVbF6ytA2F++c8Mmfy9mDOpLOvFKKysrq1vFDdLW9s7u3vm/kFHRokgtE0iHomehyXlLKRtxRSnvVhQHHicdr3JVVbv3lMhWRTeqTSmToBHIfMZwUpLrulUUnSBeq6NBlHME6mxrlGxgGbc+JWbc/JpqeK7djU9yXI9y77byK/NPJ/q7Jplq2bNAi2DnUMZ8rhxzefBMCJJQENFOJayb1uxcqZYKEY4fSgNEkljTCZ4RPsaQ6z3caYzGx5QRStD5EdCn1ChmTo/McWBlGng6c4Aq7FcrGXif7V+ovxzZ8rCOFE0JD8P+QlHKkKZp2jIBCWKpxowEUzvisgYC0yUdr6kTbAXv7wMnXrN1nzbLLcuczuKcATHUAUbzqAF13ADbSDwCK/wDh/Gk/FmfBpfP60FI585hD9RgG95w6qD</latexit>

f4(y)
<latexit sha1_base64="mEOhjeni6VimGUOf3/f+OVK579Y="></latexit><latexit sha1_base64="mEOhjeni6VimGUOf3/f+OVK579Y="></latexit><latexit sha1_base64="mEOhjeni6VimGUOf3/f+OVK579Y="></latexit><latexit sha1_base64="mEOhjeni6VimGUOf3/f+OVK579Y="></latexit>

f5(y)
<latexit sha1_base64="mw49wawoV/X1BRGuDDOFt/TcRLw="></latexit><latexit sha1_base64="mw49wawoV/X1BRGuDDOFt/TcRLw="></latexit><latexit sha1_base64="mw49wawoV/X1BRGuDDOFt/TcRLw="></latexit><latexit sha1_base64="mw49wawoV/X1BRGuDDOFt/TcRLw="></latexit>

Figure 2.7: Scenario Two: A Processing Unit that receives protected data from multiple sources, and computes
various functions for users

How can an authenticated researcher privately analyse a large data bank to learn
information that are not privacy invasive or identifiable to data owners. Such in-
formation could start from running simple statistical functions on the rich dataset,
to executing complex machine learning algorithms on the dataset. Similar de-
scription of this problems can be found in [61, 65–67], where the authors deployed
various techniques including homomorphic encryption, multi-party computation,
and secret sharing techniques.

• Scenario 3: How can multiple storage and processing units collaborate to analyse
their data in hope of generating a public model using their privately contributed
data?

The aim here is to introduce a machine learning environment that allows for col-
laboration within multiple data owners, in order to further enrich the quality of the
generated model while preserving the privacy each party’s genome dataset. At the
time of writing this thesis, this problem as described in Fig. 2.8 was still an open
problem due to its lack of an efficient privacy-preserving solution. This scenario
was one of the challenges proposed by iDASH in the 2019 competition, and our
proposal was a novel and successful solution at the competition.
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Figure 2.8: Scenario Three: A collaborative machine learning model generation between mistrusting parties
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PRIVACY-PRESERVING GWAS

In the search for a holistic privacy-preserving approach for protecting sensitive data such
as the genome, one must not fail to consider the privacy of the component units that
make up the whole. GWAS is only a component upon which a privacy-preserving solu-
tion is not only possible but has been demonstrated.

Parts of this chapter have been published as:
(1) Ugwuoke, C., Erkin, Z., & Lagendijk, R. L. (2017). Privacy-safe linkage analysis with homomorphic encryp-
tion. In 2017 25th European Signal Processing Conference (EUSIPCO) (pp. 961-965). IEEE.
(2) Ugwuoke, C., Erkin, Z., & Lagendijk, I. (2016). A Privacy-Preserving GWAS Computation with Homomor-
phic Encryption. In 37th WIC Symposium on Information Theory in the Benelux/6th WIC/IEEE SP Symposium
on Information Theory and Signal Processing in the Benelux, Louvain, Belgium (pp. 166-73).
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3.1. LITERATURE STUDY ON PRIVACY-PRESERVING GENOME DATA

PROCESSING
The human genome is a fully detailed representation of how a single person is con-
structed on the molecular level. Throughout the years, researchers have been more and
more capable of associating different genes in our genome to specific traits which can
be disease or phenotypes. By way of doing so, scientists have been able to better under-
stand how humans and other organisms are configured leading to new insights, primar-
ily in the medical sector. Obtaining the genome of an organism happens via a process
called DNA sequencing where the exact composition of nucleotides in the genome are
retrieved. Over time, this process has become much faster and cheaper leading to bet-
ter research in the field of genomics. Additionally, the emergence of a novel commercial
sector based on sequencing techniques has led to companies offering digitised versions
of a genome at a relatively cheap price. Since genomic data is able to provide a lot of sen-
sitive information about an individual, efficient privacy-preserving techniques becomes
an integral requirement in processing genome data. In this survey, we describe the cur-
rent state of privacy-preserving techniques that have been used to protect genomic data.
We performed a demarcated literature study on different scenarios where genomic data
is being handled. As a result, we present a categorisation of the various scenarios based
on their privacy technique, parties involved, and tests that can be performed on the ge-
nomic data. From the study we conclude that no “one size fits all" solution exists for
privacy-preserving genome data processing and that, currently, many genome data pro-
cessing require an adjusted version of existing techniques.
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3.1.1. INTRODUCTION

In the last two decades, genome sequencing technology has experienced a rapid boost
in development. Main advancements are being made at enabling faster and cheaper
sequencing of a single person’s genome [1]. These advancements have been a great
benefit to the medical community allowing research to progress faster. The process of
sequencing DNA already started in the early 70s [2]. Short after, the first full genome
was sequenced in 1977 [3], making it possible to obtain the exact composition of nu-
cleotide bases in the genome of a bacteriophage. Less than 25 years later, the Human
Genome Project came along, aiming at sequencing the full genome of a human being.
Ever since, many other human DNA has been sequenced and subsequently stored in
a digital way [4]. Also, in the commercial sector we see companies, like 23andMe [5],
profiting from the simplification of the genome sequencing process [5]. But, as with
many advancements, techniques for handling genomic data were developed and imple-
mented without primarily considering the security and privacy implications. This lack
of security/privacy-by-design could result to the threat to privacy of an individual that
partakes in a genome-data-dependent experiments.

Digitising human genomic information introduces new discussions in the field of
ethics, law, and social sciences primarily due to the privacy concerns that come together
with handling such sensitive data [6–8]. Our human genome carries a lot of personal and
delicate information not only about the individual itself, but also about this individual’s
siblings, ancestors and other relatives. This information reveals the ethnicity of the hu-
man being as well as susceptibility to certain diseases. As our medical knowledge about
the human genome will increase over the years, more information will become visible in
the genomic data of an individual. Sharing this data is, hence, not only the concern of the
individual from which it gets sequenced, but also of the people related to that individual
[9].

The main goal of sequencing the genome is to perform research or seek answers
to specific questions by computationally processing the data in order to gain these in-
sights. These insight could vary from seeking information about an individual like in
cases where a paternity or maternity test is required, to search for association between
genes and traits, where genome from multiple individuals will be needed. Incentives to
do so can come from the individual itself or be imposed by a doctor or governmental
entity such as some court or the police. In this paper, the focus is on the former circum-
stance. The main problem for such an individual is the lack of resources, which can be
storage capabilities, computational power, an algorithm, etcetera. These resources can
then be provided by a third party, often through a cloud environment. Although cloud
infrastructures offer a cost-effective solution for resource scarcity, they are often seen as
an untrustworthy environment. To solve these privacy issues, solutions based on ho-
momorphic encryption, differential privacy, and many other techniques have been pro-
posed. Unfortunately, with these techniques, trade offs have to be made between the
level of privacy, accuracy, computational overhead, and various other dimensions.

This work aims at providing an answer to the question: what is the current status
quo on preservation of privacy when managing genomic data? Concretely, we look at 1)
which techniques are currently used for privacy preserving genome testing, 2) on which
types of genomic testing has these techniques been applied, and 3) how many actors
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need to be involved once the genome has been sequenced? What is the communication
overhead? We identify a number of recent studies and provide a deeper analyses on
them. Based on our research we provide 14 scenarios that we can categorise in 3 different
categories. As a result, we show that external parties are currently needed in the process
of genomic testing to provide resources, such as computational power, missing by the
individual. Furthermore, we show that most tests require an adjusted version of a privacy
preserving technique and that these techniques differ and depend on the test needed to
be performed.

To the best of our knowledge there are only two papers that performed a similar study
on the state of genomic privacy. Ayday et al. concluded in 2015 that, while being a fruit-
ful technique for biomedical studies, DNA sequencing still proposes some privacy chal-
lenges that need to be solved [10]. Concretely, the paper proposed some guidelines is-
suing the challenges that remain in genome privacy such as accessibility, accuracy of
testing, and efficiency of testing. Since genomic data currently needs to be handled by
different entities more parties are able to retrieve information out of the genomic data
and, hence, damage the privacy of the individual to which the genome belongs. Further-
more, accuracy of performing the tests digitally and encrypted need to remain at least
the same as when handling such data without encryption or in vitro. Also computa-
tional and communication costs should be low enough to make the techniques practi-
cal. In 2017, Bradley et al. concluded that genomic privacy still was not where it should
be. [11]

The rest of the paper will be structured as follows: we will go over some preliminary
privacy techniques that will be used throughout the paper. This will be followed by an
illustration of the scope of this study together with a report on our literature study. This
paper is concluded with the results and conclusions of our literature research.

3.1.2. PRELIMINARIES
We introduce some of the concepts and privacy-preserving techniques that are com-
monly identified in the protocols designed to protect genome data processing.

SINGLE NUCLEOTIDE POLYMORPHISM

The DNA is made up of nucleotide bases from the set {"A","G","T ","C "} , and portions
of the genome are often copied or inherited by individual. However, when there are
subtle changes to a section of the gene such that a single nucleotide distinguishes two
or more individuals, a single nucleotide polymorphism (SNP) is said to have occurred.
Single Nucleotide Polymorphisms are the most common genetic variation of the genome
among the population. A SNP always denotes a the substitution, deletion, or insertion of
a single nucleotide in a specific gene locus [12]. SNPs are commonly used as biological
markers for individuals, and every individual is said to have as much as 3 million SNPs
[12].

HOMOMORPHIC ENCRYPTION

Homomorphic encryption enables data to be processed non-interactively in the en-
crypted domain without having to decrypt the ciphertext. Operations performed on
encrypted data yield the same result after decryption as if they were performed on the
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plaintext. Common operations that are obtainable using homomorphic encryption in-
clude basic arithmetic operations like addition, subtraction, and multiplication. Some
types of homomorphic encryption schemes known as partial homomorphic schemes
offer only either addition or multiplication property, and example include RSA [13, 14],
Paillier[15] and ElGamal[16] schemes. Other types of homomorphic encryption schemes
are able to provide for both additive and multiplicative properties, and they are known
as fully homomorphic schemes. Examples of fully homomorphic encryption schemes
include the construction by Gentry [17], and variants such as [18–22]. Most fully ho-
momorphic schemes and their variants leverage computationally hard lattice problems
to construct the required operations, making them suitable to be considered for post-
quantum cryptography [23]. Although homomorphic encryption provides data confi-
dentiality without the need for interactive protocols, it however attracts huge computa-
tional overhead, making them not practical for most settings where resources are lim-
ited.

DIFFERENTIAL PRIVACY

Differential privacy also known as statistical disclosure control is a common privacy-
preserving technique used for statistical dataset [24]. It is considered to provide ex-
tremely accurate statistical information about a database, while limiting the disclosure
of information about the individual records [25]. Unlike some other techniques like
homomorphic encryption, differential privacy is not as computationally intensive and
could be deployed without the need for specialized computing resources.

SECURE MULTIPARTY COMPUTATION

A secure multi-party computation is an interactive cryptographic protocol that allows
for two or more mistrusting parties to jointly compute a function using their privately
contributed data as input [26, 27]. In a resource constrained environment where tech-
niques like homomorphic encryption are considered to be computationally expensive to
be deployed to compute a function, secure multiparty computation is adopted to simu-
late the privacy-preserving implementation of the function using an interactive protocol.
Usually, with secure multiparty computation protocols, the output or result of the proto-
cols are can be considered to be public, unlike the private input data. Secure multiparty
computation protocols are also computationally cheaper than homomorphic encryp-
tion, but perform worse with respect to communication overhead.

GARBLED CIRCUITS

Garbled circuits is an example of multiparty computation which supports secure two-
party communication between Alice and Bob. At the root of this method lays a shared
function x = f (a,b) with input a from Alice and b from Bob. After the protocol execu-
tion has been completed, Alice and Bob both know x but neither of them learned other
private information about the input of the other [28, 29].

PRIVATE SET INTERSECTION

Given two sets X and Y , set intersection expressed as X \Y returns the common terms
in both sets. A private set intersection (PSI) protocol achieve a similar goal only with the
sets considered to be private. PSI () is a private set intersection if for all i 2 PSI (X ,Y ) , i 2
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X , i 2 Y . PSI protocols can be executed in a peer-to-peer model or a server-client archi-
tecture to determine the intersection of their inputs [30]. Private Set Intersection Car-
dinality (PSI-CA) is a variant of the regular PSI protocol between a Server and a Client.
The Client only learns the size of the intersection between the input sets [30]. Autho-
rised Private Set Intersection (APSI) is a different improvement of the regular PSI proto-
col between a Server and a Client. The Client learns the intersection between the Server
and Client inputs with an additional constraint (Authorisation) that certain elements of
Client’s choice can be ignored during the intersection [31].

ORDER PRESERVING ENCRYPTION

Order Preserving Encryption (OPE) is a deterministic encryption scheme whose encryp-
tion function preserves numerical ordering of the plaintexts [32]. Consider two sets
X ,Y µ N where |X | ∑ |Y | , a function f : X ! Y is said to be order-preserving if for
all i , j 2 X , f (i ) > f ( j ) holds for all i > j . This makes OPE suitable for query operations
on a database even after encryption. Equality and range queries including operations
such as COUNT, MIN, MAX, SUM, GROUP BY and, ORDER BY can then be applied on
data protected using order preserving encryption [33]. OPE has found it application in
genome data processing where it enables the encryption of the positions of short partial
DNA sequences and preserves the numerical ordering of the plaintext positions [34].

3.1.3. GENOME DATA PROCESSING
Before research can be performed on a person’s genomic data, DNA needs to be se-
quenced from the individual after which a digitised version of the genome also known
as in silico genome is returned to the client who ordered it. Depending on the type of
tests and the infrastructure being used by the research lab, various actors will handle the
data with numerous operations. A simplification of how this process works is depicted
in Figure 1. Throughout this whole process it is necessary to preserve the privacy of the
individual’s genome while limiting the decrease in accuracy and capabilities of process-
ing the data. In the remaining part of this work, we will clearly define the settings that
we have considered and also the genome data processing phases that are of interest to
us. We will present the trade-off between privacy of the data and utility of the resulting
privacy-preserving computation.

SCOPE OF STUDY

To adequately analyse the privacy of the different techniques applicable to genomic data,
we decided to limit ourselves to specific phases of the process. Concretely, our literature
research is focused on privacy-preserving techniques that can be deployed to protect the
in silico genome, with the assumption that the genome could be resident with the owner,
or stored as part of a dataset including multiple individuals’ data to be used for genome
wide association study (GWAS). Our considerations are limited to processes peculiar to
step 3 and step 4 of Figure 3.1. For ease of reference we introduce an entity named Alice.
Alice will be the individual who owns the genomic data where a data owner is a part of
the protocol. The privacy challenges in these phases considered are the following:

• From the step where the in silico genome is returned to the Alice, the storage,
transmission, and computations involving the genome is required to be protected
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Alice
Sequencer

Processing Unit

1) Alice sends her biological sample for sequencing

2) Sequencer returns a digitised copy of Alice’s genome

3) Client transmits genome data for processing

4) Processing Unit returns result of the computation

Figure 3.1: Overview of genome data processing life cycle

against privacy-threats.

• The Processing Unit who is responsible for running computations with the genome
should not be able to deduce more information from the Alice’s genome than nec-
essary. In an ideal situation, the Processing Unit gains no knowledge about Alice’s
genome, however, in some situations it is necessary for this requirement to be re-
laxed, with the conditions clearly stated.

• In special scenarios, Alice should not able to obtain any knowledge about specific
implementations of the processing techniques, such as algorithms or markers be-
ing used, in order to protect the intellectual property of the Processing Unit.

PRIVACY VS UTILITY

As mentioned previously, genomic data contains a lot of information about an individ-
ual, including privacy-sensitive information. One benefit of this characteristic is that
genomic information can be used in a judicial and criminological setting to prove in-
nocence or guilt of a suspect. To do this adequately, the tester needs to be certain that
the genomic data being tested belongs to the suspect. This is regarded as integrity of
the genomic data [11]. A drawback of this integrity requirement is that it adds a level of
complexity to the process of preserving privacy when handling genomic data. Although
information in the genome needs to remain private, the Processing Unit needs to be able
to check whether or not it belongs to the person of interest, thereby leading to a privacy
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versus utility question. On the other hand, where privacy measures are not taken to pro-
tect against the possible abuse of processing genome data, there are clear and present
privacy risks[7]. Therefore, while privacy-preserving techniques are relevant to process
genome dataset, only those solutions that do not jeopardize the utility of the data or re-
sults of the computations are relevant for considerations. We can conclude by saying
that in considering the choice of privacy enhancing technique for genome data process-
ing, utility and privacy are inversely proportional and the is always the need to find an
acceptable trade-off.

3.1.4. GENOMIC PRIVACY RESEARCH
In order to bound the search space for our literature study, we are able to provide select
protocols that involve one or more privacy preserving techniques for performing some
form of genome data processing on genomic data. All protocols share a common as-
sumption of targeting protection for the electronic version of the genome as described in
Section 3.1.3, but they still contain settings-specific assumptions and constraints about
the scenario in which their technique apply. These differences in scenarios should be
taken into account when analysing and comparing the various techniques. As such, we
will first give a brief description of the protocol setting and then we will explain the re-
sults of the techniques for the protocol.

PRIVACY-PRESERVING PROTOCOLS

Every scenario adopts different techniques and various techniques have their own pros
and cons. We mainly address the practicality of each protocol in terms of computational
complexity, communication complexity, storage cost, run-time and privacy guarantees
of the techniques used.

Protocol X — Lauter et al. in [35] propose a privacy-preserving genome data pro-
cessing protocol. In their setting, the aim is to compute a set of defined statistical algo-
rithms over genome dataset outsourced to a cloud infrastructure, and this is designed
within the honest-but-curious security model. Genotype data from multiple individuals
are collected and encrypted using a homomorphic encryption, then stored in a cloud
server where GWAS compuations are to be carried out using this dataset. Algorithms
like minor allele frequency (MAF), Cochran-Armitage Test for Trend (CATT) and Pearson
Goodness-of-Fit test, and Linkage Disequilibrium are computed using the encrypted
dataset. Lauter et al. introduce an entity who is responsible for managing keys, includ-
ing key generation and ciphertext decryption where necessary, with the assumption that
this party does not collaborate with other parties in pursuit of learning private informa-
tion on the genome data. After the genotype data have been encoded and encrypted, a
researcher can then be given access to utilize the dataset for computing their choice of
statistical algorithm for which the protocol accommodates.

Result: This protocol demonstrate the feasibility of utilizing levelled homomorphic
encryption for the preservation of privacy of outsourced data. The privacy requirement
is guaranteed with the use of homomorphic encryption, and the encoding technique of
data packing is introduced to enhance performance. The choice of parameters in the
prototype achieves 80-bits of security and the implementation environment of include
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Intel(R) Core(TM) i7-3770S CPU @ 3.10GHz, 8GB RAM, running 64-bit Windows 8.1.,
with the worst runtime for an algorithm recorded as 6.85 seconds.

Protocol A — Assume we have a testing party Bob that offers operations for Minor
Allele Frequencies (MAF), ¬2 statistics and Hamming distance. Then there is an individ-
ual, Alice, who can make use of Bob’s resources to perform such operations on her own
genomic data. In order to do so, Alice sends her digital version of her genome to Bob. To
ensure privacy of her data, she first encrypts her genome via a homomorphic encryption
scheme. For Bob, however, to be able to perform his operations as efficient as possible,
he requires Alice to make use of a different homomorphic encryption for each of the
three operations such that he can design his operations in a specific way for it to ade-
quately perform calculations on the encrypted version of Alice her genome. Hence, Alice
needs to adopt her encryption dependent on the test she desires to be performed on her
genomic data. This method was developed by Bouti et al. [36]

Result: The technique used in scenario A was homomorphic encryption. Because
of this, full privacy is ensured for Alice. Calculations performed on homomorphic en-
crypted data are most often slow due to its construction. However, since Alice needs
to use a different homomorphic encryption based on which tests she wants to be per-
formed, the calculations can happen more efficient for each test. Albeit this performance
enhancements, there still exists some overhead in communication costs. The trade-off
being made for more efficient calculations is that Alice has to adopt her encryption based
on the tests which lowers the practicality of the method.

Protocol B — Sean Simmons and Bonnie Berger proposed a privacy-preserving pro-
tocol for computing GWAS algorithms such as Pearson Goodness-of-Fit test [37]. The
setting in this protocol is as follows: Bob is a researcher who wishes to conduct a study
using genomic data stored in a large genome database such as a Cloud Server. Bob
makes a query to the database, asking for a Genome Wide Association Studies computa-
tion relating to a genotype-trait. An example of such computations could be the neigh-
bour distance mechanism for identifying significant SNPs based on a chosen threshold.
To ensure privacy in such a situation, Simmons et al. deploy differential privacy for the
perturbation of input dataset or the result of the query before sending the differentially
private result to Bob. This approach sure significant accuracy for the neighbour distance
mechanism problem [37].

Result: This method showed an improvement not only in performance, but also in
accuracy, compared to existing techniques. However, while this differential privacy pro-
tocol does not introduce computational complexity, it does suffer from noised results,
due to the perturbation. Also, the privacy guarantee is not provably secure. Because of
the error present in the results of the GWAS computations, this solution might not be
suitable for very sensitive scenarios where lives are involved, thereby contributing to its
drawback.

Protocol C — A secure genome testing protocol proposed by Cristofaro et al. for pri-
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vate substring matching represents another privacy-preserving genome data process-
ing protocol [38]. In this setting, Alice is holds a digitized genome which she wants to
keep private, while Bob has a set of DNA markers. Alice uses her private genome data
as input to a secure two-party computation protocol for conducting a testing, while Bob
contributes his markers as input. These markers are used in medical tests to check if
certain nucleotide blocks are present in a person’s genome. For example, the markers
for diseases such as diabetes are known, thereby making it possible for Alice to check her
digitized genome matches the known markers. To do so, while maintaining her privacy,
she sends a homomorphic encrypted version of her full genome to Bob who then can
perform the tests with his DNA markers. When done, Bob sends the results back to Alice
who can subsequently decrypt them and obtain the information she needed. Because
Bob makes use of DNA markers, three additional privacy issues are raised from the per-
spective of Bob: 1) the position of the tested markers should remain secret to Alice, 2)
the number of markers used in the tests should remain secret to Alice, and 3) in case
the overall result turns out negative, the subset of the markers that match should also
remain secret to Alice. To handle these issues, Cristofaro et al. proposed a protocol using
the additively homomorphic variant of ElGamal cryptosystem [16].

Result: Although the situation described opposed some new constraints in terms of
privacy for the tester, the proposal by Cristofaro et al. is able to handle them adequately.
The results of the paper show that both Alice and Bob achieve their privacy require-
ments. That is,Bob does not gain more information out of Alice’s data, while Alice does
not get more information about Bob’s DNA markers. Additionally, the implementation
of this technique was shown to complete this two-party computation on a full human
genome in less than 24 hours when implemented on the following environment: C++,
Ubuntu12.10, with an Intel i7-3770 3.4GHz quad-core CPU and 16GB of RAM. We imple-
mented 1024-bit AH-ElGamal. The downside, however, is that encryption of the data is
rather slow (although this only needs to happen once) and sending the data through a
network from Alice to Bob also adds some overhead to the protocol.

Protocol D — Wang et al. [39] propose a privacy-preserving pattern matching of
genome sequence in the encrypted genome. In their proposed setting, Alice consults a
sequencing lab to sequence her DNA with the goal of performing tests on her genomic
data on a later date. When the sequencing is done, the lab encrypts the digitised version
of Alice’s genome and outsources it to a Cloud Server. Now, only authorised parties can
submit a test request to the Cloud Server to get permission for performing tests such as
genome sequence pattern matching on an individual’s genomic data. Such request can
only be submitted if it is permitted by the owner of the data, that being Alice. For now,
the encryption can only handle approximate sequencing matching tests. When the tests
are performed, the authorised party receives the results from the Cloud Server which it
can then forward to Alice. The encryption used on Alice’s data is a modified version of
the Predicate Encryption (PE) scheme, developed by Wang et al. [39].

Result: In this protocol which is designed in a honest-but-curious security model,
the storage of Alice’s genome gets outsourced to the Cloud Server. Here, her data is en-
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crypted and can only be used for tests when permission is granted by Aliceto an autho-
rised party. Although only one type of test can be done by the authorised party, it does
not give Alicea full privacy guarantee. The result is still shared with the tester and it is
unclear whether more information can still be adopted from this technique. Computa-
tional wise there is no significant performance improvement from existing proposal, but
by outsourcing the data only one round of communication is needed thereby decreasing
the communication overhead.

Protocol E — Baldi et al. proposed a privacy-preserving protocol for computing a suit
of tests [40]. In the protocol setting, Alice stores her personal genomic data at a data cen-
tre and wishes to have Paternity tests, Personalised medicine, or genetic compatibility
tests performed on her data by agents ranging from personal physicians, to family mem-
bers, pharmacies, hospitals, insurance companies, employers and government agencies
(e.g., the FBI), or international organisations. This proposal opts for encrypted data, and
because the encryptions are designed in such a way that different properties remain in-
tact for different kinds of tests. Baldi et al. investigated which techniques works best for
the different tests [40]. For paternity test, Private Set Intersection Cardinality (PSI-CA)
was preferred, with inputs being the genomic data of Alice and that of the other per-
son with whom test is conducted. PSI-CA is a technique which allows Aliceto learn the
properties Alice has in common with the other party, while this other party learns noth-
ing about the result of the test. For personalised medicine tests, the Privacy Preserving
Personalised Medicine Testing (PPPMT) technique is used. Genetic tests are performed
with Privacy Preserving Genetic Compatibility Test (PPGCT) as described in [40].

Result: First for paternity testing, with PSI-CA the tester only learns the magnitude of
ancestry rather than the contents. The downside of this technique is that it is very com-
putational intensive because the number of nucleotides in the human genome is huge,
at 3 billion base pairs, however, full privacy is ensured. Because PSI-CA has the per-
formance drawback Baldi et al. [40] also considered using letters.Restriction Fragment
Length Polymorphisms (RFLPs). RFLP is much faster because the DNA sample is broken
into pieces by restriction enzymes and takes about a minute to compute on a computer
with an Intel Core i5-560M (running at 2.66 GHz). The PPPMT protocol is reported to
have a runtime of about 200 minutes on the same computer while PPGCT has a runtime
of 67 minutes.

Protocol F —
The edit distance between sequences A and B is defined as the minimum number

of edits (insertion, deletion, or substitution of a single character is counted as one edit)
to change A into B . Wang et al. uses the concept of edit distance to propose a privacy-
preserving protocol for querying patient similarities. Assume Alice has her medical file
stored with her hospital that is also part of a larger network of hospitals. A copy of Al-
ice’s genome is contained in this medical file. Now suppose this network of hospitals
share a database containing all the genomes of each hospital provided with some addi-
tional information, i.e. when a genome belongs to a person with breast cancer. It is then
possible for a tester of that hospital, say Bob, to compare genomes of a patient with the
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genomes stored in the shared database. Such comparison can be performed in the way
of calculating the edit distance of two genomes. Wang et al. developed a method of exe-
cuting such calculations on full genomes while preserving the privacy of every patient in
the database. [41] Their main idea is to use garbled circuits together with clustering dif-
ferent ‘types’ of genomes. Concretely will every hospital order their genomes in similar
clusters such that tester Bob only needs to check the centre of each cluster to find related
genomes to that of its patient. When the most similar matches are found, the tester can
compare deeper into the cluster from which the matching genomes originate.

Result: In this protocol, a network of hospitals is described to share genomic data
amongst each other. By using the garbled circuit protocol, Wang et al. were able to en-
sure privacy for Alice her genomic data in the hospital database. [41] By working with
clusters, the authors were able to speed up to computation necessary for the tests. Ad-
ditionally, the method proposed in the paper is able of handling a full human genome
instead of just segments. A downside of the technique is that this solution utilized an
approximation technique, thereby introducing errors in the results, although in a rather
small percentage of the tests.

Protocol G — Restriction Fragment Length Polymorphisms (RFLPs) refers to a dif-
ference between samples of homologous DNA molecules that come from differing loca-
tions of restriction enzyme sites, and to a related laboratory technique by which these
segments can be illustrated. In RFLP analysis, the DNA sample is broken into pieces
(digested) by restriction enzymes and the resulting restriction fragments are separated
according to their lengths by gel electrophoresis. Thus, in short, RFLP provides informa-
tion about the length (and not the composition) of the DNA sub-sequences occurring
between known sub-sequences that are recognized by particular enzymes. Cristofaro
et al. propose a privacy-preserving protocol to genetic testing using RFLP [42]. In the
setting, Alice owns a digital sample of her own genomic data and is responsible for the
storage. Alice has an app on her smartphone which can perform tests such as pater-
nity test, ancestry test and personalised medicine tests on the genomic data stored on
her phone. For instance, when Alice visits a medical institute, she can test her genomic
data on-demand with her phone and show the results to the specialists, which allows the
specialists to give her more personalised treatment based on the results. The mobile app
designed by Cristofaro et al. performs RFLP-based paternity tests, SNP-based paternity
tests, ancestry tests, gynaecological tests and personalised medicine tests [42]. For the
paternity test, PSI is used to preserve the privacy of AliceȦuthorised Private Set Intersec-
tion (APSI) is the technique used for personalised medicine test.

Result: The PSI testing technique is recorded to run within seconds, but the storage
requirements are high for smartphone standards. Alternatively they propose that storage
and computation can be done outsourced to an online service. Unfortunately ancestry-
and gynaecological tests do not run within seconds or minutes. However, such an app
which can test genomes has some serious privacy concerns. For instance, the app can
be reverse engineered and the implementations of the tests can be retrieved. Further-
more, encrypted genomic information on the device can be quite easily retrieved from
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the devices without the user knowing it [43]. And most worrisome of all, malicious apps
might eavesdrop on the test results with no way of knowing.

Protocol H — In this protocol, Ayday et al. propose privacy-preserving for storing
and processing genome data [34]. The proposal setting is presented as follows: there are
four parties: 1) Alice, the owner of genomic data. 2) Biobank, stores the genomic data
of Alice and other clients in databanks. 3) Bob, a researcher who tests genomic data.
Bobmakes queries to the Biobank to be able to perform the tests. 4) To ensure security
they introduce a party named Mask and key manager (MK). This party grants access to
the data of Alice in the Biobank. Which specific genetic tests to be performed are not
considered in this scenario, but instead Ayday et al. considered security techniques for
three possible kinds of attacks: A) a hacker or malicious Biobank employee who tries
to perform genetic tests on genomic data in the Biobank. B) A hacker or a malicious
MK employee who tries to infer genomic sequence from information provided by the
Biobank, and perform genetic tests. C) A hacker or a curious colleague of Bob who wants
to obtain private genomic data of a Alice. To guarantee privacy against possible data
theft, order preserving encryption (OPE) technique is employed. This encryption masks
the positions of the letters and preservers the numerical order of the plaintext positions,
allowing to query segments of the genomic data.

Result: The encryption considered in this protocol is not very private because al-
though the information is safe from theft, Bob does get to know the result of the test.
Skepticism arises from the fact that only order preserving encryption (OPE) is used.
This means that also the Biobank gets to know the result if the result is sent back to the
Biobank. A drawback of the OPE encryption is that when a lot of queries are done, the
person behind the genome can get identified. The Biobank stores data encrypted and
can be queried, data transmission is fast and only little parts of data is sent. This ap-
proach requires the Biobank to store some overhead information because the positions
of all segments and the list of nucleotides they accommodate has to be stored. Finally on
their prototype implementation, querying segments of nucleotides takes approximately
5 seconds on an Intel Core i7-2620M CPU with a 2.70 GHz processor under Windows 7.

Protocol I — Again Hasan et al. proposed a protocol for secure count query over
encrypted genome data [44]. In the protocol setting, four parties: 1) Alice, the owner
of genome data. 2) A Certified Institute (CI) that is responsible for the storage of the
genome data of clients such as Alice. 3) Bob is a researcher who performs relevant tests
such as the susceptibility test to a disease. 4) A Cloud Server that offers services such as
storage of encrypted genome data and processing data using algorithms that are avail-
able to it. The CI sends the subject’s genome data to the Cloud Server, while Bobsubmits
the list of relevant tests to the CS. The CS processes the test of Bob on the genomic data
from Alice. The result is sent back to Alice who is the test subject. Hasan et al. addresses
the challenge of maintaining privacy for Alice and for the researcher. To do this Aliceis
required to store her genomic data homomorphically encrypted with the Cloud Server.
The researcher encrypts the test by converting it to garbled circuits.
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Result: The CS can perform the garbled circuit test with the homomorphic encrypted
genomic SNPs. The output is only readable by Alice, who has the decryption key. Bob
knows that the algorithm is safe because the CS can not read this as well due to the se-
curity guarantee provided by the garbled circuits technique. The Cloud Server only per-
forms the test and learns nothing from either Alice’s genomic data, test result. The data
is modelled in an index-tree for every SNP, tree building can take from 10 seconds for 60
SNPs up to 1 minute for 300 SNPs on an Intel Core i5 3.3GHz processor with 8GB RAM
on Ubuntu Linux 16.04. This protocol does not take into account what kind of tests can
be performed on the SNPs. This means that we can not say how long Alicehas to wait for
a result when she requests a test on her genomic data.

Protocol J — Also, Namazi et al. proposed a privacy-preserving protocol for dis-
ease susceptibility testing [45]. In the protocol setting, they assume that Alice wants
to perform susceptibility tests using her private genomic data. To do so, she has her
genome sequenced and encrypted at a trusted certified institution. This institution uses
lattice-based Somewhat homomorphic encryption (SHE) to generate and distribute keys
among three parties: Alice, Medical Center, and Cloud Server. Additionally, Alicereceives
a Bloom Filter which denotes the SNPs present in her genome. The institute sends those
SNPs involved in the test encrypted to the cloud service provider. At this point all parties
are in possession of the required information to run the required susceptibility test. The
test then commences with Alice receiving the genome loci with which to compute the
test from Bob at the Medical Center and the cloud service provider receiving their corre-
sponding contributions to the disease. Next Alice tests which locations are present in her
genome using the Bloom Filter and sends them encrypted to the cloud service provider
if present or a dummy location otherwise. At this point the cloud service provider can
run the susceptibility test and sends the encrypted outcome to the Medical Center. At
last the Medical Center decrypts and interprets the results.

Result: The technique used in this protocol improved on its predecessors by remov-
ing the need for sending back and forth encrypted information to be re-encrypted with
the key of another entity. This is done by using a key-switching algorithm. The overall
efficiency is hereby improved because less communication is required. The computa-
tional load is concentrated on the cloud service provider, since Alice and Bob solely need
to encrypt input and decrypt output. In terms of computational performance it does not
significantly improve from previous protocols. With respect to privacy, this technique al-
lows for an access policy managed by Alice to be deployed on the encrypted data, which
increases her privacy.

Protocol K — Danezis and Cristofaro proposed a privacy-preserving protocol for dis-
ease susceptibility testing. Assume that Alice wants to perform susceptibility tests on
her genomic data. A trusted certified institution receives her genetic sample, sequences
it and produces an encrypted encoding of all possible SNPs. The institution sends the
entire encrypted sequence to a cloud service provider for storage. Alice receives a smart-
card containing a partial secret key for decrypting her genomic data. The test can now
be initiated by Medical Center at the medical centre following one of two variants pre-
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sented by Danezis and Cristofaro [46] on a protocol previously proposed by Ayday et al.
[47]. In variant 1, the Medical Center encrypts weights of the SNPs to test and sends them
to Alice’s smartcard. All weights are checked with their corresponding SNPs, provided by
the Cloud Server, in a streaming fashion. Afterwards a signature is checked to ensure a
valid test was performed. The result is sent to Medical Center at the medical centre for
decryption. In variant 2, based on secret sharing, the encrypted SNPs are loaded by both
Medical Center and the Cloud Server. Both use them to compute sums over elliptic curve
points. Both ciphertexts are sent to Alice’s smartcard to be added and decrypted before
looking-up the result.

Result: Two major enhancements are presented in this protocol. These enhance-
ments remove a limitation imposed by the protocol proposed by Ayday et al. [47]. This
limitation being the leakage of which and how many SNPs were tested. Thus, the privacy
is increased by this protocol. With respect to computational performance, one enhance-
ment increase it by proposing an alternative encoding for SNPs and by making the com-
putation to be executed on Alice’s smartcard more efficiently. The second enhancement
uses secret sharing to reduce the online computation even further. Other improvements
offered by this proposal over the existing solution is that of efficiency. The introduction
of an additively homomorphic elliptic curve based El-Gamal scheme eliminates the huge
computational costs associated with a proxy re-encryption implementation designed by
Ayday et al. [47]



560354-L-bw-Ugwuoke560354-L-bw-Ugwuoke560354-L-bw-Ugwuoke560354-L-bw-Ugwuoke
Processed on: 11-5-2021Processed on: 11-5-2021Processed on: 11-5-2021Processed on: 11-5-2021 PDF page: 66PDF page: 66PDF page: 66PDF page: 66

3

58 3. PRIVACY-PRESERVING GWAS

Ta
bl

e
3.

1:
Ex

is
ti

n
g

p
ri

va
cy

-p
re

se
rv

in
g

p
ro

to
co

ls
w

it
h

th
ei

r
p

ro
p

er
ti

es
.

Pr
ot

oc
ol

Pa
rt

ie
s

Te
st

s
p

er
fo

rm
ed

at
Te

st
s

Te
ch

n
iq

u
es

A
A

lic
e,

B
ob

B
ob

M
A

F,
¬

2
,h

am
m

in
g

di
st

an
ce

h
om

om
or

p
h

ic
en

cr
yp

ti
on

B
A

lic
e,

B
ob

B
ob

n
ei

gh
bo

u
r

di
st

an
ce

di
ff

er
en

ti
al

p
ri

va
cy

C
A

lic
e,

B
ob

B
ob

D
N

A
m

ar
ke

rs
h

om
om

or
p

h
ic

en
cr

yp
ti

on
D

A
lic

e,
B

ob
,C

lo
u

d
se

rv
ic

e
B

ob
ap

p
ro

xi
m

at
e

se
qu

en
ci

n
g

m
at

ch
in

g
te

st
s

p
re

di
ca

te
en

cr
yp

ti
on

E
A

lic
e,

B
ob

B
ob

Pa
te

rn
it

y-
,P

er
so

n
al

is
ed

m
ed

ic
in

e-
an

d
ge

n
et

ic
te

st
s

PS
I-

C
A

,P
PP

M
T,

PP
G

C
T

F
A

lic
e,

B
ob

,H
os

p
it

al
s

B
ob

ed
it

di
st

an
ce

ga
rb

le
d

ci
rc

u
it

s
G

A
lic

e
A

lic
e

Pa
te

rn
it

y-
,A

n
ce

st
ry

-
an

d
p

er
so

n
al

is
ed

m
ed

ic
in

e
te

st
s

PS
I,

A
PS

I
H

A
lic

e,
B

ob
,B

io
ba

n
k,

M
K

B
ob

p
er

so
n

al
is

ed
m

ed
ic

in
e

te
st

s
O

PE
I

A
lic

e,
B

ob
,C

I,
C

S
C

S
h

om
om

or
p

h
ic

en
cr

yp
ti

on
,

ga
rb

le
d

ci
rc

u
it

s
J

A
lic

e,
B

ob
,m

ed
ic

al
ce

n
tr

e,
C

S
C

S
SN

P
te

st
s

h
om

om
or

p
h

ic
en

cr
yp

ti
on

K
A

lic
e,

B
ob

B
ob

su
sc

ep
ti

bi
lit

y
te

st
p

ri
va

te
ke

y
en

cr
yp

ti
on

,
el

lip
ti

c-
cu

rv
e

cr
yp

to
gr

ap
h

y
L

A
lic

e,
B

ob
,C

I,
C

S
C

S
p

at
er

n
it

y
te

st
co

m
m

u
ta

ti
ve

en
cr

yp
ti

on
M

A
lic

e,
B

ob
,C

S
C

S
h

om
om

or
p

h
ic

en
cr

yp
ti

on
N

A
lic

e,
C

S
C

S
O

bf
u

sc
at

ed
bl

oo
m

fi
lt

er
,

X
A

lic
e,

C
S

h
om

om
or

p
h

ic
en

cr
yp

ti
on



560354-L-bw-Ugwuoke560354-L-bw-Ugwuoke560354-L-bw-Ugwuoke560354-L-bw-Ugwuoke
Processed on: 11-5-2021Processed on: 11-5-2021Processed on: 11-5-2021Processed on: 11-5-2021 PDF page: 67PDF page: 67PDF page: 67PDF page: 67

3.1. LITERATURE STUDY ON PRIVACY-PRESERVING GENOME DATA PROCESSING

3

59

Protocol L — Lei et al. attempts to propose a privacy-preserving protocol where 2
parties can jointly compute a paternity test, using their private genome data [48]. The
setting is as follows: suppose Alice wants to perform a paternity test with another in-
dividual named Bob. They register at a certificate authority which generates keys and
pseudonyms for both to ensure their privacy. Alice and Bob submit their genome sample
to a trusted certified institution to be digitised and encrypted. The institution scram-
bles the order of the data and stores this at a Cloud Server. When the Cloud Server has
received requests from both Alice and Bob for paternity testing it verify their integrity
before proceeding with the protocol. The cloud service provider asks the certificate au-
thority using the pseudonyms for an scrambled matrix containing the indices of the data
to compare. With this matrix the cloud service provider can now execute the test on the
encrypted data and share the result with Alice and Bob. Lei et al. claim to use the prop-
erty of Commutative Encryption to achieve this protocol description [48].

Result: While the problem definition appears to be clear, the underlying security con-
struction of their proposed solution appears to be flawed. For example, the idea of com-
mutative encryption as describe in this work assumes that RSA encryption scheme is to
be adopted. And parameters for Aliceand Bobwill have the following properties:
(p A , qA) : Alice’s RSA secret primes,
(pB , qAB) : Bob’s RSA secret primes,
with pa 6= pB and qA 6= qB , but somehow they claim that p A ·qA = pB ·qB . thereby achiev-
ing commutative encryption property.

Protocol M — A decentralized protocol for secretly searching for nucleotide on mul-
tiple databases was proposed by Yamamoto and Oguchi [49]. The protocol setting as-
sumes that Alice wants to perform a string search on multiple digitised genome databases.
A cloud service provider assigns a machine to act as a "master" and a couple others as
"workers". This master communicates with Alice and coordinates the distribution of
workload among the workers. The workers perform the actual computations involved
using fully homomorphic encryption scheme. Alice encrypts her query and sends them
to the master, which handles it and sends the result back to Alice afterwards.

Result: With respect to the protocol description, the privacy of the users whose digi-
tised genomes are being queried by Alice appears to be protected. However the practi-
cality of the proposal is not entirely clear. For instance, the computation that happens
at the worker node is not clearly defined. How keys are managed and comparison of
query nucleotide against the database nucleotide strings are not described in details.
This poses the question “What function is being computed and what are the underlying
operations needed to realize it?”

Protocol N — Using Bloom filters and homomorphic encryption, Perl et al. proposed
a privacy-preserving protocol for confidential queries over genome databases [50]. Sup-
pose Alice wants to execute a query on genomic data, but she lacks the resources to do
this herself. A cloud service provider can provide services for the required resources, but
Alice does not want the query or the result to be known by the cloud service provider.
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She submits her query encrypted to the cloud service provider. First, the cloud service
provider reduces the search space by using Obfuscated Bloom Filters provided by Alice.
Then, it uses a homomorphic encryption scheme to perform the query on the reduced
search space. The result is returned to Alice who can decrypt it.

Result: Concerning the practicality, this method is as fast as comparable algorithms
with no concern for privacy. This enables it to be used in real world applications; an ac-
tual implementation is provided to the public for download. Additionally, the method
can handle both discrete data sets and streamed data. The method enables the trade-off
between performance and privacy ratio to be adjusted by selecting an appropriate secu-
rity parameter since that determines the level of obfuscation and thereby the size of the
intermediate result set.

3.1.5. CONCLUSION
DNA sequencing is a beneficial technique for scientific research and can provide many
insights into the configuration of an organism. When applied to human DNA, a full
genome can be generated containing the precise composition of an individual’s nu-
cleotide base pairs. While being very informative to scientists, this type of data should be
handled with the highest level of privacy to avoid privacy incidences that might threaten
the privacy of genome data owners. To protect the privacy of genome data owners while
processing the digitised version of the genome, many techniques and approaches have
been considered and applied with the goal of preserving privacy.

We have studied the recent literature on this topic with the goal of obtaining an an-
swer to the question: what are the techniques utilized for preservation of privacy when
managing genomic data? We divided this question into sub-questions, seeking to find
an answer on which techniques are being used, on which genome data computation,
and what parties are involved. This research concludes that multiple privacy-preserving
techniques are being used for handling genomic data and that there is no ’one size fits
all’ technique currently available, as can be observed from Table 3.1. Most often, the
adopted technique is dependent on the computation that needs to be performed on the
data. We see that for statistical tests, differential privacy provides a good option for accu-
racy and efficiency, with a trade-off on privacy owing to the lack of provable guarantees.
On the other hand, provable techniques such as homomorphic encryption provides bet-
ter privacy guarantees but with the drawback of computational inefficiency as well as
storage inefficiency attributed to data expansion. We also observe that not every tech-
nique currently proposed in the literature proves to be feasible. This is due to limitations
in accuracy or performance overhead. Another limitation is the set of tests that can be
performed with each technique. This is due to the fact that most techniques need to be
adapted to the nature of the test. As a final conclusion, we see that performing tests
requires resources like computational power, storage space, and efficient algorithms.
These are resources not available to every individual which is why external parties simi-
lar to cloud infrastructures are essential in the processing of genomic data.
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3.2. PRIVACY SAFE LINKAGE ANALYSIS

Genetic data are important dataset utilised in genetic epidemiology to investigate biolog-
ically coded information within the human genome. Enormous research has been delved
into in recent years in order to fully sequence and understand the genome. Personalised
medicine, patient response to treatments and relationships between specific genes and cer-
tain characteristics such as phenotypes and diseases, are positive impacts of studying the
genome, just to mention a few. The sensitivity, longevity and non-modifiable nature of
genetic data make it even more interesting, consequently, the security and privacy for the
storage and processing of genomic data beg for attention. A common activity carried out
by geneticists is the association analysis between allele-allele, or even a genetic locus and
a disease. We demonstrate the use of cryptographic techniques such as homomorphic en-
cryption schemes and multiparty computations and show how such analysis can be car-
ried out in a privacy friendly manner. We compute a 3£ 3 contingency table, and then,
genome analyses algorithms such as linkage disequilibrium (LD) measures, all on the en-
crypted domain. Our approach to this computation guarantees privacy of the genome
data under the semi-honest security settings, and provides up to 98.4% improvement on
computation time and storage, compared to the state-of-the-art solution.

Parts of this chapter have been published as:
(1) Ugwuoke, C., Erkin, Z., & Lagendijk, R. (2017). Privacy-safe linkage analysis with homomorphic encryption.
In IEEE 2017 25th European Signal Processing Conference (EUSIPCO).
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3.2.1. INTRODUCTION

In recent years, it has become possible to perform whole human genome sequencing,
which was not an easy feat only a few decades ago [51, 52]. Geneticist and researchers
are now depending on the availability of the human genome in digital form to con-
duct ground breaking research. The genome contains rich information about the direct
owner, relatives and even species, and most of these information are yet to be properly
understood by scientist [51, 53]. Therefore, it is often the case that the genome is inves-
tigated to obtain various types of relationships. These relationships may include pater-
nity relationships, possible human emigrations hundreds of years ago, gene-phenotype
relationships, gene-disease relationships, patients response to a particular medication.
Investigating relationships as listed above have numerous advantages which would in-
clude better understanding of human genome and possibly provide for better preven-
tive and personalised healthcare [51, 52, 54]. However, the genome is a very sensitive
data, which contains lots of other information about the owners, thereby posing a pri-
vacy threat to those who provide their genomes for various scientific or medical activi-
ties [52, 54].

When analysing gene-disease relationship, two conditions are feasible. First, a ge-
netic marker could have a direct effect on a disease, thereby said to have a causal re-
lationship type of association with the disease, and the marker doubles as the disease
locus. Alternatively, a disease locus could be in linkage disequilibrium with a genetic
marker, hence an indirect gene-disease association. In the latter type of association
(which is our mode of interest in this paper), the genetic marker is not the same as the
disease locus, and scientist often perform computation of statistical measures to ascer-
tain the degree of LD, being, the threshold to confirm the suspicion of an association. It is
not often the case that a single gene is responsible for a specific trait (disease, phenotype)
and a known way for investigating gene-disease association could be to compute LD
measures between a known genetic marker and a suspected allele. However, when indi-
viduals donate their genome as sample for analyses, it is usually common to re-identify
participants, creating a huge privacy-risk [54, 55]. The challenge then become, whether
we can perform computational analyses on genome data, without compromising the
privacy of the genome owners.

We consider a scenario where a processing entity with sufficient resources store and
process genome data, and an authenticated researcher seeks to compute an operation
over the data stored by the processing entity. The data resident with the processing en-
tity may have been voluntarily contributed by individuals, or provided by some verified
medical institution. The researcher is in need of computing an LD statistic measure over
the rich dataset resident with the processing entity. Because of the privacy-sensitive na-
ture of the genome, it has become necessary to adapt privacy-preserving measures while
performing computations that require genome data. Proposed solutions have suggested
obfuscating the genetic data using different approaches like statistical data anonymiza-
tion techniques and secret sharing [55]. Other studies have also suggested access con-
trol and security of databanks as the only measure, but that does not protect the privacy
of the participants. The studies [35, 56] recommend cryptographic solutions like ho-
momorphic encryption (HE), to encrypt the data and homomorphically compute the
LD statistic measures. Deploying encryption and related cryptographic techniques are
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preferred because it is easy to mathematically prove the security of cryptosystems and
equally extend proofs to the constructed solutions, therefore one is able to estimate pos-
sible information leakage. In our work we propose a cryptographic solution, by encrypt-
ing the data and computing the relevant statistical analysis over the encrypted data. We
treat the secure databank of genomic data as a secure signal sequence, which needs to be
outsourced to an untrusted processing entity for computation analysis. The encrypted
signals (genetic data) are sensitive and need to be processed in a manner that pays keen
attention to privacy of the data. With the encrypted data being transmitted and pro-
cessed by an entity who only has the computational resource but not able to learn the
content of the data, it equally demonstrates that encrypted signals can be generated and
processed without threat to privacy.

Our Contribution: We are proposing an efficient method for computing LD statistic
measures over encrypted genome data. We adopt HE as a technique to securely store
and privately compute LD measures from a genotype databank, owing to the provable
security and privacy guarantees it provides. Furthermore, we introduce an honest-but-
curious Key Manager for our solution, in order to improve efficiency of computing pa-
rameters and reduce storage costs by 83.3%. Also, we adapt the genotypic LD approach
of computing the LD measures as against the allelic LD approach, because the allelic
LD approach requires haplotype estimation techniques, which is computationally ex-
pensive and often bias [57, 58]. We adopt data packing technique to help manage the
data expansion challenge that comes with encrypting the genes. Our encoded data stor-
age and retrieval design makes it easier to dynamically compute the contingency table
parameters necessary for computing the statistical measures, which shows a significant
improvement from existing works [35, 56] that adopted homomorphic techniques.

Outline: In the rest of this paper, Section 5.1.2 discusses some related literature,
while Section 5.1.3 contains preliminaries relevant to our work. In Section B.3 we pro-
pose our solution for privacy-friendly computation of LD measures. Section 3.2.5 con-
tains security and performance analyses and finally, in Section B.7 we have conclusion.

3.2.2. RELATED WORKS
Prior to our work, different authors have proposed various techniques for addressing
privacy concerns in genome data processing, ranging from differential privacy, secret
sharing and homomorphic encryption [59]. Specifically, Wu and Haven [60] demon-
strated a secure computing of statistical analysis algorithms over encrypted data. Their
work demonstrates the use of leveled homomorphic encryption to compute the mean
and covariance of a dataset, other than genome data.

More recently, Lauter et al. [35] conducted a study which demonstrates the appli-
cation of homomorphic encryption in the analysis of genomic data. The study shows
that statistical algorithms (Pearson Goodness-of-Fit Test, r 2-measures of LD, Estimation
Maximization (EM) algorithm for haplotyping, etc) peculiar to genetic studies can be
replicated over encrypted data. Their solution aims to protect privacy of participants
whose genome data are used in the analysis. The study however provides a solution that
incurs three times the storage cost, due to their choice of design that maps a single gene
value to three homomorphic ciphertexts. Lauter et al. also implement the construction
of the 3£3 contingency table in a computationally expensive method.
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Lu et al. [56] propose a solution which allows for genomic data to be securely out-
sourced to a third party who should perform the analysis over the encrypted dataset.
They utilised leveled homomorphic encryption [22] and present a result that outper-
formed Lauter’s implementation [35]. They deployed data packing techniques thereby
reducing the three ciphertext to one gene mapping that was suggested in [35]. Lu et al.
describe their work for chi-square test using allele frequencies, which is obtained from
genotype/phenotype values contributed to the processing party.

Other works include that of Shahbazi et al. [61], whose work presents secure compu-
tation of LD measures and Cochran Armitage Test for Trennd (CATT) using secret shar-
ing. The adoption of secret sharing requires the use of multiple servers which is bounded
by non-collusion assumption. A secret sharing solution allows for a faster computation
but incurs more communication rounds and storage requirements.

3.2.3. PRELIMINARIES
There are 4 major entities in our description, which are 1) Storage and Processing En-
tity (SPE), 2) Researcher (R), 3) Key Manager (K M) and 4) Encoder. We loosely refer
to whoever is responsible for the encryption of the genotype as encoder, this could be
a participant or a verified medical institution. The SPE is responsible for storing all
encrypted genome and subsequently performs computation on the genome on behalf
of an authenticated R who is interested in computing an LD statistic measure over the
dataset. The K M is an honest-but-curious entity who is only responsible for key gener-
ation, distribution and secure decryption of final computation results. Also, individuals
whose genomes are available with the SPE are also called participants. Therefore, a par-
ticipant’s record is interchangeable with a sample.

LINKAGE DISEQUILIBRIUM MEASURES

We shall consider two hypothetical genetic markers X and Y , with each marker having
two alleles of the same gene. Marker X has the alleles A and a while marker Y has the
alleles B and b. Linkage Disequilibrium is said to exist when two or more alleles at dif-
ferent loci are observed to often be inherited together in a non random manner [57].
Statistical LD measures such as Pearson’s correlation, Lewontin’s D , linear regression are
computable given counts of genotypes.

There are two ways of measuring LD statistics, allelic or genotype-based. Allelic LD
measures require haplotype estimation techniques which is not trivial, but genotype-
based approach allows computation without haplotype estimation. In our work, we have
only the genotype data, hence the adoption of genotype-based approach for computing
LD statistics measures. We model computations for: 1) The digenic LD between two
markers X and Y , represented as DX Y . 2) The Pearson’s correlation coefficient, repre-
sented as ¢X Y . Table 3.2 is a 3£3 contingency table, which shows an example of geno-
type counts g eni j , and their marginal sums. ni ,m j represent the sum of all values in
row i , and column j respectively, i , j 2 {0,1,2}. For instance, n0 = a +b + c , g en00 = a ,
also, Q = n0 +n1 +n2 = m0 +m1 +m2 , which is the total number of participants. The
contingency table shall form the basis of the rest of our computation.

Given that P (·) represents frequency and p A is the frequency of the allele A, DX Y is
computed as [57]:
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and Eq. (3.1) can be estimated by,

D̂X Y = 1
Q

(a +b +d + 1
2

e)°2p̂ A p̂B , (3.2)

p̂ A = 2n0 +n1

2Q
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2Q
. (3.3)

Let ˆg en be estimated genotype count. Then,
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and,
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Given the above equations, the Pearson’s correlation coefficient can be estimated as

¢̂X Y =
sx y

sx · sy
. (3.7)

Table 3.2: Genotype counts at two bi-allelic markers X and Y

BB Bb bb
P

A A a b c n0

Aa d e f n1

aa g h i n2P
m0 m1 m2 Q

HOMOMORPHIC ENCRYPTION

Homomorhpic Encryption (HE) allows for a simple operation to be performed on ci-
phertexts, such that the resulting ciphertext would decrypt to the same value as would
be obtained if the algebraic operation were to be performed on the plaintext values. Let
Epk (·) and Dsk (·) represent encryption and decryption functions respectively. m1 and
m2 are two messages and k is a scalar value, while © and ≠ are arbitrary operations on
the ciphertexts. Then, homomorphism is defined as follows,
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Dsk (Epk (m1)©Epk (m2)) = m1 +m2 ,

Dsk (Epk (m1)≠k) = m1 £k .

We leverage on the additive and scalar multiplicative properties of the HE scheme
described by Paillier [15] to compute the required statistical algorithm over an encrypted
genome dataset. We refer readers to [15] for more detail about the cryptosystem.

Secure Multiplication Protocol (SMP): The homomorphic cryptosystem [15] of choice
only offers additive homomorphism and no multiplicative homomorphism, we there-
fore initiate a secure two-party protocol in order to obtain the multiplication of two
encrypted values [62]. Given two parties Ali ce and Bob, Ali ce holds two ciphertexts
Epk (m1) and Epk (m2) and requires to compute the product Epk (m1 ·m2). Bob holds the
secret key sk, Ali ce picks randoms r1, r2, and encrypts, then computes Epk (m1+r1) and
Epk (m2 + r2), then sends the masked values to Bob. Bob decrypts and multiplies the re-
sults, then encrypts Epk (m1 ·m2 +m1 · r2 +m2 · r1 + r1 · r2) and sends to Ali ce. Finally,
Ali ce can unmask the value to obtain Epk (m1 ·m2) .

3.2.4. PRIVACY-FRIENDLY LINKAGE ANALYSIS
Given the Encoder , SPE , R and K M setting, our aim is to preserve the privacy of the
participants whose encrypted data are with SPE , and from which an LD-measure is to be
computed. R is also guaranteed to obtain a correct computation result from the analysis,
but should not learn any identifying information from the result. Our solution is twofold,
first we homomorphically construct the 3£ 3 contingency table, as presented in Table
3.2, with each parameter computed as an independent ciphertext. Secondly, we use the
parameters from the constructed table, as input to computing any LD statistic measure
of choice. In the entirety of our protocol, there is a non-collusion assumption between
any two entities.

The storage overhead of applying encryption is due to data expansion, therefore, we
choose to efficiently constrain data expansion in our solution. For this reason, we intro-
duce data packing technique for the encrypted values.

GENOTYPE ENCODINGS

To cushion the effect of data growth inherent in encrypting the genotype, the Encoder
performs the following one time operation to encode genotypes. Let N be plaintext size
of the cryptosystem, recall that Q is the record size of the genotype counts from Table
3.2.
Setup: The K M generates cryptographic keys (pk, sk) and makes pk public, and keeps

sk secret. Let ∑ be the security parameter, ` = b log2 N
log2 Q+∑+1 c, where ` is the number of

sl ot that are contained in the plaintext size of N . sl ot | represents the | th slot in N and
| 2 {0, . . . ,`°1}. The Encoder reserves the last 4 slots {sl ot`°4, sl ot`°3, sl ot`°2, sl ot`°1}
for indicating genotype intersections, this means there are only `°4 slots reserved for
genotypes. Let number of genes to be encoded in a single ciphertext be ± = `°4

3 , which
means that a single gene needs 3 consecutive slots, each of size (log2 Q +∑+1)-bits. Let
{X ,Y , · · · , Z } be a set of markers.
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Let t be the plaintext encoding, so that,

t = |X0|X1|X2|Y0|Y1|Y2|...|Z0|Z1|Z2|a|b|d |e| . (3.8)

For a given genotype database with maximum record threshold of Q, and each record
Epk (t ) being a ciphertext of ±-genes, SPE reconstructs a similar table as the model in
Table 3.2. For a genetic marker X, with dual alleles A/a and possible genotype values
of {A A, Aa, aa} with corresponding index {0,1,2} respectively. The Encoder allocates a
triple-slot to the marker X, with the genotypes mapped to the corresponding slot index,
i.e Xi for i 2 {0,1,2} as indicated in Eq. 3.8. For every gene in a sample encoding, and
given the participant’s genotypes, the value 1 is entered in the slot for every correspond-
ing genotype expressed by the participant, and every other genotype slot is completed
with value 0.

Step 1: For two genetic markers X ,Y in the encoding that are of interest for computa-
tion, the Encoder indicates corresponding intersection slots with value 1 for where an
intersection for one of {a = A A/BB ,b = A A/Bb,d = Aa/BB ,e = Aa/Bb} exists, and value
0 otherwise. Encoder then sends Epk (t ) to SPE .

Step 2: To reconstruct Table 3.2 from a database of T records, with each record Epk (t j )
for 0 ∑ j < T representing encrypted genotypes modelled after Eq. 3.8. SPE computes,

Epk (g enSum) =
T°1Y

j=0
Epk (t j ) = Epk (

T°1X

j=0
t j ), as a single ciphertext courtesy of the Paillier

cryptosystem [15]. It can be observed that the summation allows for slots to be summed
component-wise, without overflowing into a neighbouring slot, therefore providing a ci-
phertext that should decrypt to a plaintext which preserves the encoding in Eq. 3.8.

Step 3: In reference to Table 3.2, SPE can obtain the following parameters
{a,b,d ,e,n0,n1,n2,m0,m1,m2} as a packed ciphertext from the homomorphic addition
result.

Secure Unpacking Protocol (SUP): An SU P requires that SPE initiates a secure two-
party protocol with K M in order to unpack a single ciphertext of encoded sums of t ’s,
into 10 independent ciphertexts of the parameters {a,b,d ,e,n0,n1,n2,m0,m1,m2}, from
which ciphertexts of the remaining variables can be obtained homomorphically. SPE
chooses a cryptographic secure random number r of size N -bits, encrypts r and per-
forms an additive masking of g enSum to obtain Epk (g enSum+ r ), which is sent to K M
for unpacking.

Step 4: K M decrypts the masked ciphertext to obtain a masked plaintext P , and splits
P into ` parts, each of size (∑+ log2 Q + 1)-bits, then encrypts each of P0, · · · ,P`°1 and
returns the ordered values to SPE .

Step 5: SPE receives {Epk (P0), · · · ,Epk (P`°1)} and splits r into {r0, · · · ,r`°1}, each of size
(∑+ log2 Q +1)-bits, encrypts each ri for unmasking the corresponding Pi .
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Step 6: To construct Table 3.2, SPE has the encryption of each of {a,b,d ,e,n0,n1,n2,m0,m1,m2},
from which SPE deduces the rest of the variables as follows: c = n0 °a °b; f = n1 °d °
e; g = m0 °d ° a; h = m1 °b ° e; i = m2 ° c ° f ; and Q = n0 +n1 +n2 . And the table
structure in Table 3.2 is correctly constructed.

Step 7: When the numerators and denominators are computed homomorphically, the
encrypted result is forwarded by the SPE to R, who is then required to further run a
secure two-party computation with K M for secure decryption. Also note that for the
algorithms that require homomorphic multiplication, SPE runs an SMP with K M .

HOMOMORPHIC COMPUTATIONS

Once the variables of Table 3.2 are all computed, any LD statistic measure which re-
quire only the available parameters as input, can be computed homomorphically by the
SPE without learning the contents of the ciphertexts. For example, in order to estimate
the Pearson’s correlation coefficient ¢̂X Y from our constructed table of ciphertexts, we
rewrite Eq. 3.7 as follows;

¢̂2
X Y =

[Q · (e +2 f +2h +4i )° (m1 +2m2)(n1 +2n2)]2

[Q · (n1 +4n2)° (n1 +2n2)2][Q · (m1 +4m2)° (m1 +2m2)2]

= [Q · (e +2( f +h +2i ))° (m1 +2m2)(n1 +2n2)]2

[Q · (n1 +4n2)° (n1 +2n2)2][Q · (m1 +4m2)° (m1 +2m2)2]
. (3.9)

The above equation correctly computes the square of the Pearson’s correlation coef-
ficient using encrypted inputs. In the same way, we can rewrite Eq. 3.2 as:

D̂X Y = Q · (2(a +b +d)+e)° (2n0 +n1)(2m0 +m1)
2Q2 . (3.10)

According to [? ], the goodness-of-fit statistic test for a locus can be re-written as:

¬2 = Q ·D2

p A · (1°p A)
= Q · (4Q ·n0 ° (2n0 +n1)2)2

(2Q ° (2n0 +n1))(2n0 +n1)2 , (3.11)

where,

D = P A A °p2
A . (3.12)

3.2.5. SECURITY AND PERFORMANCE ANALYSES

SECURITY AND PRIVACY ANALYSES

Our aim is to provide privacy of genome data during storage and processing of the data,
such that the utility of the data is not lost. For that, we recommend at least 80-bits of
security, and for our chosen homomorphic scheme, we require at least 2048-bits of Pail-
lier [15] plaintext size. Our choice of parameters can handle up to 100,000 samples. On
the condition that no two entities within the protocol collude, we have:

Encoder: The Encoder performs a one time operation by encoding and encrypt-
ing the inputs. After which, he is not an active member of the protocol. Apart from the
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Table 3.3: Computational complexity for contingency table.

Enc. Add. Mult. Dec
Lauter et al. 6N 9N +14 9N 0
Our proposal N +21 N +12 0 1

values being learnt during encoding, the Encoder learns nothing else about other sam-
ples. However, a single individual should not be allowed to encode all data submitted
to the SPE , because, such an individual will know the result of computations requested
of the SPE . Finally, an Encoder should not know how much samples another Encoder
submits to SPE .

SPE: Only ciphertexts are stored on the server, SPE does not learn the content of the
data stored on his server, and does not also learn the content of the processed results,
since it does not have the secret key. The SPE can however learn the total number of
records, and can therefore deduce the value for Q, but this can be mitigated by allowing
the Encoder add some dummy samples which are encryptions of zero. The dummy
samples will not affect results of computations, but will only add a computation cost to
generating Table 3.2, as well as storage cost to the server. Only the SPE is responsible for
knowing the changes (insertion and deletion) of samples.

Key Manager: The K M is an honest-but-curious entity, and is only allowed to inter-
act with masked values. Therefore, the K M does not learn the true values he is presented
to operate on, so long as he does not collude with another entity.

Researcher: He obtains aggregated results such as numerator and denominator. He
does not possess enough information to solve for the individual variables, therefore the
privacy of the contributing samples are protected from the Researcher.

PERFORMANCE ANALYSES

To obtain a fair comparison of our proposal with Lauter et al’s. [35], while preserving
the same level of security offered by their work, we present here a C++ implementation
of both approaches, using GMP library version 6.1.2 on a 64-bits Intel core 2 Quad @
2.66GHz, running Ubuntu 14.04 LTS and Paillier cryptosystem, with 80-bits security for
N samples. We also mention that one SU P requires 21 encryptions, 11 homomorphic
additions and one decryption. Furthermore, we present a complexity comparison only
for constructing the contingency table in Table 3.3, from which variables are used as in-
puts to compute LD measures and other genome analyses. We ignore the comparison
for computing genome analyses algorithms because those are independent of the sam-
ple size.

It can be observed from Table 3.3 and 3.4 that our approach for computing the con-
tingency table improves Lauter et al’s. [35] proposal by 83% storage cost and 98.4% com-
putational cost. Also we present the average runtime for 1000 runs of the cyrptosystems
(Paillier, Microsoft Simple Encrypted Arithmetic Library) operations used in Table 3.4.

Finally, we present the complexity for various genome analysis algorithms we imple-
mented in Table 3.5.
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Table 3.4: Operations Timing results in seconds.

Enc. Add. Mult. Dec.
Paillier 0.02287 0.000012 0.14601 0.022738
SEAL 0.08990 0.000323 0.67082 0.087052

Table 3.5: Algorithm Complexity

Add. Sub. Mult. Scalar Mult.
Pearson’s Corr. Coeff. 7 3 7 4
LD Coeffiecient 5 1 3 4
Goodness-of-fit Test 1 2 6 3

3.2.6. CONCLUSION
We present a secure, privacy-preserving and efficient approach for computing LD mea-
sures over genome data. Our approach provides significant improvements in storage
and computational complexity from the existing work we compared with. We produce a
98.4% improvement for computing the 3£3 contingency table over that of Lauter et al.
We introduce an efficient Key Manager in a semi honest security setting, who we lever-
age on to implement a secure and privacy-safe packing technique. We implement and
show performance results for algorithms that use genome data, such as, Pearson’s corre-
lation coefficient, Goodness-of-fit test, LD coefficient. Our approach can also be used to
compute other LD measures for which the equations are re-written to be executed using
basic additions, subtractions and multiplications. Our construction is robust and can
accommodate up to 100,000 samples for the parameters presented here.
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3.3. PRIVACY-PRESERVING ASSOCIATION STUDY

The continuous decline in the cost of DNA sequencing has contributed both positive and
negative impacts in the industry and research community. It has now become possible
to harvest large amounts of genetic data, which researches believe their study will help
improve preventive and personalised healthcare, better understanding of diseases and re-
sponse to treatments. However, there are more information embedded in genes than are
currently understood, just as a genomic data contains information of not just the owner,
but relatives who might not subscribe to sharing them. Unrestricted access to genomic
data can be privacy invasive, hence the urgent need to regulate access to them and de-
velop protocols that would allow privacy-preserving techniques in both computations and
analysis that involve these very sensitive data. In this work, we discuss how a careful
combination of cryptographic primitives such as homomorphic encryption, can be used
to privately implement common algorithms peculiar to genome-wide association stud-
ies (GWAS). This obviously comes at a cost, where we have to accommodate the trade-off
between speed of computations and privacy.

Parts of this chapter have been published as:
(1) Ugwuoke, C., Erkin, Z., & Lagendijk, R. (2016). A Privacy-Preserving GWAS Computation with Homomor-
phic Encryption. In 2016 37th WIC Symposium on Information Theory in the Benelux/6th WIC/IEEE SP Sym-
posium on Information Theory and Signal Processing in the Benelux, Louvain, Belgium
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3.3.1. INTRODUCTION

Biomedical research has long shown that human genome contains data from which in-
formation about their individual owners, and those related to them can be extracted [51,
63–65]. A lot of privacy-sensitive information are laced all over genomic data, which
constitutes enormous worry for individuals whose data are available in electronic for-
mat [66–68]. The benefits of continuous research involving the genomic data are equally
rife, these include: preventive and personalised healthcare, patient’s response to treat-
ment, predisposition to diseases, identification of new drug targets and perhaps a better
understanding of cancer [51, 55, 65, 69–74]. On the other hand, when genomic data
is used for research or processed by medical personnel, they become exposed to pos-
sible misuse and even loss to unauthorised hands. In the face of this possibility, the
risk of re-identifying individuals from an available genomic data calls for serious con-
cern [55, 64–66, 68, 75], and has been recognised as a realistic threat. Other unwanted
scenarios which could occur as direct consequence of leaking genomic data include:
stigmatisation, discrimination, loss of insurance and even loss of employment opportu-
nities for persons whose genomic data is public [54].

What is more worrisome about misuse of genomic data is the fact that the genome
has longevity, when leaked, it can neither be revoked nor modified. So, it is obvious
that this piece of data is highly sensitive and requires protection that should be adap-
tive to future security threats. Hence one can claim that any realistic solution should be
one which, the security guarantees of the underlying primitives used for implementation
should withstand post quantum attacks. Therefore privacy protection techniques have
been proposed as an adaptive solution by the cryptography community. The aim will
be to allow productive research that utilise genomic data, while eliminating the privacy-
risks inherent around these procedures.

Being that no standalone solution can best fit the challenge posed, it is considered
that a good combination of ethical, legal and technological constraints can be employed,
to properly manage the risks of privacy leaks that are otherwise possible within this re-
search domain. Owing to this premise, our work seeks to contribute a technological
solution to the underlying problem.

In the era of distributed computing, even the medical field has not been left out. It
has been common for researchers and medical personnel to work without boundaries
of country borders, albeit, via a virtual collaboration [63, 68, 76]. This means that more
data can now be shared for research purposes and even diagnosis of diseases [67]. It
also presents us with the possibility of allowing cloud services process medical data,
even when they do not reside in the same country as the owners of the data. This need
for collaboration, data sharing and cloud processing of genomic data further pushes for
privacy-preserving secure computing protocols [63, 76].

Having a genomic dataset and controlling access to it is the main aim of this work.
In a nutshell, this means that while these data is not available to the public, experts who
need them for research are granted restricted access to only subsets relevant to their
work [75]. Such access for processing data may include string searching and compari-
son, as well as GWAS computations.

Genome Wide Association Studies: As highlighted in [51, 77], the first ever human
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genome sequencing was achievable in 2001, after directly gulping a whooping US-$300
million from the initial budget of US-$3 billion. Fast-forward 6 years later, and the same
feat is feasible for about US-$100,000. In 2006 [77], it was anticipated that in 2014, a
further reduction to US-$1,000 was possible for sequencing the human genome. Recent
literature [52, 71] have even suggested that a meagre US-$100, will be a reality in the very
near future. If that be the case, one can deduce that amongst other possibilities, a direct
consequences of affordable genomic data would be the torrential flow of genomic data
in silico. It is obviously a good development for researchers, who would heavily rely on
these data to improve on their research, refine and optimise diagnosis and many oth-
ers positive possibilities. With a wealth of data in the form of genomic data lying at the
disposal of researchers and medical personnel, learning and inferring from these data
becomes an indisputable objective.

Without loss of generality in description, GWAS can simply be simplified to the ac-
tivities presented above, it is about gathering genetic data, processing them and relying
on them to investigate relationship (association) of genes to common known diseases. It
will be possible to even detect unknown diseases and the effect of drugs on treatments.
With GWAS researchers can now measure, analyse and predict previously unknown ge-
netic influence on a person, this can help in early detection and prevention of certain
diseases, as well as personalised healthcare. For useful gene-disease associations to be
estimated, some computations become handy, and these will be discussed in subsection
3.3.2. Nonetheless, most of the computations can easily put the data owners at privacy-
risk. It has led to the suggestion that protection of genomic data is a necessity, to address
possible ethical, political, technological and privacy concerns. From the technological
solution approach, we hope to address the privacy-threats using cryptographic primi-
tives. Just to mention, with genomic data, data anonymization is not enough guarantee
to avoid re-identification and also, conventional encryption might not offer much better
protection against envisaged privacy-threats. These can simply be derived from the fact
that the said data have longevity, their importance persists even after the demise of the
data owner.

Related Works: Realising the privacy-sensitive nature of genomic data, researchers have
delved into search for privacy-preserving solutions, in the hope to protect privacy of
owners while still being able to process and compute operations using these data. Some
of these works are discussed here. Privacy-preserving GWAS spans across more possi-
bilities than just GWAS-Computations. According to [75], other important categories
include:

• Private string searching and comparison.

• Private release of aggregated data.

• Private read mapping.

of course, this list is not in itself exhaustive, but we will only consider works that di-
rectly address computations very peculiar to GWAS. As early as 1999 [78–80], some re-
searchers had anticipated privacy risks involved with genomic data. So they proposed
denominalization and de-identification as protection schemes, to preserve privacy. This
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did not stop re-identification attacks from being hugely successful, as discussed in [55].
Other authors [81] have subsequently recommended Trusted Third Parties and Semi-
trusted Third Parties but then, it is not always easy to completely trust a third party,
who could still be susceptible to coercion, compulsion and even corruption to be com-
promised. More recently in [82], attempts were made to analyse genomic data while
avoiding privacy-invasion of participants of the data. Summarily, they adopted differen-
tial privacy as a privacy-preserving technique, and documented to have obtained utility
with their procedure. However, addition of noise using differential privacy is not a silver
bullet to deflate possible re-identification. Especially when the published data can be
augmented with other side information. But most importantly is the fact that differen-
tial privacy contains noise, which will evidently affect the utility, no matter the degree of
noise. This is a huge trade-off, but it is only left for the geneticists and bio-statisticians
to decide if the noise only contributes a negligible disturbance to the final results.

While the last paper approach to resolving possible privacy breaches is via differen-
tial privacy, [83] chooses to adopt a different approach. The authors adopt homomor-
phic encryption as a tool to enable analysis of these privacy sensitive data. Homomor-
phic Encryption holds a lot of promises, and if its capabilities are optimally harnessed,
can become a very productive primitive in guaranteeing privacy for processing genomic
data. In this work, different scenarios are considered which include a setting that allows
outsourcing encrypted genomic data to a cloud service. In the mentioned scenario, op-
erations on the data by the cloud are still possible, without divulging the decryption keys
but still hopeful of achieving utility.

Homomorphic Encryption was further relied on by some other team of researchers [56].
A shot was given to providing privacy guarantees on processing of genomic data, only
that this time the focus was on homomorphic encryption scheme whose structures rely
on RLWE (Ring Learning With Error). [56] documents an efficiency-improvement from
existing implementation of GWAS using homomorphic encryption. They showed that
¬2 test for independence was achievable with improvement in both computation and
communication time from existing implementations.

Subsequently, another team of researchers went further to demonstrate how much
information can be extracted from computation of genomic data, even on the encrypted
domain [35]. Basic genomic algorithms which are common to GWAS are shown to be
implementable on encrypted genotype and phenotype data. Lauter et al. [35] report re-
sults that preserve utility of the original implementation (computation on unencrypted
genomic data). Some of the algorithms demonstrated in their work include:

• Estimation Maximization (EM) algorithm for haplotyping.

• The D and r 2-measures of linkage disequilibrium.

• Cochran-Armitage Test for Trend.

Also worth mentioning is the fact that this implementation relied on Homomorphic En-
cryption with assumption on RLWE.
Scenario and Assumptions: For the sake of this work, we will explicitly spell out the
scenario in which our proposed protocol is targeted, and necessary assumptions. Our
setting adopts the semi-honest security model, hence we assume that all parties will
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correctly follow the protocol by performing the right computations, but with a curios-
ity to observe the transitions of the protocol with a view to learning more details than
they are statutorily allowed to learn. We assume that a researcher Alice is interested in
a particular computation, say Minor Allele Frequency (MAF). The data source or cloud
Bob, who happens to have the computational powers not acquired by Alice, is trusted to
perform all requests by performing the computation on encrypted data. The result of
the computation (which however, is also encrypted), is returned to Alice.

3.3.2. PRELIMINARIES
Up until here, we have established a clear direction to the challenge we hope to address.
A genomic dataset is at our disposal and we intend to preserve privacy of data in the
face of effective computations. So, we propose a protocol that encrypts all genomic data
and outsources storage of these data to a semi-honest cloud service who possesses the
computational requirements to run these expensive computations. It will be pertinent
to have a mental picture of typical algorithms that will be deployed to perform com-
putation, and how our cryptographic privacy enhancing technology optimally fits for a
solution. Most of the algorithms are statistical operations that are often required by bio-
statisticians when trying to learn information from a dataset. And just like most statisti-
cal equations require simple arithmetic operation at the least, we show that our adopted
primitive (homomorphic encryption), does provide us with the capabilities to perform
simple addition, multiplication, and with a little more effort division.

GWAS COMPUTATION

Only a few statistical computations that are usually handy in GWAS are presented.

Minor Allele Frequency: Finding the ratio for which an allele of interest that is at a
locus, occurs in a particular population of study is the allele frequency. MAF is therefore
the allele frequency of the least common allele, which appears in that population. If we
have a gene with two possible alleles say A and S, then in a monoploid gene setting, the
allele frequency f() for A is simply computed as follow:

f (A) =
Pn

1 AA
Pn

1 AA+Pm
1 SS

(3.13)

where N = n +m is the total population sample, and n and m are the counts of
alleles A and S respectively. That was rather too easy, owing to the fact that we only have
two possible genotypes, which are results of pure combination of possible alleles. What
happens when we consider diploid gene settings? Using the same alleles at a particular
locus, we consider the following expressions: AA, AS and SS. Just like we did above, we
shall try to compute the frequency of the allele A. Let genotype distribution be as follows:

A = 19,AS = 21,SS = 07.

f (A) =
2§Pn

1 AA+Pk
1 AS

2(
Pn

1 AA+Pk
1 AS+Pm

1 SS)
(3.14)

The total genotype count in this case is N = n+k+m, where n,k and m are counts for
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AA, AS and SS respectively. To compute the allele frequency of A using the values already
presented, we will have

f (A) = 2§AA+AS
2§ (AA+AS+SS)

= 2§19+21
2§ (19+21+07)

= 59
94

= 0.6277 (3.15)

Since we only have two possible alleles in this population, the least common allele should
be S, with MAF of (1°0.6277) = 0.3723

To calculate the genotype frequencies we have AA = n
N , AS = k

N , SS = m
N

Linkage Disequilibrium: This is the non-random association of alleles at different
loci. Unlike the single locus alleles considered previously, we will be considering two
loci but mainly retaining the basic statistics we have developed thus far. The aim of this
test is to suggest if SNPs at particular loci of interest behave or occur in such a manner
that is not believed to be random. So we present two loci with the following alleles: A,
a and S, s. When two genotype at different loci are independent of each other, Linkage
Equilibrium is considered to have occurred. Simply put, this means that Linkage Dis-
equilibrium happens when there is some degree of dependency between the two loci
of interest. Leading to the Hardy-Weinberg Equilibrium (HWE ), which is said to hold
if allele frequencies are preserved in a population across generations, except otherwise
altered by an external factor, including evolutional influences. To measure linkage dise-
quilibrium, the following equations are used to compute D and r 2.

D =

8
>><

>>:

f (AS) f (as)° f (As) f (aS)
mi n( f (A) f (s), f (a) f (S)) if f (AS) f (aa)° f (As) f (aS) > 0

f (AS) f (as)° f (As) f (aS)
mi n( f (A) f (S), f (a) f (s)) if f (AS) f (aa)° f (As) f (aS) < 0

(3.16)

r 2 = ( f (AS) f (as)° f (As) f (aS))2

f (A) f (S) f (a) f (s)
(3.17)

On the assumption that the allele frequencies can be obtained from encrypted ge-
nomic data, then it follows that the above computations can be computed.

HOMOMORPHIC ENCRYPTION

Homomorphic Encryption (HE) is a cryptographic primitive that allows for simple arith-
metic operations over a ciphertext space. A HE scheme can either allow for simple ad-
dition, multiplication or even both. We have an additive scheme if it can only allow for
addition operations and a fully homomorphic encryption (FHE) scheme if both addition
and multiplication can be harnessed from the scheme. Give two messages m1 and m2,
an encryption and decryption functions Enc() and Dec() respectively. We have that:

Enc(m1)©Enc(m2) ! Enc(m1 +m2) : Dec(Enc(m1 +m2)) := (m1 +m2) (3.18)

Enc(m1)≠Enc(m2) ! Enc(m1 §m2) : Dec(Enc(m1 §m2)) := (m1 §m2) (3.19)
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In 2009, [17] proposed an FHE scheme, which reduced its security to some well
known difficult lattice problem. Further works were done to improve the original scheme,
due to the complexity involved in implementation. Bringing about works like [84–86],
which have been able to present a levelled homomorphic encryption scheme, that is
capable of handling multiplication to a certain degree or depth, before the ciphertext
becomes un-decryptable. The main idea is that for every operation, some noise is added
to the ciphertext, and when this noise grows above a certain threshold, decryption of
the ciphertext becomes a problem. While addi t i on contributes small degree of noise,
mul ti pl i cati on allows the noise to grow very fast. These schemes often reduce their
security to lattice based problems like shortest vector problem (SVP) including ring learn-
ing with error problems (RLWE). Because the multiplication function obtainable from
these homomorphic encryptions are not arbitrary (as to control the noise growth), it is
labelled levelled or somewhat homomorphic encryption (SHE). To show that the multi-
plication depth can only go as deep as the specified level, during parameter setup.

With a SHE scheme handy, and statistical algorithms available, we can then deploy
this primitive to solve the arithmetic operations we identified earlier. It can be demon-
strated that with SHE, these algorithms can be computed while preserving the utility and
not trading privacy of the genomic data concerned.

3.3.3. PRIVACY PRESERVING ¬2 STATISTIC

In GWAS computation, X 2 is often computed and compared to the ¬2 distribution. A
common test can be applied to know if the HWE holds in a given distribution. An exam-
ple of a computation is presented below:

X 2 =
X

i={A A,AS,SS}

(Oi °Ei )2

Ei
(3.20)

Oi and Ei represent observed frequency allele and Expected frequency allele of the
population. Since the frequency allele can easily be computed by simple addition and
multiplication, and the required arithmetic operations are obtainable in our discussed
Homomorphic Encryption. It can be concluded that the ¬2 statistics can be computed
in a privacy-preserving manner, over encrypted dataset. Other computations such as
the Cochran-Armitage Test for Trend can equally be computed using this procedure, and
even meta-analysis of data from different experiments can be produced as well. For sim-
plicity, we shall show how X 2 test statistic can be computed, borrowing the suggestions
in [35, 56, 59], with a subtle modification. Every SNP representation is assumed to be-
long to a genotype classification. And for a single locus test, we produce 3 encryptions,
Enc(x)c,d : x 2 {0,1}, c and d are row and column indexes respectively. The rows depict
the SNPs for participants, while the columns depict genotype (AA, AS, SS). Assuming that
all loci representation correctly fall into a genotype class, then the summation of the row
values

PN
c=1 will produce n,k and m, recall that N = n+k+m. It then becomes feasible to

calculate the sum of the genotypes by simply adding the encrypted values for each col-
umn. This will require a constant cost of 3N numbers of additions using homomorphic
encryption.
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X 2 = (n °E A A)2

E A A
+ (k °E AS )2

E AS
+ (m °ESS )2

ESS
(3.21)

X 2 = (n °E A A)2 §Eb §Ec + (k °E AS )2 §Ea §Ec + (n °ESS )2 §Ea §Ec

E A A §E AS §ESS
(3.22)

Again, to compute the X 2 test statistic, it becomes evident that this computation will
require at least, (3N +5) additions, 14 multiplications and a single di vi si on. We delib-
erately ignore the computation of Ei={A A,AS,SS}, since those can be easily pre-computed
and stored. But if we have a (2£2) or (2£3) contingency table as presented in [59], we
can still show that these complex looking computations can be reduced to addi t i ons,
mul ti pl i cati ons, and a single di vi si on. Since our SHE scheme can perform addi t i on
and mul ti pl i cati on efficiently, we are left to show that a trivial non-cryptographically
secure means can be used to efficiently carry out the division. We offer this trivial so-
lution, with the knowledge that a cryptographically secure division will involve a multi-
party computation, of which we do not wish to discuss, due to the complexities involve.
The non-trivial solution would be as follows:

Enc(x)
Enc(y)

, r √R,
Enc(x)≠Enc(r )
Enc(y)≠Enc(r )

(3.23)

Both numerator and denominator are presented to the researcher, who can decrypt
them and perform the division in clear. The test statistic is therefore obtained and com-
pared to the appropriate p ° value that was chosen, with 1 degree of freedom. The ob-
tained result will not lose utility, and yet achieves a privacy guarantee on the semi-honest
settings. The cloud to whom data processing is outsourced, does not know what values
are encrypted, but can perform operations using only the ciphertext, and the researcher
who queries the database for X 2 value can be sure to obtain a correct value.

COMPLEXITY:
The complexity of the proposed protocol can only be as efficient as the HE scheme
deployed to solve the problem. For instance, when computing allele frequencies, sev-
eral additions and a few multiplications are required. Which means that the computa-
tional complexity can be bounded by the computational complexity of the underlying
HE scheme. However, if an additive HE scheme is to be deployed, we envisage an extra
cost associated with communication. This is because multiplication in additive schemes
are often performed as a multi-party computation (MPC). For the simple case of com-
puting X 2, we have a cost of 3N +5 additions, 14 multiplications and 1 division. Which
will involve many rounds of communication for an additive homomorphic encryption
scheme.

PRIVACY ANALYSIS

The privacy proof of this proposal is inherited from the security of the encryption scheme
adopted for the implementation. So long as the homomorphic encryption scheme is
proven secure, the proposed protocol should remain privacy-proof.
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For future work, we strongly recommend adoption of SHE scheme over an additive
HE scheme like Pai l l i er . Also, division over encrypted domain can be attempted in
order to address the bottleneck of having to transmit division operands in the clear. This
should be an important addition to this work, and perhaps one can leverage on that to
perform even faster computations of statistical GWAS algorithms.

3.3.4. CONCLUSION
With major enhancement of the described cryptographic primitives, we foresee further
deployment of privacy enhancing techniques to create protocols for processing of ge-
nomic data. We believe that this is an achievable feat in the near future, as to prepare
for the bloat in availability of genomic data in silico. This protocol should be able to pre-
serve the utility of results as obtainable in unencrypted data scenario and better than
anonymized data implementation. Though the performance values will be expensive
as a result of the encrypted data and encoding needed to be done, we believe that with
further attention paid to this area of research, performance optimization is very realistic.
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4
POST-GWAS COMPUTATION ON

PRIVACY-SENSITIVE DATA

Privacy-Preserving genome processing as a service is a viable business model that is ben-
eficial to both the investor and the teaming users seeking to enjoy the benefits of genome
predictive medicine using genome data without the fear of privacy scandals.

Parts of this chapter have been published as:
(1) Ugwuoke, C., Erkin, Z., Reinders, M., & Lagendijk, R. (2020, March). PREDICT: Efficient Private Disease
Susceptibility Testing in Direct-to-Consumer Model. In Proceedings of the Tenth ACM Conference on Data and
Application Security and Privacy (pp. 329-340).
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4.1. EFFICIENT DST WITH PRIVACY GUARANTEE

Genome sequencing has rapidly advanced in the last decade, making it easier for any-
one to obtain digital genomes at low costs from companies such as Helix, MyHeritage,
and 23andMe. Companies now offer their services in a direct-to-consumer (DTC) model
without the intervention of a medical institution. Thereby, providing people with direct
services for paternity testing, ancestry testing and disease susceptibility testing (DST) to
infer diseases’ predisposition. Genome analyses are partly motivated by curiosity and peo-
ple often want to partake without fear of privacy invasion. Existing privacy protection
solutions for DST adopt cryptographic techniques to protect the genome of a patient from
the party responsible for computing the analysis. Said techniques include homomorphic
encryption, which can be computationally expensive and could take minutes for only a
few single-nucleotide polymorphisms (SNPs). A predominant approach is a solution that
computes DST over encrypted data, but the design depends on a medical unit and ex-
poses test results of patients to the medical unit, making the design uncomfortable for
privacy-aware individuals. Hence it is pertinent to have an efficient privacy-preserving
DST solution with a DTC service. We propose a novel DTC model that protects the privacy
of SNPs and prevents leakage of test results to any other party save for the genome owner.
Conversely, we protect the privacy of the algorithms or trade secrets used by the genome an-
alyzing companies. Our work utilizes a secure obfuscation technique in computing DST,
eliminating expensive computations over encrypted data. Our approach significantly out-
performs existing state-of-the-art solutions in runtime and scales linearly for equivalent
levels of security. As an example, computing DST for 10,000 SNPs requires approximately
96 milliseconds on commodity hardware. With this efficient and privacy-preserving solu-
tion which is also simulation-based secure, we open possibilities for performing genome
analyses on collectively shared data resources.
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4.2. INTRODUCTION
The technology for sequencing the human genome continues to improve [1, 2], just as
the quest to substantially reduce the cost of sequencing has drawn enormous attention
to the medical field, research, and commercial platforms in the last two decades [3–7].
Consequently, research publications corroborate the plummeting in time required for
obtaining a digital version of the human genome[2, 8–11]. For as low as $100, commer-
cial companies such as Helix, MyHeritage and 23andMe state that they are able to un-
lock your genome and deliver health and ancestry services directly to customers [12–14],
without intervention of your medical doctor. The downward trajectory of the cost and
time for sequencing over the last two decades suggests an inevitable upsurge in avail-
ability of digital genome in the near future. Furthermore, digital genome is required by
the research community for various studies that help in enhancing our understanding of
the basic building blocks of life, the relationship between a gene and a phenotype, better
understanding of diseases and their causes, patient responses to treatment, and pre-
ventive medicare. Only recently, the drug giant GlaxoSmithKline announced that DNA
results from the 5 million customer base of 23andMe will be used to design new drugs,
and GlaxoSmithKline have also invested $300 million in 23andMe who are already val-
ued at about $1.75 billion [15, 16]. Commercial platforms have also taken advantage by
commodification of the genome, and thus, services such as sequencing, ancestry testing
and disease susceptibility testing are now offered to willing customers.

Nucleotides are the building blocks for deoxyribonucleic acid (DNA), which can take
any of 4 possible bases (A, T, C, G). Often, there is a genetic variation between individ-
uals of the same species, and this variation could happen as a result of a single substi-
tution of a nucleotide base. A single variation in the nucleotide is known as a single-
nucleotide polymorphisms (SNP) if it is not observed in more than 1% of the population
[17]. Genome Sequencing is usually the first services a customer procures from a com-
mercial platform, allowing an in vitro sample of the customer to be used in obtaining
an in silico dataset. The in silico data is commonly presented in the form of SNPs. The
National Library of Medicine records that there are roughly 10 million SNPs in the hu-
man genome, and more SNPs are still being identified [17]. SNPs have been identified
to contribute to an individual’s susceptibility to certain diseases [18–22]. After obtaining
a customer’s digital SNPs, the commercial platform can further analyze the dataset for
various reasons or services, common of which is the customer’s predisposition to dis-
eases.

Our work is interested in how commercial platforms utilize SNPs in providing DST
services to its customers within a direct-to-consumer market model. For instance, the
conventional process of conducting a DST using the SNPs of an individual is comprised
of four basic phases. In the first phase, a sequencer who is a commercial platform se-
quences the biological genome and obtains a digital version for storage and further anal-
ysis. The Second phase consists of a genome owner, to whom a digital genome has been
provided, requesting a disease susceptibility test on a particular disease of interest. In
the third phase, upon receiving such request, a commercial platform will request SNPs
it deems relevant for such a test, and will perform the DST with the SNPs provided by
the customer. Finally, the fourth phase is when the DST results are handed over to the
genome owner or his doctor. This setting whereby commercial platforms render ser-
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vices such as analyzing the genome, directly to the customers qualifies as a direct-to-
consumer (DTC) model [23, 24]. Some customers will use these services to settle pater-
nity or maternity disputes, others will use it to trace their ancestry, or to inspect their
genome for disease associated variants [23, 25, 26]. The paradigm shift towards a direct-
to-consumer model will impact our medical knowledge as an overwhelming amount of
digital genomes will become available as these services become popular [27]. In fact, a
survey conducted by Lewis [28] and reported by Pascal [23], documents that as much as
94% of people choose genetic testing out of curiosity.

This paradigm shift towards a DTC service delivery, however, requires that one pro-
tects the privacy and security of customers’ data when being shared with an untrusted
third party. Su and Mclaren et al. [23, 29] argue that the DTC requires a robust combi-
nation of regulatory and legal solutions, in order to preserve the confidence that con-
sumers have in using the solution. The implication is that we need efficient privacy-
preserving methods for computing on genome data in other to satisfy the customer. In
the current model as practiced by the commercial platform, the SNPs of the customer
are transmitted in clear, which means that at least the commercial platform presents an
immediate privacy-risk to the customer. It is difficult to prove that a commercial plat-
form will always adhere to the rules and follow ethical guidelines in protecting the pri-
vacy of the genome data, as coercion and disgruntled employees could circumvent such
trust models. In fact, only a few 100s SNPs is already enough to threaten the privacy of
the customer, by re-identifying an individual even in a large dataset of genetic data [30].
This is further complicated because of familiar relationships between individuals, i.e.
information on the genome of a relative also releases information about a customer’s
own genome. This holds even long after an individual is deceased, thereby posing di-
rect privacy-risks to the relatives. Additionally, whenever genome data is leaked, it is
irrevocable and the individual cannot replace the leaked genome with a new set [31].
Together, this places strong privacy requirements for genomic data all through its digital
lifespan. Although these customers are only interested in analyzing their genome data
for the sheer sake of curiosity [23, 32], it still remains necessary that privacy be guaran-
teed while satisfying their desire.

The need for providing privacy for all sorts of activities regarding the genome is one
that is multifaceted [4], and does require conscious efforts and dedication from legal,
ethical, information security and other related research fields. The objective is for cus-
tomers to have full control over their privacy which requires that genome information
about an individual is not shared in a disclosed form with any third party. Secondly,
since companies invest a lot of money to understand the genome [16], the SNPs that
are relevant to disease and the algorithm for computing DST is regarded as trade secret
and should be protected as such. Customers and companies therefore require efficient,
provable security and privacy measures that will protect the genome data of a customer
and the trade secret of the commercial platform while the customer continues to enjoy
services offered by the service provider in the popular DTC model.

Existing information security based privacy-preserving approaches for computing
DST commonly adopt cryptographic techniques in plugging the privacy challenges that
arises from interactions between the commercial platforms and their customers. For the
purpose of simplicity, information security researchers typically concentrate on the last
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three phases of the described process. This is important because the sequencing phase
is dependent on biological samples which cannot easily be protected with information
security techniques. Let us assume that in the first phase, the sequencer deletes all data,
both biological and digital relating to the customer, or perhaps the customer now has
a secure stand alone device for sequencing the genome. This assumption is consistent
with existing solutions [33, 34]. The cryptographic techniques commonly deployed in
the last three phases are homomorphic encryption and secret sharing. Homomorphic
encryption is a technique that allows anyone to encrypt values in a special way such that
basic operations like addition and multiplication can be performed on the encrypted
data without using the decryption keys [35–40]. However, computing the DST algorithm
over encrypted data is a non-trivial task. Data expansion and computational complexity
of homomorphic operations make it expensive, inefficient and hence undesirable for
deploying in the wild, as the whole processes is highly time consuming [41, 42]. While
secret sharing recommendations are relatively more efficient than their homomorphic
encryption counterparts, secret sharing requires that the data be shared amongst various
parties with non-collusion restrictions. This does not exactly reflect the ideal scenario
as obtainable by current structure of commercial platforms. This is the case because
companies do not usually collaborate to compute disease predisposition for a customer.

In this paper, we recommend an information security solution that protects the pri-
vacy of customers’ data, companies’ trade secret and equally preserve the direct-to-
consumer market model most profitable for the commercial platforms. Our protocol
enhances the efficiency of the runtime by replacing the homomorphic encryption con-
struction with a lightweight obfuscation technique which is provably secure. We provide
customers the ultimate power to decide how, when and with whom they choose to share
their genome data.

Our contributions are as follows: 1) We propose PREDICT, a novel protocol which
executes the existing susceptibility testing requirements with the use of SNPs, and pre-
serves the increasingly popular DTC model adopted by commercial platforms. 2) PRE-
DICT prioritizes the privacy of the customer and that of the commercial platform. Genome
data are resident with the customer in a secure format and not stored in a centralized
cloud nor shared with any third-party in an unprotected manner. The result of a test can
only be deduced by the customer and he is left with the prerogative to either share the re-
sult or not. 3) Our protocol is efficient and can be deployed for practical use. Our design
and implementation of this privacy-preserving DST protocol significantly outperforms
existing privacy-protection solutions in memory and computational efficiency. As an
example, it takes about 96 milliseconds to compute DST using 10,000 SNPs on a com-
modity hardware. And finally, we provide privacy proof based on simulation paradigm,
as well as the complexity analysis of our protocol.

The outline for the rest of the paper is as follows: in Section 4.3 we discuss relevant
literature to our work, and how they differ from our proposal. In Section 4.4 we introduce
important building blocks requisite for the construction of our proposed protocol. In
Section B.3 we introduce and discuss PREDICT. We present the complexity analysis of
PREDICT in Section B.4, followed by optimisation in Section 4.7. We provide further
discussion on PREDICT in Section 4.8 and implementation in Section B.5. We present
the privacy and security analyses in Section B.6. Finally, in Section B.7, we conclude this
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paper.

4.3. RELATED WORK
In this section, we focus on privacy solutions for disease susceptibility testing from an in-
formation security perspective. We continue the rest of the discussion with the assump-
tion that every customer or patient already has a digital genome, and the sequencer will
play no further role in the interactions. Such digital genome can be securely stored in the
cloud or privately kept by the owner in a secure device, this is consistent with proposals
in [33, 34]. Previously, a number of other works [23, 29, 33, 34, 43] have proposed solu-
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Figure 4.1: Protocol proposed by Ayday et al.[34]

tions for privacy-preserving protocols which perform DST using SNPs or other sensitive
data.

A first drawback across these proposals is the inefficiency of the solutions, because
adoption of homomorphic encryption introduces significant computational and stor-
age overhead when compared to the non-privacy-preserving solution. One renowned
homomorphic encryption based solution is the method proposed by [34]. In the pro-
posal, the bulk of the steps are computations carried out on encrypted data, as seen in
Figure 4.1. Following the same protocol as [34], Namazi et al.[43] proposed a similar solu-
tion but replaced the homomorphic scheme used by Ayday et al.[34] with an even more
computationally expensive homomorphic scheme. This was done to improve privacy
and eliminate communication cost peculiar to additive homomorphic schemes. Lastly,
Danezis and Cristofaro [33] recommend an improved proposal that is more efficient than
the original work by Ayday et al. Although they offer significant improvements in effi-
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ciency, their solution equally involves computation over encrypted data. Danezis and
Cristofaro also provides a secret-sharing based variant for privacy-preserving DST, but
it still uses encrypted data for its computation. Homomorphic encryption techniques
are still evolving and techniques to reduce its computational overhead is still an open
problem [44, 45]. It implies that homomorphic encryption based approaches are not yet
efficient for scalable practical deployment, especially when large dataset are used.

A second drawback to the homomorphic encryption based protocol by Ayday et al.[34]
is that of strict privacy. The disease for which a customer is testing can be easily learned
by the processing unit, see Figure 4.1. In testing for a disease predisposition, the pro-
cessing unit is allowed to learn the SNPs that are relevant for the computation. Even
though the exact values for the SNPs are not known by the processing unit, this is still a
privacy concern. Also, in [34, 43], the final result of the test is transmitted to the medical
unit rather than the customer, which is not consistent with our objective of granting the
customer absolute control to privacy.

A third concern inherent in the existing works [34, 43] is the fact that the protocols
proposed do not seamlessly fit into the model as currently observed between the com-
mercial platforms and their customers. The direct-to-consumer relationship preferred
by the commercial platforms is not well reflected in the mentioned proposal. The med-
ical units continue to play an inalienable role in those proposals, which makes these
protocol not suitable for a DTC service delivery.

Other drawbacks of the state-of-the-art proposal by Ayday et al.[34] include the fol-
lowing:

• Their approach proposes to store the protected genome data with a storage and
processing unit (SPU). This requires that individuals must store their genome data
encrypted on a central cloud infrastructure, making it enticing for attackers.

• The protocol assumes that the homomorphic operations are computed at the Med-
ical Centres (MC). This is not practical in the wild as such operations are computa-
tionally expensive for average medical centres to carry out. Furthermore, the MC
is not often equipped with the technical and security requirements for handling
such operations.

We propose a protocol that aids customers and commercial platforms to interact and
compute disease susceptibility test in a privacy-preserving manner without being be-
deviled with the above listed drawbacks.

4.4. PRELIMINARIES
In this section, we provide the necessary building blocks required to understand our pro-
posed protocol. These include: the cryptographic protocols such as multi-party com-
putation, obfuscation techniques as well as the functions required to compute disease
susceptibility testing. In this work, we adopt the semi-honest a.k.a honest-but-curious
security model, which implies that every stakeholder is expected to judiciously follow
the rules of the protocol, but can be passively curious to learn extra information from
data they can observe.
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4.4.1. SECURE MULTI-PARTY COMPUTATION
A secure multi-party computation (MPC) is an interactive cryptographic protocol that
allows for two or more mistrusting parties to jointly compute a function using their pri-
vate data as input [46, 47]. It allows for the output of the desired function to be public but
the contributed inputs remains private upon the assumption that each party does not
digress from the rules of the protocol. We deploy the concept of MPC by allowing three
mis-trusting parties (customers, commercial platforms and processing unit) to jointly
compute a DST function using their private inputs. MPCs are commonly designed in a
semi-honest security model, because the adversary is considered to be able to control
some parties in the protocol.

4.4.2. HOMOMORPHIC ENCRYPTION
Homomorphic encryption allows for arbitrary algebraic operations to be performed on
ciphertexts. Let Encpk (·) and Decsk (·) represent encryption and decryption functions
respectively. (m1 ,m2) are two messages and k is a scalar value, while � , ⇢ and ⇥ are
arbitrary operations on the ciphertexts. Then, homomorphism is defined as:

Decsk (Encpk (m1)�Encpk (m2)) = m1 +m2 , (4.1)

Decsk (Encpk (m1)⇢Encpk (m2)) = m1 ·m2 , (4.2)

Decsk (Encpk (m1)⇥k) = m1 ·k . (4.3)

PAILLIER SCHEME [37] :
Paillier cryptosystem is an additively homomorphic scheme. Given a public key, private
key pair (pk, sk) , and n := p ·q , s.t p and q are distinct large primes, pk := (g ,n) and sk :=
∏(n) ,where g is generator of order n , ∏(n) is the Carmichael’s function on n, expressed
as ∏(n) := l cm(p °1, q °1).
Enc: c := Encpk (m,r ) := g m · r n mod n2 , where c 2Z§

n2 ; r √Z§
n .

Dec: Given c, m := Ln (c∏ mod n2)
Ln (g∏ mod n2)

mod n and Ln(a) := a°1
n .

Additive Homomorphism: Given two ciphertexts of messages
m0 and m1, we can compute the sum as follows:

Encpk (m0,r0)£Encpk (m1,r1) := (g m0 · r n
0 £ g m1 · r n

1 )

:= (g m0+m1 · (r0 · r1)n mod n2)

:= Encpk (m0 +m1) .

With the above mentioned homomorphic scheme, it is possible to compute simple
linear functions such as aggregation of encrypted values. However, more complex func-
tion that involves division, multiplication and other complex operations on encrypted
data are not feasible. Complex functions are usually computed by the introduction of
a third party who decrypts ciphertexts, computes the complex operation in clear and
re-encrypts the results.

It is evident by inspection that ciphertexts are generated modulo n2 and this results
to data expansion for every encrypted value. Computing on the ciphertext introduces



560354-L-bw-Ugwuoke560354-L-bw-Ugwuoke560354-L-bw-Ugwuoke560354-L-bw-Ugwuoke
Processed on: 11-5-2021Processed on: 11-5-2021Processed on: 11-5-2021Processed on: 11-5-2021 PDF page: 103PDF page: 103PDF page: 103PDF page: 103

4.4. PRELIMINARIES

4

95

computational overhead since n should not be less than 2048 bits in order to obtain 112-
bit security, being that 112-bit security is considered sufficient between the in the year
2016 up until 2030 [48]. The reader is referred to [? ] for further details on the Paillier
scheme.

4.4.3. PRIVACY-PRESERVING DST
Every individual inherits a pair of allele to make a gene at a locus, each allele comes
from each contributing parents. An allele can either be major or minor, depending on
what percentage of the population have them. Since a gene is made up of two alleles,
it can occur in any of the three possible classes: two major alleles, two minor alleles, or
a major and minor allele. Subsequently, we use the term ‘SNP value’ to represent the
class in which an individual’s SNP falls within. We denote the ‘SNP values’ as {0, 1, 2}
to denote No SNP (two major alleles), heterozygous SNP (a major and minor allele) and
homozygous SNP (two minor alleles) respectively. For a DNA sequence belonging to a
customer, we denote the SNP at locus i as SN Pi , where SN Pi 2 {0,1,2}.

A weighting averaging function is used to compute the susceptibility of a patient to
a disease X . A DST can be computed by weighing the contribution of each SNP to the
disease X , as follows:

a) Let L(x) represent a set of all known SNPs that contribute to the disease X and Ci
represents the weight that a SNP at locus i contributes to the disease X .

b) Pr (X |SN Pi ) denotes the probability that an individual has a disease X , condi-
tioned on the SNP value at the locus i .

c) A SNP at locus i contributes Ci ·Pr (X |SN Pi = j ) , with j 2 {0,1,2} .

d) The aggregation of all loci is then
X

i2L(x)
Ci ·Pr (X |SN Pi = j ) .

e) The aggregation is then normalized over all weights to obtain a disease suscepti-
bility test score:

SX = 1X

t2L(x)
Ct

·
X

i2L(x)
Ci ·Pr (X |SN Pi = j ) . (4.4)

It can be seen from Eq. 4.4 that three inputs are required to compute SX , all of which
are considered privacy-sensitive and should not be shared unprotected.

• Only the customer knows SN Pi values, as this is his private data.

• The commercial platform knows Ci and Pr (X |SN Pi = j ) values, these being his
trade secrets.

By adopting homomorphic encryption to compute Eq. 4.4 in a privacy-protected
setting, Ayday et al. has re-written the equation to:
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SX = 1X

t2L(x)
Ct

£
X

i2L(x)
Ci

h pi
0(X )

(0°1)(0°2)
[SN Pi °1]£

[SN Pi °2]+
pi

1(X )

(1°0)(1°2)
[SN Pi °0]£ [SN Pi °2]

+
pi

2(X )

(2°0)(2°1)
[SN Pi °0]£ [SN Pi °1]

i
, (4.5)

where pi
0(X ) = Pr (X |SN Pi = 0), pi

1(X ) = Pr (X |SN Pi = 1) and pi
2(X ) = Pr (X |SN Pi =

2) .
In the proposal by Ayday et al. [34], refer to Figure 4.1, Eq. 4.5 is computed ho-

momorphically with the use of an additive homomorphic encryption scheme. Due to
the inability of the adopted homomorphic encryption scheme to perform a homomor-
phic multiplication operation, their protocol is designed to store the encrypted values of
(SN Pi )2 which requires additional storage space. The final result as obtained in the pro-
tocol described by Ayday et al.[34] is decrypted by the medical unit, who is able to view
the result and communicate professional opinion to the patient. However, the storage
and processing unit does not have a view of the SNP values in clear, despite having to
store and process the data. Nevertheless, the storage and processing unit knows which
loci have no SNP from those that have at least a single SNP. Therefore the patient’s SNPs
are not completely private against the storage and processing unit.

Due to the privacy concerns mentioned above and the computational inefficiency
introduced by homomorphically computing Eq. 4.4, we introduce a novel protocol for
computing DST. Our protocol will optimally compute DST by replacing homomorphic
encryption with a secure obfuscation technique using MPC, where each sensitive data
input is masked using a one-time-only secure random number. Our proposed protocol
removes the medical unit from the setting, replacing it with a commercial platform and
ensures that the processing unit does not learn the SNP loci of a customer as was the
case in the protocol by Ayday et al. Lastly, in order to achieve these, we again re-write Eq.
4.4, by drawing insight from Eq. 4.5:

a.) Redefine Ci to be the normalized term CiX

t2L(x)
Ct

.

b.) Re-write Eq. 4.4 to a simpler form using Eq. 4.5,

SX =
X

i2L(x)
Ci

h1
2

pi
0(SN Pi °1)(SN Pi °2)

°pi
1(SN Pi °0)(SN Pi °2)

+1
2

pi
2(SN Pi °0)(SN Pi °1)

i
.
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c.) Collect like terms,

SX =
X

i2L(x)
Ci

h
SN P 2

i (
pi

0

2
°pi

1 +
pi

2

2
)°SN Pi (

3pi
0

2
°2pi

1 +
pi

2

2
)+pi

0

i
. (4.6)

From Eq. 4.6, customers own variables SN Pi and SN P 2
i , while the commercial plat-

form owns

ai =Ci (
pi

0

2
°pi

1 +
pi

2

2
) ,

bi =Ci (
3pi

0

2
°2pi

1 +
pi

2

2
) ,

vi = pi
0 .

Hence, we can now compute DST as:

SX =
X

i2L(x)
ai ·SN P 2

i °bi ·SN Pi + vi . (4.7)

4.4.4. SECURE INNER PRODUCT WITH OBFUSCATION
Henceforth, we represent vectors in bold characters, example X , and |X| denotes the
number of elements in X . We will occasionally use the notation X[i ] to represent the i -
th term of the vector X . Consider two parties Ali ce and Bob, each having a vector of
values and they wish to compute the inner product of the vectors without revealing the
individual values of each vector. Ali ce holds the vector X = {x0, x1, . . . , xn°1} and Bob
holds Y = {y0, y1, . . . , yn°1} both of size n 2Z . They wish to compute the inner product of
their vectors X ·Y =Pn°1

k=0 xk · yk , and the result known only to Ali ce .
In order to solve the secure inner product problem, Du and Atallah[49] propose a

three party protocol which uses additive masking to obfuscate the values. Their proto-
col introduces an untrusted third party C har l i e that only helps in data computation.
C har l i e can be viewed as a cloud infrastructure that helps with the computation of the
inner product function. Their protocol is described as follows:

1. Ali ce and Bob jointly generate two random numbers r and r 0 .

2. Ali ce and Bob jointly generate two random vectors R,R0 of size n .

3. Ali ce sends w1 = X+R and s1 = X ·R0+ r to C har l i e .

4. Bob sends w2 = Y+R0 and s2 = R · (Y+R)+ r 0 to C har l i e .

5. C har l i e computes v = w1 ·w2 ° s1 ° s2 , and sends the result to Ali ce .

6. Ali ce computes X ·Y = v + (r + r 0) .

This secure inner product uses additive masking to obfuscate each sensitive value
before sharing with other parties.

We modify the above inner product protocol by first replacing the r and r 0 integers
with vectors. Also rather than Ali ce and Bob jointly generating r, we propose that they
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do this independently. That way, we can use the values in r as a one-time only random
number only known to the party who generates it.

The modified algorithm is presented in Algorithm 1. All operations in Algorithm 1.
are computed modulo a large prime q , and random numbers are chosen to be crypto-
graphically secure. Due to simplicity of expression, the algorithm and other operations
are not presented to show reduction modulo q , but it should be noted that it is implied.

Algorithm 1 Secure 3-Party Inner Product Protocol

1: procedure INITIALIZATION

2: Set variable n, and publish to Ali ce and Bob
3: Ali ce and Bob jointly generate random vectors RA and RB , each of size n
4: Ali ce and Bob independently generate random vectors rA and rB respectively,

each of size n
5: end procedure
6: procedure Alice
7: for i = 0 ! (n °1) do
8: WA[i ] := X[i ]+RA[i ]
9: SA[i ] := X[i ] ·RB [i ]+ rA[i ]

10: end for
11: Ali ce sends WA ,

Pn°1
i=0 SA[i ] to C har l i e

12: end procedure
13: procedure Bob
14: for i = 0 ! (n °1) do
15: WB [i ] := Y[i ]+RB [i ]
16: SB [i ] := RA[i ] · (Y[i ]+RB [i ])+ rB [i ]
17: end for
18: Bob sends WB ,

Pn°1
i=0 SB [i ] to C har l i e

19: Bob sends
Pn°1

i=0 rB [i ] to Ali ce
20: end procedure
21: procedure Charlie
22: temp :=Pn°1

i=0 WA[i ] ·WB [i ]
23: V := temp °SA[i ]°SB [i ]
24: Send V to Ali ce
25: end procedure
26: Ali ce computes X ·Y :=V +Pn°1

i=0 rA[i ]+Pn°1
i=0 rB [i ]

4.5. PREDICT
It is now clear that our goal is to compute Eq. 4.7 using secure multi-party computation.
We adopt the modified version of the secure inner product protocol proposed by Du
and Atallah [49], as presented in Algorithm 1. We replace three parties with the three
stakeholders required for computing DST. The secure inner product protocol is used to
compute

X

i2L(x)
ai ·SN P 2

i and
X

i2L(x)
bi ·SN Pi components and finally the aggregation of
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the
X

i2L(x)
vi component.

4.5.1. PRIVATE DST IN DTC MODEL
In our protocol as shown in Figure 4.2, there are 4 parties involved but only 3 parties
required in computing the protocol. There is a non-collusion assumption on the par-
ties, implying that no two parties are allowed to collaborate with others to learn more
information than the protocol permits them.

The protocol by Ayday et al.[34] assumes that the genome data belongs to a patient,
thereby presuming that the medical centre (genome analysing unit) is trusted to see the
result of the DST. We adopt a contrary assumption. An individual P is any customer who
seeks to learn information from their genome due to sheer curiosity. Our assumption
makes it easier to appreciate why P might not necessarily want to share the end result of
the susceptibility test with any party including the medical centre.

The protocol parties are as follows:

(i) The individual (P), is the customer whose genome is considered for analysis. P
owns the SNPs required as input for the execution of the DST protocol, and will
contribute them for computation in a privacy-preserving manner.

(ii) The Genome Analysing Unit (GA-Unit), represents a commercial platform that of-
fers genome analyses as a service using a DTC model. This entity is considered
to have a reputation that must be protected, therefore, should conform to ethical
requirements within their field. To be simply put, GA-Unit is not assumed to be
malicious. From Eq. 4.7, GA-Unit holds the values for {a,b,v} and would want to
keep them private as well.

(iii) The Certified Sequencing Institution (CSI), handles sequencing of the genomes
and transforming the biological sample of genomes to a digital format. The CSI

is equally bounded to conform to ethical values. Although the CSI performs se-
quencing, it is not involved in the DST protocol and will not be further discussed
during the course of computing DST.

(iv) The Processing Unit (PU), has a lot of processing resources that are required to
handle huge computations. He is not to be trusted with unprotected genome
data, but is assumed to follow the protocol and execute the expected computa-
tions. Since the PU does not contribute any input data to the evaluation of the
function, it has no concern for privacy.

We further denote SN Pi as ki , hence Eq. 4.7 is now re-written to:

SX :=
X

i2L(x)
ai k2

i °bi ki + vi (4.8)

It has been shown that Eq.4.8 can be computed using the secure inner product pro-
tocol. Let º = |L(x)| be the number of SNPs needed for computing the susceptibility of
a disease. Each SNP (represented by ki ) requires two multiplications and two additions.
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Q = WA · WB �
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WB ,SB , µ =
2⇡X
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⇡X

i=1

V[i]

SX
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Figure 4.2: Private Disease Susceptibility Test on a DTC model

This means that if the number of SNPs required for computing a DST for a disease X is
º . Therefore, the size of the vector contributed by both GA-Unit and P shall be of size
2º . The addition of vi is taken care of by the aggregation property intrinsic in the secure
inner product protocol.

4.5.2. PRIVACY AND SECURITY ASSUMPTIONS
Figure 4.2 shows the interactions and work-flow between parties within our proposed
protocol. Our protocol is designed with the following security assumptions in mind:

a) The individual (P) is aware of the sensitivity of his genome data and needs to utilise
the computational ability of the processing unit or cloud infrastructure and the
knowledge of the genome analysing unit, without leaking any sensitive informa-
tion to the PU and GA-Unit. On the contrary, P does not pose any privacy threat
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to PU during the course of execution of the protocol.

b) GA-Unit is in possession of the individual weights of SNPs for diseases. The weights
are considered trade secrets and should equally be protected from P and PU , while
being used to privately compute the susceptibility of P to a disease.

c) The device on which P’s data are stored, is considered secure and only accessible
with P’s permission.

4.5.3. PROTOCOL DESCRIPTION
A detailed description of steps in the proposed protocol is as follows:

• Step 0: P generates a pair of cryptographic keys, consisting of a private key and a
public key. The public key is made public to CSI only, for encrypting the digital
sequence of P’s genome. This case is slightly different if we adopt the symmetric
key option, where P generates a single private key with the hope of sharing it with
CSI .

• Step 1: P sends a biological sample of his genome to the CSI for sequencing, along-
side his public key (or private key in the case of a symmetric crypto scheme).

• Step 2: CSI receives the sample and sequences the genome, produces it in silico
and encrypts the sequence with the public key of P.

• Step 3: CSI returns the encrypted SNPs and the corresponding locations to P. The
CSI is also obligated to securely delete all copies and traces of the genome data.
This is necessary because the CSI is not expected to further participate actively in
the remaining part of the protocol.

• Step 4: At this point, P is in full possession and control of his encrypted SNPs, and
our assumption allows that only the individual has any possible copy of his SNPs.
Now, P performs a one-time only decryption of the encrypted data, and saves the
SNP related data in his secure device. We assume that such a device is protected
and is private to only P. For a susceptibility test to be initiated by P, he is first
required to generate a random token ø (a 160-bit value). This token is unique and
used to reference every instance of a disease susceptibility test.

• Step 5: It is important to note that our assumption presumes that P is online and
is therefore able to carry out his part of the protocol. It is expected that P is active
and is able to locate a publicly available unique disease identifier (ID) published
by GA-Unit. The public identifiers (IDs) may be published on a website, and P can
then send a token ø and the disease ID to GA-Unit after necessary authentication.

• Step 6: The GA-Unit will verify the request from P, and then responds with the
SNP positions for the disease X , where X is the corresponding disease for the sup-
plied ID. The GA-Unit will always demand a constant size º of SNPs. This is to
make it more difficult for an observer to infer what disease P is interested in. The
extra (dummy) SNPs are pertinent to obfuscate the actual SNPs relevant to the dis-
ease. The set of dummy SNPs are to be deterministic for any disease. As to prevent



560354-L-bw-Ugwuoke560354-L-bw-Ugwuoke560354-L-bw-Ugwuoke560354-L-bw-Ugwuoke
Processed on: 11-5-2021Processed on: 11-5-2021Processed on: 11-5-2021Processed on: 11-5-2021 PDF page: 110PDF page: 110PDF page: 110PDF page: 110

4

102 4. POST-GWAS COMPUTATION ON PRIVACY-SENSITIVE DATA

P from distinguishing real SNPs from dummy SNPs. Also, the GA-Unit sends 2º
random numbers to P, called vector RB . These randoms will be used for the secure
inner product protocol. Finally, GA-Unit generates vectors a ,b ,and v .

• Step 7: When P receives the SNP positions from GA-Unit, he generates 2º random
numbers and sends the vector to GA-Unit. We denote this random number vector
as RA .

• Step 8: In order for both P and GA-Unit to compute Eq. 4.8, they agree to split
the equation into two parts ai k2

i and (°bi ki + vi ). P generates another set of 2º
random numbers, denoted as rA . Generates the vector WA by computing WA[i ] :=
k2

i + RA[i ] and WA[i +º] := °ki + RA[i +º] . The vector SA is also generated by
computing SA[i ] := k2

i ·RB [i ]+ rA[i ] and SA[i +º] :=°ki ·RB [i +º]+rA[i +º] .

• Step 9: The GA-Unit first has to generate a vector of 2º random numbers, which
we refer to as rB . Then, just like P generated WA ,SA , GA-Unit generates WB ,SB
as follows: WB [i ] := ai +RB [i ] and WB [i +º] := bi +RB [i ]. Then the vector SB is
generated as SB [i ] := RA[i ](ai +RB [i ])+ rB [i ] and SB [i +º] := RA[i +º](b +RB [i +

º])+rB [i +º] . Lastly, GA-Unit computes the variable µ :=
2ºX

i=1
rB [i ]+

ºX

i=1
v[i ] .

• Step 10:P transmits the values WA ,
2ºX

i=1
SA[i ] to PU .

• Step 11: The GA-Unit transmits the values WB ,
2ºX

i=1
SB [i ] to PU .

• Step 12: PU computes Q := WA ·WB °
2ºX

i=1
SA[i ]°

2ºX

i=1
SB [i ] .

• Step 13: PU sends Q toP.

• Step 14: The GA-Unit sends µ to P.

• Step 15: Finally, P computes S X
P :=Q +µ+

2ºX

i=1
rA[i ] .

4.5.4. CORRECTNESS

The proof of correctness for the computation of SX in PREDICT inherits the proof of
correctness of the secure inner product protocol. The original protocol by Du and Atallah
[33] computes an inner product of vectors between two mistrusting parties. However,
our equation is of the form

Pº
i=1 ai ·k2

i °bi ·ki +vi , hence we require a slight modification
to the original protocol. Variables (°k,k2) are contributed by P while variables (a,b,v)
belong to the GA-Unit. Each party then holds a vector for their variables, and each vector
is of size º . First, we split the equation into two parts that can each be executed using an
instance of the secure inner product protocol. One half of the equation is

Pº
i=1 ai ·k2

i and
the other

Pº
i=1(°ki ·bi + vi ) . Nevertheless, since we are computing a modified version
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of the form
Pº

i=1(bi · ki + vi ) , it suffices to show that a circuit that correctly computesPº
i=1 ai ·ki , can be modified to compute

Pº
i=1(ai ·ki + vi ) without loss of security.

Since v is considered to be part of GA-Unit’s trade secret [33], we have to transfer v
to P without revealing the value in clear. We do this by additively masking v values with
random numbers. Specifically, we use the random numbers rB which is known to GA-

Unit but oblivious to P in Step 9 to mask the values of v. This operation still preserves the
correctness of the computation. Having established that

Pº
i=1(°ki ·bi + vi ) can be com-

puted using the secure inner product protocol, we perform one more step. We merge
the vectors of

Pº
i=1 ai ·k2

i and
Pº

i=1(°ki ·bi + vi ) by appending the latter to the former.
We produce a new vector of size 2º, with which we compute the secure inner product.
Thus, an equation of the form

Pº
i=1 ai ·k2

i °bi ·ki + vi , can be correctly computed using
PREDICT.

Table 4.1: DATA COMMUNICATION COMPLEXITY FOR THE PROPOSED PROTOCOL

Received (bits)

Sent (bits)

CSI P PU GA-Unit

CSI –
3) AES: 51MB,
RSA: 47MB

– –

P
1) AES: 128,
RSA: 2065

– 10) 266º+297+ log2(2º) 5) 288

PU 13) 426+ log2(2º) – 7) 264º+160

GA-Unit –
6) 298º+160
14) 293+ log2(2º)

11) 266º+426+ log2(2º) –

4.6. COMPLEXITY ANALYSIS

In Table 4.1, we present an overview of the communication complexity of our protocol.
All units of data transfer are in bits, except for Step 3 of Figure 4.2, where the data is repre-
sented in megabyte (MB). Let N denote the plaintext size (in bits) for the crypto scheme
adopted, which provides an appropriate security level (default value: ∑ = 112-bits). An
example of a SNP reference is rs138055828, we only consider the number numeric part of
the reference code. All random numbers generated are of size 132-bits, while each of the
variables (a,b,v) contributed by GA-Unit is of size 20 bits. Let M represent the number
of SNPs that can be packed into a single ciphertext (without any SNP overflowing into a
new block of ciphertext). Consequently,

MRS A :=
jN °128

36

k
=

j2048°128
36

k
= 53 , and

MAES :=
jN

36

k
=

j128
36

k
= 3 , (4.9)

where 128-bits are required for RSA padding.

If an individual has 10 million SNPs as reported by The National Library of Medicine[17],
then let t denote the number of packed ciphertext blocks produced on encrypting 10
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million records (SNPs).

tRS A :=
l10,000,000

MRS A

m
=

l10,000,000
53

m
= 188,680 , and

tAES :=
l10,000,000

MAES

m
=

l10,000,000
3

m
= 3,333,334 . (4.10)

For any individual who has 10 million SNPs, we require 188680 units of RSA ciphertexts,
where a single ciphertext is of size 2048 bits. From Table 4.1, it is clear that the commu-
nication complexity is linear in the number of SNPs required for a DST. In fact, even for
10 million SNPs, the protocol will require less than 1GB of data transfer during the DST
computation.

Table 4.2: COMPUTATION COMPLEXITY

P GA-Unit PU

Addition 6º+2 12º 2
Multiplication 2º 2º 2º

The computational overhead of our protocol is shown in Table 4.2. Although the
number of operations are provided for simplicity, we note that not all operations are of
the same complexity. For instance, addition counts in Table 4.2 include adding a 2-bit
and a 133-bit numbers, as well as adding a 132-bit and a 265-bit number. From Table 4.2,
it can be deduced that the computational complexity for computing a disease suscepti-
bility test is linear in the size (º) of the SNPs relevant for computing such a test.

4.7. OPTIMIZATION OF PREDICT.
Firstly, a variant setting of this protocol could be achieved by altering the flow of op-
erations halfway into the protocol. For instance, rather than have the GA-Unit send

µ :=
2ºX

i=1
rB [i ]+

ºX

i=1
v[i ] to P, GA-Unit can send µ :=

2ºX

i=1
rB [i ] to P and send the other value

to PU indirectly by modifying Step 11: to
2ºX

i=1
SB [i ]°

2ºX

i=1
rB [i ]°

ºX

i=1
v[i ] . This will reduce

the computation and communication overhead on P and place it on PU who is assumed
to have sufficient resources. This will save both computation and communication costs
for P. Moreover, the correctness of the protocol will still hold. Adopting this optimiza-
tion will offer significant improvement where large number of SNPs are required and the
security level is equally very high. However, for the default setting of this protocol, such
an optimization will not offer a significant improvement.

Secondly, due to the time it takes to generate random numbers, P and GA-Unit might
have to pre-generate random numbers as part of the preprocessing phase. This saves
time and allow for the rest of the protocol to be executed seamlessly, with only basic
operations.

Thirdly, another optimization step is to adopt a symmetric key crypto scheme for en-
cryption in Step 1. By this, we achieve a reduction in bits of the ciphertext being trans-
ferred from the CSI to P in Step 3. Since a symmetric crypto scheme will offer faster



560354-L-bw-Ugwuoke560354-L-bw-Ugwuoke560354-L-bw-Ugwuoke560354-L-bw-Ugwuoke
Processed on: 11-5-2021Processed on: 11-5-2021Processed on: 11-5-2021Processed on: 11-5-2021 PDF page: 113PDF page: 113PDF page: 113PDF page: 113

4.8. DISCUSSION

4

105

encryption and decryption operations, this offers a computational reduction in the time
it takes P to decrypt his sequence. Recall that the decryption operation has to be per-
formed only once. Thereafter, the data will be stored in clear within the secure device of
P. However, this approach requires that the CSI and P will share P’s secret key.

Finally, we recommend a data packing technique for encrypting the SNPs. Every
SNP can be represented with 36 bits, given that 2 bits represent the SNP value (0, 1, 2)
refer to Section 4.4.3. The other 34 bits are for referencing the SNP, otherwise known
as the SNP position. Data packing will group more than one SNP into a single block of
ciphertext, thereby optimizing the time required to decrypt and access the entire SNPs
of an individual.

4.8. DISCUSSION
PREDICT differs from the proposal by Ayday et al.[34] as follows:

• Our primary aim is to protect the privacy of an individual’s genome data from all
other entities in the protocol, while being able to harness their abilities to test for
disease susceptibility. Only the individual P is allowed to view the result of every
susceptibility test. However, Ayday et al’s protocol does not seek to protect the
privacy of the individual’s genome data from the genome analyzing unit, which
results from their assumption that the individual is a patient and the genome an-
alyzing unit is a doctor in a medical institution.

• We propose that genome data should be stored in a dedicated piece of hardware,
that should only be accessible by the individual P. This allows P to have full control
of his digital genome data and also provides him the freedom to change the cryp-
tographic keys and other security measure when necessary. These can be done
without incurring much cost or informing a third party about the intentions to
make changes to the cryptographic keys. Our choice to decentralize the genome
data storage helps to reduce the risk of targeting a central cloud storage infrastruc-
ture.

• Our protocol guarantees P’s independence from a medical unit. Thereby, realizing
our aim of providing privacy for curiosity driven individuals, and at the same time
offering a DTC service for disease susceptibility testing using genetic data. The
protocol by Ayday et al. is not designed to target a DTC scenario.

• In our setting, the obfuscation of the SNP positions and values are meant to be
computed by P and sent to the PU . Replacing encryption with randomization
eliminates the expensive homomorphic operations for all parties. The GA-Unit is
not expected to possess the processing power required to compute over encrypted
data. However, introducing randomisation as opposed to encryption requires that
we have a secure means for generating fresh and cryptographically secure random
numbers. The hardware on which P stores his genome data is assumed to provide
such requirements. Random number can be pre-generated and securely stored on
such devices.
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• Our protocol does not leak SNPs of P to the processing unit. Since the processing
unit cannot distinguish the real SNPs from the dummy SNPs.

• Our protocol offers reduced storage cost to the individual. This is a result of storing
encrypted data using data packing techniques.

4.9. IMPLEMENTATION
Here, we present the implementation of PREDICT as a prototype using basic tools. Our
implementation uses simulated data rather than real dataset, since a real dataset can
always be substituted whenever such data is available. We simulate ten thousand SNPs
values as random numbers uniformly distributed between 0 and 2, to represent input
data for the customer. The weights are equally simulated and scaled to integer values,
which represent the input data of the commercial platform. The prototype of PREDICT
was implemented in C++, using NTL and GMP as dependency libraries. All codes are
written and executed as sequentially. Our implementation was tested on a computer
with Intel Core i7-4770, 3.40 GHz, 16 GB of RAM, and 64-bit version of Ubuntu 18.04 LTS.
The prototype implementation shows that PREDICT scales linearly in the size of SNP
values required for a DST. As an example, computing DST using 10,000 SNP only takes
about 96 milliseconds. In Table 4.3 we show comparison of our protocol with that by
Ayday et al.[34].

Table 4.3: COMPUTATION COMPLEXITY

Ayday et al. PREDICT
Technique Additive HE Masking
SNP Storage Centralized Decentralized
Privacy Leaks Yes No
Performance 2 mins/10 SNPs 96 ms/10,000 SNPs

4.10. PRIVACY ANALYSES
Our Direct-to-Consumer DST protocol is described in the semi-honest (honest but cu-
rious) security model. Also, there is a non-collusion assumption on the entities (P, GA-

Unit, PU , CSI) apart from those explicitly specified within the protocol. Actually, the
value º is chosen as follows: LetD= {X1, . . . , Xm} be the set of all diseases, and |Xi | repre-
sents the number of SNPs that are associated with a disease Xi . If > := max{|Xi | , 8 Xi 2
D} , then º :=>+∑ .

The privacy of data is argued using simulation-based security reduction [46, 50, 51].
Negligible function: A function µ(·) is negligible if for every positive polynomial p(·)

and all sufficiently large ∑ 2N, it holds that µ(∑) < 1/p(∑).
Computational indistinguishability: Given that a 2 {0,1}§ and ∑ is security param-

eter, let X = X (a,∑) and Y = Y (a,∑) be two probability ensembles. X and Y are said to

be computationally indistinguishable, denoted by X
c¥ Y, if for every non-uniform prob-

abilistic polynomial-time (PPT) algorithm D , there exists a negligible function µ(·) such
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that
|Pr[D(X (a,∑)) = 1]°Pr[D(Y (a,∑)) = 1]|∑µ(∑) . (4.11)

s¥ denotes statistical indistinguishability. Security: Let f = ( f1, f2) be an ideal function-
ality and let ¶ be a real-world two-party protocol for computing f . Where f1, f2 denote
the results corresponding to parties 1 and 2 respectively on running f . The view of the
party i 2 {1,2} during the execution of ¶ on input (a,b) and security parameter ∑ is de-
noted by view¶

i (a,b,∑) := (w,r i ;mi
1, . . . ,mi

t ) , where w 2 (a,b), and r i is the content of
party i ’s internal random tape, and mi

j represents the j -th message received.
The output of party i during the execution of ¶ on the inputs (a,b) with security

parameter ∑ is denoted by, output¶i (a,b,∑) and can be computed from its own view of
the execution. The joint output of both parties is denoted by

output¶(a,b,∑) = (output¶1 (a,b,∑),output¶2 (a,b,∑)) .

We say that¶ securely computes f in the presence of semi-honest adversaries if there
exists PPT algorithms S1 and S2 such that:

{S1(1∑, a, f1(a,b)), f (a,b)}
c¥ {(view¶

1 (a,b,∑),output¶(a,b,∑))} .

{S2(1∑,b, f2(a,b)), f (a,b)}
c¥ {(view¶

2 (a,b,∑),output¶(a,b,∑))} . (4.12)

Although we have provided definitions for a two-party computation, the remainder
of the security proof is extended for a three-party computation without loss of generality.
The ideal functionality f takes ordered inputs from P, GA-Unit and PU respectively. The
aim of the proof is to show that the view of a PPT adversary A in the real-world execution
of the protocol ¶, is computationally indistinguishable from the view of a simulator Si
for i 2 {1,2,3} ¥ {P,GA-Unit,PU} in the ideal world execution of the protocol f . Specifi-
cally, we consider three distinct scenarios where an adversary compromises each of the
parties in order to gain information about the private data of other parties.

Scenario 1: Let us assume that P has been compromised by an adversary A . Then,
S1 is provided with the inputs and outputs of P, and is required to simulate the view:
Note that the privacy assets are the weights of SNPs to diseases, which are trade secrets
and denoted as the vectors (a,b,v) . Refer to Figure 4.2 and Eq.4.8 for details on variables.
Since PU does not contribute any input, we do not have to worry about PU ’s privacy. Let
? denote an empty string. The DST protocol¶ securely and privately computes the DST
functionality f ((k,k2), (a,b,v), ?) = (SX

P ,?,?) in the presence of any honest-but-curious
PPT adversary.

view¶
1 (((k,k2), (a,b,v)),∑) := (1∑,r P ,k,k2,RB ,Q,µ) , (4.13)

where r P is a uniformly distributed random tape.
In order to simulate the view of P, S1 does the following:
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1. S1 starts the protocol with his inputs (k,k2) , and generates the vectors of random
numbers r0A ,R0

A . Observe that the randoms are different from those generated by
an honest P.

2. For Step 6: S1 generates the vector of randoms R0
B , to simulate incoming input

from GA-Unit.

3. For Step 13: In order to simulate Q as received from PU , S1 first generates vectors
W0

B , S0
B such that the elements of the vector W0

B and S0
B come from the same space

as elements of WB and SB respectively. Then, compute W0
A and S0

A as prescribed

in Step 8. Finally, compute Q 0 = W0
A ·W0

B °
2ºX

i=1
S0

A °
2ºX

i=1
S0

B .

4. For Step 14: S1 computes µ0 =
2ºX

i=1
r0B °

ºX

i=1
v0 . The vector v0 is generate from the

same space as v .

From the above, the simulated view of S1 can be expressed as:

S1(1∑,k,k2, f1((k,k2), (a,b,v))) := (1∑,r P ,k,k2,R0
B ,Q 0,µ0)· (4.14)

From Equations 4.13 & 4.14, we conclude that

S1(1∑,k,k2, f1((k,k2), (a,b,v)))
s¥ view¶

1 (((k,k2), (a,b,v)),∑)·

For any PPT distinguisher D ,

Pr [D(1∑,r S1 ,k,k2,R0
B ,Q 0,µ0) = 1]°

Pr [D(1∑,r P ,k,k2,RB ,Q,µ) = 1] ∑ 1
µ(∑)

· (4.15)

Scenario 2: We assume that GA-Unit is compromised and the aim is to learn the values
of the SNPs which are the vectors k,k2 .

view¶
2 (((k,k2), (a,b,v)),∑) := (1∑,r G ,a,b,v,RA)· (4.16)

where r G is a uniformly distributed random tape. In order for S1 to simulate the opera-
tions of GA-Unit, the following steps occur:

1. S2 is provided with the inputs of GA-Unit and the disease X. These are the vectors
( a, b, v).

2. For Step 7: S2 generates a vector of random numbers R0
A , which should be sam-

pled from the same space as RA .

No other input is received by GA-Unit, and this makes the proof trivial. The simulated
view of S2 is then expressed as:

S2(1∑,a,b,v, f2((k,k2), (a,b,v))) := (1∑,r S2 ,a,b,v,R0
A)· (4.17)
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From Equations 4.16 & 4.17, we have that

S2(1∑,a,b,v, f2((k,k2), (a,b,v)))
s¥ view¶

2 (((k,k2), (a,b,v)),∑)·

For any PPT distinguisher D ,

Pr [D(1∑,r S2 ,a,b,v,R0
A) = 1]

°Pr [D(1∑,r G ,a,b,v,RA) = 1] ∑ 1
µ(∑)

·

Scenario 3: We assume that PU is compromised by an adversary A . The aim is to
learn the private values of P and GA-Unit which include (k,k2), ( a, b, c) .

view¶
3 (((k,k2), (a,b,v)),∑) := (1∑,r PU ,?,WA ,WB ,

2ºX

i=1
SA ,

2ºX

i=1
SB )· (4.18)

where r PU is a uniformly distributed random tape. For simulator S3 to simulate the view
of PU , the following steps are followed:

1. S3 is provided with the security parameter ∑.

2. For Step 10: S3 generates the vector W0
A from the same space as WA . Then, he

generates a vector S0
A and computes the value

2ºX

i=1
S0

A .

3. For Step 11: S3 generates the vector W0
B from the same space as WB . Then, he

generates a vector S0
B and computes the value

2ºX

i=1
S0

B .

The simulated view of S3 is then expressed as:

S3(1∑,?, f3((k,k2), (a,b,v))) := (1∑,r S3 ,?,W0
A ,W0

B ,
2ºX

i=1
S0

A ,
2ºX

i=1
S0

B )· (4.19)

From Equations 4.18 & 4.19, we have that

S3(1∑,?, f3((k,k2), (a,b,v)))
s¥ view¶

3 (((k,k2), (a,b,v)),∑)·

For any PPT distinguisher D ,

Pr [D(1∑,r S3 ,?,W0
A ,W0

B ,
2ºX

i=1
S0

A ,
2ºX

i=1
S0

B ) = 1]°

Pr [D(1∑,r PU ,?,WA ,WB ,
2ºX

i=1
SA ,

2ºX

i=1
SB ) = 1] ∑ 1

µ(∑)
· (4.20)
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4.11. CONCLUSION
This paper presents a protocol that blends the direct-to-consumer genetic testing model
and the need to protect consumers’ privacy. We have shown that a cryptographic solu-
tion to the problem is possible and implementable for practical use. Under our pro-
posed protocol, the use of one-time-only masking is deployed to obfuscate sensitive
data. We show that our proposed protocol provides security and privacy for both the
genome data owners and the commercial platform while they collaborate to perform a
disease susceptibility test. The design we propose introduces less work for all parties, as
they are required to compute over randomized data instead of encrypted data. Our ap-
proach eliminates the storage of encrypted data on a third-party cloud infrastructure as
was suggested by some earlier works. Rather, we recommend decentralizing the storage
of the genome data and only allowing for storage on a device owned and controlled by
genome owners. Distributing the data also eliminates a single point of failure. Our pro-
posal allows any customer to easily update newly discovered SNPs. A prototype imple-
mentation shows that with as much as 10,000 SNPs, the DST can be computed in about
96 mi l l i second s on a commodity hardware, ignoring the network transfer time. This
outperforms other existing homomorphic encryption based approaches where compu-
tational complexity is dominated by homomorphic operations. Our proposal scales lin-
early in the size of the SNPs, and has shown to be practicable in the wild. Finally, we
mention that our solution does not plug the analog hole. For instance, it does not pro-
tect a scenario where an attacker is able to physically force an individual to reveal his SNP
values. Such an attack can be compared to an adversary retrieving a biological sample
from the individual, to sequence the genome.
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MACHINE LEARING ON PROTECTED

GENOME DATA

Conducting outsourced machine learning on sensitive data posses a clear enough threat
where there exist mistrusting parties. Therefore, the relevance of machine learning tech-
niques encapsulated in privacy-preserving technologies are certain in an era enmeshed
in multiple cloud services.

Parts of this chapter are under preparation:
(1) Ugwuoke, C., Toprakhisar D., Erkin, Z., Lagendijk, R. L, & Reinders M., (2020). REDACT: Machine Learning
Model on Outsourced GWAS.
(2) Ugwuoke, C., Bliek, L., Erkin, Z., Veugen, T.,& Lagendijk, I. (2020). SCOTML: Collaborative Machine Learn-
ing Model for GWAS.
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5.1. REDACT: MACHINE LEARNING MODEL ON OUTSOURCED

GWAS

Genome-wide association studies (GWAS) is important to research and clinical medicine
as it helps to identify associations between single-nucleotide polymorphisms (SNPs) and
phenotypes or diseases. New SNPs are continuously discovered and tested for associa-
tion to diseases and traits using regression models. Leading to new discoveries and better
decision-making when treating patients. Due to computational intensive requirements of
GWAS, it is common to outsource these computations to cloud services, hence the need to
provide privacy for the outsourced data. Common privacy-preserving outsourced GWAS
recommend multi-party computations or homomorphic encryption as privacy-protection
techniques, and often require to compute one regression model per SNP. In this work, we
propose REDACT, a privacy-preserving outsourced GWAS protocol. REDACT allows for
homomorphically encrypted genome data to be outsourced to an untrusted third-party
server for storage and to perform GWAS using logistic regression and compute p-values of
multiple SNPs in parallel. We leverage the data packing technique in the CKKS homomor-
phic encryption scheme to obtain a parallelization algorithm thereby optimizing memory
and computation resources. Given a dataset of 10643 SNPs, 245 individuals with 3 covari-
ates, our prototype computes the logistic model and p-values under 24 hours on commod-
ity hardware. Our algorithm offers up to 256 bits security against classical attacks, and
is post-quantum secure for up to 192 bits security. An implementation of REDACT was
submitted to the iDASH Privacy and Security 2018 Challenge. We propose one of the first
parallelize-able outsourced solutions for securely computing regression models, and p-
values over homomorphically encrypted dataset. Our protocol enhances GWAS outsourc-
ing while protecting the privacy of collectively contributed genome data.
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5.1.1. INTRODUCTION

Investigating the human genome can enhance researchers’ understanding of complex
relationships between diseases and genes, making it important to explore and ascertain
any existence of such relationships [2, 3]. In certain cases, a disease of interest may point
to numerous locations on the genome as possible candidates for “causative genes” [4].
The study of the associations between genes and phenotype such as diseases and traits
is classified as genome-wide association study (GWAS) [4, 5]. In order to carry out such
studies, GWAS commonly depend on single-nucleotide polymorphisms (SNPs) as pri-
mary dataset. Nucleotides are considered the building blocks for deoxyribonucleic acid
(DNA), and can take any of 4 possible bases namely (A, T, C, G). It is common that there
exists a genetic variation between individuals of the same species, and this variation
could happen as a result of a single substitution of a nucleotide base when compared
to a common reference genome [6]. A single variation in the nucleotide is classified as a
SNP if it is not observed in more than 1% of the population [7]. A SNP may influence an
individual’s risk of having a particular disease, thus, it makes it germane and interesting
for researchers to conduct GWAS in order to establish existence of any such association
[1, 2, 5, 8, 9]. For example, a GWAS analysis that seeks possible association between a SNP
and a disease of interest, would typically involve hundreds of individuals and thousands
of candidate SNPs [1]. These individuals are generally classified into two groups named
case and control, with additional covariates such as gender, age, weight, etc. Whereas the
case group contains individuals whom are known to have the disease, individuals in the
control group are free from the disease. Thereafter, a statistical model is developed for
each of the SNPs and the significance of each SNP computed.

Simply put, given a dataset containing hundreds of individuals classified into the
case and control groups for a disease of interest, and a SNP of interest, one can gen-
erate a regression model that can estimate the significance of that SNP to the disease.
In order to compute the statistical tests for association given an individual’s SNPs, ba-
sic regression models such as linear regression and logistic regression suffice and are
commonly deployed [1]. Although, where it is the case that the outcome of the model
is binary as with disease or no-disease, logistic regression model is preferred due to its
dichotomous outcome. After a model is obtained, the SNPs are tested for significance
by computing corresponding p-values over the model parameters. Computing p-values
for SNPs is used in classifying the SNPs into two pools, significant and non-significant
SNPs. Thereby narrowing further advance search of disease-gene relationship through
expensive experiments to only the significant SNPs.

Increase in the size of learning dataset is directly proportional to improving the pre-
diction accuracy of many learning algorithms of which logistic regression is one [14–16].
In our GWAS scenario, dataset increase is equivalent to increasing the number of individ-
uals in both the case and control group. However, it is not commonly the case that a sin-
gle institution such as a research institute, hospital, or pharmaceutical company would
have all the data required for training a machine learning a model. Especially where the
disease, which happens to serve as the dependent variable, is considered rare. There-
fore, in order to improve the accuracy of a model and reduce bias, it becomes necessary
to share data amongst institutions, especially for rare diseases or rare SNPs. In situations
where the model to be computed is considered complex and may require multiple de-
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Figure 5.1: Protocol Setting for REDACT

pendent variables with thousands of records, the task becomes computational expensive
for commodity hardware [17]. Consequently, in order to circumvent the computational
drawback, researcher can outsource the computation of the model and other relatively
expensive computations to a third-party server. The third-party server can be consid-
ered to be a cloud services provider with sufficient computational and storage resources,
and is responsible for computing the learning model using any submitted dataset. For
this reason, outsourcing genome data for scenarios such as described above is not only
relevant, but practicable and commonly adopted as shown in Figure 5.1.

SNPs are highly sensitive dataset and as such must be protected [10–12, 18–20]. Leak-
ing only a few hundred SNPs can already pose significant privacy-risks to the owners.
Making it unsuitable to share genome data with a third party in an unprotected for-
mat. Because genome data are considered to have severe privacy-risk, even though it
is needed for outsourcing to a mistrusting third party, there exist an intrinsic need for
privacy-protection that is commensurate with the privacy-sensitivity of the data. In an
attempt to proffer solutions to the privacy requirements posed by outsourcing genome
data to third party services for the aim of carrying out GWAS, researchers have adopted
various cryptographic techniques. The most dominant cryptographic solution has been
homomorphic encryption based solutions [10–13]. However, existing solutions com-
monly lack either or both of two important properties required for outsource GWAS,
namely non-interactivity and parallelization. The non-interactive property requires that
once data is outsourced to the third party service, the third party should not have to
interact with any other entity in order to complete the computation. This means the
third party service should only accept input data from the data contributor or owner,
and should output the final result in a privacy-protected format. Fully homomorphic
encryption schemes are commonly adopted to provide this property. The demand for
parallelization property is usually associated with the success in the former property.
When non-interactivity is achieved, it usually comes at high computation cost attributed
to homomorphic operations. Hence the need to parallelize the computation in order to
optimize computation and memory resources.

In this work, we present REDACT, a parallelized, non-interactive, homomorphic en-
cryption based approach that allows SNPs to be outsourced to a mistrusting third party
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service for the purpose of computing GWAS. The third party receives homomorphically
encrypted SNPs and relevant covariates, with which it generates a logistic regression
model for every SNP. Then, computes the significance of each SNP by way of computing
p-value. And finally returns encrypted p-values as the final output. REDACT achieves
both non-interactivity and parallelization properties, thereby making it one of the first
solutions to achieve these feat using encrypted data.

REDACT is presented in a semi-honest security setting, where all parties are expected
to follow the rules of the protocol. The security and privacy of REDACT is intrinsic in the
homomorphic encryption scheme adopted, by that, making the proof deductive. Hence,
we will not provide any formal proof for the protocol, but rather refer the reader to the
proof of the adopted encryption scheme.

Our contributions are as follows:

• Given encrypted genome dataset, we propose a privacy-preserving Machine Learn-
ing As a Service (MLAS) protocol, where users can outsource machine learning
model generation to an untrusted third party server.

• Data classification of subsequent encrypted dataset can be performed using the
encrypted models generated from above.

• Test statistics can be performed by the third party server on the encrypted machine
learning model, and an encrypted test statistic is generated for each SNP/model
in the genome dataset.

• The 3 phases listed above can be parallelized to generate up to 2048 models and
their corresponding p-values in parallel.

• Our results show that with a dataset of 10,643 SNPs, 245 individuals each with 3
covariates, which was provided for the iDASH 2018 Challenge, our protocol can
generate the logistic regression models and the p-values in about 23 hours, using
commodity hardware.

The remainder of this paper is structured as follows: In Section 5.1.2 we provide rel-
evant literature to our proposal. Section 5.1.3 provides preliminary building blocks rele-
vant to our solution. In Section 4, we present REDACT. Section 5 contains implementa-
tion details. In Section 6 we present the results. Finally we conclude in Section 7.

5.1.2. RELATED WORKS
Kim et al. [10] proposed a secure and privacy-preserving logistic regression outsourcing
protocol which takes homomorphically encrypted data as input, and generates a homo-
morphically encrypted model for classification. Although their work was a breakthrough
for non-interactively learning a regression model using encrypted GWAS data, it was not
designed to support computation of p-values for the generated models. As such, their
solution aimed at providing privacy protection using homomorphic encryption which
allows a data owner to outsource encrypted data to a third party server, who is then re-
quired to generate learning models using logistic regression. Also, Kim et al’s solution
only provides for a single SNP model, which implies that if multiple models were to be
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required for different SNPs, then the algorithm would compute the models by mean of
reiteration. Although Kim et al. harnesses the packing and parallelization techniques
inherent in CKKS scheme [21], it was not targeted to parallelize for multiple models.

Gildad-Bachrach et al. [22] proposed CryptoNets, which demonstrates how neural
networks can be trained over encrypted data, using homomorphic encryption schemes.
Thereby providing privacy and confidentiality to outsourced data, while being able to
enjoy the benefits of the neural network. CryptoNets only provides data classification
function using homomorphically encrypted dataset but does not generate the machine
learning models over encrypted dataset. The classification phase is however parallelized
in CryptoNets, although that does not compare to the complexity of parallelizing en-
crypted model generation.

Just like Kim et al. [10], Bonte et al. [16] independently proposed a solution to com-
puting privacy-preserving logistic regression over homomorphically encrypted data. Their
solution is equally limited to iterative computation of the classification model where
multiple models are required. Generally, computing classification models over encrypted
dataset is usually associated with huge computational complexity, as evident in the works
above. More so, when multiple models are required, repetitive algorithms only scale up
the complexity, hence the need for algorithms that are parallelize-able.

In order to reduce the huge computation complexity associated with iterative com-
putation of learning models where multiple SNPs are targeted, Sikorska et al. [1] in-
troduced a novel approach to parallelize the computation of the model as well as their
associating p-values. However, the approach does not envisage the outsourced data as
privacy-sensitive, hence it does not consider any privacy-protection to the algorithm.
While Sikorska et al. [1] was able to eliminate the complexity of the outsourced compu-
tation, the privacy concerns associated with sharing GWAS dataset remains open. Sim-
ilarly, Buzdugan et al. [23] equally present a solution that allows GWAS data to be ana-
lyzed in a parallelized manner, allowing for multiple models to be computed in parallel,
as well as corresponding p-values for the models.

In this paper, in an attempt to aggregate the positives in the above listed papers, we
present REDACT as a privacy-preserving logistic regression outsourcing protocol, which
implements the parallelization techniques proposed by Sikoska et al. [1] and preserves
the accuracy of the encrypted results.

5.1.3. PRELIMINARIES
Here, we introduce building blocks that are utilized to realize REDACT. We offer the de-
tails that are relevant to the context of or problem setting and the solutions we adopt.
These building blocks will include genome dataset and their structures, the basic ma-
chine learning algorithm that is chosen for training and classification, and finally the
cryptographic primitives that are required to achieve the privacy and security goals.

SINGLE NUCLEOTIDE POLYMORPHISM

A SNP is considered to have occurred at a locus i of an individual’s genome, if there is
a substitution of a nucleotide at locus i . In such a condition, the individual is said to
have SN Pi = j , where j 2 {0,1} . The value of j denotes the presence or absence of a SNP,
represented with either 1 or 0 respectively. Consider Table 5.1, individuals “hu6E45" and
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“hu34D5" have SNP values 1 at locus “chr1_44" while “hu4386" has SNP value 0 at the
same locus.

ID chr1_33 chr1_44 chr1_55 chr1_66
hu4386 1 0 0 1
hu6E45 0 1 0 0
hu34D5 0 1 1 0

Table 5.1: Human SNP Data

LOGISTIC REGRESSION

Logistic regression is a mathematical modeling approach utilized in describing the re-
lationships of multiple independent variables to a dichotomous depend variable [24].
Logistic regression as a machine learning algorithm is predominantly used in epidemi-
ology community [25]. It is suitable for cases with two outcome classification. The de-
pendent variables are commonly dichotomous, with discrete values in a simple set such
as {“1",“0"} . The independent variables or covariates can be continuous and can num-
ber as many as possible. Eq. 5.1 is an example of a classical logistic regression model,
with n covariates, where p := Pr (Y = 1|x) , and Y being the response variable.

log i t (p) = ln(
p

1°p
) =Ø0 +Ø1x1 +Ø2x2 + . . .+Øn xn · (5.1)

From Eq. 5.1,

p
1°p

= e(Ø0+Ø1x1+...+Øn xn ) (5.2)

From Eq. 5.2, X is a matrix of the independent variables or covariates, containing
m individuals. While Ø is a vector of the model parameters which are to be estimated,
otherwise known as coefficient of the covariates.

X =

2

666664

x1,1 x1,2 . . . x1,n

x2,1 x2,2
... x2,n

...
...

...
...

xm,1 xm,2 . . . xm,n

3

777775
, Ø=

2

66664

Ø0
Ø1
...
Øn

3

77775
(5.3)

Let Æi denote the logit function, and defined as:

Æi =Ø0 +Ø1x1 +Ø2x2 + . . .+Øn xn ·

Æ=

2

66664

Æ0
Æ1
...
Æn

3

77775
=

2

666664

1 x1,1 x1,2 . . . x1,n

1 x2,1 x2,2
... x2,n

...
...

...
...

1 xm,1 xm,2 . . . xm,n

3

777775
·

2

66664

Ø0
Ø1
...
Øn

3

77775
(5.4)
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p =æ(X;Ø) := 1
1+e°Æi

(5.5)

Figure 5.2 represents a graph of a standard logistic regression function.
From Eq. 5.5, given a sample dataset containing independent variables X and their

corresponding dependent variables Y , the vector Ø is computed and used as input for
classifying/predicting the Y values for a set of new X values. The process of estimating
the Ø values is termed maximum likelihood estimation (MLE). MLE can be computed in
more than one way, it is often important to consider the most efficient method based on
the structure of the dataset.

°6 °4 °2 0 2 4 6

0.5

1

æ(d)

Figure 5.2: A sigmoid function graph.

MAXIMUM LIKELIHOOD ESTIMATION

The idea here is to maximize a log-likelihood function such as the probability of success,
by estimating values for the parameter Ø . Consider Eq. 5.5, for a given vector X , the
value of p can be optimized for some values of the parameter Ø . Commonly used meth-
ods include gradient descent, Newton-Raphson, Fisher Scoring, and Iterative Reweighted
Least Squares (IRLS) [25]. All four methods require some levels of iterations to optimize
Ø . While gradient descent method is relatively easier to compute due to its use of basic
mathematical operations, it however requires more numbers of iterations that its other
counterparts. The other methods generally depend on matrix operation, including a
matrix inversion, this makes them relatively complex when compared to gradient de-
scent approach. However, they require very few number of iterations when compared to
gradient descent. The general equation of IRLS can take the form:

Ø(t+1) = (XTW(t)X)-1XTW(t)Z(t) (5.6)
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Where t represents the iteration step, X T is the transpose of X , and W (t ) is the inverse
of the covariance matrix with diagonal values as p(t )

i (1°p(t )
i ) .

The reader can refer to [25] for further details.

HOMOMORPHIC ENCRYPTION

A homomorphic encryption (HE) scheme allows for arbitrary algebraic operations to be
performed on ciphertexts. Let Encpk (·) and Decsk (·) represent encryption and decryp-
tion functions respectively. (m1 ,m2) are two messages and k is a scalar value, while� , ⇢
and ⇥ are arbitrary operations on the ciphertexts. Then, homomorphism is defined as
follows:

Decsk (Encpk (m1)�Encpk (m2)) = m1 +m2 , (5.7)

Decsk (Encpk (m1)⇢Encpk (m2)) = m1 ·m2 , (5.8)

Decsk (Encpk (m1)⇥k) = m1 ·k . (5.9)

HE schemes can further be classified into two types: partial HE schemes and fully/levelled
HE schemes. Fully/levelled HE schemes allow for addition and multiplication opera-
tions to be carried out on ciphertexts, while partial schemes often allows either the ad-
dition or the multiplication operation [26]. In this work we desire the properties of the
fully/levelled HE scheme, and we will continue with the rest of the paper focusing on
fully/levelled homomorphic encryption (FHE) schemes.

HOMOMORPHIC ENCRYPTION LIBRARIES

A number of standardized libraries implement fully homomorphic encryption (FHE)
schemes, and they usually differ in performances, key sizes and properties, to mention
a few. However, the choice of library is often a function of the algorithm to be imple-
mented because different libraries offer varying functionalities making them suitable for
one scenario but not so optimal in another scenario. In Table 5.2, we present the prop-
erties and functionalities that guided our choice of library, at the time of implementing.

H
E

Li
b

SE
A

L
2.

0

H
E

A
A

N

Pa
lis

ad
e

Decimal Support No Yes Yes No
Matrix Operations. No No Yes Yes
Parameter Choice Easy Easy Easy Difficult
Rotation Operation Easy Easy Easy Difficult
Easy Noise Mgt. No Yes Yes No

Table 5.2: FHE libraries and properties
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HEAAN
A leveled HE scheme named homomorphic encryption for arithmetic of approximate
numbers (HEAAN) was introduced by Cheon et al. [21], and it implements the FHE
scheme proposed by Brakerski et al [27]. HEAAN is designed based on the ring learn-
ing with error (RLWE) problem, and approximates results of homomorphic evaluations
by allowing small errors. A summary of the scheme is presented below:

Let R = Z[X ]/(X N +1) represent a cyclotomic ring of integers, where N = 2k , being
the dimension of the ring and k is a positive integer.
Rq = R( mod q) =Zq [X ]/(X N +1) , where q is the ciphertext modulus. For a fixed base
p > 0 and a modulus q0 , q` = p` ·q0 for 0 < `∑ L , and L being the maximum level of the
ciphertext. A ciphertext c of level ` is a vector in Rk

q` for a fixed integer k . Let ∏ represent
the security parameter.

• KeyGen(1∏) :
For a chosen ciphertext modulus level L , and given security parameter ∏ , output
N being the dimension of the ring.

Set the distributions ¬ke y ,¬enc ,¬er r 2 R to represent the secret key, encryption
and error, respectively.

Sample s √° ¬ke y ,e √° ¬er r , a √° RqL . Set the secret key as sk √° (1, s) , and public
key pk √° (b, a) 2 R2

qL
, where b √°°a · s +e ( mod qL) .

• Encpk (m) :
Given a polynomial m 2 R , Output a ciphertext c 2 Rk

qL
, such that hc, ski= m + e (

mod qL) .

• Decsk (c) :
For ciphertext c at level ` , output a polynomial m0 √° hc, ski( mod ql ) , for the
secret key sk .

• Add(c0,c1) :
Given two ciphertexts of the polynomials m0,m1 as c0,c1 , output a ciphertext
cAdd , such that (m0 +m1) √°hcAdd , ski( mod ql ) .

• Mult(c0,c1) :
Given two ciphertexts (c0,c1) , output a ciphertext cmul t 2 Rk

q` , such that hcmul t , ski=
hc0, ski · hc1, ski+emul t ( mod q`) , where emul t 2 R .

• RS`°!`0 (c) :
For a ciphertext c 2 Rk

q` at level ` and a lower level `0 < ` , output a new ciphertext

c0 √° b q`0
q`

c 2 Rk
q` .

NOTATION

In Table A.1, we provide relevant notations and their explanations as used in the rest of
this paper.
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Table 5.3: Notations

Notation Description

â The hat makes it the estimated value of a
X Variables in bold represent vectors or Matrices
XT Transpose of the matrix X
` Multiplication depth of the circuit/protocol
log p Plaintext modulus, which determines the precision of the plaintext
log q Minimum ciphertext modulus for decryption to be feasible
logQ Initial ciphertext modulus which compensates for multiplication depth.
∏ Security parameter, with default value of 256-bit security.
sl ot s Number of slots allocated for packing ciphertexts.
cohotSi ze Number records/individual in the dataset.
si zeSN P Number of SNPs contributed by each record/individual.
y Response variable for the presence or absence of phenotype.

5.1.4. REDACT
In this section, we provide the setting of our problem and a detailed description of our
protocol.

PROTOCOL SETTING

The problem of computing p-values for a given SNPs dataset can be solved by train-
ing logistic regression in two phases on the given dataset. We adopt the two model ap-
proach, which entails to first compute a base model over the covariates (excluding the
SNPs). Secondly, with the base model, the SNPs are subsequently introduced using the
Ralphson-Newton algorithm.The corresponding coefficient of the individual SNPs are
then computed to obtain a second model. For our challenge, we are provided with a
dataset that contains the following:

• 245 individuals who are either classified into case or control class for a particular
disease.

• covariates include (age, height, weight).

• 10643 SNPs are provided for each individual.

REDACT DESIGN

The basic idea in this problem is to take as input encrypted SNPs and covariates, and
from that compute the corresponding p-values for every SNP.

The procedure is roughly as follows:

• Compute values for p from Eq. 5.5.

• Compute values for w from p values.

• Compute z = log
≥

p
1°p

¥
+ y°p

w .
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• Compute s§ = s °X (X T W X )°1X T W s .

• Compute z§ = s °X (X T W X )°1X T W z .

• Ø̂1 =
P

i wi z§i s§iP
i wi s§2

i
,

• ˆvar (Ø1) = 1P
i wi s§2

i
.

• er r = SQRT ( ˆvar (Ø1)) .

• p-value = 2§pnorm(Ø1/er r ) .

Algorithm 2 REDACT

1: procedure INITIALIZATION

2: Set variable N , logP, logQ, log Slot s, cohor tSi ze, si zeSN P, sl ot s .
3: Encrypt SNP values in packs of size sl ot s .
4: Encrypt each covariate values in packs of size sl ot s .
5: Send all ciphertext to storage and processing unit.
6: end procedure
7: procedure Storage_and_Processing_Unit
8: a[4] = [0.49989432,0.24486503,0,°0.01414489] .
9: for i = 0 ! (cohor tSi ze °1) do

10: p̂ = a0 +Ø(a1 +a3 §Ø2)
11: w = p̂ § (1° p̂) .
12: z = l og (p̂/(1° p̂))+ (y ° p̂)/(p̂ § (1° p̂)) .
13: end for
14: xt w = (X §w)T .
15: U1 = X T W § z .
16: U2 = l i near E quati on(xt w §X ,U1) .
17: z§ = z °X §U2 .
18: U3 = xt w §S .
19: U4 = l i near E quati on(xt w §X ,U3) .
20: S§ = S °X §U4 .
21: S§2 = sum(W §S§2) .
22: Ø= cr ossPr oduct (Z§ §W , S§)/S§ .
23: er r = SQRT (1/S§) .
24: p-value = 2§pnor m(°abs(Ø/er r )) .
25: end procedure
26: Return p-value

All data are encrypted using a fully homomorphic encryption (FHE) scheme, and the
encrypted data is transferred to a third party storage and processing unit for the pur-
pose of computing p-values of each of the 10643 SNPs, and return an encrypted dataset.
We adopt the Homomorphic Encryption for Arithmetic of Approximate Numbers [21]
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Figure 5.3: Approximated Sigmoid function (sig3_7) against the true Sigmoid function (exp).

library, which implements the FHE scheme proposed by Brakerski et al [27]. Leverag-
ing on the properties of HEAAN, and for our chosen parameters, we could pack up to
2048 SNPs into a single ciphertext. This packing technique enhances our storage, mem-
ory and processing optimization, making it easy to process a packed dataset therefore
achieving parallelization, as against processing individual data entry.

Using the packed ciphertext, a logistic regression base model is created using the
covariates excluding SNPs. Afterwards, the coefficients of the base model are estimated
with log likelihood function. This base model is followed by an updated model using the
weights from base model, for each pack of SNPs, coefficients of the SNPs are estimated
and with the errors of these coefficients, Z Statistic are computed for each SNP in the
dataset. Following the same technique as proposed by Sikorska et al [1], we implement
the Newton-Ralphson algorithm to obtain coefficients of the model[28]. The Newton-
Ralphson technique is iterative and requires matrix inversion. For that, we decompose
the matrix inversion into a somewhat complex simultaneous equation and solve for the
inverse, in order to continue with each iteration. All our computations are done over
encrypted data, using HEAAN library[21] and C++.

IMPLEMENTATION

Challenges encountered during the implementation of REDACT, and corresponding so-
lutions include:

• Sigmoid function: we use approximation function for which the coefficients are
obtained using gradient descent, see Figure ??. Sigmoid function approximation
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Figure 5.4: p-values from REDACT compared with glm variant.

uses the equation:

p̂ = 0.49989432+x(0.24486503°0.01414489x2) .

The range of x 2 {°2 ,2} was determined by observing the data in plaintext, which
means that a pre-knowledge of values in x is required for using REDACT.

• Matrix inversion: we designed a somewhat simultaneous equation where we de-
compose elements of the matrix into coefficients of a simultaneous equation, and
proceed to solve same equation to obtain the inverse matrix. Note that this is done
using all encrypted inputs and computed non-interactively. See the l i near E quati on()
function in the source code for details.

• Division: approximation using existing function provided in HEAAN library.

• Logarithm: approximation using existing function provide in HEAAN library.

• Matrix multiplication: we designed a function to handle matrix multiplication
with packed encrypted values. The idea here is to introduce data packing tech-
nique in order to parallelize the computation. See the mat Mul tV () function in
the source code for details.

• Square root: we adopt the Babylonian method for approximating square root func-
tion. xn+1 = 0.5§ (xn + y

xn
) , where xn+1 is the square root for a positive integer y .
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This method approximates the value of y using homomorphically encrypted x val-
ues. The homomorphically estimated p-values can be seen plotted against those
computed in plaintext in Figure 5.4. See the Z Test () function in the source code
for details.

Parameters for the homomorphic encryption scheme:

• Multiplication depth : 110

• logN = 12

• precision bits l og p = 28

• initial ciphertext modulus logQ = 3143

• final ciphertext modulus log q = 63 .

5.1.5. SECURITY AND PRIVACY
All dataset outsourced to the storage and processing unit are encrypted using the fully-
homomorphic encryption scheme. And all operations and analyses are performed over
the encrypted dataset. Therefore, we argue that the privacy and security of the data is
as secure as the encryption scheme and parameters chosen.Our algorithm offers up to
256 bits security against classical attacks, and is post-quantum secure for up to 192 bits
security.
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Figure 5.5: Scatter plot of p-values obtained from REDACT(LRED) against glm.

5.1.6. RESULTS
We developed our logistic regression approximation algorithm using the provided dataset.
This dataset have single binary outcome variable, which informed our decision to train
using logistic regression as binary classifier. From the obtained classifiers, we homomor-
phically compute the Z Statistic of the provided SNPs. For the given dataset, our initial
solution requires about 6.4 GB of storage space, less than 6 GB of RAM and takes ap-
proximately 20 hours to complete on a commodity hardware. In Figure 5.5, we present
a scatter plot of p-values obtained using REDACT, and computed using an R package
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called “glm”. The plot indicate that REDACT offers as much as 95 % accuracy when com-
pared to the non-privacy-preserving approach obtained using glm.

5.1.7. CONCLUSIONS
The objective of this work is twofold. First is to solve the underlying problem of secu-
rity and privacy when outsourcing genome data processing. With REDACT, we provide
evidence on how fully-homomorphically encrypted data can be outsourced to a semi-
honest storage and processing unit, and non-trivial machine learning computations can
be accurately computed and results returned to the client. Second, is to present a proof
of concept of how primitive mathematical operations can be realised over encrypted
dataset, in a non-interactive setting. We achieve both objectives while still being able to
provide up to 95% accuracy and a 256-bit security against known classical attacks, while
providing up to 192-bit security against known post-quantum attacks.
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5.2. SCOTML: COLLABORATIVE MACHINE LEARNING MODEL

FOR GWAS

Digital copy of the human genome is a rich dataset and is considered privacy-sensitive,
which must be protected. Conducting machine learning (ML) on genome dataset is an im-
portant aspect of research and clinical medicine and often leads to new discovery and bet-
ter decision-making when treating patients. Collaborations between research centres and
medical institutions are common practice while attempting to learn from existing genome
dataset, and they can be mistrusting entities. Therefore, such collaborations must be done
without compromising the privacy of the genome data used for training the machine
learning model. This, reinforces the need for a secure and privacy-preserving protocol
for collaborative machine learning models. Existing privacy solutions for collaboratively
training a ML model includes techniques such as homomorphic encryption, which can
be computationally expensive. In this work, we propose SCOTML, a privacy-preserving
machine learning protocol which allows 3 or more mistrusting parties to jointly train a
machine learning model with their private genome dataset. SCOTML was submitted to
Track 4 of the iDASH 2019 competition. We adopt random features expansion (RFE) as our
learning algorithm, and implement a secure multiparty computation variant that allows
3 parties to jointly train a ML model. We implement our protocol in Python3 and provide
a security argument using the simulation based security proof. Our implementation of-
fers up to 99.8% accuracy on the “BC-TCGA” dataset and 73% accuracy on the “GSE2034”
dataset, and completes training in less than 40 seconds on commodity hardware.
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5.2.1. INTRODUCTION
The availability of cheap genome sequencing in recent years has transformed the digi-
tal genome processing landscape [29], thereby resulting to more awareness, and evolv-
ing needs for processing digital genomes. In silico genome has become more affordable
thereby leading to a trove of data being made available to individuals, research commu-
nity, and commercial companies [30]. The reason for sourcing a digital genome varies
from one party to another simply because information inherent in the genome is such
that multiple players could explore different pieces of the entire genome. Whatever the
reason for seeking genome data processing is, these reasons are often interconnected
and one phase of genome data processing life cycle only helps to optimise the next
phase.

When people adopt some services associated with genome data processing, they
commonly seek to have their genome sequence in pursuit of some personal interest such
as ancestry information, paternity or maternity tests, predisposition to diseases. Some
of these test are only possible due to the existence of results from previous studies, which
are then used to decide threshold for making decisions in the current computation, mak-
ing them interdependent as seen in Fig. 5.2.1.

Individual
Target GWAS

Figure 5.6: Phase relationship of genome data processing

For instance, genome wide association study (GWAS) mainly focuses on a popula-
tion study, where information about a gene phenotype relationship is investigated using
multiple subject data [31, 32]. Which means that individuals must be willing to provide
their data in order to improve the GWAS computation phase, and from the improved
GWAS results, other individuals benefit by having more accurate results when they uti-
lize GWAS generated outputs. GWAS is mostly of interest to the research community and
commercial companies, while its results are used to service individual needs. For exam-
ple, results of a GWAS is utilized by individuals who might be interested in learning their
predispositions to phenotypes of interest. This means that individuals can learn from
GWAS while being able to contribute their data in order to improve prediction accuracy
of the GWAS models.

GWAS is hugely reliant on machine learning (ML) algorithms in order to build the
models used for classification and in extension, predictions. ML has also found appli-
cations in other aspects of genomics including variant calling and pathogenicity scores
[30, 33, 34]. Just like every machine learning problem, more data usually results in better
models being generated. The ML algorithm to be adopted in any GWAS varies with the
needs and properties of both data and algorithm, hence there are multiple implemen-
tations of algorithms in solving GWAS related problems. Common algorithms include
linear regression, logistic regression, deep learning [33, 35, 36].
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We use the term “institution" loosely to represent either a research centre or a com-
mercial company. The need for richer dataset with which to perform GWAS-related ma-
chine learning computations, has made it necessary for multiple institutions to seek col-
laborations in order to improve their machine learning models. However, the concern
for the privacy-sensitivity of genomics data makes the data sharing a non-trivial prob-
lem. The question then becomes: in the face of privacy concerns, can multiple parties
securely collaborate to jointly generate a public machine learning model while protect-
ing the privacy of their contributing dataset?

Secure collaborative learning has remained an open and interesting problem, at-
tracting various solutions from the research community [37]. Existing solutions include
the use of encrypted data, data locality, and secure multiparty computation [38–40] tech-
niques to ensure that their contributing data is protected from the prying eyes of poten-
tial adversaries. A common drawback to the existing secure solutions can be grouped
into three parts namely: accuracy of model, speed of computation, and communica-
tion cost. It is important to mention that the security/privacy technique is often deter-
mined by the setting and scenario of the problem. For example, where the computation
is required to be done on a central processing point such as the cloud, technique such
as homomorphic encryption becomes preferable, due to the non-interactivity proper it
provides. Contrary, where data is distributed without a centrally trusted party, technique
such as secure multiparty computation becomes more suitable.

The focus of this work is to answer the above question in a semi-honest security set-
ting where three or more mistrusting institutions could securely merge their private data
for the computation of a public machine learning model, and provide a proof of concept
with provable security argument to support the proposed solution. Our proposal for a
secure collaborative training of machine learning model (SCOTML) was submitted to the
Track IV of the integrating data for analysis, anonymization, and sharing (iDASH) 2019
competition.

In support of the research toward promoting privacy for genome data, iDASH [41],
whose focus is on privacy-preserving algorithms and solutions for data sharing, have
continued to push the boundaries of unresolved problems in genome data processing
research and algorithms. One way iDASH does this is by announcing open problems as
challenges yearly, and accepting contributions from all over the world in hope of clos-
ing some research gaps, solving previously open problem, and realizing more secure,
privacy-preserving, and efficient solutions to genome data processing.

In this paper, we present the following contributions:

• We propose SCOTML to bridge the research gap by providing privacy, high accu-
racy, and high efficiency for three or more mistrusting parties to collaboratively
learn from a high dimensional dataset in an honest-but-curious security setting.

• Our prototype implementation of SCOTML is relatively fast and can be be com-
pleted on commodity hardware in about 53 seconds even for a dataset with 472
individuals and each with 17,814 genes of interest.

• To the best of our knowledge, we provide the first privacy-preserving protocol de-
sign that utilizes Random Features Expansion for learning on collaborative sourced
dataset.
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Our implementation proves to be secure and rival their unsecured variants both in ac-
curacy and speed of computation.

5.2.2. RELATED WORKS
Relevant literature in security, machine learning and bioinformatics are to be discussed
with their relationship to our work spelt out.

Although machine learning techniques have been quite commonly adopted in the
field of bioinformatics [1, 42–45], research contributions towards privacy-preserving ma-
chine learning have equally developed over the years [46–48]. The privacy-preserving
machine learning solutions that have been proposed towards the protection of genome
dataset are equally common in literature, and they have been designed with the use of
variety of machine learning algorithms. Usually, the problem definition and machine
learning algorithm determines to a large extent the privacy-preserving method suitable.

For instance in [49], Kim et al. demonstrate with the use of homomorphic encryp-
tion technique how a privacy-preserving machine learning can be achieved for genome
data. Kim et al. choose logistic regression as the machine learning algorithm, and their
results show that both the learning phase, and prediction phase of the machine learning
process can be achieve with relative accuracy between 61% and 91% depending on the
dataset used. These results were achieve using all encrypted data outsourced to cloud
infrastructure non-interactively, hence the drawback in efficiency with some algorithms
taking as much 235 minutes to complete.

In the efforts to improve the proposal in [49], Choen et al. proposed another non-
interactive machine learning solution which used logistic regression to process homo-
morphically encrypted genome data [50]. This proposal introduces new and efficient
techniques for parallelizing the process, and for computing gradient descent which con-
tributed most of the computational overhead in [49]. While these approaches solve pri-
vacy challenges inherent in outsourcing genome data processing with the use of ma-
chine learning algorithms, they do not suffice for collaborative data processing settings.

Other machine learning applications towards the protection of sensitive data adopt
ensemble approach by aggregating the prediction from multiple models [51–53]. Al-
though ensemble techniques attempts to preserve the privacy of contributed data used
for machine learning models generation in a collaborative setting, they do not account
for scenarios where the data need to be collated and processed in order to preserve struc-
tures and improve accuracy of the model. Ideally, we would want that all the data are
combined and processed using the same algorithm while preserving the privacy of the
data.

5.2.3. BACKGROUND
We introduce in detail the various techniques that are relevant to solving the stated prob-
lem. These include all building block that aids the reader to comprehend each compo-
nent of our solution and the complexity thereof.

5.2.4. COLLABORATIVE MACHINE LEARNING ON GENOME DATA
We consider a supervised learning problem where the goal is to detect breast cancer in
patients based on their genome data as described in the iDASH 2019 competition [54].



560354-L-bw-Ugwuoke560354-L-bw-Ugwuoke560354-L-bw-Ugwuoke560354-L-bw-Ugwuoke
Processed on: 11-5-2021Processed on: 11-5-2021Processed on: 11-5-2021Processed on: 11-5-2021 PDF page: 143PDF page: 143PDF page: 143PDF page: 143

5.2. SCOTML: COLLABORATIVE MACHINE LEARNING MODEL FOR GWAS

5

135

Gene # \ Patient 1 2 . . . . . . . . . M

1 x(1)
1 x(2)

1 . . . . . . . . . x(M)
1

2 x(1)
2 x(2)

2 . . . . . . . . . x(M)
2...

...
...

...
...

...
...

d x(1)
d x(2)

d . . . . . . . . . x(M)
d

A B C

ML Algorithm
X = A[B [C

Model

Figure 5.7: Collaborative machine learning (ML) model training. Rather than training an ML algorithm on
one dataset such as part A, three dataset are first combined. Then ML is used. The data consists of M = 472
individuals, d = 17,814 genes for the BC-TCGA dataset, and M = 225 ,d = 12,634 for the GSE2034 dataset.

Given a number of patients M that each have a d-dimensional gene expression data vec-
tor and a label (healthy / not healthy), the goal is to construct a model that can correctly
identify new patients as healthy or not based on their genome data. In the competition,
two dataset were available: M = 472, d = 17,814 for the BC-TCGA dataset, and M = 225,
d = 12,634 for the GSE2034 dataset. Many machine learning algorithms exist for this
problem, and in general these benefit from having more data available. Therefore, if
there are three parties A,B ,C that all have a dataset for their own set of patients, it is in
the interest of all parties to share their data, as this leads to more accurate models. See
Fig. 5.7.

5.2.5. RANDOM FEATURES EXPANSION

Random feature expansions [55–57] (RFEs) are a type of machine learning model that are
very easy and fast to train. Whereas other machine learning models such as neural net-
works or kernel methods would train all model weights or choose them according to the
available data, in the RFE model most parameters are chosen randomly. Surprisingly,
this approach still gives uniform approximation guarantees, meaning that any target
function can be approximated arbitrarily well under general assumptions [58]. And be-
cause of the randomness in the model, the original data cannot be retrieved, as we show
in Section 5.2.12. Similar random methods have been used as a linear dimensionality
reduction technique on the dataset described in the previous subsection [44], without
taking security into account.

Given data x j 2 Rd , y j 2 R, j = 1, . . . , M , an RFE is a nonlinear function RFE : Rd ! R

that approximates these data points after using a linear least squares type method. First,
the model size D needs to be chosen, which can increase the accuracy of the model at
the cost of more computation time. Then random parameters W 2RD£d and b 2RD , are



560354-L-bw-Ugwuoke560354-L-bw-Ugwuoke560354-L-bw-Ugwuoke560354-L-bw-Ugwuoke
Processed on: 11-5-2021Processed on: 11-5-2021Processed on: 11-5-2021Processed on: 11-5-2021 PDF page: 144PDF page: 144PDF page: 144PDF page: 144

5

136 5. MACHINE LEARING ON PROTECTED GENOME DATA

drawn from continuous probability distributions:

Wn,i ª Normal(0,1),

bn ª Uniform[0,2º], (5.10)

for n = 1, . . . ,D , i = 1. . . ,d . Random features z j 2 RD are then constructed from the data
as follows:

z j = cos(
1
d

Wx j +b), (5.11)

for j = 1, . . . , M . The cosine is taken element-wise. Now the learning algorithm is defined
by solving the regularized linear least squares problem

c§ = argmin
c

MX

j=1
||z j ·c° y j ||2 +∏||c||2 (5.12)

where ∏ > 0 is a regularization parameter which is needed to avoid overfitting, to deal
with noise in the data, and for numerical stability. The minimization problem (5.12) has
the following closed-form solution:

X = [x(1), . . . ,x(M)],

Y = [y (1), . . . , y (M)],

Z = cos(
1
d

WX+b),

c§ = (ZZT +∏ID£D )°1ZY, (5.13)

with I the identity matrix. After training, the following equation can be used on a new
patient with gene data xnew to let the model predict whether the new patient is healthy
or not:

RFE(xnew ) = cos(
1
d

Wxnew +b) ·c§. (5.14)

5.2.6. SECURE MULTIPARTY COMPUTATION
A secure multi-party computation is an interactive cryptographic protocol that allows
for two or more mistrusting parties to jointly compute a function using their privately
contributed data as input [59–61]. Depending on the exact scenario, it may allow for the
output of the desired function to be public, but the contributed inputs should be private
with the assumption that each party does not digress from the rules of the protocol. Se-
cure multi-party computations are designed in a semi-honest security model. This is a
security model where all parties are required to follow the description of the protocol,
without being able to act maliciously. However, there exist literature that describe the
design of secure multi-party computation protocols which are secure under the mali-
cious model [62, 63]. Some examples of secure multi-party computation protocols can
be seen in [63–66]. Secure multiparty computation protocols are usually computation-
ally cheaper when compared to other techniques such as homomorphic encryption, but
they suffer from communication overheads due to the multiple interactions require to
compute the functions.



560354-L-bw-Ugwuoke560354-L-bw-Ugwuoke560354-L-bw-Ugwuoke560354-L-bw-Ugwuoke
Processed on: 11-5-2021Processed on: 11-5-2021Processed on: 11-5-2021Processed on: 11-5-2021 PDF page: 145PDF page: 145PDF page: 145PDF page: 145

5.2. SCOTML: COLLABORATIVE MACHINE LEARNING MODEL FOR GWAS

5

137

5.2.7. NOTATION
In table A.1 we provide a list of notations and corresponding description.

Table 5.4: Notations

Notation Description

N Number of parties in the protocol.
par t y Each participants of the protocol, labelled {A ,B ,C }
Mpar t y Size of the record contributed by a party
M Sum of all records from all parties

P
Mpar t y

d Number of gene loci considered for each protocol
W Matrix of random number with elements, √ (0,1)
bpar t y D £1 Matrix of random numbers, √ [0 ,2º]
b Average of matrix from all parties

°P
bpar t y /

¢
N

B0(Mpar t y ) 1£Mpar t y matrix with each entry set to 1
B Security parameter, with default value of 80
Ypar t y Array of response variables for a party
Y Array of concatenated response variables from all N parties
Xpar t y Feature matrix from a party
X Concatenation of all feature matrices from all N parties
Xt Transpose of the matrix X
H ash() A secure hash function such as SHA-256 X
mi n(X),max(X) The minimum and maximum elements in the matrix X
r eg Par am Regulation parameter for adjusting the trained model, r eg Par am 2 [°1,1]
I den(i ) A square identity matrix with size i
Inv(X) Inverse of the matrix X

5.2.8. SCOTML
In this section, we introduce the problem setting and describe our proposed solution
(SCOTML) and discuss its correctness and possible optimizations.

5.2.9. PROTOCOL SETTINGS AND ASSUMPTIONS
For every model to be generated, participants in the protocol are pre-decided. Each
party is assumed to own a private set of dataset which constitutes patients of the target
disease to serve as cases, and non-patients to serve as control set. The protocol as seen
in Fig. 5.8 is set in an honest-but-curious security model, and all parties are assumed to
follow the protocol description. Also, each party is required to have a threshold of pa-
tients in order to participate, this is to avoid the possibility of a party joining the protocol
with only control dataset. For every setting of the protocol with N parties, there must
be at least N

2 +1 honest participants to guarantee the privacy of the private data and the
model generated. The response values of each record, which represents the status of a
record with respect to the disease of interest is encoded as {°1 ,1} representing healthy
and sick respectively.
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Figure 5.8: Protocol Setting

5.2.10. PROTOCOL DESCRIPTION
The steps of the SCOTML protocol as shown in Fig. 5.7 is described as follows:

Step 1. Initialization of parameters, where N is the number of participant for the proto-
col. Values for (d ,D ,r eg Par am) are jointly agreed upon by all parties, and all N parties
are assigned unique identifiers as well as their position on the queue. This queuing is
meant to allow for alignment of data by each party, when data is received from other
(N °1) sources.

Step 2. Each party determines the number of records (Mpar t y ) being the size of dataset
which they wish to contribute to the protocol. Each party now has a local dataset of di-
mension (d £Mpar t y ) which is private to them.

Step 3. Each party privately shuffles their private dataset of Mpar t y records for every exe-
cution of the protocol, in order to mitigate against possible correlation of records across
multiple runs of the protocol.

Step 4. Each party independently generates a matrix W of random numbers follow-
ing (5.10), with dimension D £d . Each value in W is reduced by d , W = W/d .

Step 5. Each party independently generates a matrix bpar t y of random numbers follow-
ing (5.10), with dimension D £1 .

Step 6. Each party privately generates a random noise matrix (X̂par t y ) of dimensional
(Mpar t y £d) , with elements 2 [°0.083,0.083] . And sets the new value of the feature ma-
trix to Xpar t y = Xpar t y + X̂par t y .
The constant value 0.083 is chosen to be small but determined by distribution of the data
to be trained.
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Step 7. All N parties communicate a commitment of their random numbers by broad-
casting (M , H ash(Wpar t y ) , H ash(bpar t y )) . This commitment prevents any possible
changes to the values of the random numbers when transmitted in subsequent steps.

Step 8. All parties securely broadcast their values of (bpar t y ,Wpar t y ) .

Step 9. Upon receiving (bpar t y ,Wpar t y ) , from all participants and verifying against the
commitments, each party node proceeds to compute

W =
√

NX
Wpar t y

!

/N (5.15)

b =
√

NX
bpar t y

!

/N (5.16)

Bpar t y = b£B0(Mpar t y ) (5.17)

Hpar t y = (W£Xt
par t y )+Bpar t y (5.18)

Zpar t y = cosi ne(Hpar t y ) (5.19)

Step 10. Values of (Zpar t y ,Ypar t y ) are broadcast to all parties.

Step 11. After receiving (Zpar t y ,Ypar t y ) from all parties, each party concatenates the
matrices according to the agreed alignment in Step 1. to obtain Z and Y .

Step 12. Each party proceeds with the following computation locally:

C0 = r eg Par am £ I den(M) (5.20)

C1 = Z£Zt (5.21)

C1 = C1 +C0 (5.22)

C1 = Inv(C1) (5.23)

C2 = Z£Y (5.24)

C = C1 £C2 (5.25)

The set of values (C ,W ,b) are then preserved as parameters of the model, which can
be used in the prediction phase for classifying features from new patients.

Step 13. After the model generation phase, each party can privately compute the predic-
tion phase without interacting with the multi-party computation protocol. This is done
using the following equation: given a matrix of new features Xnew of Mnew records

Ztest = cosi ne
°
(W£Xt

new )+ (b£B0(Mnew ))
¢

(5.26)

Ŷpr edi cted = Ztest £C (5.27)

A threshold is chosen with which to classify values in Y .
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Table 5.5: The computational complexity for training the model

Step Hash. Sc. Mul Mat. Mul. Mat. Inv. Mat. Add. Shuffle
3 – – – – – Mpar t y

4 – 2(d §D) – – – –
5 – – – – D –
6 – Mpar t y §d – – Mpar t y §d –
7 D + (D §d) – – – – –
9 – D §d +D D §Mpar t y +D §d §Mpar t y – 2(D §d)+2D +2(D §M) –
12 – M D §M §D +D §M +D §D D3 D §D –

Total D +Dd
3dD +Mpar t y d DMpar t y (1+d)

D3 3D +Mpar t y d
Mpar t y+M +D + DM(D +1)+D2 +2D(d +M) + D2

5.2.11. COMPLEXITY
The computational and communication complexity of our protocol is tabulated in Tab.
5.5. The complexity as shown depicts the cost to a single node/party in the protocol.
From Tab. 5.5 the computational complexity can be expressed as O(MD2 +Mpar t y Dd +
D3) . This represents the number of operations to be computed in each node. Therefore,
for N participants where each participant is assumed to contribute the same number of
records, the computational complexity is multiplied N times. While the complexity de-
pends on the size of the feature matrix, which in this work is the number of genes and the
total records, the complexity is significantly determined by the number of random fea-
tures D . While it is possible to reduced the value of D in order to gain computational ad-
vantage, it should be noted that D is inversely proportional to the accuracy of the trained
model. Note that the term D3 comes from a single matrix inversion operation, which can
be avoided for example by making use of a recursive least squares approach [67].

There are 7 rounds of communication which occur during the course of the proto-
col execution, these are found in steps (1,7,8,10) . This low rounds of communication
results in the O(D +Dd +Mpar t y +DMpar t y ) communication complexity where we are
presented with a linear complexity in the size of D and d .

5.2.12. SECURITY AND PRIVACY
Security/Privacy proof for the protocol is argued under the semi-honest security setting
and with all relevant assumptions clearly stated. All parties wish to hide the values of
the genes relevant to the test, but not the gene loci, since all participants share the loci
of interest. However, the response value Y is assumed to be known by other participants
because they all broadcast their records of case and control set. The motive of a compro-
mised participant is to derive information about that feature matrix (X) of other parties.

Information about X values are transmitted or shared in the form of Z , therefore our
proof of protection of the privacy of the feature matrix is achieved as follows: Given the
random feature matrix Z it should be computationally impossible for an adversary with
polynomially bounded resources to retrieve the feature matrix X . First we achieve a di-
mension reduction from d (17,814) for the BC-TGCA dataset to (D) (400). This reduction
makes it more difficult to recover the original information that was lost. We provide the
security and privacy argument using 3 main countermeasures.

1. Addition of noise in Step. 6 simulate Learning With Error problems (LWE). This
countermeasure adds a bounded noise which is only known to the data owner,
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thereby obfuscating the original private data.

2. Insufficient equations to solve for all variables, leads to information theoretic se-
curity argument. By reducing the dimension of the matrix, and keeping all relevant
information about X private, it is impossible for an adversary to correctly solve for
d variables using D equations since d >> D .

3. Scrambling property introduced using cosine function. While the Cosi ne function
does not independently obfuscate input data, it adds a layer of privacy protection
to the protocol, making it even more difficult for an adversary to derive the val-
ues in X given only Z . This is evident owing to the non-bijective properties of the
Cosi ne function.

Table 5.6: Results compared to deep learning approach

Dataset Avg runs Acc. time (sec.) P-P SMC
Benchmark1 GSE2034 £100 69% 980 No No
SCOTML GSE2034 £1000 73% 39 Yes Yes

Benchmark2 BC-TCGA £100 95.63% 1303.9 No No
SCOTML BC-TCGA £1000 99.48% 53 Yes Yes

5.2.13. IMPLEMENTATION AND RESULTS
A description of the implementation techniques, libraries, and tools that were utilized
to realize the prototype of SCOTML and the corresponding results are presented in
this section. We present a SCOTML prototype that compares complexity and accu-
racy of SCOTML against existing non privacy-preserving techniques using the same
dataset. Given the data presented in Section 5.2.4, we are also provided with two bench-
mark (Benchmark1, Benchmark2) implementations for both dataset. Benchmark1 and
Benchmark2 are both deep learning implementations for model generation and predic-
tion using the GSE2034 and BC-TCGA dataset respectively. Our prototype implemen-
tation of SCOTML is achieved using Python3 with Numpy, pyftpdlib, and ftplib mod-
ules. The distributed implementation is achieved using docker containers which allows
for easy setup on any commodity hardware. The results, both in accuracy and time
complexity are shown in Table 5.6. It can be seen that SCOTML achieves higher ac-
curacy than both benchmarks in only a fraction of the time. Note that while we compare
SCOTML implementations to the deep learning implementations of Benchmark1 and
Benchmark2, the benchmark implementations do not provide for privacy-preserving
features, neither do they allow for a secure multiparty computation. In the benchmark
implementation, it is assumed that there is a trusted party to whom all parties contribute
their private data to, and this trusted party is responsible for training the model and re-
turning results to all parties. As such, SCOTML has outperformed the benchmark meth-
ods on three fronts, namely accuracy, computational efficiency, and privacy, especially
since the benchmark had no privacy property whatsoever.
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5.2.14. CONCLUSION
SCOTML is a privacy-preserving machine learning solution that aids collaborative ma-
chine learning in an era of cloud based computation and storage services. Our prototype
is implemented to allow 3 or more mistrusting parties to collaborate in generating public
ML models while provably preserving the privacy of their contributed genome data. This
setting and solution can aid multiple bodies to contribute sensitive genome data for the
purpose of research without having to worry about privacy constraints. Our protocol is
scale-able for our test dataset of 472 records each having 17,814 genes, it takes less than
55 seconds to complete training on a commodity hardware while being more accurate,
faster, and more secure than the existing deep learning approach.
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6
DISCUSSION AND CONCLUSION

In this concluding chapter we present our evaluations and concluding thoughts on the
various cryptographic privacy-preserving proposals to the identified privacy threats in-
herent with the processing of genome data.
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6.1. DISCUSSION

In a society where genome data processing is gaining traction due to it various appli-
cation areas, the privacy of the genome data is a relevant conversation to have. More
so, with laws and regulations such as HIPAA and GDPR that regulate use of health data,
the need for provably secure measures for storing and processing sensitive and health
related data becomes paramount in a COVID-19 and a post-COVID-19 society.

In this thesis, we explored the wide range of cryptographic solutions that are appli-
cable to various scenarios that covers storage, processing and publishing of digitized
genome data. Having completed the journey from a formulated problem statements
through evaluation of proposed solutions, it is important to reflect on the path we have
taken, why and how the choices were made.

In Chapter 3, we first present a generic survey that maps out various scenarios that
present identified privacy and security challenges that have been addressed in litera-
ture, covering both research and industry works. This equally attests to the importance
of investigating privacy measures for processing the genome and in extension validates
the problem discussed in the thesis. In the next paper we present a demonstration of
how privacy enhancing technologies listed in Chapter 2 can be utilized in addressing the
privacy requirements in computing linkage analysis, which is a genome data processing
technique. In the last paper of Chapter 3 we present a general discussion on genome
wide association studies and some of the algorithms that are realizable in a privacy-
preserving mode.

While Chapter 3 focuses on algorithm and operations that are peculiar to the genome
wide association study phase, Chapter 4 explores the possibility of encapsulating post-
GWAS algorithms with privacy-preserving techniques. We do this by showing that the
results obtained from a GWAS could be further utilized to provide services such as dis-
ease susceptibility testing as a service. This implementation is secure and light weight,
making it a prospect for industrial application already.

In Chapter 5 we explore the use of machine learning algorithms in realizing the ser-
vices of processing the genome dataset. However, because the base or classical machine
learning algorithms are not usually designed with privacy and security as a core feature,
we are posed with the challenge of redesigning a privacy-preserving variants of select
machine learning algorithms that are used for genome data processing. We go ahead to
show that not only is the realization of privacy-preserving algorithms possible, but that
they could in some cases outperform some non-privacy-preserving variants in accuracy,
performance and complexity. We also present the possibility of collaboratively comput-
ing machine learning models for more than two mistrusting parties.

In the works presented in this thesis we show a variety of privacy enhancing tech-
niques by applying them differently as the scenarios require. We have also shown that
while in some cases a single technique would out-rightly be sufficient, refer to Chapter
4, in some other cases, a hybrid or cocktail of techniques become required for attaining
the privacy and utility goal of the problem statement.
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6.2. EVALUATION
Having provided a problem statement and the relevance of provable privacy-preserving
genome data processing which reads:

For every party in our defined setting/scenario of genome data processing, how can we
utilize cryptographic primitives to provide provable privacy and security for all identified
assets within the threat model, and still realize the utility of the protocol as a relatively
efficient alternative?

We present our opinion on the state-of-the-art in both the research community and
the industry. We list our intended objectives and try to match them with solution where
we have realised those objectives.

1. Privacy and Security: How do we design protocols with the aim of providing prov-
able privacy and security guarantees, and equally optimize the computational,
communication, and storage cost of realizing such a protocol? The privacy and
security objective was realized in all attempted scenarios which can be found in
Chapters 3, 4, 5.

2. Acceptable Accuracy: How can we preserve the utility of genome data services
even in the protected domain, such that our privacy-preserving variants can repli-
cate the accuracy obtainable in the non-protected variants of the protocols. Al-
though the accuracy of a privacy-preserving model is commonly expected to per-
form worse than the plaintext solution, we show in the following works (REDACT:
Chapter 5, SCOTML: Chapter 5 PREDICT: Chapter 4) that with the right choice
of algorithm and design, a privacy-preserving version must not always perform
worse than the non-privacy-preserving counterparts.

3. Performance: How can we realize privacy-preserving protocols that are not be-
deviled by poor performances, but rather enhance performance by supporting
efficient storage, acceptable communication complexity, and practical computa-
tional efficiency. In the following works (SCOTML: Chapter 5 , PREDICT: Chapter
4), we provide solutions that rival the performance achieved in the non-privacy-
preserving solutions. This further validates our claim that some privacy-preserving
solutions to genome data processing are already suitable for the wild due to their
ease of scalability.

6.3. OPEN PROBLEMS
Notwithstanding that the state-of-the-art solutions have gone to great lengths to address
the privacy concerns, there are still a trove of open problems that require contributions
from science in order to find solutions. Some of those include:

1. Plug the loophole that leaves the privacy of the genome dataset to the discretion
of the sequencer. Presently, this phase of the genome data life cycle requires the
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use of biological samples and is left to the expert who has no cryptographic prov-
able measures to constrain them from abusing the data. This remains an open
problem.

2. Explore the possibility of significantly reducing the overhead incurred while com-
puting privacy-preserving GWAS/machine learning in a non-interactive setting.
Computing freshly protected genome data would often adopt the homomorphic
encryption technique. However, this technique is expensive in both computation
complexity and storage complexity due to inherent data expansion. This therefore
makes them sometimes not suitable for scaling.

3. Enhancing the prospects of privacy-preserving collaboration between genome data
owners without having to require active participation during the process of ex-
ecuting the algorithm. Most collaborative solutions are designed in the interac-
tive model. This means that during some process of the computation, data would
have to be exchanged between the computing party and some other entity. Which
means that in the event of a loss in communication, the process cannot be com-
pleted. Not to mention the communication overhead that is associated with this.
A compact non-interactive solution remains an open problem.

6.4. CONCLUSION
In the thesis, we have shown how genome data processing can be achieved within an ac-
ceptable privacy and utility criteria. We have presented the life cycle of a typical genome
dataset and the algorithms that are commonly used in this process, and have shown
that where no off-the-shelf solution exists, a cryptographic provable privacy-preserving
solution can be designed. We demonstrate this with a proof of concept, designs and im-
plementation as our contribution to to the field of privacy-preserving genome data pro-
cessing. Finally we mention that the relevance and novelty of some of our solution can
easily be measured by its consistent performance at the yearly iDASH challenge, where
we presents our solutions to compete amongst other solutions from research institutions
and companies.



560354-L-bw-Ugwuoke560354-L-bw-Ugwuoke560354-L-bw-Ugwuoke560354-L-bw-Ugwuoke
Processed on: 11-5-2021Processed on: 11-5-2021Processed on: 11-5-2021Processed on: 11-5-2021 PDF page: 161PDF page: 161PDF page: 161PDF page: 161

A
APPENDIX SECURE FIXED-POINT

DIVISION FOR

HOMOMORPHICALLY ENCRYPTED

OPERANDS

Due to privacy threats associated with computation of outsourced data, processing data
on the encrypted domain has become a viable alternative. Secure computation of en-
crypted data is relevant for analysing dataset in areas (such as genome processing, private
data aggregation, cloud computations) that require basic arithmetic operations. Perform-
ing division operation over-all encrypted inputs has not been achieved using homomor-
phic schemes in non-interactive modes. In interactive protocols, the cost of obtaining an
encrypted quotient (from encrypted values) is computationally expensive. To the best of
our knowledge, existing homomorphic solutions on encrypted division are often relaxed
to consider public or private divisor. We acknowledge that there are other techniques such
as secret sharing and garbled circuits adopted to compute secure division, but we are inter-
ested in homomorphic solutions. We propose an efficient and interactive two-party proto-
col that computes the fixed-point quotient of two encrypted inputs, using an efficient and
secure comparison protocol as a sub-protocol. Our proposal provides a computational
advantage, with a linear complexity in the digit precision of the quotient. We provide
proof of security in the universally composable framework and complexity analyses. We
present experimental results for two cryptosystem implementations in order to compare
performance. An efficient prototype of our protocol is implemented using additive ho-
momorphic scheme (Paillier), whereas a non-efficient fully-homomorphic scheme (BGV)
version is equally presented as a proof of concept and analyses of our proposal.

Parts of this chapter have been published as:
(1) Ugwuoke, C., Erkin, Z., & Lagendijk, R. L. (2018, August). Secure fixed-point division for homomorphi-
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A. APPENDIX SECURE FIXED-POINT DIVISION FOR HOMOMORPHICALLY ENCRYPTED

OPERANDS

A.1. INTRODUCTION
In an era where outsourcing computation has been well adopted and widely imple-
mented [1], concerns over the privacy of sensitive data outsourced to processing entities
become the new paradigm [2, 3]. The choice of outsourcing data to processing entities
has become common and rightly so, partly because of the enormous processing and
storage resources often possessed by such infrastructures such as cloud services. These
entities continue to process outsourced data even in the face of privacy concerns and
sensitivity of the data being processed. It is easier and convenient for a data owner or
client to store their data on a central infrastructure where they can easily access their
data using multiple devices. In some scenarios the algorithms required for computing
data are proprietary and are considered trade secrets that should not be entrusted with
every client [4]. The processing entity does not have to be trusted with sensitive data
of the data owners, even as data owners wish to utilise the services of the cloud with-
out completely trading their privacy thereof [5]. It is common to observe scenarios that
require interaction between a client data and an untrusted processing entity in various
areas. Such areas include financial sector, secret balloting [6], genome data computa-
tion [7, 8], private data aggregation setting [9], private healthcare data analyses [10]. Re-
searchers in the field of cryptography continue to address challenges involving private
analyses of data with the use of various cryptographic techniques. Such techniques in-
clude secret sharing [11], garbled circuit [12], and encrypted computation [13]. Any of
the techniques may be adopted depending on the dataset involved and the adversarial
model.

For researchers to unambiguously process and analyse datasets in plaintext, basic
arithmetic operations which include: addition, subtraction, multiplication and division
are usually necessary in various steps of these algorithms. While it is computationally
feasible and relatively cheap to replicate basic arithmetic operations on private data
with the use of primitives such as secret sharing and garbled circuit, processing en-
crypted (using public key) data presents a different challenge altogether. For instance,
if a cloud infrastructure is required to homomorphically compute an operation over an
outsourced data which is sensitive. It is obvious that the intermediate data and the out-
put data would be ciphertexts of the homomorphic scheme. Homomorphic encryption
schemes are currently used in non-interactive settings to perform addition, subtraction
and multiplication (in some cases), but not division. In order to obtain division, inter-
active settings are often adopted. Computations over encrypted data using HE schemes
provide provable semantic security, making them good alternatives for providing pri-
vacy of outsourced data. We narrow our discussion to consider only data outsourced in
encrypted format and processed in the encrypted domain. For this, we consider homo-
morphic encryption [13–15] as the cryptographic primitive of choice.

Our focus is on a setting where a cloud infrastructure stores dataset of encrypted in-
tegers. The cloud is required to compute an algorithm that requires the division of two
encrypted inputs
(Encpk (a) ,Encpk (b)) , which are the numerator and denominator respectively. The re-
sult (quotient) should be of the expression Encpk ( a

b ). There is also a second party who

cally encrypted operands. In Proceedings of the 13th International Conference on Availability, Reliability and
Security (pp. 1-10).
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is honest-but-curious, and holds the decryption key with which to assist the cloud in
executing the protocol. We assume in our setting that the quotient of any such division
should be a decimal number with known properties such as precision, interval and sign.
Existing attempts to solve the encrypted division are commonly presented in various set-
tings in literature [16–18] , and consequently produce different forms of quotient. It can
be observed in the work by Veugen [16] , that the requirement for operands is relaxed to
allow an encrypted input be divided with a public divisor. It then requires establishing a
two-party protocol that produces the quotient as a final result. Veugen further presents
a different approach which relaxes the operands requirement to have an encrypted in-
put with a private divisor [19]. Other works consider the integer parts of the division,
and scaling and rounding technique is introduced where precision of the result is of in-
terest. A non-interactive solution that efficiently outputs the encrypted quotient of two
encrypted operands is still an open problem. An efficient and scalable solution that in-
volves all encrypted input with an encrypted quotient will find use in various fields of
applied cryptography, for instance when the aggregation of encrypted inputs is of inter-
est, or even for computing encrypted percentages, p-values, and other high precision
decimal results.

Secret sharing technique does not exactly require encrypted inputs, and relies on
multiple parties to keep shares of the secret. The scenario we choose to address does
not fit into the requirement of secret sharing, at least not without further modifications.
Garbled Circuit would also provide a computationally cheaper option than HE, but we
note that the setting of our problem (including homomorphically encrypted data with
public key) does not make GC suitable. We are interested in reducing the number of
parties that are needed to interact, store and process the data. Including a circuit (algo-
rithm) that should be reusable for multiple instances. So, we are proposing a two-party
protocol that reduces the number of rounds that is needed for computing the division of
encrypted integers. Computing on encrypted data offers computational security, fewer
semi-trusted players which reduces the chances of having colluding players and in ex-
tension can easily provide privacy for the data. Performing division of encrypted data
as operands in a non-interactive mode is still a non-trivial task. The following research
works [16–18] choose to address the encrypted division problem in an interactive setting
instead. Our solution is described in a semi-honest security setting. The setting is de-
fined such that one party Ali ce holds the encrypted operands Encpk (a) , Encpk (b) and
wishes to perform the division, while the other party Bob is in possession of the decryp-
tion key, and helps with decryption of ciphertexts at intermediary steps of the two-party
protocol.

Contribution: In this work, we present an efficient and provably secure two-party
protocol that takes as input two encrypted operands and outputs the encrypted quo-
tient up to a desired decimal precision. Our motivation is drawn from the need to ob-
tain a secure division protocol which allows for fixed-point results with high efficiency.
We leverage on a state-of-the-art comparison protocol [20] that is secure, efficient and
cryptosystem independent. With that, we construct a secure fixed-point integer division
protocol which in extension is cryptosystem independent. Our construction guaran-
tees privacy of the input operands and allows for fixed-point results. We compute the
result by executing our protocol Ω rounds, with Ω being the digit precision of the quo-
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tient. Each execution produces an encryption of a single digit Encpk (qi ), corresponding
to the same position on the Ω-digit precision quotient for 0 ∑ i < Ω . Encpk (q0) is the in-
teger component of the fixed-point quotient, while Encpk (q1) . . .Encpk (qΩ°1) represent
the encryption of the decimal component up to the predefined digit precision Ω. Two
implementations of our proposed construction are provided. First, is a Paillier [14] im-
plementation, which is efficient and easily deployable due to its practicability. Second, is
a somewhat homomorphic scheme-BGV [21] implementation, which is only provided as
a proof of concept and for analysis of performance. We provide detailed security proof
using the simplified universally composable security as introduced by Canetti, Cohen
and Lindell [22]. Complexity analyses and implementation results that demonstrate the
feasibility and efficiency of our proposed protocol.

A.2. RELATED WORKS
Here we provide a much detailed exposition of different works that have provided so-
lutions to encrypted integer division, and how their contributions differ than our ap-
proach.

Bunn and Ostrovsky [23] adopt a security model for an honest-but-curious adver-
sary, and propose a construction for privately computing k-mean clustering protocol,
with the use of a two-party division. In their work, the operands are sampled from ZN .
Given two inputs P,D 2 ZN , the Division Algorithm produces the following : Q < N and
0 ∑ R < D such that P = QD +R and (Q,R) are unique ordered pair in ZN . It becomes
immediately evident that the division does not attempt to cover arbitrary input space,
but inherits the upper bound of a finite message space in a semantically secure homo-
morphic encryption scheme. Their construction continues with defining Q as the quo-
tient of the division (possibly rounded down to the nearest integer), while discarding
R. In the implementation, both parties are provided with shares of the inputs such that
P = P A +P B and D = D A +DB where A and B represents both parties. At completion,
the division protocol is expected to produce a share of Q to both parties. Subsequently,
other sub-protocols are run to securely compute the final value Q. It is important to note
that although this construction successfully computes the k-mean, it does not provide
for a floating point result.

Using the Paillier Homomorphic Encryption Scheme, Dahl et al. [17] demonstrate
how to compute secure division for integer inputs. Unlike some constructions that as-
sume private or public input for the divisor, a ciphertext is considered as the divisor here.
Two different protocols are presented, whereby one provides for a constant-round of
communication, the other offers a sub-linear communication complexity. Several sub-
protocols are relied on to achieve the division, which includes: Prefix-or of a sequence
of bits, bit decomposition of encrypted value, computing the greater-than relation. Also,
the authors demonstrate a division protocol that provides for an integer quotient, which
does not consider floating point results.

Another interesting approach to securely computing integer division is elucidated by
Veugen [16, 19]. The author introduces two possible constructions that result to differ-
ent results. One approach computes the exact division result, after taking in as input an
encrypted numerator, and a public divisor. The second approach computes an approx-
imate division result, with inputs of an encrypted numerator with a choice of private
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or public divisor. It is observed that the approximate result approach performs better
than the exact result construction. Just like the previous work [23]. Veugen’s construc-
tion leverages a secure comparison protocol to compute exact or approximate values for
the quotients of two integer operands. However, the floating point quotient is also not
addressed in his work.

Catrina and Saxena in [24] address challenges faced with outsourced computation by
providing a multiparty protocol which securely computes rational numbers in a privacy-
preserving manner. In a semi-honest model, their construction computes rational num-
bers represented in fixed-point, and deploys secret sharing as the cryptographic primi-
tive. Their protocol provides for performing basic arithmetic operations which include
addition, subtraction, multiplication and division. However, unlike the scenario consid-
ered in our proposal, Catrina and Saxena do not consider that the inputs are encrypted,
which reduces the problem to computing division of private operands, hence the use of
secret sharing. The different parties that keep shares of the secret only hold private data
and not encrypted data, also the adopted technique induces extra rounds and commu-
nication costs for the entire protocol.

A similar work done by Franz et al. [18] adopts a two-party protocol for the compu-
tation of encoded real numbers in an oblivious way. The construction utilises a hybrid
of homomorphic encryption using Paillier cryptographic scheme [14] and garbled cir-
cuit [12]. In their work, the resulting protocol is able to evaluate arithmetic operations
including addition, subtraction, multiplication and division using a special type of en-
coding for real values representation. Franz et al. describe their work in a semi-honest
setting, and the use of encrypted input provides computational security to the data be-
ing evaluated. However, the description of their work reveals that a precomputed lookup
table is required in the protocol, which places certain constraints on the security and us-
ability of their protocol. For instance, if the range of input values grows, it translate to
growth in the lookup table which constitutes both storage and search cost for the par-
ties. And when the input range becomes small, the probability of finding a collision in
the lookup table increases when the same values are evaluated more than once, thereby
degrading the security of the protocol.

Arguing that the continuous demand for outsourced computation is a motivation for
secure computation, Aliasgari et al. [25] propose and demonstrate a solution for complex
operations such as square root, logarithm, exponentiation and secure division, using
private integer and non-integer values. They adopt secret sharing technique to privately
evaluate the functions of interest, in a multi-party setting. However, it is important to
mention then that the scope of their solution does not extend to encrypted data.

A.3. PRELIMINARIES

Here, we introduce the settings and cryptographic building blocks utilised for our con-
struction. For all the two-party setting in this paper, we have two players Ali ce and Bob,
they run a secure two-party protocol whereby Ali ce holds the public key and the en-
crypted inputs, while Bob holds the public and private key pair. Bob securely interacts
with Alice to compute the result of the protocol over the encrypted domain.
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A.3.1. HOMOMORPHIC ENCRYPTION
Homomorhpic Encryption (HE) allows for an arbitrary operation to be performed on ci-
phertexts, such that the resulting ciphertext would decrypt to the same value as would be
obtained if a targeted algebraic operation were to be performed on the plaintext values.
Let Encpk (·) and Decsk (·) represent encryption and decryption functions respectively.
(m1 ,m2) are two messages and k is a scalar value, while � , ⇢ and ⇥ are arbitrary oper-
ations on the ciphertexts. Then, homomorphism is defined as follows:

Decsk (Encpk (m1)�Encpk (m2)) = m1 +m2 , (A.1)

Decsk (Encpk (m1)⇢Encpk (m2)) = m1 ·m2 , (A.2)

Decsk (Encpk (m1)⇥k) = m1 ·k . (A.3)

PAILLIER SCHEME [14] :
Paillier cryptosystem is an additively homomorphic scheme which is secure under the
computational composite residuosity assumption. Given a public key, private key pair
(pk, sk) respectively. pk := (g ,n) and sk :=∏(n). Where∏(n) is the Carmichael’s function
on n, define ∏(n) := l cm(p °1, q °1).
Encryption: c := Encpk (m,r ) := g m · r n mod n2 , where c 2Z§

n2 ; n := p ·q , s.t p and q are
distinct large primes, r √Z§

n , g is generator of order n.

Decryption: Given ciphertext c, m := Ln (c∏ mod n2)
Ln (g∏ mod n2)

mod n and Ln(a) := a°1
n .

Additive Homomorphism: Given two ciphertexts of messages m0 and m1, we can com-
pute the sum as follows:

Encpk (m0,r0)£Encpk (m1,r1) := (g m0 · r n
0 £ g m1 · r n

1 )

:= (g m0+m1 · (r0 · r1)n mod n2)

:= Encpk (m0 +m1) .

A.3.2. SOMEWHAT HOMOMORPHIC ENCRYPTION SCHEME:
The BGV [21] scheme is a leveled HE scheme, and has its security reduced to the Learn-
ing with Errors (LWE) problem or its Ring variant (RLWE). Unlike the Paillier scheme, the
BGV scheme offers both additive and multiplicative homomorphism albeit under cer-
tain conditions. Reference should be made to [21] for further details.

A.3.3. CRYPTOGRAPHIC PROTOCOL
Relevant cryptographic protocols which are utilised to construct our protocol are dis-
cussed below.

SECURE MULTIPLICATION PROTOCOL (SMP):
Paillier homomorphic cryptosystem [14] only offers additive homomorphism and no
multiplicative homomorphism. We therefore initiate a secure two-party protocol in or-
der to obtain the multiplication of two encrypted values [26]. Ali ce holds two cipher-
texts Encpk (m1) and Encpk (m2) and requires to compute the product Encpk (m1 ·m2).
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Bob holds the secret key sk, Ali ce selects two random numbers r1, r2, and computes
Encpk (m1 + r1) and Encpk (m2 + r2). Alice sends encryptions of the masked values to
Bob. Bob decrypts the ciphertexts and multiplies the results, then encrypts Encpk (m1 ·
m2 +m1 · r2 +m2 · r1 + r1 · r2) and sends to Ali ce. Finally, Ali ce can unmask the value to
obtain
Encpk (m1 ·m2) , without having to learn the values of m1 and m2 .

SECURE COMPARISON:

As a high level overview, a secure and privacy-preserving comparison protocol takes as
inputs a pair of encrypted integer values Encpk (a) , Encpk (b) from Ali ce. Then she
establishes a two-party protocol with Bob who has the decryption key. At the end of the
protocol, Bob returns an encryption of a bit Encpk (∏0) to Ali ce. Ali ce further computes
on Encpk (∏0) to obtain Encpk (∏), where ∏,∏0 2 {0,1} and the value of b is determined as
follows:

∏ :=
Ω

0 if a < b
1 if a ∏ b

(A.4)

In our adopted comparison protocol, Ali ce does not directly send Encpk (a), Encpk (b)
to Bob. She however sends Encpk (d) to Bob, given that d = 2`+ r + (2§a)° (2§b +1) ,
where r is defined as a random variable in the size of the security paramter, and ` is
defined as the input bit size. Bob can then decrypt Encpk (d) and proceed with the two-
party computation with the help of Ali ce.

Readers can refer to the paper [20] for more details about the secure comparison
protocol.

A.3.4. SECURITY ASSUMPTIONS:
Our secure division protocol is constructed in the semi-honest security model. The
channel of communication is assumed to be protected by other network security and
cryptographic techniques, thereby considered secure, and there is a non-collusion as-
sumption between Ali ce and Bob. Our assumption is realistic for a practical setting. For
instance when an individual utilises the cloud to compute an operation, the cloud infras-
tructure might not want to collude with the individual for the sake of their reputation. If
the individual were computing on his personal data (encrypted under a third-party key)
it then becomes easy to argue that the individual has no incentive for colluding with the
cloud services to threaten his privacy. We demonstrate that a user can easily outsource
encrypted values to a processing entity such as the cloud to compute division securely,
and will receive an encryption of the resulting quotient. Most importantly, our protocol
guarantees that the computation was done correctly and the curious processing entity
could not infer anymore information from the computation than was expected.

A.3.5. NOTATIONS

Basic notations and their corresponding descriptions as used in the rest of our work are
provided in Table A.1.
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Table A.1: Notations

Notation Description

(pk, sk) Public key, private key pair
Encpk (·) Encryption algorithm
Decsk (·) Decryption algorithm
J·K Ciphertext
a,b The operands, a is numerator and b is divisor
` Upper bound of operands bit size
`0 Input bit size for comparison protocol
qi Digit of the resulting quotient at index i
c Index, ranging from 0 to 10
K ,K 0,K 00 Vector of bit encryptions
Kc Ciphertext at index c of vector K
Ω Digit precision of quotient
n Plaintext size of encryption scheme
m Ciphertext bit size
∑ Security parameter, with default value of 80
© Exclusive or
∏0 Bit sent from Bob to Ali ce after comparison
∏ Bit 1, if a ∏ b, and bit 0, otherwise
® Secure permutation function
®0 The inverse of® such that, A =®0(®(A))
B Number base of computation, default is 10
EPPC P Efficient comparison protocol used
d The variable Ali ce sends to Bob to initiate comparison
? Empty string
c¥ Computationally indistinguishable

A.4. SECURE DIVISION PROTOCOL
The protocol description for our work is presented in this section. We demonstrate
how two mistrusting parties Ali ce and Bob can run a secure two-party protocol with
encrypted inputs, to compute the encrypted quotient of the encrypted values, while
preserving the privacy of the input variables. Our proposal leverages on a secure and
privacy-preserving comparison protocol, which can efficiently compare two encrypted
inputs.

A.4.1. PROTOCOL SETTINGS

In our construction, Ali ce holds two encrypted inputs Encpk (a), and Encpk (b) , of size
` -bits each, while Bob holds the decryption key sk . At the end of the protocol, Ali ce
obtains an encryption of the quotient in fixed-point: Encpk ( a

b ) while Bob does not learn
the value of the quotient, assuming that the comparison protocol is secure. The resulting
encrypted fixed-point value will be bounded by a public pre-specified precision value Ω .
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The quotient will be a decimal number with Ω digits, q0 , q1 , . . . , qΩ°1 . The following
conditions are equally necessary for a correct computation of the quotient:

• All operands must be positive integers.

• The relation a ∑ 10·b must hold between the numerator and denominator in order
to preserve correctness of the computation. The number 10 represents the num-
ber of digits available in the number base in which the processing is performed.
For cases where the mentioned relation does not hold, our construction can be
adjusted to accommodate such cases.

• As indicated in Subsection A.3.3, the input values to the comparison protocol gets
multiplied by 2, followed by the multiplication of the denominator by 10. These
operations constitute bit expansion of the original input values. Consequently, for
every operand of ` bit size, there is an expansion by at most 5 bits. We account
for such expansions by defining `0 := `+5, and the comparison protocol can then
handle the data expansion to guarantee correctness.

We define `0 := `+ 5 to clearly distinguishes the input bit size of the comparison
protocol `0, from the operands bit size `.

Furthermore, the Efficient Privacy-Preserving Comparison Protocol (EPPCP) [20], is
described using a hybrid of two additive homomorphic scheme. However, we adopt a
slightly modified version of their description, and utilise only a single encryption scheme
for clarity and simplicity. This means that we do away with the zero check technique
afforded by the DGK [27] scheme, and then replace it with a decryption and a zero check
steps respectively. Our approach allows for robustness, because it allows for the bit size
of the input to be increased and not limited by the DGK [27] cryptographic scheme.

A.4.2. PROTOCOL DESCRIPTION
Our secure division protocol is described in Protocol 3, using the specification listed in
Table A.2. Our construction observes the conditions mentioned in Subsection A.4.1, and
then it computes the decimal quotient by iteratively computing the digits of the quo-
tient, until a pre-specified precision Ω. When the operands do not conform to the condi-
tions, they could be homomorphically processed to preserve the required relation. Every
round of the division protocol produces an encrypted digit of the operand, by using the
EPPCP to compare Encpk (b · c) > Encpk (a), 8 c : c 2 {1 , . . . ,10}. The encrypted result
of the EPPCP, which is a binary value is then stored in the corresponding index of the
vector K . After the vector K is constructed, Ali ce can then use K to privately com-
pute the desired digit. For any pair of operands (Encpk (a) ,Encpk (b)), the first digit of
the quotient Encpk (q0) obtained from the first round of the division protocol represents
the integer part of the quotient. While the subsequent rounds generate the digits of the
decimal parts from Encpk (q1) , · · · ,Encpk (qΩ°1).

We provide further details for the various steps of the protocol.
Step 1: Ali ce holds two encrypted values (JaK ,JbK), which should conform to the con-
ditions in Subsection A.4.1, she sets the value for Ω being the digit precision of the quo-
tient, and sets her counter to i = 0. She also initialises the ciphertext variables JnumK
and JdenK, and sets them to the numerator and denominator respectively.
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Table A.2: Protocol Specification

Player Ali ce (pk) Bob (pk, sk)
Input Encpk (a) ,Encpk (b) ?
Output Encpk (qi ) ; i 2 {0, . . . ,Ω°1} ?
Constraint 1 ∑ c ∑B; a,b ∑ 2`; a < 10 ·b

Protocol 3 Division Protocol
1: Ali ce sets Ω, i := 0,JnumK := JaK ,JdenK := JbK
2: for c 2 {1 , . . . ,B}
3: compute JdencK := Jden · cK
4: rc √ {1`

0+∑+1}
5: JdKc := J2 ·denc ° (2 ·num +1)+ rc +2`

0K
6: Ali ce applies permutation function®(·) to change order of JdK
7: Ali ce runs EPPCP with Bob for all values of JdK
8: Bob returns J∏0

cK for every run of EPPCP
9: Ali ce inverts permutation function and obtains: K :=®0(·)

10: K := {J0KJ∏1K,J∏2K, . . . ,J∏10K}
11: Ali ce construct another vector K 0

12: computes values for index as K 0
c := J∏c © ∏c+1K

13: Ali ce computes digit as Jqi K := JP9
c=1(K 0

c · c)K
14: if i < (Ω°1)
15: set Jnum0K := J(num °qi ·b)K
16: JnumK := Jnum0 ·BK
17: i := i +1
18: return to Step 2
19: else END.

Steps 2 - 5: Ali ce computes 10 values of JdK for running the comparison protocol with
Bob, where the number 10 represents all decimal digits. JdKc is computed as a compar-
ison of the relation Jden ·cK> JnumK, for value of c ranging from {1 , . . . ,10}. rc is a fresh
random number for index c .
Step 6: After computing the values of JdK, Ali ce permutes the ordering of the ciphertext,
in order to obfuscate the ordering when presented to Bob.
Step 7 - 8: Ali ce initiates a run of the comparison protocol with Bob, and for each JdKc
sent to Bob, Ali ce receives J∏0

cK.
Step 9 - 10: Ali ce reverses the permutation applied in Step 6, in order to re-order the
ciphertexts obtained from Bob. This results to the vector of ciphertexts K . Observe that
Ali ce inserts an encryption of zero J0K, into the first index of the vector K , this is done
to extend the size of the vector K to 1. As a result, all consecutive pair entries of the
vector K , can generate 10 entries of the required vector K 0.
Step 11 - 12: Then Ali ce constructs a different vector K 0, by homomorphically comput-
ing the x-or of every consecutive pair of J∏cK.
Step 13: Ali ce can then compute the digit Jqi K at position i of the quotient, by first
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multiplying every ciphertext at K 0
c by the corresponding scalar c. Then, compute the

summation of the results.

Step 14 - 19: If the required precision Ω has been achieved, the algorithm ends, else, the
inputs are reset for computation of the next digit, and control returned to Step 2.

TOY EXAMPLE:

We illustrate the intuition behind the construction of our protocol with the help of a toy
example in Figure A.1. It shows the different steps for computing the division of two
encrypted inputs J35K ,J8K representing the numerator and denominator respectively,
and the quotient presented as a 5 digit precision decimal. In our demonstration, we
choose to disregard the natural meanings of the operations (+, *, - >) used, but assume
that these operations are implied to work on the encrypted data for simplicity, hence
independent of cryptographic scheme. As can be observed, at the end of the protocol,
Ali ce obtains the ciphertexts of the digits of the division, which are J4K ,J3K ,J7K ,J5K ,J0K,
while Bob does not learn any of the digits.

A.4.3. CORRECTNESS

We consider two encrypted positive integers JaK and JbK, where the values a,b < 2` and
the quotient a

b < B. Then, rely on the assumption that EPPCP always returns a correct
answer for every comparison (b < a). To retrieve any digit component of the quotient
qi , we first generate the product of the divisor JbK with all possible values of c, which
is a trivial case of exhaustive search of all non negative integers smaller than B. If the
assumption about the correctness of EPPCP holds, then it must be the case that when
the condition b · c > a ? is True, then:

9 c 2 [0, ...,10) s.t . a ∑ b § c , and b § (c °1) < a (A.5)

If the secure comparison protocol returns∏c = 1 when the comparison is True and∏c = 0
otherwise. A vector of bit encryptions K is generated with the first entry set to an en-
cryption of zero, then we can compute a second vector K 0 by xoring every two consec-
utive entries of the vector K . For cases where the resulting digit of the quotient is a
non-zero integer, it can be observed that performing the xor operation will generate ci-
phertexts of zero-filled vector, with only one position having value J1K. Multiply each bit
encryption with the corresponding index value, and sum the results to extract the index
value as the quotient.

When computing the xor operation, we generate a vector of size 10, however, when
the digit extraction phase Jqi K =

P9
c=1(K 0

c § c) is computed, we only cover for 9 entries
of the K 0. This is because the operation is a summation, and the value of zero is incon-
sequential to the final result. All arithmetic operations required within our protocol can
be harnessed from the homomorphism properties of the cryptosystem in use. Every run
of our protocol produces a digit of the resulting quotient, therefore, after an encrypted
digit is obtained, we need to refresh the inputs for the next run. We simple compute
JnumK := (JaK° Jqi K§ JbK)§10 .



560354-L-bw-Ugwuoke560354-L-bw-Ugwuoke560354-L-bw-Ugwuoke560354-L-bw-Ugwuoke
Processed on: 11-5-2021Processed on: 11-5-2021Processed on: 11-5-2021Processed on: 11-5-2021 PDF page: 172PDF page: 172PDF page: 172PDF page: 172

A

164
A. APPENDIX SECURE FIXED-POINT DIVISION FOR HOMOMORPHICALLY ENCRYPTED

OPERANDS

Alice

pk,J35K ,J8K ,Ω := 5

Bob

sk

? ?

Set JdenK := J8K,JnumK :=
J35K,
JdencK( J8§ cK ,

for c 2 {1 , . . . ,10} ,
compute vector of JdencK
|J8K |J16K |J24K |J32K |J40K |J48K|J56K |J64K |J72K| J80K|

for each JdencK, Run EPPCP

-(J8K>
J35K) , (J16K>

J35K) , . . . , (J80K>
J35K)

Secure Comparison of each
JdencK> J35K

Compute the vector of
ciphertext K 00

K 00 :=
|J0K|J0K|J0K|J0K|J1K|J1K|J1K|J1K|J1K|J1K|

� K 00

Computes vector K from K 00

K :=
|J0K|J0K|J0K|J0K|J0K|J1K|J1K|J1K|J1K|J1K|J1K|

Compute another vector K 0

as:
K 0

c := Kc © Kc+1; for c 2
{0 , . . . ,9}

K 0 =
|J0K|J0K|J0K|J1K|J0K|J0K|J0K|J0K|J0K|
Jqi K := J4K=P9

c=1(K 0
c § c)

To obtain next digit, compute:

JnumK := (J35K°J4K§J8K)§B ,

and re-run the protocol

? ?

J4K ,J3K ,J7K ,J5K ,J0K

Figure A.1: Division protocol: Toy Example
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A.4.4. OPTIMISATION
In a view to reduce the number of rounds and overall complexity of implementation, we
can deploy data packing technique. Since we have cryptosystems where bit size of plain-
text spaces are often larger than `0, we can pack many values of JdcK into a ciphertext and
then transmit same to Bob for comparison. Deploying packing will reduce the number
of rounds and reduce communication cost, while contributing a negligible computa-
tional overhead. Having mentioned that the bit size for the operand values is `0, we can
proceed to pack w numbers of JdcK in a single ciphertext. To compute w , we have that
w = b n

∑+`0+1 c where ∑ is the security parameter. Therefore, for the default implementa-
tion of EPPCP where Paillier cryptosystem is used for the packing, we have∑= 80,`0 = 30,
and n = 2048 being the plaintext size of Pallier. Just as expected, the amount of data to
be packed decreases proportionally as input size ` increases. Deploying packing reduces
the number of decryption required. It should be mentioned that decryption costs are
computationally expensive and often outweighs the computational cost of other homo-
morphic operations.

Additionally, when Ali ce is processing the value JdcK for the comparison protocol,
she computes the encryption of Jb § cK 8 c 2 {1 ,2 , . . . ,10}. The encrypted values can
be reused over the course of computing the encrypted digits Jqi K, and we can avoid the
extra homomorphic additions and scalar multiplications associated with that computa-
tion.

We can reduce the cost needed for computation of JP9
c=1(K 0

c ©K 0
c+1)§ cK. Rather

than computing the xor as JP9
c=1(K 0

c +K 0
c+1 °2§K 0

c §K 0
c+1)§ cK , we process the en-

crypted values as JP9
c=1(K 0

c+1 °K 0
c )§ cK. It follows from the fact that due to the special

case of the vector K 0 , one can compute the expression K 0
c ©K 0

c+1 as either K 0
c +K 0

c+1°
2§K 0

c §K 0
c+1 or computed as K 0

c+1 °K 0
c . On a close observation of both methods for

computing K 0
c ©K 0

c+1, the former requires at least 2-additions, 1-multiplication and 1-
subtraction, while the latter requires a single subtraction. We refer readers to the original
paper [20] for further details.

A.5. COMPLEXITY ANALYSES
Here, we show the complexity for various components that contribute to the division
protocol. We present a tabular representation for the costs contributed by each oper-
ation during the run of our protocol in different modes. In Table A.3, we present the

Table A.3: Computation cost for a single EPPCP

Alice Bob Total
Encryption `0+3 `0+2 2`0+5
Decryption 0 `0+1 `0+1
Scalar Mult. `0+2 0 `0+2
Multiplication 0 0 0
Addition `0+1 0 `0+1
Subtraction 3 0 3

computation cost incurred for every completed comparison of two integers. The table
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contains only the homomorphic operations because other non-homomorphic opera-
tions contribute negligible cost to the protocol. The decryption operation is the most
expensive of all the listed operations. It can be seen that the cost of all operations grow
linearly in the bit size of the input variables. In Table A.4, we show the communication
cost of executing a single round of the comparison protocol.

Table A.4: Communication cost for a single EPPCP

Alice Bob Total
Sent (bits) m(`0+1) m(`0+2) m(2`0+3)
Received (bits) m(`0+2) m(`0+1) m(2`0+3)

The SMP requires 4, 2, 5 and 2 units of encryption, decryption, addition and scalar
multiplication respectively.

To compute a single digit of the quotient, the division protocol requires 8Ω, 10Ω°1,
10Ω°1, Ω°1 and 10Ω units of addition, subtraction, scalar multiplication, secure mul-
tiplication and EPPCP respectively. This shows that the complexity of the division pro-
tocol is mostly dependent on the comparison protocol. Also, as can be seen in Table
A.5, the computation cost scales linearly with both the bit length of the operands and
precision of the quotient. The complexity of computing a quotient is equally dependent
on the precision of the quotient, represented as Ω. Furthermore, there is no extra com-
munication cost associated with the division protocol excluding that contributed by the
comparison protocol. This is the case because there is no interaction between Ali ce and
Bob for computing the digits, except for that incurred during secure multiplication.

Table A.5: Computation cost for a quotient

Enc. Dec. Add. Sub. Mult. Sc. Mult.
20`0Ω+50Ω 10`0Ω+10Ω 10`0Ω+18Ω 10Ω+2 Ω°1 10`0Ω+30Ω+1

A.6. SECURITY AND PRIVACY ANALYSES
In this section we present the security and privacy arguments for which our construc-
tion is secure and privacy-preserving under the honest-but-curious security model. We
adopt the universal composability (UC) security framework [22, 28–31], due to it being
more expressive and suitable for a two-party computation protocols. The idea would be
to present a comparison between a real-world construction of our protocol against an
ideal-world version of the same protocol. We conclude that a real-world protocol ¶, re-
alizes an ideal-world protocol F , if an adversary A in the real-world protocol does not
gain any more advantage than an adversary S in the ideal-world protocol. Note that in
the ideal setting of the protocol (F ) , security and privacy are guaranteed and no adver-
sary should be able to compromise the protocol. There exists an environment E , who
provides inputs to parties and is able to observe outputs from parties as well as know
corrupted parties. We say that ¶ securely realizes F , if E cannot distinguish a real-
world protocol running with adversary A , from an ideal-world protocol running with
simulator S .
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Our proof is presented in two parts. This is important because we utilise two subpro-
tocols (secure comparison, secure multiplication1) in constructing our secure division
protocol. We provide security proof for one of the sub-protocols using simulation based
technique, and finally compose the security using UC framework. Negligible function[31]:
A function µ(·) is negligible if for every positive polynomial p(·) and all sufficiently large ∑ 2 N, it
holds that µ(∑) < 1/p(∑).

Computational Indistinguishability[31]: Given that a 2 {0,1}§ and ∑ is security parameter, let
X = X (a,∑) and Y = Y (a,∑) be two probability ensembles. X and Y are said to be computationally

indistinguishable, denoted by X
c¥ Y, if for every non-uniform polynomial-time algorithm D there

exists a negligible function µ(·) such that,

|Pr[D(X (a,∑)) = 1]°Pr[D(Y (a,∑)) = 1]|∑µ(∑) . (A.6)

Definition of Security[31]: Let f = ( f A , fB ) be a PPT functionality and let º be a two-party
(by A and B) protocol for computing f . f A , fB denote the results corresponding to parties A and B
respectively on running f . The view of the party i 2 {A,B} during the execution of º on input (a,b)
and security parameter ∑ is denoted by ,viewº

i (a,b,∑) := (w,r i ;mi
1, . . . ,mi

t ), where w 2 (a,b),r i

equals the content of party i ’s internal random tape, and mi
j represents the j th message received.

The output of party i during the execution of º on the inputs (a,b) with security parameter ∑
is denoted by ,outputºi (a,b,∑) and can be computed from its own view of the execution. The join
output of both parties is denoted by ,outputº(a,b,∑) = (outputºA(a,b,∑),outputºB (a,b,∑)) .

We say that º securely computes f in the presence of semi-honest adversaries if there exists
PPT algorithms SA and SB such that:

{SA(1∑, a, f A(a,b)), f (a,b)}
c¥ {(viewº

A(a,b,∑),outputº(a,b,∑))} . (A.7)

{SB (1∑,b, fB (a,b)), f (a,b)}
c¥ {(viewº

B (a,b,∑),outputº(a,b,∑))} . (A.8)

In order to provide a clear proof of the comparison protocol as adopted in this work, we
first present the internal working of the protocol. This will help the reader to understand
the proof presented below. The two parties are A and B .

1. A and B are given security parameter ∑, pk and input bit length ` . B is given sk .

2. A is given JaK, JbK each of size ` bits.

3. A generates r A √ {0,1}`+∑ and computes JdK := J2`+ r A +2a °2b °1K and sends JdK to B .

4. B decrypts JdK and computes d 0 := d mod 2`, and d 00 := b d
2`

c .

5. For i 2 {0, . . . ,`°1}, B computes ti = d 0
i +

Pi°1
j=i+1 2 j §d 0

j . and sends Jd 00K,Jt0K, . . . ,Jt`°1K to
A .

6. A computes r̂ A := r A mod 2`, s √ {°1,1} ; For i 2 {0, . . . ,`°1},
hi √Z§

∑; vi := s ° r̂ Ai °
P`°1

j=i+1 2 j § r̂ A j ;Jci K := Jvi + ti K;Jei K := Jci §hi K .

And sends all encrypted values of Jei K to B .

7. B checks if any Jei K decrypts to zero, and sets ∏0 := 1, and if no zero value is found ∏0 := 0. B
returns J∏0K to A.

1The secure multiplication protocol is widely used in literature and has been proven secure, so we will not be
providing that proof in this work.
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8. On receiving J∏0K, A sets the variable JxK := J∏0K if s = 1, else set x := J1°∏0K if s =°1.

9. Finally, A computes J∏K := Jd 00 °b r A
2`

c° xK.

The comparison protocol º securely and privately computes the comparison function-
ality f ((JaK,JbK),?) = (J∏K,?) in the presence of any honest-but-curious PPT adversary.

The aim here is to show that the view of a PPT adversary A in the real-world execu-
tion of the protocol º, is computationally indistinguishable from the view of a simulator
Si for i 2 {A,B} in the ideal world execution of the protocol f . Let us assume that party A
has been compromised by an adversary A . SA is provided with the inputs and outputs
of party A, and is required to simulate the view:

1. SA is provided with JaK and JbK, and he generate rS A √ {0,1}`+∑ and computes JdS AK :=
J2`+ rS A +2a °2b °1K and sends JdS AK to B .

2. B follows the protocol and sends Jd 00
S AK,JtS A0K, . . . ,JtS A`°1K to A .

3. SA continues with the protocol, then generates and sends all encrypted values of JeS Ai K to
B .

4. B responds with J∏0S AK to A.

5. SA completes the protocol and generates J∏S AK
From above, the simulated view of SA can be expressed as:

SA((JaK,JbK),∑) :=(1∑,rS A , (JaK,JbK),

Jd 00
S AK,Jt 00S A0K, . . . ,Jt 00S A`°1K,J∏0S AK) (A.9)

In contrast, the view of party A is presented as:

viewº
A((JaK,JbK),∑) := (1∑,r A , (JaK,JbK),Jd 00K,Jt 000 K, . . . ,Jt 00`°1K,J∏0K) (A.10)

We can conclude from Equation (A.10, A.9) that

SA((JaK,JbK),∑)
c¥ viewº

A((JaK,JbK),∑). (A.11)

For any PPT distinguisher D ,

Pr [(1∑,rS A , (JaK,JbK),Jd 00
S AK,Jt 00S A0K, . . . ,Jt 00S A`°1K,J∏0S AK), (J∏S AK) = 1]

°Pr [(1∑,r A , (JaK,JbK),Jd 00K,Jt 000 K, . . . ,Jt 00`°1K,J∏0K), (J∏K) = 1] ∑ 1
µ(∑)

(A.12)

Finally, for any semantically secure encryption scheme, Eq. A.12 will hold and our
protocol º remains secure. And that completes the first part of the proof.

If party B is compromised, we construct a similar proof, with SB .

SB ((?),∑) := (1∑,rSB ,JdK,d ,eSB0, . . . ,eSB`°1,JeSB0K, . . . ,JeSB`°1K). (A.13)

Again in contrast, the view for party B is presented as:

viewº
B ((?),∑) := (1∑,rB ,JdK,d ,e0, . . . ,e`°1,Je0K, . . . ,Je`°1K). (A.14)
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For any PPT distinguisher D ,

Pr [(1∑,rSB ,JdK,d ,eSB0, . . . ,eSB`°1,JeSB0K, . . . ,JeSB`°1K), (?) = 1]

°Pr [(1∑,rB ,JdK,d ,e0, . . . ,e`°1,Je0K, . . . ,Je`°1K), (?) = 1] ∑ 1
µ(∑)

(A.15)

In order to extend the proof to our division protocol, we denote the division proto-
col as ¶. We say that ¶ securely realizes the ideal functionality F , and that ¶ calls the
subprotocol (comparison protocol) f . We represent the call of ¶ to f as the hybrid ¶ f ,
and claim that this must be a secure construction being that f is an ideal protocol. If º
securely realizes f , then, without loss of generality, we can conveniently replace the call
to f , with the call to º. We then conclude that¶º securely realizes¶ f in the presence of
any PPT distinguisher E . The protocol¶ is a secure construction2.

If Ali ce is expected to learn the decrypted values of the computation, then she can
run a secure decryption protocol with Bob, and thereafter Ali ce can learn as much in-
formation as she would have learned if this protocol were to be replaced with a trusted
and unbiased third-party. This means that no information learned by Ali ce is a con-
sequence of deploying the secure division protocol, but as an natural information leak
from the computation. For instance, if the value of the quotient is J1K, then it must be the
case that both JaK and JbK encrypt the same value. If the quotient is J0K, then JaK= J0K
and this can only happen with probability 2°` , assuming uniform selection of operands.
The same follows for the case where the quotient only has an integer part with the dec-
imal component all values of zero; then Ali ce learns that the numerator is divisible by
the denominator. And finally, if the quotient is an even integer, Ali ce can conclude for
certainty that the value of JaK was an even integer.

A.7. IMPLEMENTATION RESULTS
We demonstrate that our protocol is cryptosystem independent, and show performance
of our construction when implemented with different schemes. Therefore, we provide
implementation for two scheme, first with SeComLib [32] which implements the Paillier
cryptosystem and secondly with HeLib [33], which implements the BGV cryptosystem.
All our implementations were carried out on an Intel core 2 Quad @ 2.66GHZ machine,
running Ubuntu 14.04 LTS. The default security parameter ∑ = 80, while the value for
` varies with the cryptosystem to allow for robustness. Figures A.2. and A.3. provide a
visual that explains how each homomorphic operation contributes to the total runtime
of the protocol, depending on the adopted cryptosystem. Although both cryptosystems
can be optimised the achieve better performance, the Figures show that while to com-
pute a single digit of the quotient, Paillier cryptosystem requires about 2 second s. While
the BGV scheme requires about 20 second s. Figure A.2. equally show that in the Pail-
lier scheme, decryption cost overwhelms the total cost of executing the protocol, while
Figure A.3. shows that encryption cost constitutes the most significant part of the to-
tal execution time. We can conclude that in the Paillier scheme implementation, the
decryption cost is associated with the zero-check step within the comparison protocol,
and if this step could be replaced by a much efficient techniqe, then the total execution

2Recall that other phases of the division protocol are non-interactive and are computed homomorphically
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 l =  5  l =  10  l =  15  l =  20

SeComLib runtime for one digit precision
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Figure A.2: Runtime of the protocol with seComLib.

time can be further optimised. There is evidently more incentive to adopt the Paillier
implementation, as this provides for a better runtime relative to that of the BGV scheme.
Secondly, since the ciphertext size of of the Paillier scheme is 4096 bits, as against the
more than 2 Mbits required for one ciphertext of the BGV scheme. Although the BGV
scheme offers non-interactive homomorphic multiplication, which is not available with
the Paillier scheme, the overall advantage of the BGV scheme is still negligible compared
to the storage and processing costs associated with implementing the scheme.

Table A.6: Runtime for homomorphic operations in seconds

Enc. Dec. Add. Sub. Mult. Sc. Mult.
SeComLib 1£10°5 0.0071 1.9£10°5 1.2£10°4 0.01445 6.7£10°5

HELib 0.0381 0.0143 2.4£10°4 6.1°4 0.0683 3£10°4

Table A.6 presents individual operation runtime for the two cryptosystems imple-
mentation. The table helps to further appreciate the details in Figure A.2 and Figure A.3
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HELib runtime for one digit precision
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Figure A.3: Runtime of the protocol with HELib.

A.8. CONCLUSION
Secure division of encrypted values is a secure alternative for providing confidentiality
and privacy for outsourced data. In this paper, we present an efficient and secure di-
vision protocol which takes as input, two homomorphically encrypted operands, and
outputs the fixed-point quotient up to a predefined precision. Our construction guaran-
tees the privacy and security of the operands, under a non-collusion assumption. The
protocol is simple, robust, and can scale efficiently with the length of operands bit size
as well as the digit precision of the quotient. On an average desktop computer, our solu-
tion computes the division of two encrypted operands in less than 2 seconds. A secure
comparison protocol is leveraged for our proposal, and the secure comparison compo-
nent can be replaced whenever a more efficient comparison protocol is available. We
provide security analyses, complexity analyses and implementation to demonstrate the
feasibility and robustness of our proposal. Implementation results are also provided to
show performance using two types of homomorphic cryptographic schemes.
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APPENDIX ECONOMY: ENSEMBLE

COLLABORATIVE LEARNING USING

MASKING

In a society where digital data has become ubiquitous and has been projected to continue
in this trajectory for the foreseeable future, machine learning has become a dependable
tool to aid in analyzing these big dataset. However, where the data or machine learn-
ing algorithms are considered to be privacy-sensitive, one is then faced with the challenge
of preserving the utility of machine learning in a privacy-preserving setting. In this pa-
per, we focus on a use case where decentralized parties have privately owned machine
learning algorithms, and would want to jointly generate a public model while not violat-
ing the privacy of their individual models, and data. We present ECONoMy: a privacy-
preserving protocol that supports collaborative learning using an ensemble technique. Set
in an honest-but-curious security model, ECONoMy is light-weight and provides efficiency
and privacy in settings with large participant such as with IoT devices.

Parts of this chapter have been published as:
(1) Van De Kamp, L., Ugwuoke, C., & Erkin, Z. (2019, September). ECONoMy: Ensemble Collaborative Learning
Using Masking. In 2019 IEEE 30th International Symposium on Personal, Indoor and Mobile Radio Communi-
cations (PIMRC Workshops) (pp. 1-6). IEEE.
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B.1. INTRODUCTION
The rapid growth of digital data over the past few decades has presented an interesting
and peculiar challenge of big data [1, 2]. Although the most common challenge posed by
this event can be said to be that of storage, perhaps, a more critical challenge is the pro-
cessing of huge data especially when faced with privacy-sensitive data, such as medical
data [3]. Huge dataset presents increasing complexity for classical algorithms to nav-
igate through, so, it has become common to adopt machine learning (ML) in order to
analyze data which would otherwise be both complex and almost impossible to analyze.
More so, the industry-acceptance of machine learning has become rife, due to its ability
to extract actionable information from a large dataset [3–7].

Organizations and their customers want to benefit from improved services, offer-
ing higher utility and increased productivity. But recent data leaks incite a widespread
awareness of privacy, as they highlight the risks accompanying the collection of large
amounts of data needed to provide the desired benefits. Making organizations and even
users more circumspect in sharing sensitive data with third parties.

Witten and Frank [8] define machine learning as finding and describing structural
patterns within data, which offers additional knowledge on the data, and can help make
predictions on new samples. The different data points, or samples, used to retrieve such
structural insights can either be labeled, which refers to the concept of supervised learn-
ing, or unlabeled, also known as unsupervised learning.

Theodoridis and Koutroumbas [9] define supervised learning as, designing a classi-
fier by exploiting a priori known information, namely the labels corresponding to the
available training data. Unsupervised learning, on the other hand, can be used without
the presence of class labels. A given set of feature vectors attributes extracted from the
training data, is used to determine underlying similarities or clusters, thereby grouping
‘similar’ items together [9]. Semi-supervised learning exists in between these two types,
having access to a set of patterns without their corresponding class, and to a subset for
which the class is known. The unlabeled data can then be used to obtain additional in-
formation about the general structure belonging to the data at hand [9].

Collaborative learning is one approach where two or more entities contribute their
individual resources and skill in order to learn. Hence, they entities capitalize on the
unit knowledge from participant to achieve a global knowledge. In the context of ma-
chine learning, this would mean that multiple data owners cooperate to jointly generate
a model. However, in a privacy-sensitive setting, the participants aim to limit the privacy
loss of their collected training data to other collaborators.

B.1.1. ADVERSARIAL MACHINE LEARNING
AML is a growing research area that focuses on training and use of machine learning
classifiers in adversarial environments [10]. This field assumes that the environment
contains a potential adversary who can be defined as one’s opponent in a contest, con-
flict or dispute [11]. Adversaries conduct different types of attacks on the training or
inference phases of machine learning to reach a particular objective. Huang et al. [12]
have proposed a taxonomy for the research field in which they define these different
types of attacks. The taxonomy classifies attacks on three different criteria: 1) the type
of influence exerted, 2) the resulting security violation, and 3) the specificity of the at-
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tack. The influence that an attack can be either causative or exploratory, where the first
can actively adapt the training data whereas the latter attempts to obtain information
about the training data or underlying model. The second requirement evaluates the im-
pact a successful attack can have. An attack could lower the integrity of the system by
allowing malicious samples to be labeled as benign, degrade the availability by increas-
ing the number of wrong classifications in general, or by extracting privacy-sensitive
information belonging to the learner. Finally, an attack can focus on a particular mis-
classification (or target), or any misclassification (all possible targets) determining the
specificity of the aim of the attack. A more generic classification of attacks distinguishes
between poisoning and evasion attacks. Poisoning attacks focus on the training phase,
whereas evasion attacks focus on the inference phase of machine learning. The work
presented in this paper mainly focuses on the loss of privacy of the learners participat-
ing in a collaborative learning protocol, exercised to train a globally shared classifier.
Using the previously described terminology, our focus can be described as exploratory
attacks, extracting privacy-sensitive information focused on either all participants or a
specific victim.

B.1.2. CROWDML
CrowdML, as proposed by Hamm et al. [13] follows the semi-supervised approach to
machine learning thereby bounding the privacy loss of the final released model. Nev-
ertheless, this approach does trust a central entity in such a way that the participants
transfer their models from the participants without taking into account potential privacy
loss this can cause. Nevertheless, our ECONoMy approach aims to be used in similar sit-
uations where a lot of small devices are used to generate an ensemble of the underlying
data.

In this paper, we confine our setting to a scenario where a large number of partici-
pants, such as in an IoT setting wish to utilize a decentralized architecture to jointly gen-
erate a global model from their individual private models. We focus on semi-supervised
learning using ensemble machine learning. The local models are securely generated
from private dataset, while the interactive processes are described in the semi-honest
security model.

B.2. BACKGROUND

B.2.1. ENSEMBLE LEARNING
Ensemble learning is a form of supervised learning that uses an ’ensemble’ of different
classifiers rather than a single model. An ensemble is a collection of a (finite) number of
predictors that are trained independently for the same task, after which their predictions
are combined [14]. Lior Rokach [15] refers to an ensemble as a weighted combination of
the individual classifier opinions to obtain a classifier that outperforms every single one.

The employed classification technique of the ensemble is used to determine the class
label corresponding to an unlabeled sample. An overview of combination methods for
ensemble learning has been discussed by Lior Rokach [15]. Due to space limitation, we
only concentrate on one of the techniques known as “majority vote" to perform the label
determination based on the input of individual classifiers.
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Majority vote technique which uses weighing methods is also known as the plurality
vote (PV) or basic ensemble method (BEM) where classification results in the class with
the most votes. The formula is expressed as

cl ass(x) =
arg max

ci2 dom(y)

√
X

k
g

°
yk (x),ci

¢
!

, where yk (x) is the classification of the k’th classi-

fier and g (y,c) := 1 if y = c else g (y,c) := 0 .

B.2.2. COLLABORATIVE LEARNING
The primary focus of collaborative learning is on the cooperation of multiple data sources
working together in generating a model. Figure B.1 illustrates the fact that five partici-
pants jointly provide inputs to generate a globally known model≠G .

ΩG

Figure B.1: A visualization of the cooperative nature of collaborative learning

In a collaborative setting, the original training samples remain at its local host, a globally
known model is constructed using distributed techniques that aggregate derivatives of
the locally acquired knowledge. Such an approach can work in several ways: by either
sharing a subset of updated model parameters, as described in the case of a neural net-
work by [16] and [17], by sharing complete models, or by sharing predictions on specific
items contained in a public dataset as done in [18].

B.2.3. ADVERSARIAL EXAMPLES
An adversarial example is a modified data sample that is misclassified by a classifier [19],
allowing an adversary to trick a model to for example classify malicious traffic as be-
nign. Usually, a perturbation is applied to a valid sample to achieve this and have the
classifier decision disagree with what a human would see it as [20]. Such a perturba-
tion can be specifically designed for a single model, a particular target class, or universal
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applications. The latter, proposed by Moosavi-Dezfooli et al. [21], computes the pertur-
bation values in such a way that they can convert a diverse range of images into adver-
sarial examples. The creation of an adversarial example can on the other hand already
be achieved by the alteration of a single pixel as shown by Su et al. [22]. Kurakin et al.
[19] have shown that the concept of adversarial examples also transfers to the physical
world by physically printing the generated examples.

Privacy The attacker can compromise privacy by obtaining the underlying model or
the information derived from the training data. Thus, attacks and defenses for privacy
focus on preventing an adversary from obtaining either. The most prevalent attacks that
can harm privacy are: membership inference attacks [23], model inversion attacks [24],
model extraction attacks [25], and GAN attacks [17].

Shokri et al. [23] have proposed a membership inference attack that given 1) a data
record ±1 and 2) black-box access to a model m1, one can determine whether ±1 was
in the training dataset on which model m1 has been trained. Federikson et al. [24] in-
troduced a model inversion approach abusing confidence levels that accompany label
predictions to extract information of the used training data. Tramer et al. [25] propose
a method to learn a close approximation of the original model function of a black-box
model.

B.2.4. CRYPTOGRAPHIC PRIMITIVES
Additive Secret Sharing We use a variant of the additive secret sharing procedures em-
ployed by Kursawe et al. [26], and Gracia et al. [27]. Their approach uses the assignment
of leaders and aggregators, unlike ours.

Instead, every individual starts out by generating m random numbers Rpi for i 2 I
(defined in Table B.1), once for each item that is to be labeled. These random numbers
are then divided into n random shares, one for each of the participants, such that the
shares sum up to the original random value. The following example assumes there is
only one item, m = 1:

Alice (1): R1 = r11 + r12 + r13 mod p (B.1)

Bob (2): R2 = r21 + r22 + r23 mod p (B.2)

Charlie (3): R3 = r31 + r32 + r33 mod p (B.3)

where p is a large prime. Alice then computes her masking value using the following
function: M1 =

Pn
i=1 ri 1 °R1

By deducting the original random value, we can be convinced that the final parts
that are used in the masking will cancel out to zero and thus leave us with an accurate
aggregate of the, to be hidden, messages.

Diffie-Hellman Diffie and Hellman [28] presented a key exchange protocol that allows
the generation of a symmetric key based on the public key information. In a two-party
setting, each party selects a secret key sk1, sk2. Using two publicly known numbers p
and g , each participant computes and publishes their public key: pki = g ski mod p .
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Table B.1: Notations for ECONoMy design.

Notation Meaning
n Number of participants in the protocol.
m Number of items for which there is to be voted.
u Number of possible classes the items can be classified as.
¥ Number of zeros appended to plaintext encoding.
Ø Number of bits required to represent one class in the vote encoding.
ª The bit size of the created masking value.
√ The size of an encrypted random number share.
∏ The size of a label.
E Denotes the use of AES encryption function.
E 0 Denotes the use of Paillier encryption function.
D Denotes the use of AES decryption function.
D0 Denotes the use of the Paillier decryption function.
I Set of identifiers where I = {1 ,2 , . . . ,n}, where |I | = n .

r√°
x

Uniformly selecting x random values out of a specific space,
if omitted x = 1 .

¶ Set of participants¶= {º1 ,º2 , . . . ,ºi } , where |¶| = n and i 2I

S Unlabeled public samples, S = {s1 , s2 , . . . , sm} , where |S| = m .
C The possible classes, C = {c1 ,c2 , . . . ,cu} , where |C | = u .
L Set of final labels, {L1 ,L2 , . . .Lm}

°ºi

Set of predictions for m items from participant i ,
{qºi ,s1 , qºi ,s2 , . . . , qºi ,sm } .

Rºi

Denotes the original set of random numbers generated by participant
ºi such that Rºi = {ri 1 ,ri 2 , . . . ,ri j , } , for , º j 2¶ and i 6= j .

Rºi ,º j

Denotes the random shares generated by participant ºi ,
meant for participant º j where ºi and º j 2¶ and i 6= j .

Rº j ,ºi

Denotes the set of random numbers that participant ºi
received from participant, º j , generated using the random
number generation. Rº j ,ºi = {rº j ,ºi (1) ,
rº j ,ºi (2) , . . . ,rº j ,ºi (m)} , where |Rº j ,ºi | = m

R̆ºi ,sk

Denotes the set of random numbers of ºi ,
after aggregating all received part per item 1 ∑ k ∑ m .

Mºi

Set of masked votes where Mºi = {m̆ºi ,1 ,m̆ºi ,2 , . . . ,m̆ºi ,m}
and m̆ºi ,k = R̆ºi ,sk +qºi ,k .

Msk

Set of masked votes where Msk = {m̆1 ,sk ,m̆2 ,sk ,
. . . , n ,sk } where m̆k ,sk = R̆ºk ,sk +qºi ,k .

¢ The set of all aggregated masked vote distributions.
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Each party can now obtain their shared-secret by computing the following function:

ke y1 = pksk1
2 =

≥
g sk2

¥sk1
;ke y2 = pksk2

1 =
≥
g sk1

¥sk2

NOTATION

Table B.1 contains an overview of the used notations.

B.3. ECONOMY
In this section, we present our proposal, ECONoMy: a privacy-preserving collaborative
ensemble protocol. We present the design of the ECONoMy protocol per phase, and each
of the phases will show the required procedures and their respective analyses.

B.3.1. INITIAL SETUP
The first phase of the protocol initializes the required infrastructure and enables the par-
ticipants to identify themselves by allowing them to participate in the protocol. Each
individual ºi 2 ¶, in turn generates a key-pair pki = g xi , ski = xi , corresponding to the
Diffie-Hellman key-pairs. Additionally, every participant creates a Paillier [29] key pair,
and all public keys are published. Each participant continues to generate shared AES
keys in the following way. First, every participant ºi 2 P , publishes n ° 1 random val-
ues r̆i j encrypted using the public Paillier key of each receiving participant º j 2¶where
i 6= j . Afterward, the shared AES-Key can be generated by each participant by computing
the following function: ke y =

°
pk j

¢ski ·r̆i j ·r̆i j . resulting in a shared secret. This shared
secret is then hashed to provide unique shared symmetric key of 128 bits suitable for
AES-128. Finally, the participants agree on the vote encoding and a time frame within
which all votes should be received.

At the end of this phase, the protocol is ready to commence, and every participant
knows who is participating. All participant have access to an AES key for its communi-
cation with each participant in the protocol. Now we are ready to commence to the next
phase, the generation of the masking values that will be used to hide each participant
ºi ’s to be shared prediction values °ºi .

B.3.2. RANDOM NUMBER GENERATION
We create random numbers using additive secret sharing, such that they sum up to zero,
to mask each vote for all items in I . By doing so, when all votes corresponding to an
item si 2 S are aggregated, the random values that masked the individual votes will be
negated leaving us with the total of the vote distributions. To properly hide the under-
lying vote of bit size (u ·Ø+Æ), a random value of a specific bit-length would need to be
chosen, corresponding to the currently required bit security, ∑ bits, according to NIST
standards [30], where ∑ is our security parameter.

Every participant will need to generate m random numbers that each mask a pre-
diction in °, as is done in the GenerateRandomNumberShares procedure in Algorithm
4. Therefore, the procedure first generates m random numbers that are ª bits in length.
Afterward, n parts are generated which modulo a prime p sum up to the original ran-
dom value. While generating these parts, the computed shares are immediately ordered
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Protocol 4 Random number generation protocol.

1: procedure GENERATERANDOMNUMBERSHARES(n, m)
2: Rºi

r√°
m

{0,1}ª

3: shar esPer Reci pi ent √;
4: tot al s √ [ ]
5: for j in range(n), j 6= i do
6: Rºi ,º j √;
7: for item in range(m) do
8: newShar e

r√° {0,1}ª

9: tot al s[i tem]+= newShar e
10: Rºi ,º j .i ncl ude(newShar e)
11: end for
12: shar esPer Reci pi ent .i ncl ude(Rºi ,º j )
13: end for
14: Rºi ,ºi √;
15: for item in range(m) do
16: Rºi ,ºi .i ncl ude((Rºi [i tem])° tot al s[i tem]) mod p)
17: end for
18: shar esPer Reci pi ent .i ncl ude(Rºi ,ºi )
19: return shar esPer Reci pi ent
20: end procedure

21: procedure ENCRYPTSHARES(R,PKN )
22: encr y pti ons √;
23: ctr = newCounter ()
24: for x in range(n) do
25: encr y pti ons.i ncl ude(E (Rºi ,ºx |ctr ))
26: end for
27: return encryptions
28: end procedure

29: procedure DECRYPTSHARES(E (R),SKi ,Rºi )
30: R f ,ºi √;
31: for e in range(m) do
32: r f ,ºi (e) √ 0
33: for d in range(n) do
34: r f ,ºi (e)+=D(E (R|ctr )[d ])
35: end for
36: r f ,ºi (e)°= Ra[p]
37: R f ,ºi .i ncl ude(r f ,pi (e))
38: end for
39: return R f ,pi

40: end procedure
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Protocol 5 Masking procedure, hiding the prediction values.

1: procedure MASKVOTES(Rºi ,s j ,°ºi )
2: Mºi √;
3: for j i n r ang e(m) do
4: maskedV alue √ Rºi ,s j +°[i ]
5: Mºi .i nser t (maskedV alue)
6: end for
7: return maskedV otes
8: end procedure

according to their destination participant towards whom these particular shares are in-
tended.

In order to transmit all shares in a single publishment, the shares are encrypted using
the public key of the intended recipient using the EncryptShares procedure. A partic-
ipant can, upon receiving all his or her parts, decrypt using the DecryptShares pro-
cedure, which aggregates the parts corresponding to the same item and subtracts her
original random value. This operation leaves the participant with a final random value
which can be used in the next phase, masking.

B.3.3. MASKING

We mask each vote to hide the contents of the vote provided by a participant. This mask-
ing can be done by simply adding the previously computed random value, to the corre-
sponding vote value creating a masked value now containing the contents of the partic-
ipant’s vote (note that this can also be negative). Now, the resulting masked value can be
shared with the other participants as can also be seen in Algorithm 5. Every participant
ºi 2 ¶, where i is the participant identifier, executes this protocol for each item i 2 I .
All masked votes can be shared in a single transaction, where a vote is contributed in
concatenation with the hash of the original vote value. By doing so, it prevents the origi-
nating party to alter the original contributed value if he or she were to reveal the hidden
information.

B.3.4. AGGREGATION

Now that the votes have been cast during the previous phase of the protocol, the totals
can be computed. When adding all seemingly random-looking numbers, there will be
a result that corresponds to the same value that would have been attained when all in-
dividual votes would have been aggregated without the use of the random numbers, as
these values sum up to zero.

B.3.5. NOISE ADDITION AND FINAL MODEL GENERATION

Once the entire dataset is labeled, noise needs to be added according to the process
described by Papernot et al. [31]. A participant proposes a noise distribution to extract
perturbations from, which needs to be approved by the majority of other participants.
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B.4. COMPLEXITY ANALYSIS

B.4.1. COMPUTATIONAL ANALYSIS

The computational complexity of ECONoMy is analyzed by reviewing the required num-
ber of operations per phase per party. The required operations are dependent on the
number of participants n, as well as the number of items in the public data set m. The
chosen size of the public dataset will depend on multiple factors, such as availability
(i.e., what data can be acquired), as well as privacy requirements. The privacy obtained
by transferring knowledge from the ensemble to the public data provides a bound to the
number of queries done to the ensemble and limits privacy. The number of items in
this public dataset resembles this bound and represents a trade-off between the amount
of knowledge transferred that is available to train the global model on, and the level of
privacy offered to the local training data. The number of participants is assumed to be
smaller than the number of items to be labeled, even though this is not a constraint of
the protocol. At least three parties should participate. When n = 2, the masking will be
ineffective as a participant can retrieve the vote of its collaborator by detracting her own
vote from the total.

Table B.2 shows the number of mathematical operations that occur in each phase.

Table B.2: Review of all operations occurring in a single execution of the ECONoMy protocol.

Phase Operation Total Per Party

Initial Setup Key Generations n 1

Random Number Random number generation n ·m m
Generation Additive secret sharing n ·m m

Encryptions/Decryptions 2n2m 2nm
Additions m ·n m

Masking Additions n ·m m

Aggregating Additions n ·m n ·m
Maximum m m

B.4.2. COMMUNICATION ANALYSIS

Information is transferred between participants in different phases of the ECONoMy
protocol. The sizes of these messages are shown in Table B.3.It becomes apparent that
the total amount of bits transferred in one execution of the protocol is equal to mn2√°
mn√+nmª+m∏.

B.5. EVALUATION
We present a prototype implementation for ECONoMy as well as comparison to CrowdML.
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Table B.3: An overview of all communications needed for ECONoMy, and the size of the transferred informa-
tion.

Phase Operation Total Per party
Random Number Send mn2√°mn√ mn√°m√

Generation Retrieve mn2√°mn√ mn√°m√

Inference voting Sharing votes nmª mª

Labeling Publishing final labels m∏ m∏

B.5.1. IMPLEMENTATION
The prototype implementation ECONoMy is written in Python 2.7 [32]. The accessi-
bility of relevant packages such as pycrypto [33], provides the necessary cryptographic
primitives, while scikit-learn [34], providing relevant machine learning models, making
it suitable for our problem. We use the c4.4xlarge machine to execute the the prototype
of ECONoMy, which offers 16 virtual vCPUs and 30 GiB memory [35].

B.5.2. RESULTS
The comparison performed between CrowdML and ECONoMy is made for varying val-
ues of participants (n) and to be predicted items (m). Table B.4 shows the run-time re-
sults obtained from these experiments.

As can be seen in Table B.4, the amount of time taken per vote appears to increase lin-
early by the number of included participants. Due to the significantly low time required
per vote, the protocol can accommodate high values of both n and m. In CrowdML, the
work-load is concentrated in a single entity, the central server. Figure B.2, shows the run-
time if we were to divide the single-threaded experimental execution time of ECONoMy
by the number of participants (n), displaying the work-load per party represented in
time. CrowdML still outperforms ECONoMy for both m = 500 and m = 1000. At n = 500
ECONoMy takes approximately 5.4 times as long with an m of 500, while for m = 1000
this is reduced to 3.1 . These values show that there is an additional dependence on m
for CrowdML that is not present in ECONoMy.

We continue to analyze this by looking at a per vote basis as depicted in Figure B.3.
When we compare the experimental results for m = 500 and m = 1000, we see that the
execution time is linear in the number of items to be predicted. In Figure B.3, we see both
ECONoMy variants very close to one another, and an approximate doubling of execution
time for CrowdML.

The experimental results show that the average time of a single prediction increases
with increasing values of m. To corroborate this result, additional tests have been exe-
cuted on each of the utilized classifiers separately, which shows that all appear to have
this dependency on m.

B.6. PRIVACY ANALYSES
We assume a semi-honest adversarial model with an honest majority. The privacy of
contributions provided by participants is argued using simulation-based security deduc-
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Figure B.2: Comparing the per participant computation time of ECONoMy with CrowdML.

Figure B.3: Highlighting the dependency on m inherent to CrowdML, which is not present in ECONoMy.
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Table B.4: The experimental results obtained by running both CrowdML and ECONoMy.

ECONoMy CrowdML
n m nm time (s) t i men (t i men)vote time (s) t i mep

50
500 25,000 76.193 1.524 6.096E-5 0.305 1.22E-5
1000 50,000 153.008 3.060 6.120E-5 1.156 2.321E-5

100
500 50,000 307.432 3.074 6.149E-5 0.714 1.428E-5
1000 100,000 620.036 6.200 6.201E-5 2.225 2.225E-5

250
500 125,000 1975.087 7.900 6.320E-5 1.619 1.30E-5
1000 250,000 3991.550 15.966 6.388E-5 6.205 2.482E-5

500
500 250,000 8205.644 16.411 6.564E-5 3.296 1.318E-5
1000 500,000 17,059.580 34.119 6.824E-5 12.907 2.581E-5

1000
500 500,000 37.345,950 37.346 7.747E-5 6.886 1.377E-5
1000 1,000,000 76,970.465 76.970 7.697E-5 24.556 2.456E-5

tion [36].

• Let f = ( f1, f2, . . . fn) be a functionality. We say that © securely computes f in the
presence of static semi-honest adversaries, if an adversary cannot distinguish the
protocol© form an ideal functionality f .

• The output of the protocol © on input (°º1 ,Rº1 , °º2 ,Rº2 , . . .°ºn ,Rºn ) and security
parameter ∑ is denoted by out put©(M 0

¶) and can be computed from all views of
the execution.

We say Protocol © securely computes f in the presence of Ω semi-honest adversaries -
simulators - S1,S2, . . .SΩ such that:

Si (1∑,°0Si
,R 0

Si
), fi (°º1 ,Rº1 ,°º2 ,Rº2 , . . .°ºn ,Rºn )

c¥
vi ew©

i ((°º1 ,Rº1 ,°º2 ,Rº2 , . . .°ºn ,Rºn ),∑)
(B.4)

The communications of a single participant ºi with the other participants is visual-
ized in Algorithm 6.

Let us assume an ideal functionality f that simulates a trusted third party and has
access to perfect encryption and secure communication channels.

The simulated view can be represented as:

{Si (1∑,°0Si
,R 0

Si
), fi (°º1 ,Rº1 ,°º2 ,Rº2 , . . .°ºn ,Rºn )}

:= {(1∑,°0Si
,R 0

Si
),M 0

Si
,¢0)}

(B.5)

vi ew©
i ((°º1 ,Rº1 ,°º2 ,Rº2 , . . .°ºn ,Rºn ),∑)

:= {(1∑,°ºi ,Rºi ),Mºi ,¢)}
(B.6)

For any distinguisher D and negligible function Æ(·):

|Pr [D(1∑,°0Si
,R 0

Si
),M 0

Si
,¢0) = 1]°

Pr [D(1∑,°ºi ,Rºi ),Mºi ,¢) = 1]|∑Æ(∑) .
(B.7)
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Protocol 6 Communication of a participant ºi with the protocol©

ºi

view
©
ºi

(°ºi ,Rºi )
©
view

©(Mºi )

R = {Rºi ,º j | j 6= i }
R

°°°°°°°!
RJ

√°°°°°°° RJ = {Rº j ,ºi | j 6= i }
R̆ºi ,sk =Pn

j=0 Rº j ,ºi (k)° ri k

R̆ºi = {R̆ºi ,s |s 2 S}
Mºi = °ºi + R̆ºi

Mºi
°°°°°°°!

M ,¢
√°°°°°°°

M = {Ms |s 2 S}
¢s =

Pn
i=0 m̆i ,s

¢= {¢s |s 2 S}

An adversary controlling a minority Ω nodes, has access to a subset of the shared infor-
mation. The random shares in R j are encrypted using the assumed semantically secure
AES. The provided confidentiality causes an adversary only to observe the shares aimed
for or originating from the Ω participants. Every masking value is dependent on one ran-
dom share from each participant, and the original random value generated by the victim.
This dependency can be shown as follows:

R̆ºv ,sk =
ΩX

j=0
Rº j ,ºv (k)+

nX

l=Ω+1
Rºl ,ºv (k)° rvk (B.8)

for victim ºv . The adversaries are unable to reconstruct rvk , as this value is split into n
parts from which the adversary is only able to access Ω.

B.7. CONCLUSION
This paper presents a light-weight and efficient protocol called ECONoMy, which utilizes
masking technique to preserve participants’ privacy within a decentralized ensemble
based collaborative learning setting. Our protocol is proposed under the semi-honest
security model, and is suitable in settings with large participants such as with IoT de-
vices.
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Protocol 7 Communication of simulator Si with the ideal functionality f

Si

view
f
Si

(°0Si
,R 0

Si
)

f
view

f (M 0
Si

)

R 0 = {R 0
Si ,º j

| j 6= i }
R 0

°°°°°°°!
R 0

J
√°°°°°°° R 0

J = {R 0
º j ,Si

| j 6= i }

R̆ 0
Si ,sk =Pn

j=0 R 0
º j ,Si

(k)° r 0
i k

R̆ 0
Si

= {R̆Si ,s |s 2 S}
M 0

Si
= °0Si

+ R̆ 0
ºi

M 0
Si

°°°°°°°!

M 0,¢0

√°°°°°°°

M 0 = {M 0
s |s 2 S}

¢0
s =

Pn
i=0 m̆0

i ,s
¢0 = {¢0

s |s 2 S}
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