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A B S T R A C T

In current optimization methods for free-form shells, the shape and topology are usually optimized separately.
These methods are based on the assumption that the shape and topology of a shell influence each other only
slightly, but this is not always correct. Moreover, different parameterization models are used in the shape op-
timization and topology optimization of free-form shells, which brings difficulties to carry out the integrated
optimization. To solve this problem, an integrated method is proposed for simultaneously optimizing shape and
topology for free-form shells. A uniform parameterization model based on NURBS solids is established to
parameterize the free-form shells. In this model, only a small number of variables are used to describe both the
shape and topology of the shell. In this way, the integrated optimization problem can be simplified, thus decrease
the computational complexity. The integrated optimization of shape and topology is a complicated and large-
scale optimization problem. Solving this problem requires a suitable optimization method. In this paper, the
Method of Moving Asymptotes (MMA) is adopted. Finally, numerical examples are presented to address the
importance of the optimization sequences and show the effectiveness and application of the proposed method.

1. Introduction

One of the ultimate aims of the structural engineers is to design safe
and economical structures. Among different types of structures, shells
are mechanical efficient. Benefitting of the excellent structural beha-
vior, shells are always light weight structures. Engineers and architects,
attracted by its elegance and aesthetic performance [1], even called the
shells the structural “prima donna” [2].

Among the shells, free-form shells are favored for their rich archi-
tectural expressions and excellent performances. But sometimes their
irregular shapes may result in a bad structural behavior. A sub-working
group of the International Association for Shell and Spatial Structures
(IASS) [3] emphasized the importance of the shape design for free-form
shells. To solve this problem, a series of methods to find shells with
better structural behavior were proposed. In the early time, the shape of
shells was found through experimental methods, such as the soap film
method [4] and the hanging method [5]. In recent decades, numerical
methods for improving the structural behavior of shells have become
the dominant research method.

Stress distribution within shells is the most important aspect af-
fecting the structural performance. Triangular stress distributions in the

cross section lead to unfavorable mechanics of shells; the stress dis-
tribution should be as uniform as possible in optimized shells [6]. The
more the stress state resembles a membrane stress state, the better is the
performance of shells. Changing shell shapes mainly affects the stress
distribution, thus many researchers proposed the shape optimization
method to improve the structural capacity. Bletzinger and Ramm pro-
posed a structural optimization method to optimize the shape of shells
[7]. Next, they investigated the differences in shapes of shells generated
by different methods, such as the hanging method, the soap film
method and a structural optimization based method [8]. A common
conclusion was that optimization methods are a generalization of the
form finding methods [9]. A comparative review of the optimization
methods for shells and their relationship to form finding methods was
given in [10]. In some cases, it was noticed that even slight changes of
the shape of shells had important improvements of the structural be-
havior [11].

To solve a structural optimization problem, there are three im-
portant parts. In terms of the mechanics in the optimization process,
usually, the finite element method (FEM) is used. Researchers used
programs like NASTRAN, MSC/NASTRAN, ADINA and ANSYS
[1,12–16]. Different optimization algorithms are considered in the
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mathematical part, such as the gradient based method [17], the genetic
algorithm [18,19] and the firefly algorithm [20]. Finally, different
parameterization methods were proposed. For example, in [14] a major
node method was proposed to parameterize the shape of shells and
reducing the number of variables in the optimization process. In [21] a
non-parametric based method was proposed for optimizing the shape of
free-form shells.

Topology optimization of shells received relatively limited attention
by researchers, compared to shape optimization of shells. In [22], a
method to optimize the shape and thickness of free-form shells was
proposed. In the method, a linear interpolation of nodal thickness
variables was used, which avoided discontinuities of thicknesses within
and between elements. The integrated optimization of shells, con-
sidering the shape and topology optimization was investigated in
[23–25]. With the progress of the 3D printing construction technology,
the construction of complex forms becomes possible [26]. To fully ex-
ploit this technology, more investigations of the integrated optimization
of free-form shells are required.

Usually, the shape optimization and topology optimization were
two separate processes in the shell optimization design. The shape of
shells was optimized while maintaining the topology. In [12], it was
concluded that the optimized shape of shells was sensitive to their to-
pology, and the change of the shell topology resulted in different op-
timized shapes. The two optimization problems are connected; the
optimal result could not be obtained by divided optimizations [23–25].
To obtain more optimized results, the simultaneous optimization ap-
proach for shells is required. The approach needs to be elaborated to
prevent wrong results due to interaction of shape and topology.
Usually, researchers used different parameterization models for de-
scribing the shape and topology of free-form shells, which brings dif-
ficulties to integrate the two optimization procedures in one method.
This paper focuses on developing a suitable and uniform approach for
the integrated shape and topology optimization of free-form shells.

In this paper, a uniform parameterization method is established to
describe the geometry of the shell. Based on this parameterization
method, a shape and topology integrated optimization method of free-
form shells is proposed. In the geometry part, the Non-Uniform Rational
Basis Spline (NURBS) function is selected as the basic function to for-
mulate the uniform parameterization model. Usually, NURBS surfaces
are used in the shape optimization of shells [19,20,22,25]; Here NURBS
solids are used as an alternative. The geometry data is stored in a few
control points, the dimension of NURBS can be easily extended to allow
more design freedom. The control points are used to adjust the geo-
metry of the free-form shells and are used as the variables in the opti-
mization process. In the mathematical part, the Method of Moving
Asymptotes (MMA) [27] is used to solve the integrated optimization
problem of minimizing the strain energy of shells with a volume con-
straint. It was concluded that accounting for minimizing strain energy is
an implicit way of improving the structural behavior in the optimiza-
tion of shells [1]. ANSYS software is used to solve the mechanic pro-
blem. By combining the three parts together, the shape and topology

integrated optimization method is established.
The paper comprises four sections. After the introduction section,

the second section describes the methodology. It contains the estab-
lishment of the uniform parameterization model, the transformation
method of different parameterization models and the framework of the
integrated optimization method. The third section includes numerical
examples. They are tested and discussed to illustrate the effectiveness of
the proposed method. The last section presents the conclusions of this
paper.

2. Methodology

2.1. Uniform parameterization model

2.1.1. Basis and notations
A NURBS solid is a type of embedding volume. The fundamentals of

NURBS in [30] are summarized here. A NURBS solid is a piecewise
polynomial solid based on weighted control points. The basic NURBS
function Ni, p(ξ) is decided by knot vectors Ξ∈ {ξ0, ξ1, … , ξm+p},
where p is the degree, i is the index of the control points, ξ is a real
number called the knot and m is the number of control points. An in-
terval [ξi, ξi+1] is called a knot span and the whole patch is [ξ0, ξm+p].
The k ‐ th repeated times of knots decide the continuity by Cp−k. Then,
the basis function Ni, p(ξ) can be defined as in Eq. (1).
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By the linear combination of control points Pi, weights Wi and basic
functions Ni, p(ξ), the NURBS solids can be computed. For compact
notation, the function R is defined in Eq. (2), the NURBS solid can be
calculated in Eq. (3).

=
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1 2 3

1 2 3 (2)

In terms of the NURBS solid, it can be generated by the three-order
tensor product of the knot vectors (ξ∈ Ξ1, η∈ Ξ2 and ω∈ Ξ3), shown in
Eq. (3). The m1×m2×m3 control points Pijk (i=1…m1, j=1…m2

and k=1…m3) form the control point polyhedron, the orders of
NURBS basic functions defined on three knot vectors are p1, p2 and p3
respectively. The NURBS solid representing a shell in the physical and
parametric space is shown in Fig. 1. In the NURBS model, index m3 in
the control point polyhedron is 2, and there is only one knot span in
ω∈ Ξ3 to represent the topology of shell elements.

∑ ∑ ∑=
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Fig. 1. The NURBS parametric model and the represented shell.
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2.1.2. Geometry parameterization of free-form shells
NURBS have been used previously to parameterize the shape of

shells in the shape optimization process [19,20,22,25]. In this paper, in
Eq. (3), the parameters define the geometry including the shape and the
topology of free-form shells. The order of NURBS basic functions affects
the continuity. Using more control points in parameterizing a shell,
increases the number of optimization variables within in the optimi-
zation process, and thus allows for more freedom in describing the
shape and topology. For shells, the thickness is much smaller than the
other sizes. The other parameters are set to satisfy the demand in de-
scribing the shape of the shells. The finite element analysis model is
generated according to the design parameterization model. The mesh
used in the finite element analysis could affect the analysis result. In
this paper uniform meshes with shell elements are used. In order to
obtain the aimed meshes from the parameterization model, uniform
knots in the parameterization model are adopted, each knot in the
parameterization model represents the node in the analysis model, and
knot spans denotes structural elements. The thickness of the knot de-
notes the density of the element which can be used in the topology
optimization.

Minimizing the difference between the parameterization model and
the analysis model is important. Fig. 2 is an example of analysis models
based on one parameterization model with different knot spans. It
shows that the difference between two models can be decreased to an
acceptable level by increasing knot spans.

Fig. 3 shows an example of adjusting the geometry of a shell by
changing control points in the parameterization model. In the figure,
Pijk are the control points of the parameter model. The shape can be
changed through Pijk+ Δs and changing the thickness by Pijk ± Δt. By
increasing Δt, a void area in the parameter model appears, which leads
to a hole in the FEM model. In this paper, a minimal thickness is as-
signed to elements in a hole with a small Young's modulus to prevent
singularity in the analysis. The black and gray areas in the thickness
contour of the FEM model indicate solid parts and the white areas in-
dicate void. In this way, the NURBS-based model is taken as the
common basis to parametrize the shape and topology of a shell. Besides,
the change of the shape by varying the shape model doesn't affect
variables in the topology model. The shape of structures is decided by
the mid-surface of the shape model whereas the topology is the result of
the difference of control variables of the topology model. Both the
shape and topology are determined and changed implicitly by the
control points of the parameterization model.

Customarily, the number of variables in the topology optimization
defines to the structural meshes [31]. The huge number of un-coupled
variables causes the problem of mesh instability in the topology opti-
mization [28]. The noise clean technique is adopted for this kind of
problem [25]. Taking advantages of the parameterization model, only a

small number of control points is used to describe the geometry of shells
and taken as optimization variables. Besides, the continuity of the
model provides smoothness between each element, which prevents the
mesh instability problem in an implicit way [28]. When the thickness of
the shell elements is lower than a threshold value, the material in those
areas is interpreted as insignificant. The thickness optimization in a
broad sense is also a way of the topology optimization and it leads to
more optimal result than topology optimization [29]. In this paper, the
minimum thickness is assigned as 1% of the original thickness.

2.2. Transformation method of parameterization models

As we know, the number of variables will influence the computa-
tional costs and optimization results. According to the uniform para-
meterization model in Section 2, the number of shape variables equals
to the number of topology variables. In this section, a method of
parameterizing the same shell with different parameterization models is
established. It enables that the number of variables changes during the
optimization, which gives extra flexibility considering efficiency and
effectiveness in optimization processes. More specifically, different
NURBS solids will be used for shape and topology (or thickness) opti-
mization, both representing the same shell structure.

The most important point is that all parameterization models should
describe the same geometry of a shell. For establishing different para-
meterization models while maintaining the same geometry, the trans-
formation method based on NURBS Global Interpolation [30] is in-
troduced.

The parameters of the original model with n1× n2× n3 nodes are
set as, the orders (p1, p2, p3), control point polyhedron Pijk

(i=1…m1, j=1…m2 and k=1…m3 ) and uniform knot values
(ξi, ηj, ωk) (i=1… n1, j=1… n2, k=1… n3). Then the parameters
of the new model are control points

= … = … = …i 1 m j 1 m k 1 mP ( , and )ijk 1 2 3 , orders p p p( , , )1 2 3 and uni-
form values ξ η ω( , , ) on the new knot vectors. The values of Pijk are
required and calculated as follows.

Firstly, the node data of the new model is calculated in Eq. (4) and is
known. Solving this equation directly is complex. Since ξ η ωE( , , ) is
the tensor product result, Pijk can be calculated in a simpler way by a
sequence of surface interpolations followed by curve interpolations.

∑ ∑ ∑=
= = =

ξ η ω R ξ η ωE P( , , ) ( , , )
i

m

j

m

k

m

ijk ijk
1 1 1

1 2 3

(4)

Secondly, the Eq. (4) can be written as Eq. (5), where

= ∑
=

ω R ωQ P( ) ( )ij
k

m

k ijk
1

3
. It shows that the solid is interpolated by surfaces

with varying parameters ω .

Fig. 2. Analysis models based on the same parameterization model with different knot spans.
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Thirdly, the Eq. (5) can be transformed as Eq. (6), where
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=

η R η ωT Q( )| ( ) ( )i ω
j

m

j ij
1

2
. It means that the interpolation surfaces of the

fixed parameter ω can be interpolated by curves with varying para-
meters η .
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Fourthly, by solving three simpler linear equations the required
control points Pijk can be obtained. Solving the Eq. (6) in advance, curve
control points ηT ( )|i ω with fixed ω can be calculated. Then subtitute the

result in = ∑
=

η R η ωT Q( )| ( ) ( )i ω
j

m

j ij
1

2
, surface control points ωQ ( )ij are

calculated.
Finally, the control points Pijk are computed by solving

= ∑
=

ω R ωQ P( ) ( )ij
k

m

k ijk
1

3
. The procedure of transforming a shell para-

metric model is shown in Fig. 4. In the figure, (a) shows the node data
of the original model, (b) the interpolated surfaces, (c) the interpolated
curves based on the surfaces, (d), (e) and (f) are the solving steps to
calculate interpolated points of curves, surfaces and finally the required
shell parametric model.

Due to the analytical difference of the interpolation process, the new
models based on this method lead to a geometrical dissimilarity com-
pared to the original model. However, the difference can be kept within
a small range. An example in Fig. 5 shows analysis models based on the
different parameterization models. The original model has 5×5×2
control points with orders (2, 2, 1) and 30× 30 knot spans. In figure
(a), the number of control points increases, the average difference of the
nodal coordinates comparing with ones of the original analysis model is
about 0.01%. In figure (b) the orders increase. In figure (c) the orders
decrease to create the model, obviously large differences occur. By in-
creasing the number of control points in (e), the difference is reduced.

In figure (d) both the number of control points and orders are increased.

2.3. Framework of the integrated optimization method

The establishment of a mathematical model of the optimization
problem is shown in Eq. (7).
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where, Xk are the optimization variables of the k-th step, consisting of
shape variables Sk and topology variables Tk. The variations of shells
can be seen in Fig. 3, where the Δt and Δs for different control points
forms the vectors Sk and Tk respectively. In this paper, only the Z-di-
rection coordinates of the control points are optimized. The objective
function f(Xk) is the structural strain energy SE(Xk). In the topology
optimization process, the SIMP material model with penalty h [31] is
adopted combined with the density variables ti(Tk) of the i-th element
to modify the Young's modulus, shown in Eq. (8). The variables can be
calculated through the thickness as shown in Fig. 3. V(Tk)∈ is the vo-
lume constraints of the shell.

=E E t T[ ( )]i k
h

0 (8)

In the parameterization model, the topology density ti(Tk) of the i-th
element is decided by variables Tk, thus it brings the difficulty to find
the distinct topology optimization result. Reducing the coupling of the
densities is of importance. The adaptive constraints for topology vari-
ables and the filter ϕ of the ti(Tk) are proposed to solve this problem.
The filter is shown in Eq. (9). It is the smooth Heaviside step function,
where boundaries are tmax and tmin, ε is the value of the smooth area. In
this way, density constraints tmin≤ ti(Tk)≤ tmax in the Eq. (8) can be
simplified. The adaptive constraints with the varying boundaries of
topology variables are as follows in the k-th step Tmax(Tmin)= Tmax,

initial(Tmin, initial) ± βk where β is 0.1 in this paper.

Fig. 3. Adjusting a parametric model through control points.
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The shape and topology integrated optimization amounts to a
complicated and large-scale optimization problem. The MMA method
[27] is used in this paper. Based on sequential convex programming,
this optimization method can solve the complex optimization problem
by solving a sequence of explicit and convex approximated sub-

problems. Using MMA optimization method to update the optimization
variables, the sensitivities of the variables are required. In this paper,
considering the small number of optimization variables and the ease of
implementing, the first-order forward finite difference method is used
to calculate the sensitivities for the objective function and the con-
straint function, written as Eq. (10). There are some differences of shape
variables and topology variables, such as the magnitude of allowable
variation. The large difference may result in numerical errors of the
result. To solve this problem, the scaling technique is utilized in [25].
However, in this paper it is not necessary to scale the variables. The
difference of results is slight, which means these two types of variables
are nearly independent. The verification is discussed in Section 3.5.1.

∂
∂

≈
+ −f

x
f x x f x

x
( Δ ) ( )

Δi

i

i (10)

Fig. 4. The procedure of transforming a shell parametric model.

Fig. 5. Different models transformed from the original one.
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Finally, summarizing Section 2, a method is proposed to optimize
free-form shells. The flowchart is shown in Fig. 6. The termination
condition is that the difference of two-step values of the objective
function is smaller than a given tolerance, which indicates that a stable
optimized result is obtained.

3. Numerical examples and discussions

In this section, several numerical examples are presented to verify
the proposed method. The important factors of this method are illu-
strated through the discussion. In these examples, the triangular elastic
shell elements considering both in-plane and out-of-plane states are
used. The parameters of the MMA optimizer are at default settings as in
[27].

3.1. Example one

This shell is simply supported by four corners and subject to a
concentrated load F=10 kN. The Young's modulus of the material is
2× 109 Pa and the Poisson's ratio is 0.3, the span of the shell is 6 m,
the original rise is 0.45m, and the original thickness is 0.1 m. The
original geometry of the shell is shown in Fig. 7.

Taking the advantages of the structural symmetry, the shell within
blue lines in Fig. 7. is analyzed and optimized. Two parameterization

models are established, in the shape optimization the model is con-
structed by 4×4×2 control points with the order (3,3,1), and in the
topology optimization it is constructed by 7×7×2 control points
with the order (2,2,1). The original FEM analysis model of 20×20
meshes are shown in Fig. 8.

There are 10 shape variables and 28 topology variables in this op-
timization problem, shown as red points in Fig. 8. The number of the
variables in the optimization process is independent of the FEM meshes.
In the traditional density-based topology optimization method, each
element has an optimization variable which may cause the instability
problem in the result. Here, the continuity of the parameterization
model provides the continuous changes between the elements, which
prevent the mesh instability problem in an implicit way.

In the optimization process, the maximum shape change is 1.5 m,
and the max volume is limited to be less than the half of the original
volume. The convergence analysis of the finite difference approxima-
tions is presented in Fig. 9. It has the stable region of the finite differ-
ence from 10−3 to 10−7, in the present case the finite differences were
set to 10−4. Fig. 10 shows the history of the shape and topology opti-
mization including some snapshots of topology contours. The total
strain energy reduces to 31.76 Nm after 70 optimization steps.

Fig. 11 shows the optimum shell after the shape and topology op-
timization, which appears like a four-bar truss structure. Moreover, the
shape of the optimized shell shows zero-order smoothness (i.e. C0

continuous) across the two lines of symmetry. This is a result of the
applied NURBS. An optimization taking the complete shell as point of
departure would clearly have resulted in another shape. Note that ap-
propriate boundary conditions have been selected in the finite element
model, representing the symmetry in a mechanical sense. The calcu-
lated displacement field is thus first-order smooth across the lines of
symmetry and the obtained shape of Fig. 11 is a valid result.

3.2. Example two

The shell in this example has the same parameters as the first ex-
ample, but with different load and support conditions, as shown in
Fig. 12. The convergence analysis of the finite difference approxima-
tions is shown in Fig. 13. Similar with results of Example one, it has a
stable region for finite differences from 10−3 to 10−8; the finite dif-
ference in this example is set to 10−4.

Fig. 14 shows the history of the shape and topology optimization
and some snapshots of the contours. In this example, the minimal strain
energy reduces to about 155.1 Nm after 90 optimization steps. Fig. 15
shows the shell after the shape and topology optimization.

3.3. Example three

This example aims to optimize an irregular shell by changing the
shape and finding the distribution of a reinforced layer at the bottom of
the shell. The original geometry of the irregular shell is shown in
Fig. 16. The span of the shell is 13m, the rise is 0.8 m, and the thickness
of the shell and the reinforced material is 0.1 m and 0.05m respec-
tively. It subjects to the uniform load 1.25 kN/m2. The Young's modulus
of the material is 2× 109 Pa and the Poisson's ratio is 0.3. Then Young's
modulus of the reinforced material is 3× 1010 Pa and the Poisson's
ratio is 0.3, supported below the shell.

The parameterization model of this shell in the shape optimization
is constructed by 6×6×3 control points with the order (3,3,1). The
topology optimization model has 8× 8×3 control points with the
order (2,2,1). The control points can be separated by three layers, the
two lowest layers control the geometry of reinforced material. The re-
lative position of the two upper layers in the parameterization model is
fixed to maintain the topology of the shell. Only a quarter of the control
points are taken as optimization variables, due to the 4-fold rotational
symmetry (the blue area in Fig. 16(a)).

During the shape and topology optimization process, the maximum

Fig. 6. The procedure of the integrated optimization method.

Fig. 7. The original shell.
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shape change is 3m and the finite differences equal to 10−4. The
maximum volume constraint is 50%. Fig. 17 is the geometry of the shell
after the 37 steps optimizing. The strain energy of the optimized shell is
only 11.63% from the original shell. It is about 34.7% of the shell with
the same optimized shape but without the reinforced material. And it is
about 85.26% comparing to the shell with the optimized shape and
uniform distribution of the reinforced material.

3.4. Example four

In this example, the proposed method is extended to optimize a
short thin-walled box with a closed (square) cross-section. Box-shaped
structures are generally designed to resist the torsion. The finite model
of this structure is shown in Fig. 18. It is fixed at the left edges and
subjected to four concentrated loads of 10 kN each, at the right edges.
The Young's modulus of the material is 2× 109Pa and the Poisson's

Fig. 8. Two parameterization models.

Fig. 9. Convergence analysis of the finite difference approximations.

Fig. 10. The history of the shape and topology optimization.

Fig. 11. The geometry after the shape and topology optimization.

Fig. 12. The original shell.

Fig. 13. Convergence analysis of the finite difference approximations.
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ratio is 0.3.
Four parametric models are created and combined to describe the

geometry and topology of this structure. In the shape optimization, only
the out-of-plane variation of the control points are taken as the opti-
mization variables. The control points on the boundary edge are fixed
during the optimization process. Due to the 4-fold rotational symmetry,
only one face of the model is considered during the optimization pro-
cess. The variations of the other three faces are obtained from the result
of the first face. The parametric shape model is constructed by
4× 4×2 control points with the order (3,3,1) and the topology op-
timization model has 8×8×2 control points with the order (2,2,1).

During the optimization, the maximum out-of-plane shape variation
is 1m and maximum material proportion is 50%. The finite differences
equal to 10−4. The optimization result after 126 iterations is shown in
Fig. 19. The total strain energy is reduced from 236.5 Nm to 74.8 Nm. In
the optimized structure, the shape is slightly twisted and the members

are nearly 45° on each face which present the truss-like system.
Moreover, another structure with the length 6m are optimized.

With the frame work, within the proposed method, only the X-direction
coordinates of control points need to be changed. It is convenient to
design the similar type of structures. The optimization result is shown in
Fig. 20. The section of the free edge is enlarged and the twisting is
reduced. The strain energy is reduced from 583.13 Nm to 151.87 Nm.

3.5. Discussions

In this part, more numerical examples are tested and compared to
illustrate the detailed characteristics of the proposed method. The
parameters of the examples are similar with the previous examples in
Sections 3.1 and 3.2.

3.5.1. The verification of the variable independence
In this section, the independence of the shape variables and to-

pology variables are discussed. Based on the model of two examples,
the results of three different variable scaling schemes are compared.
Apart from the selected scheme of scaling optimization variables, the
optimization conditions of the compared cases are all the same within
both examples, including the analysis loads, boundary conditions,
parameterization models and parameters of the MMA method. The first
scheme is without scaling variables. The second one uses scaled vari-
ables, the scaling scheme is explained below. The last one considers that
the shape variable and the topology variable are independent. In the
last case, the shape variables and the topology variables are updated in
the MMA optimizer separately.

Based on the concept in [25], the scaling of the variables is based on
the scaling factors kk which is the ratio of the largest difference of the
shape and topology optimization variables, shown in Eq. (11). In the
equation, Tmax and Tmin are upper and lower boundaries of topology
optimization variables, Smax and Smin are boundaries of shape optimi-
zation variables. The new topology variables Z are obtained by scaling
the original T topology variables as Z=T/kk.

= −
−

kk T T
S S

max( )
max( )

max min

max min (11)

The optimization histories for the three schemes based on Example
one and Example two are shown in Fig. 21. The results of the three
schemes of two examples are nearly the same, for both examples. It
denotes that shape variables and topology variables are independent.
All the schemes are thus suitable to solve these specific problems. Note
that the current paper uses the third scheme.

3.5.2. The necessity of the simultaneous optimization
The simultaneous optimization of shells not only benefits the de-

creasing of computational costs, but also leads to the more optimized

Fig. 14. The history of the shape and topology optimization.

Fig. 15. The geometry after the shape and topology optimization.

Fig. 16. The original shell.
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results. In this part, a comparison of the shape and topology optimi-
zation of the two examples is presented, in terms of the simultaneous
optimization sequence, the Shape by Topology optimization sequence
and the Topology by Shape optimization sequence respectively.

The optimized geometry of the three optimization sequences of the
two examples is presented in Fig. 22. It is noticed from the figure that,
for the sequence of shape optimization by topology optimization, the
two optimized shells has the similar shape with the result of the si-
multaneous optimization. However, the shape differences lead to an
evident difference in the topology result. In the sequence of topology
optimization by shape optimization, the topology optimization results
are different comparing with the simultaneous optimization result, thus
results in the very different optimized shapes of the shells. The results of
strain energy are presented in Table 1. The strain energy of the si-
multaneous optimization sequence is smaller than the obtained energy
for the two other sequences. The simultaneous optimization sequence is

necessary to obtain a more optimized result.

3.5.3. The impact of using different parameterization models for one
problem

The integrated optimization of the shell can proceed with only one
parameter model (In this case the number of shape optimization vari-
ables remains equal during the topology optimization). However, it
may lead to failure and inefficiency in finding the optimized geometry.
A comparison with previous results is presented in Fig. 23 to demon-
strate the necessity of using the transformation technique of para-
meterization models as prescribed in Section 2.2. In the comparison, the
optimization parameters and step numbers are similar with the Ex-
ample two.

In the Fig. 23 the shell optimized by one model with uniformly
4×4 variables shows that it is hard to get the accurate topology op-
timization result by a small number of variables. Moreover, the result
optimized of 7× 7 variables shows that the more variables in the shape
optimization do not guarantee a better result but may result in a worse
one. Usually, due to the increasing nonlinearity of the optimization
problem with an increasing number of shape variables, the difficulty to
find optimized results is largely increased.

The parameterization model gives the flexibility of choosing the
number of variables in the optimization process. The optimization re-
sults of different numbers of variables are discussed. Next, a comparison
based on Example two in which the numbers of topology optimization
variables are chosen as 7× 7, 9×9 and 11×11. The result is pre-
sented in Fig. 24. In figure (a), the shell with more topology variables
shows a more detailed optimization results. In figure (b), the strain
energy of the results of 7×7, 9×9 and 11×11 variables reduces to
155.1 Nm, 153.14 Nm and 149.27 Nm respectively. With even more
variables in the topology optimization, a more optimized result can be
obtained, while more computational costs are required.

Fig. 17. The optimized geometry of the shell.

Fig. 18. The finite element model.

Fig. 19. The optimized result of the boxed-shape structure.
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3.5.4. The comparison between thickness and topology optimization
In the proposed method, the shape and thickness optimization of the

shells can be achieved with a slight change of the parameters during the
optimization process. In the thickness optimization, the penalty factor h
in the SIMP in the Eq. (9) equals to 1. A comparison of shape-thick
optimization and shape-topology optimization of two examples is

shown in Fig. 25.
In the result of the shape-thickness optimization, the strain energy

of the two examples reduce to 24.76 Nm and 135.78 Nm respectively,
which are smaller than the results of the shape-topology optimization
(31.76 Nm and 155.1 Nm). Obviously, the thickness optimization is the
generation of the topology optimization in the proposed method. After
the integrated optimization, the pure membrane state of the shell is
approached. The thickness optimization provides more suitable geo-
metry to transform the forces than the topology optimization.

4. Conclusion

In this paper, an integrated optimization method for simultaneously

Fig. 20. The optimized result.

Fig. 21. Optimization history of three schemes.

Fig. 22. The optimized results of three optimization sequences.

Table 1
Strain energy results (Nm) of three optimization sequences.

Shape-by-Topology Topology-by-Shape Simultaneous

Example one 61.30 33.64 31.76
Example two 160.24 278.7 155.1
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optimizing shape and topology for free-form shells is proposed.

1. A uniform parameterization model based on NURBS solids with a
transformation method is developed to parameterize and optimize
the shape and topology of free-form shells. Although shape variables
and topology variables are independent in each optimization step,
the optimized structure is affected by both.

2. Based on the parameterization model, a small number of variables
are used to optimize the free-form shape and topology of the shell,
thus simplifying the integrated optimization problem and improving
the efficiency. Taking the advantage of the higher continuity of the
parameter model, the problem of the formation of checkerboarding
patterns and mesh instability in the topology optimization can be
prevented.

3. It is noticed from the numerical examples that, the simultaneous
optimization sequence is necessary and results in more optimized
geometry, compared with the other two optimization sequences
(Shape-by-Topology sequence and Topology-by-Shape sequence),
while reducing the computational costs.

4. With a little change of the parameters in the method, the shape and

Fig. 23. The comparison of using the different
models.

Fig. 24. The result of different numbers of variables in the topology optimization.

Fig. 25. The geometry of the two kinds of the integrated optimization.
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thickness optimization problem can be solved instead of the shape
and topology optimization. It shows that the shells after shape and
thickness optimization have a better structural behavior than the
one of the shape and topology optimization. With the development
of construction techniques such as 3D printing, free form shells can
be designed more efficiently considering thickness optimization.

5. The proposed method gives the flexibility to change the number of
variables for parameterizing one shell and leads to the flexible op-
timization considering both effectiveness and efficiency. Moreover,
the method can be utilized to reinforce the free-form shell by con-
sidering the reinforced material in the optimization process.
Moreover, the method can be extended to optimize more structures
such as the boxed-shaped structures.
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