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ABSTRACT

Deep Neural Networks (DNNs) have the potential for making various clinical procedures more time-efficient by
automating medical image segmentation. Due to their strong, in some cases human-level, performance, they
have become the standard approach in this field. The design of the best possible medical image segmentation
DNNs, however, is task-specific. Neural Architecture Search (NAS), i.e., the automation of neural network
design, has been shown to have the capability to outperform manually designed networks for various tasks.
However, the existing NAS methods for medical image segmentation have explored a quite limited range of
types of DNN architectures that can be discovered. In this work, we propose a novel NAS search space for
medical image segmentation networks. This search space combines the strength of a generalised encoder-decoder
structure, well known from U-Net, with network blocks that have proven to have a strong performance in image
classification tasks. The search is performed by looking for the best topology of multiple cells simultaneously
with the configuration of each cell within, allowing for interactions between topology and cell-level attributes.
From experiments on two publicly available datasets, we find that the networks discovered by our proposed NAS
method have better performance than well-known handcrafted segmentation networks, and outperform networks
found with other NAS approaches that perform only topology search, and topology-level search followed by
cell-level search.

1. INTRODUCTION

A growing amount of clinical applications, such as computer-aided diagnostic systems, are benefiting from recent
advances in automated medical image segmentation, most notably from Deep Neural Networks (DNNs).1,2

Given a medical scan, a DNN can provide contours of organs or regions of interest (e.g., tumors), with clinically
acceptable segmentation quality within a matter of seconds.3 Designing a State-of-the-Art (SotA) DNN, however,
is often task-specific. In order to design a DNN, choices have to be made for the topology of the network such as
depth, and connections between cells (a cell is a group of operations that transform the feature maps in a DNN),
as well as the configuration of each cell, e.g., convolutional kernel size, or activation function. This gives rise
to an inconceivably large amount of network architecture design possibilities, which is impossible to manually
navigate through in an exhaustive fashion, or even by means of intelligent design, while ensuring the best choices
are made.

Neural Architecture Search (NAS), i.e., the automated design of neural network architectures, can effectively
and efficiently search through this space of possible network architecture designs and find a network that is
highly tailored to the task at hand.4 While research on NAS for medical image segmentation has not been
as elaborate as for natural image classification, it has already shown promising results by outperforming the
SotA architectures.5–7 In our opinion, further research on NAS for medical image segmentation can make its
contributions even more significant.

NAS involves three key components: (1) The search space (the set of all possible networks given the specified
architectural constraints); (2) the search algorithm (the algorithm to navigate the search space); (3) performance
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estimation (the choices made to score a network’s performance, such that these networks can be ranked by the
search algorithm). So far, NAS research has been more elaborate for image classification tasks.4 Potentially,
strong performing search algorithms, and fast and accurate performance estimation methods can be translated
to the medical image segmentation domain. The search space, however, is specific to segmentation tasks. Several
papers have proposed search spaces for medical image segmentation. These include searching for a U-Net like
encoder-decoder topology i.e., by adapting only the cells within,7 by searching for the best topology followed by
the best convolution size within cells,5 or a combination of topology and cell search using continuous relaxation
and a so-called Super-network.6 With each of these NAS search spaces it has been possible to find networks
that perform slightly better than a standard U-Net. A semi-automatic network architecture design and training
method known as nnU-Net,8 however, is still considered SotA for many image segmentation tasks.

We believe that within the scope of a U-Net-like topology search, there is a room for making the search
space more flexible – instead of repeating the same cell structure, we propose to allow various cell structures in
a network, potentially resulting in a better performance. Further, we believe that the configuration of cells can
benefit from existing knowledge about networks with a strong performance on classification tasks. Therefore,
we propose to search through a pre-selected pool of configurations (which are taken from advanced well-known
classification networks9–11) instead of searching for a cell configuration from scratch. Apart from benefiting from
advanced performance of these well known classification networks, this proposed improvement will also help
avoiding the explosive growth of the search space caused by searching the configuration of each cell from scratch.
Finally, in contrast to recent research,5 where topology level search is followed by cell level search, we search
for both topology as well as the configuration of each cell simultaneously. This allows to take into consideration
the possible interaction between the topology-level search and cell-level, potentially yielding better performing
networks. The combination of these improvements results in the proposed approach, which we will further refer
to as Mixed-Block NAS (MB-NAS).

2. METHOD

2.1 Search space

(a) Topology-level search and encoding.

(b) Cell types. (c) Block types.

Figure 1: Description of MB-NAS search space.
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At topology-level (Figure 1a), the search space contains all possible network architectures resulting from
varying connections between cells of different types. We consider three possibilities for a cell (Figure 1b): a
downscaling, an upscaling, or a non-scaling cell. A downscaling cell means that the input image resolution is
halved, while the number of channels is doubled. Upscaling is the opposite operation, i.e., doubling the resolution
and halving the number of channels, while a non-scaling cell changes neither the resolution nor the number of
channels in the feature maps. The input to a cell can be either just the feature maps from the preceding cell
(no skip-connection), or the feature maps of the preceding cells concatenated with the feature maps from any
previous cell with the same feature maps spatial dimensions (a single skip-connection).

At cell-level, different configurations of each cell are searched. The configuration of a cell is encoded by two
variables: the type of block (a block is an organised structure consisting of multiple convolution and normalisation
layers, as well as activation functions) within the cell, and the convolutional kernel size within the block. Instead
of searching for the topology of the blocks within a cell, which would make the search space incredibly large, we
used predefined blocks derived from previously SotA architectures for classification (Figure 1c). In this work we
consider VGG blocks12 which are standard in U-Net, as well as Residual blocks,9 Dense blocks10 and Inception
blocks.11 In this way, we allow the search space to chose a different cell configuration at every edge (instead of
repeating one throughout the network) while preventing the further growth of the search space.

The network architecture is represented by connections between a fixed number of nodes (fixed to 10 in our
experiments). Each node l (Figure 1a) is represented by 4 categorical variables: al = number of channels, bl =
the block type, cl = convolution size, and dl = skip-connection source. The cell type is derived by the difference
in number of channels between two nodes. The topology of the neural network is encoded by variables al and
dl at each node. Variable al is restrained to only be allowed to take on double, equal or half the number of
channels contained in the previous cell. The cell-level search is represented by variables bl and cl at each node.
Note that the standard U-Net shape is included in the topology-level search space. The resulting search space
contains 1.14 ∗ 1018 possible networks.

2.2 Datasets

In our experiments, we used two datasets that can be found on the Medical Decathlon13 challenge website†. The
first is a collection of 3D MRI-scans of the prostate, alongside their multi-class (Central and Peripheral prostate
zones) segmentations. It contains 32 multi-modal scans, represented as a collection of 602 2D slices total. The
scans were normalised, using Z-normalisation. The second contains 3D-CT scans and single class segmentations
of the spleen. It contains 41 single modality scans represented as 3650 2D slices. The scans were clipped and
normalised.

2.3 Implementation details

We use Local Search (LS) as the search algorithm as it has been shown to be a strong baseline for NAS.14

Specifically, we use a first-improvement approach with a variable neighbourhood of 1. This means that for
each variable (iterated in a random order), all possible options are probed, and the best performing is chosen.
Once all variables are considered, we start over, until no improvements can be found anywhere. Due to limited
computational resources, the NAS was run for only 150 network evaluations. Each network was evaluated using
the validation Dice score averaged over the last 20% of training epochs. The number of epochs (100 epochs
for Prostate, 50 for Spleen) was decided such that saturation was ensured based on preliminary runs. We
used the average score of 5-fold patient-level cross-validation, repeated for 3 different network initialisations, as
performance estimator. Multiple initialisations reduce the noise in scoring, providing more reliable information
to the search algorithm, making it easier to navigate the search space. The use of multiple folds decreases noise
caused by data splits.

For network training, we used the ADAM optimiser with a learning rate 10−3 and polynomial decay with an
exponent of 0.9. The loss function was foreground soft Dice. The batch size was 32 and input image size was
128x128. The data was augmented using scaling, shifting, rotating, flipping, and brightness adjustment to avoid
overfitting.

†http://medicaldecathlon.com/

Proc. of SPIE Vol. 12032  120320S-3
Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 24 Jun 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



2.4 Experimental setup

We performed experiments to compare the proposed search space design (Mixed-Block, orMB-NAS) against the
following alternative approaches. In the first considered alternative search space (Macro-NAS) only topology
search is performed. All block types are fixed to be standard U-Net blocks (VGG). The second considered search
space (Micro-NAS) has the U-Net topology, where only the block type and convolution sizes are subject to the
search. In the third alternative search space (Bilevel-NAS), a bi-level approach was used which means that
first the topology-level is searched, and then the convolution size, similar to the Coarse-to-Fine approach.5

The best networks found by the proposed search space were evaluated against two hand-crafted neural network
architectures: standard U-Net, and U-Net with a ResNet-50 encoder (ResU-Net). Implementations are taken
from the Pytorch Segmentation Models library.15

3. RESULTS AND DISCUSSION

The performance of the different search spaces (MB-NAS, Macro-NAS, Micro-NAS, Bilevel-NAS) can be
seen in Figure 2a and 2b. The the architectures of the best networks from MB-NAS are visualised in Figure 2c.
The performance of the best networks from different NAS approaches, U-Net, and ResU-Net is summarised
in Table 1.

Table 1: Performance values of U-Net, ResU-Net, and the best networks from different NAS approaches. The
values are averaged over 5 seeds on a 5-fold cross-validation. Standard deviations are calculated based on
single seed scores on all 5-folds. Best values in each column are highlighted in bold. DSC: Dice-Sorensen
similarity coefficient, HD: Hausdorff distance (95% cutoff), SD: Surface Dice (2mm threshold), MMAC: Mega
Multiply–ACcumulate operations, #Params: number of parameters, ×106.

Model
Prostate dataset

DSC HD SD MMAC #Params

U-Net 0.6702± 0.004 8.833± 0.348 0.6046± 0.006 302 18.4

ResU-Net 0.6580± 0.004 9.441± 0.325 0.5705± 0.006 166 32.5

Macro-NAS 0.6593± 0.004 8.606± 0.470 0.5977± 0.008 256 3.39

Micro-NAS 0.6796± 0.007 8.394± 0.251 0.6203± 0.008 1, 295 22.7

Bilevel-NAS 0.6702± 0.005 8.492± 0.541 0.6134± 0.008 414 6.77

MB-NAS 0.6760± 0.010 8.419± 0.324 0.6192± 0.004 644 3.04

Model
Spleen dataset

DSC HD SD MMAC #Params

U-Net 0.9578± 0.002 1.412± 0.030 0.917± 0.002 302 18.4

ResU-Net 0.9464± 0.004 1.625± 0.042 0.905± 0.003 166 32.5

Macro-NAS 0.9566± 0.001 1.467± 0.063 0.9167± 0.001 255 3.39

Micro-NAS 0.9567± 0.002 1.388± 0.026 0.9177± 0.004 795 2.83

Bilevel-NAS 0.9553± 0.001 1.449± 0.069 0.9145± 0.005 415 6.78

MB-NAS 0.9592± 0.002 1.385± 0.036 0.9189± 0.002 1, 294 22.7

3.1 Spleen dataset

The best performing network on the Spleen dataset was found using the proposed search space, MB-NAS.
In Table 1, one can see that this network shows the best performance by all three considered performance
metrics. Note that the topology (Figure 2c, top row) is quite different from the standard U-Net. The network is
shallower, potentially indicating that smaller, more intricate features, are more important in the segmentation
of the spleen, than larger, more elaborate ones. This could be due to the small size of the organ in relation to
the image. Furthermore, blocks of all four types, are included in the architecture, as well as different convolution
sizes. This means that both the topology-level and cell-level search space parts were utilised to find this network;
an indication towards the performance increase from the designed search space.

Proc. of SPIE Vol. 12032  120320S-4
Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 24 Jun 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



(a) NAS Spleen dataset. (b) NAS Prostate dataset. (c) Best networks from MB-NAS.

(d) Example segmentations on the Spleen dataset. (e) Example segmentations on the Prostate dataset. red: central
gland, purple: peripheral zone.

Figure 2: The progress of the LS algorithm for the (a) Spleen and (b) Prostate datasets, respectively. The best networks
found by LS with MB-NAS are shown in (c). (d) and (e) show example segmentations.

3.2 Prostate dataset

Different than for the Spleen dataset, the best network (Figure 2c, bottom row) is very similar to the U-Net
architecture. This provides additional evidence to the argument that the architecture of the best DNN is task-
specific. This also indicates that the U-Net topology is best suited for the underlying task, giving an added
advantage to Micro-NAS, wherein different blocks and convolution sizes are searched within the U-Net topology.
Consequently, the use of Micro-NAS yields the best performance. However, it should be noted that using MB-
NAS, we could find a network with comparable performance despite the fact that the search was performed for
both topology as well as cell configuration. It is worth noting that no block seems to be ultimately preferable
to other blocks, i.e. outperforms other blocks at every location of the network. This indicates the advantage
of searching for a mixed-block configuration such that different blocks can be used throughout the network.
Additionally, the differences in the validation DSC of poorly performing networks compared to the best networks
is much larger for the Prostate dataset, indicating a more difficult task. Further, Table 1 shows that the best
networks from NAS outperform the manually hand-crafted U-Net and ResU-Net networks.

3.3 Comparison with SotA

It can be argued that the results for the Prostate dataset in Table 1 are not at the same level as the SotA results
given by e.g., nnU-Net.8 This is due to higher image resolution used by nnU-Net, additional preprocessing,
carefully chosen data augmentations, post-processing, and an advanced inference method, that are all different
from the setup used in NAS in this paper. Therefore, the network performance when using the nnU-Net training
and evaluation setup, was also evaluated with the found networks from NAS. For Prostate, the 5-fold cross-
validation Dice-Sorensen coefficient is 0.7325 for MB-NAS vs. 0.7315 for nnU-Net. It should be noted that
the comparison is done between the network found by NAS, trained in the nnU-Net environment, and a U-
Net architecture that is tailored to the data according to the nnU-Net heuristics. The architectures found by
NAS were found using entirely different settings. This gives an unfair advantage to nnU-Net. Nevertheless,
the architecture found by NAS still performs slightly better to nnU-Net in these settings, which is remarkable.
For the Spleen dataset, the performance level is quite similar to the results reported by nnU-Net. Nevertheless,
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the network was validated in this environment as well. The 5-fold cross-validation Dice-Sorensen coefficient is
0.9467 for MB-NAS vs. 0.9466 for nnU-Net, indicating equal performance.

3.4 Statistical significance

A Friedman test was conducted on the different network performances to compare the effect of the archi-
tecture on the segmentation accuracy. The test was performed on individual scores for 5 differently seeded
network initialisations on all 5 folds of a datasplit. The Friedman test reveals a statistically significant differ-
ence between network performances from Table 1 for the Dice-Sorensen similarity coefficient (Spleen dataset
: (χ2(5) = 49.14, p < 0.0001); Prostate dataset : (χ2(5) = 16.98, p < 0.005)). A post-hoc analysis, using
the Wilcoxon signed-rank test, found that the difference in performance of the Dice-Sorensen similarity coef-
ficient was statistically significant between the best network found by NAS and U-Net for the Spleen dataset
(Z = 48.0, p < 0.05). For the Prostate dataset the difference was not significant.

3.5 Computational limits and possible extensions

We note that due to limited computational resources, only one run of NAS was performed per search space,
and for a limited number of network evaluations. Longer experiments with multiple runs would have helped
draw more definitive conclusions. Also, running NAS experiments for more datasets may provide further insights
about the specific characteristics of network architecture design required for good performance across datasets.
Additionally, the search space could be further extended by adding other block types, like Image Transformer16

blocks.

4. CONCLUSIONS

We have proposed an approach for medical image segmentation Neural Architecture Search, which involves a
novel search space and simultaneous topology- and cell-level search strategy. In the cell-level search, we used
existing knowledge from networks with high performance in image classification tasks, i.e. ResNet, DenseNet and
InceptionNet, to create a pool of possible block configurations. The experiments in this paper show the added
value of this approach. Overall, the results indicate that further research into search space refinement, allowing
to exploit key features of what accounts for good deep learning performance, may yet push the boundaries of
what can be achieved with deep neural networks for medical image processing.
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