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ABSTRACT

Evolutionary-based crash reproduction techniques aid developers in

their debugging practices by generating a test case that reproduces

a crash given its stack trace. In these techniques, the search process

is typically guided by a single search objective called Crash Distance.

Previous studies have shown that current approaches could only

reproduce a limited number of crashes due to a lack of diversity

in the population during the search. In this study, we address this

issue by applying Multi-Objectivization using Helper-Objectives

(MO-HO) on crash reproduction. In particular, we add two helper-

objectives to the Crash Distance to improve the diversity of the

generated test cases and consequently enhance the guidance of the

search process. We assessed MO-HO against the single-objective

crash reproduction. Our results show that MO-HO can reproduce

two additional crashes that were not previously reproducible by

the single-objective approach.
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· Software and its engineering → Software testing and de-

bugging; Search-based software engineering.
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1 INTRODUCTION

When a software application crashes, a report (or issue), including

information gathered during the crash, is assigned to developers

for debugging. One common practice to identify the root cause of

a crash is to write a test case reproducing it [8]. This test case can

later be adapted and integrated into the test suite to prevent future
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regressions. However, depending on the amount of information

available in the report, writing this crash reproducing test case can

be time-consuming and labor-intensive [7].

Consequently, various approaches in the literature try to auto-

mate crash reproduction. The earlier empirical study [7] shows that

search-based crash reproduction outperforms other crash repro-

duction approaches in terms of crash reproduction ratio (percentage

of crashes that could be reproduced) and efficiency (time taken to

reproduce a given crash successfully). Search-based crash reproduc-

tion generates a test case that, when executed, is able to reproduce

that crash by modeling the crash reproduction problem as an opti-

mization problem. This approach reformulates crash reproduction

as a single search objective (Crash Distance hereafter), which mea-

sures how far a generated test is from reproducing the crash, and

applies a single-objective evolutionary algorithm (Single-Objective

Search hereafter) to generate solutions (i.e., tests).

Although Single-Objective Search performs well compared to

other crash reproduction approaches, a more extensive empirical

study [6] revealed that it is not successful in reproducing complex

crashes (i.e., large stack traces). Hence, further studies to enhance

the guidance of the search process are required.

In this study, we investigate a new strategy to Multi-Objectivize

crash reproduction based on Helper-Objectives (MO-HO) [3]. More

specifically, we add two additional helper-objectives to Crash Dis-

tance (first objective): method call diversity (second objective) and

test case length minimization (third objective). For the second ob-

jective, we re-use a distance function that measures the diversity

of the methods called in the test cases. For the third objective, we

count the number of statements in the generated test case. Since

these three objectives conflit with Crash Distance, we expect an

increase in the solutions’ diversity and, hence, an improvement

in crash reproduction effectiveness (crash reproduction ratio) and

efficiency. We utilize SPEA2 [9], which is a multi-objective evolu-

tionary algorithm (MOEA), to solve this optimization problem.

We compare our approach against Single-Objective Search [7]

from the perspectives of crash reproduction. Our results show that

MO-HO can reproduce new crashes, which are not reproducible

with Single-Objective Search.

2 MULTI-OBJECTIVIZATIONWITH
HELPER-OBJECTIVES (MO-HO)

As suggested by Jensen et al. [3], adding helper-objectives, which

are in conflict with the primary one, to an existing single objective
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can help search algorithms escape from local optima. Therefore,

defining proper helper-objectives is crucial. In this study, we add

two helper-objectives calledmethod sequence diversity and test

length minimization that aim to increase the diversity in the

population (e.g., generated tests) and address the bloating effect.

Then, we use SPEA2 MOEA to solve this optimization problem.

2.1 Method Sequence Diversity (MSD).

The first helper-objective seeks to maximize the diversity of the

method-call sequences that compose the generated tests. To mea-

sure the value of this objective, we measure the diversity between

two test cases by using a binary encoding scheme and calculating

the distance between the corresponding encoded vectors using the

Hamming distance [2]. For three or more test cases, the overall di-

versity corresponds to the average pairwise diversity of the existing

test cases [4].

Let us assume that F = { f1, f2, .. fn } is a set of public and pro-

tected methods in the target class, and T = {t1, t2, ..tm } is a set of

generated test cases. To calculate the diversity ofT , we first need to

encode each tk ∈ T to a binary vector. We use the same encoding

scheme proposed by Mondal et al. [4]: each test case tk ∈ T corre-

sponds to a binary vector vk of length n. Each element vk [i] of the

binary vector denotes whether the corresponding method fi ∈ F is

invoked by the test case tk . More formally, for each method fi ∈ F ,

the corresponding entry vk [i] = 1 if tk calls fi ; vk [i] = 0 other-

wise. Then, we calculate the diversity for each pair of test cases tk
and tj as the Hamming distance between the corresponding binary

vectors vk and vj [2].

2.2 Test Length Minimization

If we apply method sequence diversity to our search problem, we

may end up with long test cases [1]. Let us assume that we have a

set of short test cases with fewmethod calls in our population (most

of the elements in their binary vectors are 0). A lengthy test case

tL that calls all the methods of the target class will have a binary

vector of ones. As a consequence, tL will have a large Hamming

distance from the existing test cases. To avoid the bloating effect [5],

our second helper-objective is test length minimization, seeking to

minimize the number of statements in a given test.

3 EXPERIMENTAL ANALYSIS

We used 30 randomly selected crashes from JCrashPack [6], a

collection of crashes for crash reproduction benchmarking. We

attempted to reproduce the selected crashes using both MO-HO

and Single-Objective Search with the search budget of five minutes

and the population size of 50. In SPEA2, we set the archive size to

50. For both algorithms, we use the same genetic operators with

the same parameter values. More precisely, fittest individuals (tests)

are selected for reproduction using the binary tournament selection.

New tests are generated using the uniform mutation with mutation

probability pm = 1/n (where n is the length of the test case) and

the single-point crossover with probability pc = 0.8.

We examined if MO-HO can reproduce any additional crashes,

which are not reproducible by Single-Objective Search.We observed

that our approach could reproduce two new crashes: XWIKI-14227

and LANG-19b. Moreover, we observed that all of the crashes repro-

duced by Single-Objective Search could be reproduced by MO-HO

as well.

4 CONCLUSION AND FUTUREWORK

Generating crash reproducing test cases can ease the process of

debugging for developers. A promising approach for automating

this process is using evolutionary algorithms. This approach defines

an optimization objective called Crash Distance and applies a single

objective guided evolutionary algorithm (Single-Objective Search).

This strategy may end up generating test cases that are not diverse

enough because of a low exploration during the search process.

In this initial study, we apply MO-HO to tackle the problem of

the former technique. In MO-HO, we define two helper-objectives

in addition to Crash Distance to alleviate the lack of exploration.

Moreover, the introduced helper-objectives conflict with the main

objective Crash Distance.

We assessed the application of MO-HO to SPEA2 (a commonly

usedMOEA) to solve the crash reproduction problem and compared

its results against Single-Objective Search. Results indicate that

MO-HO can reproduce two new crashes (6% of selected crashes)

not reproduced by Single-Objective Search. Since our early results

are encouraging, we seek to perform an empirical study (on more

crashes) and characterize the contributing factors in MO-HO in a

future study.
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