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Abstract
The study of periodic systems under the action of moving loads is of high practical importance in railway, road, and bridge
engineering, among others. Even though plenty of studies focus on periodic systems, few of them are dedicated to the
influence of a local inhomogeneous region, a so-called transition zone, on the dynamic response. In railway engineering,
these transition zones are prone to significant degradation, leading to more maintenance requirements than the rest of
the structure. This study aims to identify and investigate phenomena that arise due to the combination of periodicity and
local inhomogeneity in a system acted upon by a moving load. To study such phenomena in their purest form, a one-
dimensional model is formulated consisting of a constant moving load acting on an infinite string periodically supported
by discrete springs and dashpots, with a finite domain in which the stiffness and damping of the supports is larger than for
the rest of the infinite domain; this model is representative of a catenary system (overhead wires in railway tracks). The
identified phenomena can be considered as additional constraints for the design parameters at transition zones such that
dynamic amplifications are avoided.

Keywords
Periodic structure, transition radiation, moving load, wave interference

1. Introduction

Periodic systems under the action of moving loads have attracted the attention of researchers in the past
century. These problems pose academic challenges and are of high practical relevance due to their appli-
cation in railway, road, and bridge engineering, among others. Despite the numerous studies on periodic
systems, few investigations are dedicated to the influence of a local inhomogeneous region, a so-called
transition zone, on the dynamic response. In railway engineering, significant degradation is observed in
the vicinity of these transition zones, requiring more maintenance than the rest of the structure [1]. This
study aims at investigating if the combination of (1) a transition zone and (2) the periodic nature of the
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structure can lead to undesired response amplification that is otherwise not observed in systems that
neglect either (1) or (2).

The study of periodic structures goes back to Newton who investigated the velocity of sound in air
using a lattice of point masses; for an interesting historical background of wave propagation in periodic
lumped structures, see Brillouin [2]. Rayleigh studied for the first time a continuous periodic structure [3],
considering a string with a periodic and continuous variation of density along its length. When it comes
to a periodic and discrete variation in continuous structures, Mead [4–6] was among the pioneers who
studied free wave propagation in such systems. Concerning moving loads on such structures, Jezequel
[7] and Cai et al. [8] were among the first to study periodically and discretely supported beams acted
upon by a moving load. Vesnitskii and Metrikin [9,10] offered an extensive investigation into the beha-
viour of a periodically and discretely supported string acted upon by a moving load. More recently,
there have been numerous studies of periodic guideways acted upon by vehicles, for example [11–17],
and also numerous studies focusing on the vehicle instability caused by the periodic nature of the guide-
way (i.e. parametric instability or sometimes called parametric resonance), for example [18,19].

Studies using complex models containing periodic structures and transition zones are present in liter-
ature, for example [20–23]; however, these studies concentrate on predicting the transient response in
the vicinity of the transition zone and do not treat specifically the influence of the discrete and periodic
supports on these results. Moreover, with increased model complexity, the identification and investiga-
tion of particular/isolated phenomena becomes very difficult, if not impossible. Therefore, this paper
focuses on the identification and investigation of specific phenomena that arise due to the combination
of periodicity and local inhomogeneity in a system acted upon by a moving load. The local inhomoge-
neous region is itself periodic too, but with different parameters than the rest of the structure.

To study phenomena in their purest form, a one-dimensional (1D) model is formulated consisting of a
constant moving load acting on an infinite string periodically supported by discrete springs and dash-
pots, with a finite domain in which the stiffness and damping of the supports is larger than for the rest of
the infinite domain. The novelty of this research lies in the identification and investigation of three phe-
nomena arising from the combination of periodicity and local inhomogeneity in a system acted upon by
a moving load; they have not been yet reported in the literature. The three phenomena are described in
detail in Sections 4.1, 4.2, and 4.3, respectively. Although these phenomena are identified in this simple
model, they are intrinsic to any periodic system with a local inhomogeneity, and thus, can help under-
stand the potential response amplification in more complex systems that incorporate these two charac-
teristics. Finally, as this model is representative of a catenary system (overhead wires in railway tracks),
the three identified phenomena can help understand the fatigue and wear of the catenary systems close
to transition zones as well as wear in the energy collector system.

2. Model description

The system studied in this paper consists of an infinite string with distributed mass per unit length r that
is under tension T ; the string is discretely supported by springs with stiffness ks(x) and dashpots with
damping coefficient cs(x); the generic cell is defined at x 2 ½nd, (n + 1)d� where n is the cell number and d
is the cell width, and the spring-dashpot element is located in the middle of the cell at x = �nd with
�n = n + 1

2
; this system is acted upon by a moving constant load of amplitude F0 and velocity v. The stiff-

ness and damping of the supports varies in space in such a way that there is a zone of length l in which
the stiffness and damping of the supports is p times larger than for the rest of the infinite domain; the
region in the close vicinity to the stiff zone is called the transition zone. Figure 1 presents a visual sche-
matic of the system while its equation of motion reads

r€w� Tw00+
X‘

n =�‘

ks(x) + cs(x) ∂
∂t

� �
wd(x� �nd) =� F0d(x� vt), ð1Þ
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where primes and overdots denote partial derivatives in space and time, respectively. The supports stiff-
ness is a piecewise function in space and is defined as follows:

ks(x) =
ks, x\xa,
pks, xa ł x ł xb,
ks, x . xb:

8<
: ð2Þ

For simplicity, the spatial distribution of the damping is assumed to be the same as that of the stiff-
ness. The values for the parameters are taken from Metrikine [24]; they represent the parameters for a
realistic catenary system.

In the remainder of the paper, homogeneous system is used to refer to the system without transition
zone while inhomogeneous system is used for the system with a transition zone, even though both sys-
tems are inherently inhomogeneous due to the discrete supports. Important to note, transition zone does
not refer only to the stiff region, but to the stiff region and its vicinity, as can be seen in Figure 1.

3. Homogeneous system

In this section, we present the characteristics of the periodic system without the transition zone. The goal
here is to introduce the solution method used throughout this paper, to highlight important characteris-
tics of the periodic and continuous system, and to present the steady-state response to a moving constant
load. Note that the system without damping is considered here for clarity in the derivation. To this end,
we aim at writing an expression linking the states (displacement and slope) at the two boundaries of a
generic cell. First, we apply the forward Fourier transform over time to the equation of motion (equa-
tion (1)), thus obtaining the following expression:

~w00+
v2

c2
�
X‘

n =�‘

ks

T
d(x� �nd)

 !
~w =

F0

Tv
e�iv

x
v, ð3Þ

where the tilde is used to denote the quantity in the Fourier domain and c =
ffiffiffiffiffiffiffiffiffi
T=r

p
is the wave velocity

in the unsupported string. We can limit our investigation to a generic cell x 2 ½nd, (n + 1)d� and split this
cell into two domains, with ~w1 to the left of the support and ~w2 to the right of it. This allows us to write
the solutions in the two domains as follows:

~w1(x,v) = C1e
�igx + C2e

igx + ~wp(x,v), nd ł x ł (n + 1
2
)d, ð4Þ

~w2(x,v) = D1e
�igx + D2e

igx + ~wp(x,v), (n + 1
2
)d ł x ł (n + 1)d, ð5Þ

~wp(x,v) =
F0

T

v

g2v2 � v2
e�iv

x
v, ð6Þ

Figure 1. Model schematics: infinite tensioned string discretely supported by an inhomogeneous foundation, subjected to a moving
constant load.
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where g = v=c is the wavenumber in the unsupported string. Note that ~wp is the steady-state solution of
an unsupported string acted upon by a moving constant load. The interface conditions between the two
domains at x = �nd represent displacement continuity and shear force equilibrium, and read.

~w1 = ~w2,

~w02 � ~w01 =
ks

T
~w1:

ð7Þ

Using the two interface conditions, D1 and D2 can be expressed in terms of C1 and C2. Also, we
express C1 and C2 in terms of the state at x = nd (i.e. displacement ~wn and slope ~w0n). The resulting state
inside the generic cell reads

~w(x,v)
~w0(x,v)

� �
=

f1, 1(x� nd) f1, 2(x� nd)
f2, 1(x� nd) f2, 2(x� nd)

� �
~wn

~w0n

� �
+

~wML(x,v)
~wML0(x,v)

� �
, nd ł x ł (n + 1)d, ð8Þ

where f1, 1, f1, 2, f2, 1, and f2, 2 are piecewise defined functions that relate the state inside the cell to the state
at the left boundary (x = nd) while ~wML and ~wML0 are piecewise defined functions that include the influ-
ence of the particular solution on the state inside the cell; their expressions are not given for brevity, but
they can easily be obtained using a symbolic mathematical software (e.g. Maple). To express the state at
x = (n + 1)d in terms of the state at x = nd, one has to evaluate equation (8) at x = (n + 1)d. The resulting
relation is

~wn + 1 =F~wn + ~wML
n + 1, ð9Þ

where matrix F is called the Floquet (or monodromy) matrix. Relation (9) is a discrete function that
relates the information at the interfaces of an arbitrary cell.

To investigate the propagation characteristics of the system, we momentarily focus on the system
without the moving load, and it would become clear that the following expression links the state at
x = nd to the one at x = 0:

~wn =Fn ~w0: ð10Þ

To reveal specific characteristics of the periodic system, we perform an eigenvalue (a) and eigenvector
(u) analysis of F. One can express the solution using the so-called Floquet wavenumbers kF = i ln(a)=d
and it, thus, reads

~wn = a1e
�ikF

1
ndu1 + a2e

�ikF
2

ndu2, ð11Þ

where a1 and a2 are unknown amplitudes that can be obtained from the two boundary conditions that
need to be imposed to the system. To determine the Floquet wavenumbers kF, the dispersion equation
(obtained from the eigenvalue analysis of F; it is presented by Vesnitskii and Metrikin [10] and a mathe-
matical derivation is given in Appendix 1) needs to be solved for kF; the dispersion equation reads

cos (kFd) =
ksc

2Tv
sin

vd

c

� �
+ cos

vd

c

� �
: ð12Þ

As can be seen from equation (12), the dispersion relation for the discretely supported string is a trans-
cendental equation. This means that there are infinitely many wavenumbers kF linked to one specific fre-
quency v and the distance between subsequent wavenumbers is 2p=d. These repeating zones are called
Brillouin zones [2]. For discrete systems, all dispersion information is contained in the first Brillouin zone
(½�p

d
, p

d
�) because waves of wavenumber larger than p=d cannot propagate. As the Floquet wavenumbers

are derived from a discrete function (equation (10)), they are limited to the first Brillouin zone (i.e.
kF 2 ½�p

d
, p

d
�). However, the system considered here is a continuous one, and waves with all wavenumbers

can propagate. Consequently, the response ~w(x,v) will contain wavenumbers from all Brillouin zones
and the continuous wavenumber reads k = kF + m2p

d
with m = 61,62, . . .. A repetition occurs also with

increasing v; however here, the repetition is not exact due to the presence of v in the denominator of the
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sine term. This causes the dispersion curve of the periodic system to tend to the one of the unsupported
string as v tends to infinity.

The dispersion curve is presented in Figure 2. Three Brillouin zones are presented and it may seem
that the repetition from one zone to the next is exact. However, the branches closest to the dispersion
curve of the unsupported string give rise to waves with more energy compared to all the other branches;
these branches form the primary dispersion curve. From a physical perspective, the energy propagated
from cell to cell is governed by the Floquet wavenumbers kF and no distinction can be made between
different Brillouin zones; however, the propagation inside the cells is governed by the string and wave-
numbers from all Brillouin zones can be present dictated by the dispersion equation of the free string.
Therefore, the propagation in the continuous and periodic system is a combination of the two, dictating
that the waves with wavenumber k closest to g receives most amount of energy. This is demonstrated
mathematically in Appendix 2. Also, we can observe that the discrete system exhibits multiple (actually
infinitely many [2]) frequency ranges where no propagation is possible; these frequency ranges are called
stop bands, while the frequency ranges in which propagation is possible are called pass bands. For com-
parison, in a continuously supported system the only frequency range in which wave propagation is not
possible is below the cut-off frequency. Strictly speaking, stop bands (as well as pass bands) only exist if
the system does not have dissipation; however, for small values of dissipation, the stop bands strongly
attenuate wave propagation in these frequency ranges.

Returning to the problem with the moving load, we still need to impose two boundary conditions to
have a fully determined solution. Because we are searching for the steady-state response, we can make
use of the so-called periodicity condition [10]. For the considered system (the load does not have an inher-
ent frequency), the response inside each cell is exactly the same as in the previous one but shifted in time
by d=v. The two boundary conditions, therefore, read

~w1(x = nd)e�iv
d
v = ~w2(x = (n + 1)d),

~w01(x = nd)e�iv
d
v = ~w02(x = (n + 1)d):

ð13Þ

Using equation (13), we can determine the remaining two unknown amplitudes C1 and C2 (their
expressions can be found in Vesnitskii and Metrikin [10]). The steady-state solution in the Fourier
domain is now determined. To obtain the time-domain solution, the inverse Fourier transform is per-
formed numerically (for which to work efficiently, a small amount of damping is introduced.)

For a continuously supported string, the steady-state response does not exhibit any wave propagation
away from the load (we only consider sub-critical velocities). For the discretely supported string, how-
ever, waves are excited from the load every time it passes a support. In the case of a single support, the
load generates a continuous wave spectrum when it passes it; this phenomenon is called transition radia-
tion [25–30]. In the periodic system, the waves generated at each support interfere (constructively for
some frequencies and destructively for others) leading to a discrete frequency spectrum of the radiated

Figure 2. Dispersion curves of the periodic system in three Brillouin zones (black and blue lines) and the dispersion curve of the
unsupported string (green line); the different Brillouin zones are indicated through different background colour. The primary
dispersion curve is displayed with the thick blue lines while the secondary ones with thin black lines.
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waves; this phenomenon is sometimes called resonance transition radiation [26] because the constructive
interference of the radiated waves leads to resonance for some system parameters. More specifically,
resonance occurs when the group velocity of one generated wave is equal to the load velocity. From
Figure 10, we can identify the velocities at which resonance occurs (consider only the black line). As it
can be seen, the system has many velocities at which resonance occurs, but some velocities lead to stron-
ger resonance than others. Strong resonance occurs at low frequencies of the generated harmonic and at
high velocities of the load [10].

To determine the frequency/wavenumbers of the waves generated by the moving load, next to the dis-
persion curve, we need another equation that expresses a relation between the frequency, wavenumber,
and the load velocity, namely the kinematic invariant. For this system, the kinematic invariant can be
determined from the following equation (10) ( a mathematical derivation of the kinematic invariants is
given in Appendix 1):

cos (kd) = cos
vd

v

� �
: ð14Þ

Equation (14) shows that there are infinitely many kinematic invariants. The zeroth-order kinematic
invariant is given by v = kv that relates to a constant moving load while the higher order kinematic
invariants are given by v = kv + m2pv

d
with m = 61,62, . . ., and are related to moving harmonic loads

of frequency m2pv
d
.

Figure 3 presents the dispersion curve together with the kinematic invariants of the current problem.
The dispersion curve is slightly different compared to the one in Figure 2 due to the presence of damp-
ing. It can be seen that there is no intersection point between the zeroth-order kinematic invariant (thick
blue line) and primary dispersion curve (thick black line) because the considered load velocity is sub-
critical; nonetheless, there are intersection points between higher-order components. The intersections
between one of the kinematic invariants and the dispersion curve represent propagating waves emitted
by the moving load in the steady state. Moreover, it is important to observe in Figure 3 that the emitted

Figure 3. The dispersion curve (black solid lines) and the kinematic invariants (blue solid lines) (top left panel; v’0:25c), the
frequency spectrum of the steady-state displacement (top right panel), and the wavenumber spectra of the steady-state displacement
(bottom panels) evaluated at O= 19 and O= 51 rad/s (indicated by the horizontal dashed lines).
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waves form a discrete frequency spectrum, as expected, and that all generated waves have frequencies in
the pass bands of the system.

Moreover, it is clear from the wavenumber spectrum that the wave pack with frequency v (e.g.
v = 19 or v = 51 rad/s depicted in Figure 3 through the dashed green lines) is composed of infinitely
many discrete harmonic waves. The reason is that the harmonic wave is not an eigen-solution of the
equation of motion; consequently, the eigenfunction is represented as a superposition of infinitely
many harmonic waves. Some of these harmonic waves have a negative phase velocity while others
have a positive one. Nonetheless, the wave pack (v = 19 or v = 51 rad/s) has a negative group velo-
city meaning that it travels in negative x direction. Also, the main contribution to the wave pack can
be seen to come from the intersection of one of the kinematic invariants with the primary dispersion
curve, as explained previously.

Figure 4 presents a time-domain snapshot of the steady-state displacement field. It can be observed
that in front of the load, the wave is mainly governed by one frequency-wavenumber pair while behind
more pairs seem to be influential; also, the amplitude of the wave behind the load is larger than the one
in front. The wave in front of the load is mainly governed by the second peak in the frequency spectrum
which is associated with a positive group velocity larger than the load speed (so it travels in front of the
load; see top plots in Figure 3) while the one behind the load is governed by the first and third peaks
which are associated with negative group velocities; this explains the difference in amplitude as well as
the frequency-wavenumber content of the waves.

4. Inhomogeneous system

In this section, the periodic system with a transition zone (as depicted in Figure 1) is considered. The
solution is obtained using a Green’s function approach; the moving load is first assumed to act inside
only one cell and the response of this system is determined. To obtain the response of the system to the
moving load acting on all cells, the individual solutions are superimposed. The drawback of this
approach is that the load cannot act from t! �‘ since this would imply obtaining and adding infi-
nitely many solutions. Nonetheless, if the load enters far away to the left of the transition zone and if
the system has damping, the response in the transition zone should be in the steady state. (This short-
coming could be avoided by imposing the steady state as initial conditions of the system (see Fărăgău
et al. [29]); this is not done here because the computational cost of the above-mentioned procedure is
very low.)

The solution procedure starts, as previously, by applying the Fourier transform over time to equation
(1). Then, the loading obtained is only considered for one cell; the solution procedure is demonstrated
for the situation in which the load is applied to the left of the stiff zone, but the same procedure needs
to be followed when it acts inside the stiff zone or to the right of it. The obtained equation of motion is
divided in 5 domains: (1) left of the loaded cell, (2) the loaded cell, (3) right of the loaded cell and left of
the stiff zone, (4) inside the stiff zone, and (5) to the right of the stiff zone. Their solutions can be written
as done in the previous section and read

~w1, n, nj
= a2e

�ikF
2

ndu2, n\nj, ð15Þ

Figure 4. Snapshot of the time-domain displacement field for the discretely and continuously supported systems.
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~w2, n, nj
= b1e

�ikF
1

ndu1 + b2e
�ikF

2
ndu2 + ~wML

n , n = nj ð16Þ

~w3, n, nj
= c1e

�ikF
1

ndu1 + c2e
�ikF

2
ndu2, nj\n\na, ð17Þ

~w4, n, nj
= d1e

�ikF1 nd�u1 + d2e
�ikF2 nd�u2, na ł n\nb, ð18Þ

~w5, n, nj
= e1e

�ikF1 ndu1, n ø nb: ð19Þ

where n is the left interface of the observation cell, nj is the left interface of the loaded cell (i.e. the excita-
tion cell), and the overbar indicates that the quantity is associated to the stiff zone; na and nb � 1 are the
left interfaces of the first and last cells, respectively, in the stiff zone. The boundary conditions at infinity
have already been accounted for in these solutions. Also, the signs of the wavenumbers have been chosen
as Im (kF1 )\0 and Im (kF2 ) . 0. To determine the unknown amplitudes, interface conditions are imposed
between the domains in the form of continuity in displacements and forces. The total solution (for the
moving load acting on all considered cells) becomes

~wn =
XNright

nj = Nleft

~wn, nj
, ð20Þ

where ~wn, nj
= ½~w1, n, nj

, ~w2, n, nj
, ~w3, n, nj

, ~w4, n, nj
, ~w5, n, nj

� is the solution for all the cells when the load is
applied at nj, Nleft is the first cell on which the load acts (at t = 0) and Nright represents the last cell. Nleft

needs to be chosen sufficiently to the left of the transition zone such that the response is in the steady
state in the transition zone. Nright can be chosen based on the maximum time of the simulation and it
does not introduce any unwanted transients in the response. It must be mentioned that the domain for
which the response is determined can be and, for computational efficiency, should be smaller than the
domain over which the load is applied. In other words, if Nleft is chosen far to the left of the transition
zone, there is no need to determine the response there; we can restrict our domain of interest (i.e. obser-
vation) in the transition zone.

The solution is now determined at the interfaces between cells. To determine the solution inside the
cells, one simply needs to use equation (8). In the following, three phenomena are described and investi-
gated that occur due to the combination of periodicity with the local inhomogeneity and lead to response
amplification.

4.1. Wave-interference phenomenon

Figure 3 shows that, in the case of a homogeneous system, the frequencies of all emitted waves lie inside
the pass bands. However, once there is a change in stiffness of the supporting structure (i.e. a transition
zone), the locations of the stop bands are different for the different parts of the infinite domain.
Consequently, the frequencies of waves excited by the load in the soft regions can be in the stop band of
the stiff zone. This causes the waves to be reflected almost completely by the stiff zone and to interfere
with the wave field travelling with the load. This wave interference can lead to amplifications of the
response in the transition zone.

For this mechanism to be pronounced, the amplitude of the waves that are in the stop band of the
stiff zone should be significant. This criterion is met when the velocity is close to a resonance velocity.
In Figure 10, the strongest resonance in the soft region occurs at a velocity v’26m/s; consequently, for
this investigation, a velocity slightly higher than this one is chosen (i.e. v = 28m/s). This is done because
the excited wave needs to propagate faster than the load such that it has time to reflect from the stiff
region. (At resonance, the group velocity of the generated wave equals the load velocity; for a load velo-
city slightly larger than resonance velocity, the generated wave of interest travels slightly faster than the
load.)

There are two situations which lead to amplification of the response in the transition zone. First, the
forward propagating wave is reflected at the stiff region and propagates backwards interfering with the
wave field close to the load. This amplification should be observable at the left of the stiff region.
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Second, when the load has passed the stiff region, the backward propagating wave is reflected at the
stiff zone and propagates forward interfering with wave field close to load. This amplification should be
observable to the right of the stiff zone.

First, we investigate the region to the left of the stiff zone. The response is evaluated at approximately
5m to the left of xa (see Figure 1); the frequency and wavenumber spectra of the transient response are
compared to the steady-state ones in Figure 5. On one hand, the second peak in the frequency spectrum,
corresponding to the forward propagating wave, is amplified in the transient response; because the fre-
quency of this wave is in the stop band of the stiff zone, the wave is reflected almost in its entirety (not
completely due to damping and transmission to the right of the stiff region). Moreover, unlike the
steady-state response, the wavenumber spectrum of the transient response exhibits an additional wave
with wavenumber equal in magnitude but opposite in sign (i.e. opposite direction of propagation) to
that of the forward propagating wave, confirming the wave reflection. On the other hand, we can see
that the first peak in the frequency spectrum, corresponding to backward propagating wave, is almost
completely eliminated; the fact that the response is evaluated very close to the stiff zone (to its left)
implies that less time is available to generate this wave (in the stiff zone, this wave is no longer gener-
ated), which explains the lower amplitude.

When looking to the right of the stiff zone, the opposite is occurring. Figure 6 shows that the first
peak in the frequency spectrum is amplified while the second peak is almost completely eliminated in
the transient response. A similar reasoning as above can be used to explain these observations. A gen-
eral picture is obtained when looking at the time-domain response under the moving load, presented in
Figure 7. The transient response is amplified significantly to the left and right of the stiff region.

The response for the equivalent continuously supported system with a transition zone is also pre-
sented to show, that in that case, there is no visible amplification (due to the relatively low velocity). It
is now clear that this significant amplification is caused by the periodicity of the system together with
the transition zone; if any of these two characteristics are removed, the amplification vanishes.

The question arises how this mechanism is affected by the length of the stiff zone. If the stiff zone has
a very short length, the tunnelling effect (similar to the quantum tunnelling [31]) can occur leading to
energy being tunnelled to the soft domain to the right of the stiff zone. As a short investigation, we con-
sider the same system, but an incident wave coming from the left is used instead of the moving load. The
solution to that problem (cf. equations (15)–(19)) reads

~w1, n = Aie
�ikF

1
(n�na)du1 + Are

�ikF
2

(n�na)du2, n\na, ð21Þ

Figure 5. The primary dispersion curves for the soft (black solid line) and stiff (black dashed line) regions and the kinematic
invariants (blue lines) (top left panel; v = 28 m/s), the frequency spectra of the displacements at a position xl = xa � 5 m to the left of
and near the stiff zone (top right panel), and the wavenumber spectra of the displacements (bottom left panel) evaluated at
O= 20:2 rad/s (indicated by the horizontal green dashed line); the bottom right panel is a zoom in of the top right panel.
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~w2, n = A1e
�ikF1 (n�na)d�u1 + A2e

�ikF2 (n�na)d�u2, na ł n\nb, ð22Þ

~w3, n = Ate
�ikF

1
(n�nb)du1, n ø nb: ð23Þ

where Ai, Ar, and At are the amplitudes of the incident, reflected, and transmitted waves, respectively; A1

and A2 are the amplitudes of the waves inside the stiff zone. Equation (23) together with the continuity
conditions at the interfaces of the three domains can be used to express the amplitudes of all waves in
terms of the amplitude of the incident wave Ai. This allows us to study the reflected and transmitted
waves depending on the frequency/wavenumber of the incoming wave and on the length of the stiff
zone.

Figure 8 presents the coefficients jAr, tj2 of the reflected and transmitted waves, respectively, for three
lengths of the stiff zone, where the length of the stiff zone is defined as l = rd (i.e. an integer number of
cells). (The coefficients jAr, tj2 are presented and not the amplitudes themselves because
jArj2 + jAtj2 = jAij2 in the absence of damping [31]). Both coefficients are very small for frequencies
below the cut-off frequency of the soft zone; in this frequency range, the incoming wave is evanescent,
leading to no energy input. For frequencies in the pass band of both domains, the coefficient of the
transmitted wave is dominant while that of the reflected one is low. In the frequency range between the
cut-off frequencies of the two domains, the outcome depends highly on the length of the stiff zone. For
a large r, the coefficient of the transmitted wave is zero while the reflected one is almost 1 (it is not
exactly 1 due to the presence of damping). For a smaller r, energy is tunnelled to the right side and the
transmission increases while the reflection decreases. The energy tunnelling to the right domain can be
observed in the top panel of Figure 9.

Returning to the problem with the moving load, the frequencies of the two dominant waves excited
by the moving load (in the scenario studied previously; see Figure 5) are both in between the cut-off fre-
quencies of the two domains. For a large r, both waves experience almost full reflection, and thus, the
significant amplification observed previously. For r = 1, the forward propagating wave will not any
more fully reflect, as can be inferred from the right panel of Figure 8 (the forward propagating wave is
indicated through the top green dashed line), while the backward propagating wave is still almost fully
reflected (the backward propagating wave is indicated through the bottom green dashed line). This sce-
nario should lead to a smaller amplification to the left of the stiff zone and the same amplification to
the right of the stiff zone. This is confirmed in the bottom panel of Figure 9, where the amplification to
the left of the stiff zone is slightly smaller for r = 1 than for r = 10, while the amplification to the right

Figure 6. The primary dispersion curves for the soft (black solid line) and stiff (black dashed line) regions and the kinematic
invariants (blue lines) (top left panel; v = 28 m/s), the frequency spectra of the displacements at position xr = xb + 15 m to the right
of and near the stiff zone (top right panel), and the wavenumber spectra of displacements (bottom left panel) evaluated at
O= 17:2 rad/s (indicated by the horizontal green dashed line); the bottom right panel is a zoom in of the top right panel.
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of the stiff zone is almost the same (there is a shift in time and space due to the different lengths of the
stiff zone, so one needs to compare peaks at 115m (orange) and 205m (green)). Nonetheless, the ampli-
fication to the left of the stiff zone can be clearly seen even for r = 1.

It is important to mention that the wave-interference phenomenon is not sensitive to the stiffness dif-
ference between the stiff and soft domain, provided that the generated waves are in the pass band of the
stiff zone. Simulations have been performed also for p = 5 instead of p = 2 and the amplification turned
out to be very similar in magnitude. Also, it must be mentioned that the wave-interference mechanism
occurs also in the continuously supported system subject to a moving constant load, leading to amplifi-
cation of the response as shown for a beam by Fărăgău et al. [28]; however, for a continuously supported
system subject to a moving constant load, this mechanism is influential only for velocities close to the
critical velocity while here it can lead to a significant response amplification for much lower velocities of
the load.

4.2. Passing from non-resonance velocity to a resonance velocity

As discussed in Section 3, there are several load velocities that can lead to resonance in the periodic sys-
tem. When designing the catenary system, its properties should be chosen such that these resonance
velocities are far away from operational velocities of trains. However, even if the operational velocity is
far from resonance velocities outside transition zones, it can be close to a resonance velocity inside the
stiff region of the transition zone if this is not designed having this criterion in mind. In this section, the
situation is investigated in which the load passes from non-resonance velocity in the soft region to a

Figure 7. The displacement evaluated under the moving load for the wave-interference phenomenon; the location of the stiff zone
is indicated by the grey background.

Figure 8. The primary dispersion curves for the soft (black solid line) and stiff (black dashed line) regions and the kinematic
invariants (blue lines) (left panel; v = 28 m/s), and the coefficients of the reflected and transmitted waves (the three panels on the
right) for three lengths of the stiff region; the frequency range between the cut-off frequencies of the two domains is indicated by
the grey background.
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resonance velocity inside the stiff region. Note that the velocity of the load is kept constant and just the
velocity at which resonance occurs changes due to a change of the support stiffness.

Figure 10 presents the resonance velocities for the soft and stiff regions (here the stiffness ratio is
p = 2). For a load velocity of v = 33:5m/s, the response is non-resonant in the soft region while in the
stiff region it is expected to get amplified due to the occurrence of resonance. The fact that this velocity
causes resonance in the stiff region can also be seen in the dispersion curve presented in Figure 11; one
kinematic invariant (the first-order one) is tangential to the dispersion curve of the stiff region meaning
that the group velocity of the generated wave is equal to the load velocity, which leads to resonance.
The amplification of the response in the stiff zone can be observed in both the frequency spectrum and
wavenumber spectrum. Moreover, the frequency and wavenumber spectra exhibit additional large peaks
at the frequency and wavenumber, respectively, corresponding to the wave generated inside the stiff
zone.

Figure 12 presents the displacement under the moving load. The amplification in the stiff zone is
observed clearly with a drastic increase compared to the response in the soft region. The increase in
response requires a few cell lengths to develop, characteristic to resonance; for short stiff zones, reso-
nance might not have time to develop, but for longer ones, strong response amplification can develop.

It is important to mention that the phenomenon of passing to resonance velocity has an equivalent in
the continuously supported system subject to a moving constant load, but there are important distinc-
tions. First, in the continuous system, resonance can only occur at the critical velocity (the boundary
between sub-critical and super-critical velocities) that usually is much larger than the operational train

Figure 9. Snapshot of the displacement fields (top panel) and the displacements under the moving load (bottom panel) for a short
stiff zone (r = 1; the position of the stiff zone is indicated through the grey background) and a long one (r = 10; the position of the
stiff zone is indicated through the yellow background).

Figure 10. Load velocities that lead to resonance in the soft and stiff regions: normalized displacement under the moving load at
t = 0 versus velocity.
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velocities. For example, the continuous system equivalent to the periodic one considered in this section
has a critical velocity of around 115m/s while the velocity that leads to the considered resonance in the
stiff region is 33.5m/s. Second, to go from sub-critical to critical velocity, the stiffness of the supporting
structure needs to decrease (if all other parameters are kept constant); this is much less common in prac-
tice because transition zones are usually regions with stiffer structures.

4.3. Wave trapping inside the stiff zone

The stiff zone has a finite length l, and consequently, the incoming waves generated by the moving load
in the soft region could get trapped inside. Wave trapping could lead to response amplification inside
the stiff zone even when the moving load is relatively far away. To mathematically derive the conditions
for wave trapping, a system without damping is used, while in the graphical results a small amount of
damping is present; however, the change in the wave-trapping conditions caused by a small amount of
damping is negligible. The amount of damping imposed in this subsection is one quarter of that used in
the rest of the paper to be able to present this mechanism in its purest form; for larger amounts of damp-
ing, although the mechanism can still be seen, it is less pronounced.

Figure 11. The primary dispersion curves for the soft (black solid line) and stiff (black dashed line) regions and the kinematic
invariants (blue lines) (top left panel; v = 33:5 m/s), the frequency spectra of the displacements at a position inside the stiff zone (top
right panel), and the wavenumber spectra of displacements (bottom left panel) evaluated at O= 23 rad/s (indicated by the horizontal
green dashed line).

Figure 12. The displacements evaluated under the moving load for the resonance velocity in the stiff zone; the location of the stiff
zone is indicated by the grey background.
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An approximate condition for wave trapping is that q half-wavelengths of the wave inside the stiff
zone is an integer fraction of l. Mathematically this can be written as

q
1

2
l = l = rd, q 2 N, r 2 N, ð24Þ

where l is the wavelength. This would only be exact if the stiff zone was simply supported at both ends,
which is not the case for the considered system. An exact condition for the considered system can be
derived by using the phase-closure principle (see Mead [32]) to determine the modes of vibration of the
stiff zone. However, this exceeds the purpose of the paper and the approximate condition is sufficient to
observe the mechanism.

From relation (24) the wavenumber ktr for the wave to be trapped is determined and it reads

ktr =
qp

rd
: ð25Þ

In order to find the corresponding frequency, the wavenumber in the first Brillouin zone is chosen
because the waves with most energy generated by the moving load are located in the first pass band (the
higher harmonics have significantly less energy) and the first Brillouin zone. The frequency vtr corre-
sponding to ktr can be found by numerically solving the dispersion equation for vtr

cos (
qp

r
) =

(pks)c

2Tvtr
sin

vtrd

c

� �
+ cos

vtrd

c

� �
: ð26Þ

A wave with wavenumber ktr given by Eq. (25) and frequency vtr would be trapped inside the stiff
zone. The wavenumber ktr, 2 of the generated wave in the soft region (the frequency remains the same
vtr) reads

ktr, 2 =
1

d
arccos

1

p
cos

qp

r

� �
+

p� 1

p
cos

vtrd

c

� �� �
: ð27Þ

Clearly, the wave with wavenumber ktr, 2 and frequency vtr generated in the soft region will give rise
to a wave in the stiff region that is trapped. One can easily check this by considering the system with a
harmonic load (acting at a location in the open track) instead of a moving one, in which case the wave
trapping can be clearly observed (this result is not presented here for conciseness). To observe the same
behaviour for the moving load, one first needs to determine the velocity of the load at which this wave
(wavenumber ktr, 2 and frequency vtr) is generated. To this end, we substitute k = ktr, 2 and v = vtr in the
kinematic invariant, equation (14). Because sub-critical velocities are considered, the zeroth-order kine-
matic invariant cannot intersect the primary dispersion curve; therefore, we look at the first-order kine-
matic invariant, and the velocity of the load corresponding to this situation reads

vtr =
vtrd

ktr, 2d + 2p
: ð28Þ

The frequency and wavenumber spectra evaluated at a position inside the stiff zone are presented in
Figure 13. The frequency spectrum of the transient response exhibits a large peak at vtr corresponding
to the trapped wave. Moreover, the wavenumber spectrum shows that the wave in the soft region with
wavenumber ktr, 2 (represented by the black line) is transformed in the stiff region into two peaks at ktr
and �ktr that represent the trapped (standing) wave inside the stiff zone. The two peaks are not equal in
magnitude as would be the case for a true standing wave. One reason is that, as the source is on the left
of the stiff region, the wave travelling in negative x direction (which is a reflection of the wave travelling
in positive x direction) is damped more; another reason is that energy is transmitted to the right of the
stiff domain. Figure 14 presents a snapshot of the displacement field where the trapped wave can be
clearly observed. The amplification is not drastic, but it is clear. In Figure 14 can also be seen that energy
is transmitted to the right domain, meaning that even in the absence of damping, the amplification in the
stiff domain will not be infinite. Moreover, it is important to realize that only the wave corresponding to
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the second peak (in the frequency domain) is trapped; all other waves can pass through. Finally, the
amplification disappears for slightly different velocities, as can be seen in Figure 15, or different lengths
of the stiff zone (provided that it is not another multiple of the wavelength).

5. Relation to the continuously supported system with a harmonic moving load

An easier problem to solve that could also capture the three phenomena discussed in Section 4 is the
continuously supported string subject to a moving harmonic load. The solution of this problem can be
obtained by applying the Fourier transform over time to the governing equations and solving the result-
ing ordinary differential equation in the Fourier-space domain. This has been done in, for example
[28,33], for a moving constant load and can easily be extended to a moving harmonic load.

The frequency of the harmonic load can be chosen such that the first two peaks in the frequency spec-
trum (e.g. Figure 3) are accurately represented; by choosing O= 2pv

d
, the kinematic invariant in the con-

tinuously supported system coincides with the first-order kinematic invariant from the periodic system.
Moreover, for the responses of the two systems to match, the moving load must have two components: a
constant one (zero frequency) and a harmonic one; this way, the response is not symmetric with respect
to the zero displacement line, but is shifted downwards as seen in Figure 7. Thus, the expression for the
moving harmonic load reads �F0(p1 + p2 cos (Ot))d(x� vt), where p1 and p2 need to be tuned such that
the overall steady-state displacement field matches the one of the periodic system.

Figure 13. The primary dispersion curves for the soft (black solid line) and stiff (black dashed line) regions and the kinematic
invariants (blue lines) (top left panel; v = 34:5 m/s), the frequency spectra of the displacements at a position inside the stiff zone (top
right panel), and the wavenumber spectra of displacements (bottom left panel) evaluated at O= 28:6 rad/s (indicated by the
horizontal green dashed line); the bottom right panel is a zoom in of the top right panel.

Figure 14. Snapshot of the time-domain displacements for the situation when the wave is trapped in the stiff zone; the stiff zone is
indicated by the grey background.
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Figure 16 presents the comparison of the periodic and continuous systems. It can be seen that the fre-
quency spectra of the two systems agree well for the first two peaks, and the continuous system does
not exhibit more peaks than these two. One can introduce more peaks in the response of the continuous
system by imposing multiple harmonic components to the moving load (i.e. p3 cos (2Ot), etc.). The bot-
tom panel in Figure 16 shows that the time-domain displacement fields also agree well. For this set of
parameters, p1 = 1 and p2 = 0:1 lead to the best fit overall; it must be emphasized that these tuning para-
meters change with system properties (e.g. load velocity, support spacing, support stiffness, etc.), and
they cannot be determined without the response of the periodic system.

First, when it comes to the wave-interference mechanism, Figure 17 shows that the transient response
of the continuous system exhibits qualitatively the same behaviour as the periodic one. However, the
response in the stiff region differs considerably between the two systems because parameters p1 and p2

have been chosen such that the responses match in the soft region, not in the stiff one. This is one draw-
back of the equivalent model if one is interested in the response inside the stiff region. Also, the wave-
interference mechanism can be reproduced in the continuous system only if the waves (in the periodic
system) with most energy are located in the first stop band of the stiff region; if these waves were in the
second stop band, then they would be able to propagate through the stiff zone of the continuous system
because, unlike the periodic one, it only has one stop band. When it comes to the tunnelling effect, this
can also occur in the continuously supported system and will lead to a decrease in the response amplifi-
cation caused by the wave-interference phenomenon.

Second, for the wave-trapping phenomenon, Figure 18 shows that the continuous system exhibits a
similar behaviour as the periodic one, and the agreement between the two is very good. If one wants to
investigate this mechanism in detail, the continuous system can be an option. The fit between the

Figure 15. Displacement time history evaluated inside the stiff zone for slightly different load velocities.

Figure 16. Comparison of the periodic system and continuous one; the dispersion curves and the kinematic invariants (top left
panel), the frequency spectra of the steady-state displacements (top right panel), and a snapshot of the time-domain displacements
(bottom panel).
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transient responses can be further improved by changing the scaling factors p1 and p2, but this would
require to have the transient response of the periodic system in advance, defeating the purpose of using
the continuous system.

Finally, for passing from non-resonance velocity to resonance velocity, the continuous system cannot
be used at all. The continuous system has one resonance velocity, the critical velocity; the value of that
critical velocity is much higher than the one leading to resonance in Section 4.2. Consequently, this phe-
nomenon can only be investigated in the periodic system.

6. Conclusion

This paper investigated three phenomena that can lead to response amplification in a continuous and
periodic system with a local inhomogeneity (i.e. a transition zone) described by an increase in support
stiffness. These phenomena are investigated using an infinite string periodically supported by discrete
springs and dashpots, acted upon by a moving constant load; this model is representative of a catenary
system in railway tracks. Nonetheless, the phenomena described in this paper can occur also in other
continuous and periodic systems, such as a beam and membrane. The phenomena are the product of a
periodic system and a local inhomogeneity, and if one of these characteristics is omitted, the phenomena
will not occur.

The first phenomenon is the wave interference that can lead to response amplification to the left and
to the right of the stiff region. The waves generated by the moving load outside the transition zone are
reflected almost entirely by the stiff region if one of the frequencies of the waves are located in a stop
band of the stiff region. This almost complete reflection leads to wave interference close to the moving
load, which in turn leads to response amplification. Results show that this mechanism is of importance
when the velocity of the load is slightly higher than one of the resonance velocities in the soft regions.

Figure 17. Displacements evaluated under the moving load; the position of the stiff region is indicated by the grey background.

Figure 18. Snapshot of the time-domain displacements for the situation when the wave is trapped in the transition zone; the
position of the stiff region is indicated by the grey background.
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For small lengths of the stiff zone energy can be tunnelled to the soft domain causing a reduction in the
reflection coefficient which in turn leads to a reduced amplification.

The second phenomenon is the passing from non-resonance velocity in the soft region to a resonance
velocity in the stiff region. This causes resonance to occur inside the stiff region leading to a drastic
amplification of the response mainly inside the stiff region. Results show that this mechanism leads to
the biggest response amplification between the three phenomena.

The third phenomenon is the wave trapping inside the stiff region. For specific values of the wave-
number and frequency of the waves generated in the soft region, waves can get trapped inside the stiff
zone potentially leading to response amplification around and inside the stiff zone. Results show that
this mechanism leads to amplification inside the stiff region even when the moving load is relatively far
away from it. However, for reasonable values of damping, this mechanism is not as pronounced as the
other two.

The possibility of capturing these phenomena using a simpler model, a continuously supported string
acted upon by a moving harmonic load, was also studied. The wave-interference and wave-trapping phe-
nomena observed in the periodic system can be seen in the continuous system too, while the resonance
phenomenon cannot be replicated using the continuous model. To obtain similar results for the continu-
ous system, the static and harmonic components need to be tuned to the steady-state response of the
periodic system. Once this tuning is satisfactory, the transient responses match quite well and the two
phenomena are qualitatively well captured. However, the tuning parameters, in principle, are not known
before-hand and need to be updated for each change of the system properties, which makes it difficult
to use the continuous system in practical situations.

Finally, the amplification of stresses and displacements in the transition zones can lead to numerous
fatigue and wear problems in the catenary system and in the energy collector of the train. Moreover,
accounting for the low (mean) contact force between wires and carbon strip, the dynamic response of
the system can also lead to force fluctuations that are large enough to cause arching (occurs when the
contact force is too low) or loss of contact. The three investigated phenomena can be considered as addi-
tional constraints for the design parameters at transition zones such that amplifications are avoided,
especially because all three phenomena occur in the range of operational train speeds.

Funding

The author(s) disclosed receipt of the following financial support for the research, authorship, and/or publication of this article:
This research is supported by the Dutch Technology Foundation TTW (Project 15968), part of the Netherlands Organization
for Scientific Research (NWO), and which is partly funded by the Ministry of Economic Affairs.

ORCID iD
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[22] de Oliveira Barbosa, JM, Fărăgău, AB, and van Dalen, KN. A lattice model for transition zones in ballasted railway

tracks. J Sound Vib 2021; 494: 115840.
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[31] Villegas, D, Horta-Rangel, FA, González, T, et al. Tunneling times in a taut string. Eur J Phys 2020; 41(4): 045001.
[32] Mead, DJ. Waves and modes in finite beams: application of the phase-closure principle. J Sound Vib 1994; 171: 695–702.
[33] Wolfert, ARM. Wave effects in one-dimensional elastic systems interacting with moving loads. PhD Thesis, Delft University

of Technology, Delft, 1999.

Appendix 1

Here we present a detailed derivation of the dispersion equation (equation (12)) and of the kinematic
invariant (equation (14)). For clarity of the derivations, a system without damping is considered.

First, the dispersion curve is derived. The eigenvalues a1, 2 are obtained from an eigenvalue analysis
of the Floquet matrix. The Floquet matrix is obtained by evaluating the right-hand side of equation (8)
(excluding the particular solutions) at x = (n + 1)d, and reads

F=
ks sin (gd)

2Tg
+ cos (gd) sin (gd)

g
� cos (gd)ks

2Tg2 + ks
2Tg2

� sin (gd)g + cos (gd)ks
2T

+ ks
2T

ks sin (gd)
2Tg

+ cos (gd)

 !
: ð29Þ

The determinant of the Floquet matrix is 1, and, thus, the eigenvalues of the Floquet matrix read
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a1, 2 = B6
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2 � 1
p

, B =
ks sin (gd)

2Tg
+ cos (gd), ð30Þ

where B is half the trace of F. The relation between the Floquet wavenumber kF and the eigenvalue a
(we restrict the following derivation to one eigenvalue; the derivation is analogous for the other one) is
given as follows:

a = eik
Fd : ð31Þ

Depending on the frequency (B is frequency dependent), there are three possible scenarios. The first sce-
nario is that B2 . 1 meaning that a is real-valued and positive. From equation (31), this leads to the wavenum-
ber kF to be purely imaginary; the corresponding frequency ranges represent the stop-bands in the dispersion
curve. The second scenario is when B2 = 1 resulting in repeated eigenvalues. These locations correspond to the
transition points between the stop and pass bands. For the third scenario, B2\1 resulting in complex-valued
eigenvalue a corresponding to the pass-bands in the dispersion curve; in this scenario, waves are propagating
without attenuation meaning that kF is real-valued. Consequently, equation (31) can be rewritten as

a = cos (kFd) + i sin (kFd): ð32Þ

This leads to the following set of conditions for the Floquet wavenumber

cos (kFd) = B,
sin (kFd) =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2 � 1
p

	
: ð33Þ

If the first condition in equation (33) is satisfied, then the second one is also satisfied. Any of the two
conditions can be selected as the dispersion equation (we selected the first one due to its concise form).

Second, the kinematic invariants are derived. The kinematic invariants ensure phase equality of the
emitted harmonic waves and the load at the contact point [10]. The phase of a harmonic wave with fre-
quency v and wavenumber k is

f = vt � kx: ð34Þ

The phase of a harmonic wave is constant for an observer moving together with the wave, resulting in
the following relation between frequency and wavenumber:

v = k
dx

dt
: ð35Þ

The change of position with time (i.e. dx=dt) of the moving load is its velocity v, and since the kine-
matic invariant ensures phase equality of the emitted harmonic waves and the load, we have

v = kv: ð36Þ

This is the kinematic invariant for a homogeneous system (without periodic supports) subject to a
moving constant load. For the system studied in this paper (continuous system with discrete and peri-
odic supports), a harmonic wave (with phase given by equation (34)) is not a solution of the equation of
motion; the equation of motion allows for solutions in the shape of summations of harmonic waves that
have the following expression for the phase:

f = vt � k + m2p
d

� �
x, ð37Þ

where m = 61,62, . . . . In this case, infinitely many kinematic invariants are necessary to ensure phase
equality between the moving load and the infinitely many generated waves. The expression of the kine-
matic invariants reads

v = kv + m2pv
d
: ð38Þ

This expression is analogous to equation (14).
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Appendix 2

Here we show why the branch of the dispersion curve of the periodic system closest to the dispersion
curve of the unsupported string leads to more energetic waves than the other branches. One might think
that all information is just repeated from one Brillouin zone to the next (like for discrete periodic sys-
tems), but that is not completely correct for a continuous system. Let us consider a wave field propagat-
ing in positive x direction (i.e. the second term in equation (11) is zero). The normalized state at interface
nd would then read

wn

a1

= e�ik
F
1

ndu1: ð39Þ

The displacement inside the generic cell can be calculated using equation (8) without the particular
solution, as follows:

~w(x,v)

a1

= (u1, 1f1, 1(x� nd) + u1, 2f1, 2(x� nd))e�ik
F
1

nd, nd ł x ł (n + 1)d, ð40Þ

where f1, 1(x) and f1, 2(x) are the functions from equation (8). Furthermore, u1, 1 and u1, 2 represent the first
and second entries in the eigenvector u1, respectively. To see which wavenumbers are present in ~w(x,v),
we can take the Fourier transform over space (note that k 2 (� ‘,‘) is the Fourier variable), and the
scaled response ŵ(k,v) in the frequency-wavenumber domain reads

ŵ(k,v) =
X‘

n =�‘

ð(n + 1)d

nd

~w(x,v)

a1

e�ikxdx: ð41Þ

Provided that the sign of the imaginary part of kF1 is chosen properly (to represent a forward propa-
gating wave), both the integral and the summation in equation (41) can be performed analytically. The
result reads

ŵ(k,v) = A(g, k)
1

g2 � k
2

eid(k + kF
1, r)

eid(k + kF
1, r

) � edkF
1, i

, ð42Þ

where kF1, r and kF1, i are the real and imaginary parts of kF1 , respectively. Function A(g, k) contains terms

proportional to (k6g); these terms increase linearly with increasing k while the second factor in equation

(42) is inversely proportional to k
2
for large enough values of k; this is the reason why the second factor

was singled out while the other terms are contained in A(g, k). The last factor in equation (42) gives the
influence of the Floquet wavenumber (the periodic part of the system) on the response while the second
factor gives the influence of the wavenumber of the unsupported string (the continuous part of the sys-
tem); actually, the denominator of the second factor yields the dispersion curve of the unsupported string
(when equated to zero). The last factor exhibits peaks of equal magnitude (infinite magnitude in the case

of no damping) at k =� kF1, r6m2p
d
; therefore, this factor associated with the Floquet wavenumbers does

not make any distinction between Brillouin zones. The second factor, has a parabolic function in the

denominator and decreases as k moves away from g. Therefore, the peaks of ŵ(k,v) at k =� kF1, r6m2p
d

decrease in amplitude as k moves away from g. This is the mathematical reason why the branches closest
to the dispersion curve of the unsupported string lead to most energetic waves. From a physical perspec-
tive, the energy propagated from cell to cell is governed by the Floquet wavenumbers; however, the pro-
pagation inside the cells is governed by the string, which imposes what branches of the dispersion curve
lead to more or less energetic waves.
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