

Delft University of Technology

Do as i Do, Not as i Say
Do Contribution Guidelines Match the GitHub Contribution Process?
Elazhary, Omar; Storey, Margaret-Anne; Ernst, Neil; Zaidman, Andy

DOI
10.1109/ICSME.2019.00043
Publication date
2019
Document Version
Final published version
Published in
Proceedings - 2019 IEEE International Conference on Software Maintenance and Evolution, ICSME 2019

Citation (APA)
Elazhary, O., Storey, M.-A., Ernst, N., & Zaidman, A. (2019). Do as i Do, Not as i Say: Do Contribution
Guidelines Match the GitHub Contribution Process? In Proceedings - 2019 IEEE International Conference
on Software Maintenance and Evolution, ICSME 2019 (pp. 286-290). Article 8919187 (Proceedings - 2019
IEEE International Conference on Software Maintenance and Evolution, ICSME 2019). IEEE.
https://doi.org/10.1109/ICSME.2019.00043
Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1109/ICSME.2019.00043
https://doi.org/10.1109/ICSME.2019.00043

Green Open Access added to TU Delft Institutional Repository

'You share, we take care!' - Taverne project

https://www.openaccess.nl/en/you-share-we-take-care

Otherwise as indicated in the copyright section: the publisher
is the copyright holder of this work and the author uses the
Dutch legislation to make this work public.

Do as I Do, Not as I Say: Do Contribution
Guidelines Match the GitHub Contribution Process?

Omar Elazhary∗, Margaret-Anne Storey∗, Neil Ernst∗ and Andy Zaidman†
∗University of Victoria, omazhary@uvic.ca, mstorey@uvic.ca, nernst@uvic.ca

†Delft University of Technology, a.e.zaidman@tudelft.nl

Abstract—Developer contribution guidelines are used in social
coding sites like GitHub to explain and shape the process a
project expects contributors to follow. They set standards for
all participants and “save time and hassle caused by improperly
created pull requests or issues that have to be rejected and re-
submitted” (GitHub). Yet, we lack a systematic understanding
of the content of a typical contribution guideline, as well as
the extent to which these guidelines are followed in practice.
Additionally, understanding how guidelines may impact projects
that use Continuous Integration as part of the contribution
process is of particular interest. To address this knowledge gap,
we conducted a mixed-methods study of 53 GitHub projects
with explicit contribution guidelines and coded the guidelines
to extract key themes. We then created a process model using
GitHub activity data (e.g., commit, new issue, new pull request)
to compare the actual activity with the prescribed contribution
guidelines. We show that approximately 68% of these projects
diverge significantly from the expected process.

Index Terms—code contributions, software engineering, au-
tomation.

I. INTRODUCTION

Open source software projects are the epitome of collab-

oration. They represent the amalgamation of the work and

effort of hundreds or thousands of developers coming together

to achieve a single purpose: to create an application that

fulfills user need. However, there is a point where such

a large workforce becomes too difficult to manage. While

public-facing, open source projects encourage contributions

in general, some evidence by Gousios et al. [1] suggests

maintainers can become overwhelmed with new contributions.

These contributions may frequently duplicate one another

or repeat discussions in which the maintainer stated that a

particular design choice was not going to be changed. For

some maintainers, the workload is simply too much.

Social coding sites like GitHub have started offering so-

lutions, such as contribution guidelines and continuous in-

tegration (CI) tools, to get core developers and contributors

on the same page and help unify expectations. Contribution

guidelines and CI tools often go hand in hand. Contribu-

tion guidelines are textual documentation files that document

the contribution expectations of project maintainers. In fact,

GitHub considers contribution guidelines a prerequisite on an

open source project’s pre-launch checklist [2] and provides

a step-by-step tutorial on how to create such guidelines [3].

Additionally, GitHub checks and refers contributors to the

guidelines when they make a contribution [4]. As mentioned

by Steinmacher et al. [5], this form of documentation helps

alleviate some barriers for new contributors.
On the more technical side of things, CI tools offer a way

for developers to pool together their testing practices and eval-

uation criteria when it comes to assessing contributions [6].

Depending on how the tool is configured, it will run tests on

submitted contributions and make those results available to

anyone reviewing them. The use of CI increases the efficiency

of the contribution process and contributes to the quality of

the code [7]. While previous research by Kobayakawa and

Yoshida [8] and another study by Prana et al. [9] attempted to

explore the contents of contribution guideline documentation,

they only focused on the contents of README files. They did

not, however, consider if these guidelines match the reality of

the development process. We do consider if these guidelines

match the contribution process, but focus on projects that use

CI, as we expect the contribution guidelines may be more

prescriptive for those projects. The research questions we

aimed to answer are as follows:

RQ1: What is the content of contribution guidelines for

projects on GitHub?

RQ2: Do projects that use CI tools mention these tools

in their contribution guidelines?

RQ3: To what extent do the actual processes in projects

that use CI tools match their guidelines?

We present preliminary evidence that the contribution process

prescribed in the contribution guidelines differs from what we

observe in reality. We also demonstrate that CI tools are only

discussed as testing mechanisms and generally do not have

documentation describing how they function or what they test.

II. BACKGROUND

We present related research on contribution guidelines and

continuous integration tools.

A. GitHub Contribution Guidelines
As mentioned in Section I, contribution guidelines are a way

for core developers to communicate their expectations, both in

terms of contribution criteria and processes, to developers who

wish to contribute to a software project. As such, contribution

guidelines are considered an important addition to a project’s

overall documentation and many view a project as incomplete
without them [2].

Additionally, contribution guidelines offer a way for new-

comers to orient themselves and learn the project’s building

286

2019 IEEE International Conference on Software Maintenance and Evolution (ICSME)

2576-3148/19/$31.00 ©2019 IEEE
DOI 10.1109/ICSME.2019.00043

Authorized licensed use limited to: TU Delft Library. Downloaded on July 01,2022 at 11:37:39 UTC from IEEE Xplore. Restrictions apply.

blocks, processes, and other conventions laid down by devel-

opers. In fact, Steinmacher et al. [5] illustrate that the lack

of such documentation poses a barrier to entry for developers

who wish to contribute to open source projects.

In an effort to bring the importance of contribution guide-

lines to the attention of developers, GitHub uses a re-

minder when creating an empty repository that allows de-

velopers to create a README.md file with a single click.

They explicitly mention: “We recommend every repository

include a README, LICENSE, and .gitignore.” And while

README files do not necessarily give the impression of

something that contains contribution guidelines, Prana et al.

[9] demonstrate that they usually do. Additionally, as men-

tioned previously, GitHub actively reminds contributors of

the existence of contribution guidelines and suggests they be

inspected before making a contribution [4].

Prana et al. [9] manually coded 393 README.md files

and built a machine learning model that predicts the category

a certain text would fall under, such as which part of the

guidelines refers to who, what and why of the contribution

process. They do not consider if these guidelines are followed

nor do they provide details on the contribution process itself.

B. Continuous Integration Tools

CI tools offer a way to run automated checks on contribu-

tions that get submitted to software repositories, and Vasilescu

et al. [7] show they increase contribution review efficiency.

Fowler and Foemmel [10] (and later Fowler and Humble [11])

define the functions of a CI tool as follows:

• It should initiate an automated build once a new change

has been pushed to the shared mainline.

• It should assemble all required dependencies to build the

project on the latest version of the shared mainline.

• It should build the latest version on the shared mainline.

• It should run the tests specified by developers on the latest

version of the shared mainline.

• It should report the build results to developers.

Because of the benefits of using CI tools [7], GitHub now

offers a native, fully integrated CI solution [12]. Yet, other

CI tools are also available, e.g., the popular TravisCI [13]

Due to the role CI plays in evaluating code contributions on

GitHub, developers have started considering CI among their

contribution evaluation criteria [1], [14]. Reviewers consider

build results when reviewing code contributions, while contrib-

utors use them to evaluate their own contributions before sub-

mitting them. It is, however, unclear how CI tools are discussed

in contribution guidelines. Thus, we focus on investigating the

structure and contents of contribution guidelines, as well as

how CI tools are featured in them.

III. METHODOLOGY

For our investigation of GitHub project development prac-

tices and how they make use of continuous integration (CI)

tools, we selected a cohort of GitHub projects from the GHTor-

rent dataset [15]. We coded their contribution guidelines,

as those generally offer documentation about contribution

practices and the expectations core developers have about

contributions. This allowed us to answer RQ1 and RQ2, as

well as determine the contents of the projects’ contribution

guidelines. We also visualized the projects’ activities on

GitHub to observe their contribution processes and determine

what type of development practices they follow. This allowed

us to answer RQ3 and explore the extent to which developers

adhere to the prescribed practices.

A. Project Selection Criteria

In order to filter the large dataset provided by GHTorrent

(about 37 million projects), we followed criteria laid out by

Vasilescu et al. [7], Tsay et al. [16], and Munaiah et al. [17].

The combination of the criteria from the previously mentioned

literature resulted in the following filters:

• Exclude forks: Forks are typically created by a contrib-

utor who wishes to use a copy of the project’s source

code to make a contribution. Excluding them eliminates

duplicates as well as incomplete project histories, as

indicated by Tsay et al. [16] and Kalliamvakou et al. [18].

• Exclude deleted projects: Deleted GitHub projects are

no longer accessible via the GitHub API and have

been inactive for some time. Moreover, according to

Kalliamvakou et al. [18], their activity is deleted.

• Exclude projects with no recent commits: Commits

indicate that a project is active and open to contribution.

We considered projects that have at least one commit the

week before the sampling period [16], [18].

• Exclude projects that have less than 10 recent pull
requests: Pull requests, be they open or closed, represent

contributions to a project, and thus represent project

activity, as indicated by Gousios et al. [14] and Vasilescu

et al. [7]. We focused on projects where a contributor—

particularly one who has no write privileges to the source

repository—has access to the build results.

• Exclude projects that have less than three unique
contributors: This is an indicator of the project having

a tightly-knit community of developers that are actively

collaborating but are less inclined to accept external

contribution, as discussed by Munaiah et al. [17].

• Exclude projects that do not have at least one recently
merged pull request: According to Kalliamvakou et al.

[18], having a pull request does not indicate that it was

merged. This criterion focuses on recently merged pull

requests as a sign of a project accepting contributions.

We determined how recent a commit or pull request was

by whether or not it occurred in the week prior to the

sampling phase. The above combined criteria reduced the

population to 41,642 projects that are non-duplicates, active,

accept pull requests from contributors, and have a community

of developers (or at least a team) supporting them.

The next step was to determine which projects use a CI tool.

We cloned the 41,642 projects that resulted from applying the

previous filters to GHTorrent and mined their repositories for

common CI tool configuration files (e.g., .travis.yml). Based

on this, the repositories were divided into two sets: those that

287

Authorized licensed use limited to: TU Delft Library. Downloaded on July 01,2022 at 11:37:39 UTC from IEEE Xplore. Restrictions apply.

use a CI tool (28,904 projects), and those that may not (12,738

projects). While we followed the process outlined by Zampetti

et al. [19], we do note that some repositories may not have

included a CI tool configuration file yet still use a CI tool.

The previously listed criteria, however, do not guarantee the

selection of a reasonably active project with a reasonably large

community to accommodate the amount of activity we need

for exploratory analysis. To address this, we used GitHub’s

method of ranking open source repositories1 by contributors.

We sorted the set of projects that use CI by the number of

unique contributors and selected the top 100 projects.

For the most active projects that use CI tools, we coded their

contribution guidelines. We looked for a CONTRIBUTING.md
file first, and if that was not available, we then looked for a

README.md file. We used those files as proxies for process

documentation. We excluded 28 of these 100 projects based

on the following criteria:

• The guideline file for a project is too small; less than 2

KB of data, similar to the filtering criteria used by Prana

et al. [9].

• The project guideline file contains no actual guidelines,

rather it is only a link to an external source (typically

style guides for particular languages)2.

This left us with a final sample of 72 projects with high

contribution activity that use CI tools and have substantive

guidelines within their GitHub repositories.

B. Guideline Coding

In order to understand how project team members envision

their contribution processes, we examined their contribution

guidelines (CONTRIBUTING.md). If the file did not exist in

the repository, we inspected the project’s basic documentation

instead (README.md). We used thematic coding described

by Creswell [20] in an inductive fashion to allow themes to

emerge naturally. For each of the 72 projects in our remaining

sample, we went through their contribution guidelines, manu-

ally labeling every statement based on the topic it addressed.

For instance, “If the code change needs to be applied to
other branches as well (for example a bugfix needing to be
backported to a previous version), one of the team members
will either ask you to submit a PR with the same commit
to the old branch, or do this for you.” was assigned to the

“How to Submit Bugfixes” category. And “Please sign our
Contributor License Agreement (CLA) before sending PRs. We
cannot accept code without this.” fell under the “Signing a

CLA” category. As such, we constructed a coding index that

grew with each file until we reached saturation after 50 files

(we coded all 72 files, yet no additional codes emerged in

our coding index). The full index is available as part of our

reproducibility package3.

1https://octoverse.github.com/projects#repositories
2Also similarly to Prana et al. [9], we chose to only focus on files that

GitHub initializes automatically. While it is possible that some may refer to
an external source, these are usually much less common.

3https://figshare.com/s/c0d3321053380840d8fa

Additionally, we compared our list of identified codes to

those observed by Prana et al. [9] when they performed a

similar activity (labeling README file contents for content

classification via machine learning), as well as to the con-

tribution process information gathered by Gousios et al. [1],

[14] when they surveyed GitHub reviewers and contributors

regarding their reviewing and contributing practices. The codes

we found were of a finer grain than those found by Prana et

al. [9], and as such, we were able to fit our codes into their

higher-level categories. Our codes also aligned with the results

reported by Gousios et al. [1], [14] concerning pull request

contributions.

C. Project Workflow Mining and Visualization

In order to better grasp a project’s workflow in a way that

accurately reflects the reality of the process as opposed to the

documented version of the process, we mined the data from the

GitHub events API. Unfortunately, only 53/72 projects were

accessible via the API. We mined these 53 projects over a

period of four weeks because inspecting the project workflows

after that point showed little to no variation in terms of how a

project processes contributions. Over that period, we queried

each projects’ events API for events that happened throughout

this period. Such events included, but were not limited to:

• opening/closing an issue;

• opening/closing a pull request;

• pushing a commit; and

• commenting on an issue/pull request/commit.

To get a better sense of each project’s contribution process

and determine if it matched the workflow prescribed in their

contribution guidelines, we visually represented it as a process

map. We connected the various entities (issues, pull requests,

commits, etc.) within the event logs already harvested to form

a string of consecutive actions. Where possible, we connected

commits to their corresponding pull requests and pull requests

to their corresponding issues based on the references develop-

ers made in the documentation of each artifact.

To visualize the contribution process for each project, we

used the process mining tool disco4, which constructs process

maps out of process logs to facilitate analysis. An example of

the various paths a contribution can take is shown in Fig. 1.

For instance, a contribution can be in the form of a commit

directly made to the master branch, as illustrated by the push

commit(s) step. Some commits are also included as part of a

pull request and elicit a code review. Alternatively, a commit

can be made to a pull request, which then results in the pull

request’s closure. Similarly, reviews can also result in the

closure of a pull request.

IV. RESULTS

Based on the methods we described, we were able to discern

the contents of a typical contribution guideline file. We also

compared the prescribed contribution process to the actual

process for the 53 projects of which we could mine the event

API and that had substantive guideline documents.

4https://fluxicon.com/disco/

288

Authorized licensed use limited to: TU Delft Library. Downloaded on July 01,2022 at 11:37:39 UTC from IEEE Xplore. Restrictions apply.

Fig. 1. Excerpt from the Apache Camel process map.

RQ1: What is the content of contribution guidelines for
projects on GitHub?

Contribution guidelines embody the expectations integra-

tors have for contributions to their projects. We found five

main categories of contribution guidelines: Project Orientation,

Contribution Workflow, Pull Request Acceptance Criteria,

Continuous Integration Tools, and Traceability.

The first category includes guidelines to introduce newcom-

ers to a project and familiarize them with internal processes

and workflows. Example sub-categories are details on how to

submit issues and what sort of documentation is sufficient.

The second category, Contribution Workflow, typically walks

contributors through the process of successfully submitting a

pull request to a project. Examples include how and when to

create a new branch, how to create a pull request, and whether

a Contributor License Agreement needs to be signed. Under

the category of Pull Request Acceptance Criteria we include

statements that describe what reviewers consider to be an ideal

pull request, using criteria such as contribution size, testability,

and documentation. The Continuous Integration Tools category

includes themes about the usage of CI tools within the project’s

contribution process. And finally, the Traceability category en-

compasses the theme of linking contribution process artifacts

to each other. Table I illustrates some of the most common

themes across our sample.

TABLE I
EXAMPLE OF DOCUMENTATION CATEGORY FREQUENCY

5

Content Category Featuring Projects

Pull Request Acceptance Criteria
Contribution Style 72.22%
Contribution Includes Test Cases 52.78%
Contribution Documentation 47.22%
Project Orientation
How to Open an Issue 69.44%
How to Set up a Local Development Environment 48.61%
General Technical Knowledge 38.89%
Contribution Workflow
Submitting a Pull Request 73.61%
How to Branch in a Repository 56.94%
How to Fork/Clone a Repository 52.78%
Continuous Integration Tools
Testing by CI Tool 30.56%
Traceability
Artifact Linking for Traceability 19.44%

RQ2: Do projects that use CI tools mention these tools in their
contribution guidelines?

Based on the results we discussed above in Table I, we

found that CI tools were mentioned in only 31% of our sample

of contribution guideline documents. When mentioned, it was

only as a vehicle for running and passing tests as part of

submitting a contribution. There was no indication in the

contribution guidelines as to whether a project followed the

CI practice in terms of development workflow. There was

also no documentation regarding what these tools actually

do or the scripts they run, compared to the dense amount of

documentation that we found on other topics, including how

to set up a development environment, and project structure.

RQ3: To what extent do the actual processes in projects that
use CI tools match the processes in their guidelines?

With respect to the contribution process workflow, we found

that the actual activity trace data of the projects in our sample

differed from the guidelines in the following ways:

• Some projects made use of contribution practices that

were not documented in the contribution guidelines, e.g.,

51% of the projects in our sample reopen issues, and 68%

reopen pull requests. However, the contribution guidelines

offered no guidance on when or why a developer should

reopen a previously closed issue or pull request.

• Fourteen projects (19.5%) prescribed linking artifacts to

each other for traceability reasons (see Table I), yet we

rarely observed occurrences of this happening.

• Although about 68% of the projects whose activity we

had access to described their contribution process in

the form of creating and submitting pull requests, the

contribution activity of all but one (i.e., 52/53 projects)

involved direct commits to the master branch that were

not linked to pull requests. Across all 53 projects, we

found that the mean number of direct commits is 93%,

with a standard deviation of 11% and a median of 99%.

V. DISCUSSION

Contribution guidelines are meant to be the first point of

contact for developers who want to learn about the process

a project team uses for development [3]. They are designed

to guide new developers and orient them around the project,

telling them about the tools they need in order to make

contributions effectively and efficiently. However, our study of

53 active GitHub projects that use CI (and that we could mine)

shows two major shortcomings in contribution guidelines:

they do not accurately reflect all the agreed-upon methods

of contribution, and they focus more on automatable details

that a tool can check for than they do on the specifics of how

to contribute. The overwhelming majority (72%) of projects

we studied include guidelines about code style and other

technical information. Most of these details are automatable:

code style, for example, can be efficiently checked with linters

5This table does not contain all coded themes. The full list can be found in
the reproducibility package at https://figshare.com/s/c0d3321053380840d8fa.

289

Authorized licensed use limited to: TU Delft Library. Downloaded on July 01,2022 at 11:37:39 UTC from IEEE Xplore. Restrictions apply.

like Checkstyle. This document real estate could be better used

to surface and make explicit the tacit knowledge that core team

members have about their processes and internal workflows.

Steinmacher et al. [5] suggest this tacit knowledge is more

useful, as they found that a lack of knowledge regarding

project components and processes is one of the barriers faced

by newcomers. This barrier could be alleviated by contribution

guidelines that contain information on the contribution work-
flow. For example, we noticed a lack of CI tool documentation

except for how to run the CI tool—there was no information

on how the CI tool fits within the project’s workflow. While

some projects include detailed information on the project’s

structure, dependencies, and the process one should follow in

order to contribute effectively, several projects in our sample

do not include adequate information. About a quarter (26.4%)

of the sample projects do not prescribe workflow guidelines

at all, and do not include any information on submitting pull

requests or developer branching conventions.

Our future research will focus on the ways in which

guideline documents, such as README files [9], can assist

new developers. In particular, it is not clear to what extent the

mandatory use of CI tools improves the process of contributing

code to a new project. We need to understand why contribution

guidelines exist in the form they do now, and whether con-

tributors consider them adequate sources of information. We

also need to explore why core team members do not adhere

to the contributions they prescribe.

VI. THREATS TO VALIDITY

The limitations from our work include generalizability, in

that we were limited to mining the workflow data from only

53 projects of the candidate 72 projects we considered in

this research. Our coding process may also be subject to

bias, which we mitigated by referencing previous work on

contribution guidelines [9].

Our interpretation of the actual workflow process also relies

on the Disco mining tool we used, however, we manually

checked the results it produced. We also use the contribution

guidelines as a proxy for contribution process documentation,

which should apply to both core team members as well as

external contributors. However, this is not always the case

[21]. Finally, it is possible that some projects define their

contribution guidelines in other resources, but we tried to

address this by following a similar process by Prana et al. [9]

to exclude these projects in our analysis.

VII. CONCLUSION

Contribution guidelines embody a software project’s contri-

bution process, however, there has yet to be an exploration

of what they contain and whether projects adhere to the

workflows they prescribe. We demonstrate that the most active

projects that use CI in fact do not follow their own guidelines

(if they have any) by conducting a mixed-methods study of

these 53 GitHub projects using thematic coding of guideline

documents and process mining of GitHub event streams. Fur-

thermore, we speculate that the current contribution guideline

structure may be written to suit project maintainers more

than new contributors. A more in-depth study of both process

documentation and developer perceptions is needed in order

to determine how effective the current guideline format is and

whether it needs to be optimized for the contributor.

ACKNOWLEDGMENT

This research is supported by the Natural Sciences and

Engineering Research Council of Canada (NSERC). We thank

Cassandra Petrachenko for her help with this study.

REFERENCES

[1] G. Gousios, M.-A. Storey, and A. Bacchelli, “Work practices and
challenges in pull-based development: the contributor’s perspective,” in
ICSE. IEEE, 2016, pp. 285–296.

[2] “Open source project guides,” https://opensource.guide/
starting-a-project/#your-pre-launch-checklist, accessed: 2019-06-10.

[3] “Setting guidelines for repository contributors,” https://help.github.
com/en/articles/setting-guidelines-for-repository-contributors, accessed:
2019-06-10.

[4] “Contributing guidelines,” https://github.blog/
2012-09-17-contributing-guidelines, accessed: 2019-06-10.

[5] I. Steinmacher, M. A. G. Silva, M. A. Gerosa, and D. F. Redmiles, “A
systematic literature review on the barriers faced by newcomers to open
source software projects,” IST, vol. 59, pp. 67–85, 2015.

[6] M. Beller, G. Gousios, and A. Zaidman, “Oops, my tests broke the build:
an explorative analysis of Travis CI with GitHub,” in MSR. IEEE, 2017,
pp. 356–367.

[7] B. Vasilescu, Y. Yu, H. Wang, P. Devanbu, and V. Filkov, “Quality and
productivity outcomes relating to continuous integration in github,” in
FSE. ACM, 2015, pp. 805–816.

[8] N. Kobayakawa and K. Yoshida, “How github contributing.md con-
tributes to contributors,” in COMPSAC. IEEE, 2017, pp. 694–696.

[9] G. A. A. Prana, C. Treude, F. Thung, T. Atapattu, and D. Lo, “Catego-
rizing the content of github readme files,” EMSE, pp. 1–32, 2018.

[10] M. Fowler and M. Foemmel, “Continuous integration (original version),”
available from, http://www.martinfowler.com/) Accessed: 2019-06-07.

[11] “Continuous integration certification,” https://martinfowler.com/bliki/
ContinuousIntegrationCertification.html, accessed: 2019-06-07.

[12] “Github actions,” https://github.com/features/actions, accessed: 2019-06-
10.

[13] “Github welcomes all ci tools,” https://github.blog/
2017-11-07-github-welcomes-all-ci-tools/, accessed: 2019-06-11.

[14] G. Gousios, A. Zaidman, M.-A. Storey, and A. van Deursen, “Work
practices and challenges in pull-based development: the integrator’s
perspective,” in ICSE. IEEE, 2015, pp. 358–368.

[15] G. Gousios, “The GHTorrent dataset and tool suite,” in Working Conf.
on Mining Software Repositories (MSR). IEEE, 2013, pp. 233–236.

[16] J. Tsay, L. Dabbish, and J. Herbsleb, “Influence of social and technical
factors for evaluating contribution in github,” in ICSE. ACM, 2014,
pp. 356–366.

[17] N. Munaiah, S. Kroh, C. Cabrey, and M. Nagappan, “Curating github
for engineered software projects,” EMSE, vol. 22, pp. 3219–3253, 2017.

[18] E. Kalliamvakou, G. Gousios, K. Blincoe, L. Singer, D. M. German,
and D. Damian, “The promises and perils of mining github,” in MSR.
ACM, 2014, pp. 92–101.

[19] F. Zampetti, S. Scalabrino, R. Oliveto, G. Canfora, and M. Di Penta,
“How open source projects use static code analysis tools in continuous
integration pipelines,” in MSR. IEEE, 2017, pp. 334–344.

[20] J. W. Creswell and J. D. Creswell, Research design: Qualitative,
quantitative, and mixed methods approaches. Sage publications, 2017.

[21] G. Avelino, L. Passos, A. Hora, and M. T. Valente, “Measuring and
analyzing code authorship in 1+ 118 open source projects,” Science of
Computer Programming, vol. 176, pp. 14–32, 2019.

290

Authorized licensed use limited to: TU Delft Library. Downloaded on July 01,2022 at 11:37:39 UTC from IEEE Xplore. Restrictions apply.

