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Abstract—Mutation testing is widely considered as a high-end
test coverage criterion due to the vast number of mutants it
generates. Although many efforts have been made to reduce the
computational cost of mutation testing, in practice, the scalability
issue remains. In this paper, we explore whether we can use
compression techniques to improve the efficiency of strong mutation
based on weak mutation information. Our investigation is centred
around six mutation compression strategies that we have devised.
More specifically, we adopt overlapped grouping and Formal
Concept Analysis (FCA) to cluster mutants and test cases based
on the reachability (code coverage) and necessity (weak mutation)
conditions. Moreover, we leverage mutation knowledge (mutation
locations and mutation operator types) during compression. To
evaluate our method, we conducted a study on 20 open source
Java projects using manually written tests. We also compare
our method with pure random sampling and weak mutation.
The overall results show that mutant compression techniques
are a better choice than random sampling and weak mutation
in practice: they can effectively speed up strong mutation 6.3 to
94.3 times with an accuracy of >90%.

I. INTRODUCTION

Mutation testing has been actively investigated as a tech-

nique to evaluate the quality of test suites [1]. The main idea

is (i) to introduce small syntactic changes (mutants) into the

production code using mutation operators, and (ii) to measure

the ability of a given test suite in detecting them [2]. One of the

benefits reported in literature is that mutation testing provides

a better measure of the fault detection capability of test suites

compared to other test coverage criteria [3]–[5]. Despite its

well-known advantages, mutation testing remains an extremely

expensive activity since it requires to re-run the test suites

against each mutant, whose number increases exponentially

with the size of the program under test [6].

To address this limitation, several methods have been pro-

posed and these can be classified in three main categories [7]:

(do fewer) selecting fewer mutants to evaluate [8], [9], (do
smarter) using run-time information to avoid unnecessary test

executions [10], [11], (do faster) reducing the execution time

for each single mutant [12]. Techniques falling into the first

category are the most investigated. Indeed, researchers have

proposed various strategies to sample mutants, such as random

sampling [13], mutation operator selection [9], clustering [14],

static analysis [15], and machine learning based sampling [16].

Recently, Gopinath et al. [17] have challenged the effec-

tiveness and efficiency of mutation reduction strategies: their

empirical evaluation with eight common mutant reduction

techniques showed that none of them provide any practical
advantage over pure random sampling. Although some tech-

niques showed small improvements in effectiveness, the gains

do not compensate for the extra overhead. Therefore, there is a

need for reduction techniques that are not only more effective,

but also more efficient compared to random sampling.

This paper originates from the insights of Gopinath et

al. [17] and focuses on the mutant reduction technique recently

proposed by our previous work [18]. We originally tackle the

problem of reducing the cost of mutation testing by combining

do fewer and do smarter techniques through data compression

methods. First, weak mutation (do smarter) is used to deter-

mine which mutants lead to an infection state through one

single execution of the test suite against the original program.

Then, formal concept analysis [19] (FCA) is applied to derive

the maximal groupings [18], which are two-way clusters of

mutants and tests. Each maximal grouping is composed of a

set of mutants M and a set of tests T with the property that

any mutant in M is weakly killed by any test in T . Finally,

a do fewer strategy is applied by running one single test case

(test selection) against one single mutant (mutant sampling)

from each maximal grouping [18]. Our initial empirical study

with five Java programs and automatically generated unit test

suites showed that FCA reduces the execution time of mutation

testing by up to 85%.

In this paper, we spot two important limitations of FCA

that can affect its ability to correctly estimate strong muta-

tion. First, FCA groups mutants and tests according to weak

mutation only: mutants leading to an infection state when

running the same test case t (or set of tests) are assumed

to be redundant. This is why only one mutant in each

maximal grouping is evaluated for strong mutation. However,

mutants that are redundant in terms of weak mutation are not

necessarily redundant in terms of strong mutation, because,

for example, they are injected in different code locations (e.g.,

different methods) or are generated by different mutation op-

erators. Second, we previously [18] focused only on maximal
groupings, which may leave some tests and/or some mutants

not assigned to any maximal grouping. As consequence, the

estimated mutation score may be inaccurate.

To overcome these limitations, we enhance FCA with (i)

mutant location and (ii) mutation operator type information

when grouping mutants and tests according to weak mutation.

This prevents mutants infecting different statements or gener-
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ated by different operators to be inserted in the same grouping.

We also investigate maximal and non-maximal groupings to

prevent final clusters from missing test cases and/or mutants.

To evaluate the benefits of our enhancements, we conducted

an empirical study with 20 open-source Java projects and using

the test suites manually written by the original developers.

Then, we compare the different variants of the FCA-based

technique with and without our enhancements and against

weak mutation and pure random sampling (with 10% as

sampling percentage).

Our results show that FCA with our enhancements is more

accurate in estimating the (strong) mutation score compared

to (i) the original FCA-based technique by our previous

work [18], (ii) random sampling, and (iii) weak mutation.

In particular, we find that the compression strategy based on

non-maximal groupings and enriched with mutant location

information (referred as overlap+mloc in the remainder of the

paper) estimates the strong mutation score with an average

absolute error of 5% and an average accuracy of 93% while

being five time faster than strong mutation, i.e., its average

speed up is 5X. Instead, random sampling achieves a higher

absolute error of 13% while requiring the same execution time

of overlap+mloc, i.e., its average speed up is 5X as well. The

other compression strategies lead to larger speed-up scores

(up to 18X) but with the cost of having a larger absolute

error, which ranges between 5% (i.e., the absolute error of

overlap+mloc) and 13% (i.e., the absolute error of random

sampling) on average. Therefore, our findings challenge prior

results [17] as we find that mutation strategies based on com-

pression methods (and FCA in particular) are more effective

and/or more efficient than random sampling. Finally, weak

mutation is the fastest technique but it also produces the largest

absolute error of 23% on average.

As a final remark, we observe that all FCA-variants allow

to estimate whether each individual mutant is strongly killed

or not based on relatively few test executions by relying on the

two-way clusters generated with FCA. Instead, random sam-

pling does not take into account relationships between mutants

and test cases, possibly also leading to underrepresented areas

of production code in the estimation.

II. BACKGROUND AND RELATED WORK

In this section, we begin with an overview of mutation

reduction techniques in literature and the works that motivate

our approach. Then, we introduce the crucial concepts and

theories on which our approach is based.

A. Mutation Reduction Strategies

Techniques for reducing the high computational cost have

been an active area of research. Offutt and Untch [7]’s litera-

ture review summarises these approaches into three categories:

do fewer, do smarter and do faster. The most well-known

techniques for reducing the computational cost of mutation

testing are random sampling [8], selective mutation [9], weak
mutation [10] and mutant schema [20]. The aforementioned

methods are independent of the program under test which can

be flexibly combined with our methodology.

More recently, researchers have aimed to make further gains

by including run-time information; a widely-adopted strategy

is to execute the test suite on the original program before mu-

tation execution to avoid unnecessary executions. Coverage-
based optimisation filters out test executions when a test case

does not cover the mutated statement; this optimisation is in

use in existing tools such as JAVALANCHE [21], Major [22]

and PIT/PiTest [23]. Infection-based optimisation on the other

hand only executes a test case on a mutant when the test infects

the state of the mutant, filtering out weakly live mutants.

Just et al. [11] improved upon this by only executing a test

on a mutant if the execution state of the mutated expression

propagates to a top-level expression; they also partitioned

mutants based on their intermediate results. Ma and Kim [24]

applied a similar idea to cluster mutants for each test case by

comparing the values of innermost expressions. Compared to

Just et al. [11] and Ma and Kim [24]’s, we partition mutants

for all test cases instead of targeting each test case.

Mutant clustering’s aim is to reduce the number of mutants

based on the similarity of mutants instead of random sampling.

Hussain [14] applied clustering algorithms (e.g. K-means),

however, the approach requires the execution of all mutants

against all the test cases, which cannot reduce the overhead

during the mutation execution. Later, Ji et al. [13] measured the

similarity of the mutants using domain analysis. They divide

mutants based on static control flow analysis. But they only

manually analysed the clustering accuracy without indicating

the runtime overhead caused by the domain analysis. Different

from these works, our approach groups mutants based on their

reachability and necessity conditions against the tests.

An approach that eliminates redundant mutants is mutant
subsumption (e.g. [25]–[27]). However, mutant subsumption

requires full knowledge of the mutation kill matrix, which

requires the execution of every mutant against every test.

Computationally this process is more costly than traditional

strong mutation, thus cannot be used to speed-up mutation

execution. Furthermore, test prioritization and reduction are

also used to speed up mutation testing, e.g. Zhang et al. [28].

Moreover, Zhang et al. have recently proposed Predictive
Mutation Testing (PMT) to predict mutation testing results

without execution [29]. They extracted 12 features from the

programs and constructed a classification model to predict

whether a mutant is killed or surviving. Their experiment

showed that PMT could improve the efficiency of mutation

testing by up to 151.4 times with a small loss in accuracy.

Despite high efficiency, their approach needs to collect a series

of program features, which requires different tools to fulfil; this

is a substantial burden for the common programmer. Unlike

Zhang et al. [29], we do not require any additional program

features; the weak mutation information needed for our mutant

clustering and data compression can be collected by our tool

during the initial execution against the original program.

Our approach is an extension of our previous work [18].

Despite the encouraging results, we have identified two impor-

275

Authorized licensed use limited to: TU Delft Library. Downloaded on July 04,2022 at 14:24:24 UTC from IEEE Xplore.  Restrictions apply. 



tant limitations of our initial methods as mentioned before (in

Section I), i.e., (1) weak mutation information is not enough;

and (2) FCA could lead to missing mutants and/or tests. To

address these limitations, we propose another compressing

strategy, i.e., overlapped grouping, which is the simplest and

strictest clustering method. Moreover, we take full advantage

of mutation location and operator type knowledge when com-

pressing.

B. Mutant Compression

We now describe the core concepts behind our approach:

weak mutation and FCA-based compression technique [18].

Weak Mutation. For a test case t to kill a mutant m which

mutates the statement s of a program P , there are three

conditions [30]: (i) reachability: the execution of t must cover

s; (ii) necessity: the execution state of m is different from the

execution state of s; (iii) sufficiency: the incorrect state of m
must propagate to the output causing a failure in t.

Weak mutation uses the necessity condition, i.e., a mutant

is killed if its execution leads to a state change. For example,

the expression c=a*b and its mutated version c=a/b have

different outcomes (i.e., the mutant is weakly killed) if a�=1,

a�=0 and b�=1. Differently from strong mutation, weak mu-

tation scores can be computed with one single execution of

each test by instrumenting the mutated locations [31].

FCA-based compression technique [18]. Formal Concept
Analysis (FCA) was originally a data analysis method and has

shown to be a powerful mathematical technique to convey and

summarize large amounts of information [19]. It takes as input

the formal context which is a structure C = (O,A, I) where O
is the set of objects, A is the set of attributes while I ⊆ O×A
is a binary relation between O and A. Then, FCA produces

the concept lattice, which is a collection of formal concepts
in the data ordered by sub-concept relations, i.e., from super-

concepts to sub-concepts. Each formal concept is composed

of (i) a group of objects sharing the same attributes, and (ii)

all attributes that apply to the objects in the concept [19].

In mutation testing context, the objects in O are the mutants,

the attributes in A are the test cases, and I is the mutant-

by-test infection matrix. Then, FCA derives formal concepts

that represent groups of mutants that are weakly killed by the

same subset of tests. In other words, the output of FCA can

be viewed as two-way clustering since mutants and tests are

grouped in concepts such that all mutants in the same concept

c are weakly killed by all tests in c. Among these concepts,

FCA-based compression technique only considers the maximal

concepts that are directly connected to the exit point in the

lattice hierarchy that are referred to as maximal groupings.

After obtaining the maximal groupings from the concept

lattice, this approach first compresses the mutant-by-test in-

fection matrix by condensing the rows, i.e., select one mutant

from each maximal grouping. Then to further perform the

compression on the columns, there are three approaches for

test case selection: (i) random: randomly select one test from

each maximal grouping; (ii) Set cover based: find a sufficient

subset of test cases that weakly kill all possible mutants. i.e., at

Fig. 1. Overall Methodology of Mutation Compression Strategies

each stage, choose the test that weakly kills the largest number

of uncovered maximal groupings; (iii) Sorting-based: select

the test cases with the largest number of maximal groupings

at each stage until all possible mutants are covered.

However, as our previous study [18] show, applying test

case selection on FCA groupings leads to a relatively small

(5.89%) reduction in execution time. Therefore, in this paper,

we do not use test case selection. Instead, we apply dynamic

coverage-based optimisation [21]–[23] and infection-based

optimisation [11], [24] (see Sec. II) to filter out unnecessary

executions.

III. APPROACH

A. Overall Methodology

Our 6-step compression strategy is illustrated in Figure 1:

(1) Instrumentation. We instrument the original program

to keep track of the mutation locations: at every mutation

point we insert all the mutants (mutated codes) right after

the original one and assign a unique id to each mutant

for later activation (we applied the technique of the mutant
schemata [12]). To perform weak mutation, we also insert the

comparison instructions at each mutation point to compare the

intermediate states of the original program and mutated part

(we compare the state after the first execution of the innermost

expression that surrounds the mutant). We insert additional

instructions to record information of each mutant including

its location, operator type and mutation details (e.g., m1 on

Line 12 applies replace constant operator: 0 → 1).

(2) Test execution. Once instrumented, the test suite is

executed once on the original program. During this stage, we

record the mutants that are touched by the tests, as well as the

ones which are weakly killed by the tests. Only the instructions

related to weak mutation and mutant information collection are

executed at this stage. No mutants are activated.

(3) Reachability and necessity analysis. The results of the

previous stage are stored in the mutant-by-test reachability
and mutant-by-test necessity matrices. Let P be the program

under analysis and let T be the test suite; let M be the set of

mutants for the program P generated by preselected mutation

operators. A mutant-by-test reachability matrix is a m × n
matrix where m is the number of mutants, n is the number of

test cases in T , and an entry xi,j is a binary value indicating

whether the statement containing the i-th mutant is executed
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(xi,j = 1) or not (xi,j = 0) by the j-th test ∈ T . The mutant-
by-test necessity matrix has the same size as the mutant-by-test
reachability matrix, but the binary entry xi,j represents the

outcome of weak mutation (xi,j = 1 indicates weakly killed).

(4) Mutant clustering. Using the two aforementioned matri-

ces, we apply clustering to group similar mutants together. We

consider two clustering methods: (1) the overlapped grouping,

and (2) FCA grouping from our previous study [18] (See

Section II-B).

(5) Data compression. The mutant clusters are then used

to compress the mutant-by-test matrix. The resulting matrix is

likely to have lower dimensionality: the rows denote groups

of mutants belonging to the same clusters; similarly, tests are

grouped into clusters to form the columns. The compressed

matrix is then used to apply mutants and execute tests for the

strong mutation analysis. We take mutation knowledge into

consideration during compression to achieve higher accuracy.

(6) Mutant Execution. The compressed matrix from the

previous step is then used for the strong mutation analysis.

Here, we load each mutant by its id and run the actual mutation

execution against the tests.

The details of overlapped grouping and how we use muta-
tion knowledge are described in the next sub-sections.

B. overlapped grouping

As mentioned earlier, the FCA-based compression technique

could result in missing mutants and/or tests. Therefore, we

propose the overlapped grouping to overcome this. The over-
lapped method is the simplest and strictest clustering method,

i.e., elements are only grouped together if they are identical.

Specifically, we first identify distinct mutants with regard

to their reachability and necessity conditions against all the

test cases. Subsequently, we group mutants having the same

reachability and necessity conditions into one cluster.

The main difference between overlapped and FCA grouping

is that overlapped grouping is stricter than FCA grouping.

The overlapped grouping does not lose any information in the

matrix, i.e., the clustering contains all the mutants. While FCA
grouping loses some information since the main idea of FCA
is to find the maximal sub-matrixes (or formal concepts), and

if a mutant or a test does not belong to a sub-matrix, FCA
removes this mutant or test.

In our example in Figure 2, there are three maximal

groupings, which are {m5,m6|t1, t2}, {m4|t3}, and {m3|t4}.
The other concepts in the lattice (e.g., {m2,m5,m6|t1} in

Figure 2) are already included in the maximal grouping by

the sub-concept relation which is graphically represented by

the hierarchy in the lattice. As for the overlapped grouping,

it generates five clusters, i.e. {m1|t2}, {m2|t1},{m3|t4},
{m4|t3} and {m5,m6|t1, t2}. The example shows that for

the clusters generated by the overlapped grouping no mutants

are discarded, while the FCA grouping discards m1 and m2.

C. Mutation Knowledge

Once we have the mutant clusters, we compress the mutant-

by-test infection matrix by condensing the rows, i.e., we select

Fig. 2. A toy program and its mutant clusters

one/several mutants from each cluster to represent the whole

group. To select the representative mutant(s), the FCA-based

technique [18] adopted a random strategy which selects one

mutant from each cluster at random, which we believe causes

another limitation: based on weak mutation information alone,

FCA could mis-cluster mutants at different code locations.

Thus, we enhance FCA by adding mutation knowledge: (i)

mutant location and (ii) mutation operator type.

More specifically, we investigate three mutant selection

strategies: (1) random strategy; (2) random strategy with

knowledge of the mutation operator type1; (3) random strat-

egy with knowledge of the mutation location. The first one

randomly chooses one mutant from each grouping/cluster as

the representative mutant. The second strategy first divides

each cluster into partitions by the type of mutation operator

and then randomly selects one mutant from each partition.

The third strategy partitions the cluster by the locations of the

mutants (the line number) and then applies random selection;

this guarantees that at least one mutant is selected for every

potential mutation point. Notice that the second and third

strategies might select more than one mutant from each

grouping/cluster, which could lead to less speed-up in strong

mutation.

To sum up, we devise one mutant clustering algorithm in

addition to FCA as well as three mutant selection strategies,

therefore, resulting in six compression strategies in total:

overlap the combination of overlapped grouping and random strat-
egy in mutant selection.

overlap+mop the combination of overlapped grouping and random strat-
egy with the knowledge of the mutation operator type in
mutant selection.

overlap+mloc the combination of overlapped grouping and random strat-
egy with the knowledge of the mutation location in mutant
selection.

fca the combination of FCA grouping and random strategy in
mutant selection.

fca+mop the combination of FCA grouping and random strategy with
the knowledge of the mutation operator type in mutant
selection.

fca+mloc the combination of FCA grouping and random strategy with
the knowledge of the mutation location in mutant selection.

IV. EXPERIMENTAL STUDY

We conducted an empirical study to evaluate the effec-

tiveness of the different compression strategies presented in

the previous section. The goal of the study is to answer the

following research questions:

1Regarding the mutation operator type knowledge, we consider the operator
type at a high level, e.g., arithmetic replacement operators.
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• RQ1: How accurate are different compression tech-
niques? We assess the ability of the six compression

strategies to estimate the strong mutation scores. We

also asses their performance in comparison with random

sampling and weak mutation.

• RQ2: How do compression techniques perform in terms
of speed-up? We investigate the speed-up in terms of

execution time that can be obtained when using each

compression strategy over strong mutation. We also con-

sider random sampling and weak mutation as baselines.

• RQ3: What is the trade-off between accuracy and speed-
up for the compression techniques? We evaluate to what

extent the compression strategies can reduce execution

time while maintaining an accurate estimation of the

strong mutation scores.

A. Experimental setup

To answer our research questions, we evaluated the six

compression strategies using 20 open source projects publicly

available on GitHub. Table I summarises the main charac-

teristics of the selected projects. These projects have been

randomly selected among the top 3000 GitHub repositories

which (1) have most stars on 04/04/2017, (2) can be built

using Maven, and (3) contain JUnit 4 test suites. In our study,

we focus on the manually-written test suites available in the

original project repositories.

As mentioned in Section III, we first need one test execution

against the original program to collect statement coverage

(i.e., the mutant-by-test reachability) and the weak mutation

information (i.e., the mutant-by-test necessity matrix). To col-

lect weak and strong mutation information, we implemented

our own prototype tool2. The instrumentation framework to

generate mutants and detect the reachability and necessity

condition is extracted from EvoSuite. Then, we integrated this

instrumentation framework into our mutation testing runner.

We record information about test cases (#id, method name,

execution results, #touched mutants and #weakly killed mu-

tants) and mutants (#id, mutation operator type, location and

detailed information) for further analysis. After that, we run

each test case against each mutant of the class under test

(strong mutation) to establish the mutant-by-test sufficiency
matrix which is used to evaluate our methods.

The mutation operators we adopted in this experiment

are six method-level operators: replace arithmetic,

replace bitwise, replace comparison, replace
variable, replace constant, and insert unary.

Further details about these mutation operators can be found in

the paper by Fraser and Arcuri [31]. We opted for the mutation

engine available in EvoSuite [31] because it instruments the

production code at bytecode level and allows to directly

measure the infection state for each mutant (weak mutation).

To the best of our knowledge, no publicly-available mutation

tool provides utilities for computing the weak mutation scores.

2All the tools, scripts and metadata for this experimental study are available
in our GitHub repository [32].

TABLE I
SUBJECT PROGRAMS

PID Project LOC #Classes #Tests COV3
#Mutants

#Total #Covered #Weakly #Strongly
Killed Killed

1 assertj 24978 830 8545 0.90 59955 21677 19533 9178
2 checkstyle 31441 524 631 0.74 79464 18777 17738 9448
3 commons-lang 26578 264 2936 0.93 45630 43597 40453 33158
4 crawler4j 3745 57 11 0.27 3046 1017 853 505
5 dex-translator 4981 32 3 0.61 5812 1015 882 493
6 distributedlog 27976 697 339 0.43 21520 593 535 395
7 dynjs 34579 672 887 0.51 29148 14688 12960 8307
8 geotools 75236 991 670 0.38 62963 19852 17024 9135
9 graphhopper 26175 384 874 0.74 50319 11176 10168 7299

10 apns 1618 39 85 0.66 905 537 487 366
11 jctools 6262 133 43 0.82 7058 425 401 302
12 jfreechart 98334 657 2256 0.54 129417 14776 13057 5669
13 jpacman 1890 61 41 0.82 1606 1355 1159 580
14 junit-quickcheck 3038 67 354 0.98 1000 995 893 786
15 pac4j 5281 146 424 0.63 2703 1934 1689 929
16 pf4j 3021 67 24 0.28 1176 380 294 205
17 stream-lib 4767 77 121 0.83 11907 9920 9445 6924
18 telegrambots 1480 21 31 0.20 772 221 196 52
19 vraptor 12021 407 385 0.83 3490 2057 1652 1072
20 zt-zip 4255 84 3 0.71 2440 1049 906 422

Overall 397656 6210 2470 0.64 520331 166041 150325 95225

Note: Column 4 is the total number of passed test cases under our ComMT tool. We marked
the value with underline when the total number of passed test cases is less than the entire
test suite size4.

To answer the three RQs, we selected another two mutation

reduction techniques (see Section II) for comparison: mutation

sampling and weak mutation. We selected random sampling

(do fewer strategy) as baseline because Gopinath et al.

[17], [33] showed that none of the most common reduction

strategies provide any practical advantage over pure random
sampling. Moreover, we selected weak mutation (do smarter
strategy) because it is one of the key components of all mutant

compression techniques. Therefore, we considered it as an

additional baseline to verify whether the other components

of the compression strategies (e.g., computing the maximal

groupings) are indeed needed. For random sampling, we set

the sampling rate to 10% as suggested by Budd [6] and

Acree [8]. They showed that 10% sampling could already

estimate the mutation score with 99% of accuracy. It also

corresponds to the sampling rate used by Gopinath et al. [17],

[33]. Since random sampling and the mutant compression

strategies involve random processing (i.e., in mutant selection),

we carry out the corresponding random process 100 times for

each project to address their randomised nature. In total, we

compared eight mutation strategies: six compression strategies,

random sampling (10%) and weak mutation.

B. Evaluation Metrics

To answer RQ1, we selected two well-known performance

metrics: the absolute error and the accuracy. Let M be a given

mutation strategy (e.g., random sampling); let strongM (C, T )
be the percentage of mutants for a class C that are strongly

killed by the test suite T ; let estimatedM (C, T ) be the

4The fifth column “COV” means the line coverage of the test suite which
is measured by IntelliJ IDEA coverage runner.

5The failures of the test cases in our tool is because the dependencies of
these test cases need to be configured by Maven plugin; this cannot be solved
in the current version of ComMT.
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estimated percentage of mutants that are killed according to

the strategy M ; the absolute error is defined as follows:

AE(C, T ) =| strongM (C, T )− estimatedM (C, T ) | (1)

While the compression techniques select only a subset of the

mutants for strong mutation, they can also estimate whether the

non-selected mutants are killable by leveraging the groupings

generated by FCA. Therefore, we use the accuracy as further

performance metric, which is defined as follows:

accuracy(C, T ) = (TP + TN)/total (2)

where TP denotes the number of mutants that are strongly

killed by T and that are also correctly identified by a given

method M (true positives); TN is the number of mutants that

are not strongly killed by T and that are correctly identified by

M (true negatives); total denotes the total number of mutants

for the class C. To ease the comparison, we use the mean
and standard deviation of absolute error and accuracy scores

obtained for all classes in a given Java project.

For RQ2 we consider the speed-up metric. When estab-

lishing the speed-up, we should first consider the overhead

induced by an approach. For random sampling, we consider

the overhead to be zero, as mutation sampling does not

require any prerequisite knowledge. For weak mutation, the

overhead consists of one single execution of the test suite

against an instrumented version of the original program. For

the compression strategies, the overhead is composed of the

overhead incurred by both weak mutation and the compression

procedure (mutant clustering and mutant selection):

overhead = exec time(weak mutation+ compression) (3)

The speed-up metric itself is computed using strong mu-

tation with coverage-based optimisation as the baseline.

We explicitly chose this optimisation as it is already in-

tegrated into several existing mutation testing tools (e.g.,

JAVALANCHE [21], Major [22] and PIT/PiTest [23]). The

results of random sampling and compression strategies are the

average values over 100 runs; for weak mutation, the execution

time is zero. Then, the speed-up is defined as follows:

speed-up =
exec time(strong mutation)

exec time(M)
(4)

where the denominator is the execution time of a method M
computed as the sum of its overhead and the execution time

needed to run the tests against the selected mutants.

For RQ3, we first provide a graphical comparison among

the different mutation strategies by using the speedup-error
graphs. In such a graph, the X-axis denotes the speed-up

scores and the Y-axis shows the mean absolute error achieved

by each strategy and for each project in our study; an “ideal”

score would have a high X-value and a low Y-value. We also

use the speedup-accuracy graphs, which plot the speed-up

(mean) on the X-axis and the corresponding accuracy (mean)

on the Y-axis; an “ideal” score would have a high X-value

and a high Y-value. Although we may see some trends via

graphical analysis, we would like to know which strategy

achieves the best speed-up when accepting a given absolute

error rate. Therefore, we consider the following absolute error

thresholds: σe1 = 5%, σe2 = 10%, and σe3 = 15%. Then,

for each threshold σei and for each mutation strategy M , we

count the number of projects for which M achieves the highest

speed-up compared to the other strategies while yielding an

absolute error score lower than σi. Similarly, we also consider

three accuracy thresholds, i.e., σa1 = 95%, σa2 = 90%, and

σa3
= 85%. Different from the absolute error, we count the

number of projects in which M achieves an accuracy higher

than the threshold σai
.

Statistical Analysis. To assess whether the differences

among the various mutation strategies are statistically signif-

icant or not, we adopt Friedman’s test [34] with α = 0.05.

It is a non-parametric test for comparing multiple treatments

(mutation strategies) in the context of a multiple-problem

analysis (i.e., multiple projects) [34]; it does not require data

to be normally distributed and it is widely applied to compare

randomised algorithms [35], [36] (e.g., random sampling).

While Friedman’s test reveals whether data distributions differ

statistically, tests for pairwise comparison are needed to deter-

mine which treatment outperforms the others. For this, we use

Conover’s post-hoc procedure [37] and we further adjusted the

obtained p-values using Holm-Bonferroni [38].

V. RESULTS

A. RQ1: accuracy

Table II reports the mean accuracy and absolute error scores

for each project in our study as well as the corresponding

standard deviation scores.

Absolute error. Focusing on the absolute error we observe

that weak mutation performs worst with an error rate of 23%

and a standard deviation of 22% on average. This result is

due to this strategy using all mutants that are weakly covered

to approximate strong mutation coverage, yet, not all infected

states propagate to changes observable in assertions.

Moreover, overlap+mloc produces the lowest mean absolute

error in 19 out of 20 projects, followed by fca+mloc and over-
lap+mop. Overall, the strategies using overlapped grouping
perform slightly better than FCA-based maximal groupings. To

ease the comparison between the compression techniques and

random sampling, in Table II we underline the mean and std

values of a compression technique if they are smaller (better)

than the values of random sampling in the same project. We

can see that the six compression strategies outperform random

sampling in terms of absolute error scores for most projects.

The best (lowest) scores are obtained using the overlap+mop,

overlap+mloc, fca+mop and fca+mloc approaches.

Looking at the six compression strategies, we can see that

the mean absolute error and standard deviation scores are

reduced when incorporating knowledge of mutation operators

(mop) and location (mloc). For example, overlap achieves

an error rate of 15% for the jpacman project, while when

adding mutation operator and location knowledge it achieves

an error rate of 10% and 7%, respectively. In general, we
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TABLE II
SUMMARY OF THE RESULTS FOR RQ1

Absolute Error Summary (Mean / St. Dev.) Accuracy Summary (Mean / St. Dev.)

PID
Overlap FCA Random Weak Overlap FCA Random Weak

Simple w/ Mop w/ Mloc Simple w/ Mop w/ Mloc Sampling Mutation Simple w/ Mop w/ Mloc Simple w/ Mop w/ Mloc Sampling Mutation

1 0.09/0.17 0.08/0.16 0.08/0.15 0.13/0.17 0.11/0.16 0.11/0.16 0.13/0.17 0.20/0.27 0.90/0.17 0.91/0.17 0.91/0.16 0.83/0.20 0.86/0.18 0.90/0.17 - 0.76/0.29
2 0.06/0.11 0.06/0.10 0.03/0.06 0.08/0.12 0.07/0.10 0.03/0.07 0.10/0.13 0.13/0.17 0.93/0.12 0.93/0.11 0.95/0.08 0.91/0.14 0.92/0.12 0.95/0.08 - 0.86/0.17
3 0.07/0.11 0.04/0.07 0.04/0.06 0.13/0.13 0.08/0.08 0.06/0.07 0.14/0.16 0.18/0.19 0.88/0.13 0.91/0.10 0.92/0.08 0.74/0.19 0.80/0.16 0.90/0.09 - 0.81/0.18
4 0.10/0.12 0.06/0.07 0.02/0.03 0.11/0.12 0.07/0.08 0.03/0.03 0.07/0.09 0.28/0.18 0.89/0.13 0.91/0.10 0.96/0.05 0.87/0.13 0.89/0.11 0.96/0.05 - 0.71/0.17
5 0.13/0.16 0.09/0.16 0.07/0.16 0.14/0.17 0.10/0.16 0.07/0.16 0.10/0.16 0.15/0.13 0.86/0.16 0.87/0.16 0.90/0.16 0.85/0.17 0.87/0.16 0.90/0.16 - 0.85/0.13
6 0.03/0.10 0.03/0.08 0.02/0.05 0.06/0.12 0.05/0.09 0.04/0.08 0.14/0.21 0.11/0.17 0.97/0.10 0.97/0.09 0.98/0.07 0.92/0.14 0.95/0.11 0.96/0.09 - 0.82/0.21
7 0.12/0.15 0.09/0.13 0.06/0.09 0.16/0.16 0.11/0.13 0.07/0.09 0.19/0.19 0.33/0.27 0.86/0.16 0.88/0.14 0.92/0.10 0.80/0.18 0.84/0.15 0.91/0.11 - 0.67/0.27
8 0.05/0.09 0.03/0.06 0.02/0.05 0.07/0.11 0.05/0.08 0.03/0.05 0.12/0.16 0.24/0.26 0.94/0.10 0.95/0.08 0.97/0.06 0.91/0.13 0.93/0.10 0.96/0.06 - 0.75/0.26
9 0.11/0.13 0.07/0.09 0.04/0.07 0.15/0.14 0.09/0.10 0.05/0.08 0.12/0.13 0.19/0.18 0.85/0.15 0.88/0.12 0.92/0.09 0.76/0.16 0.81/0.14 0.90/0.09 - 0.80/0.17
10 0.06/0.10 0.04/0.05 0.02/0.05 0.09/0.12 0.06/0.07 0.03/0.05 0.09/0.12 0.25/0.28 0.92/0.12 0.95/0.07 0.97/0.05 0.89/0.13 0.92/0.09 0.97/0.05 - 0.75/0.27
11 0.23/0.23 0.22/0.22 0.20/0.22 0.23/0.23 0.22/0.22 0.20/0.21 0.29/0.21 0.38/0.33 0.77/0.23 0.77/0.22 0.78/0.22 0.77/0.23 0.77/0.22 0.78/0.21 - 0.62/0.33
12 0.05/0.07 0.04/0.05 0.01/0.02 0.09/0.09 0.05/0.06 0.02/0.02 0.03/0.03 0.24/0.23 0.91/0.09 0.92/0.07 0.95/0.05 0.87/0.11 0.89/0.10 0.95/0.05 - 0.76/0.23
13 0.15/0.16 0.10/0.11 0.07/0.09 0.16/0.17 0.11/0.12 0.07/0.09 0.11/0.12 0.39/0.25 0.83/0.17 0.85/0.14 0.90/0.11 0.81/0.18 0.84/0.15 0.90/0.11 - 0.61/0.25
14 0.04/0.07 0.03/0.06 0.03/0.05 0.10/0.11 0.07/0.08 0.07/0.08 0.16/0.18 0.09/0.12 0.96/0.08 0.96/0.07 0.96/0.06 0.78/0.18 0.82/0.15 0.95/0.06 - 0.87/0.13
15 0.10/0.15 0.07/0.13 0.05/0.10 0.17/0.15 0.12/0.13 0.11/0.11 0.19/0.18 0.24/0.26 0.88/0.15 0.91/0.13 0.93/0.10 0.71/0.19 0.80/0.17 0.89/0.12 - 0.74/0.25
16 0.08/0.13 0.06/0.09 0.04/0.07 0.11/0.14 0.09/0.11 0.06/0.07 0.21/0.19 0.21/0.24 0.90/0.14 0.93/0.09 0.96/0.07 0.86/0.15 0.89/0.12 0.95/0.08 - 0.77/0.23
17 0.10/0.13 0.07/0.10 0.05/0.09 0.15/0.14 0.09/0.10 0.05/0.09 0.12/0.14 0.22/0.20 0.84/0.15 0.87/0.13 0.89/0.11 0.76/0.18 0.79/0.15 0.88/0.11 - 0.76/0.22
18 0.10/0.12 0.07/0.10 0.03/0.04 0.11/0.14 0.08/0.11 0.03/0.04 0.12/0.14 0.30/0.21 0.89/0.12 0.91/0.11 0.94/0.09 0.87/0.15 0.89/0.13 0.94/0.09 - 0.70/0.21
19 0.06/0.11 0.04/0.08 0.03/0.07 0.11/0.15 0.07/0.11 0.06/0.10 0.17/0.20 0.20/0.25 0.94/0.11 0.95/0.09 0.97/0.07 0.88/0.17 0.91/0.13 0.96/0.08 - 0.77/0.24
20 0.14/0.17 0.09/0.12 0.02/0.03 0.15/0.17 0.09/0.12 0.02/0.03 0.07/0.10 0.31/0.29 0.85/0.17 0.86/0.15 0.94/0.08 0.85/0.17 0.86/0.15 0.94/0.08 - 0.66/0.28

Mean 0.09/0.13 0.07/0.10 0.05/0.08 0.13/0.14 0.09/0.11 0.06/0.08 0.13/0.15 0.23/0.22 0.89/0.14 0.90/0.12 0.93/0.09 0.83/0.16 0.86/0.14 0.92/0.10 - 0.75/0.22

TABLE III
RANKING PRODUCED BY THE FRIEDMAN’S (LARGER RANK INDICATES

SMALLER ERROR) AND STATISTICAL SIGNIFICANCE BY THE CONOVER’S

POST-HOC PROCEDURE.

ID Algorithms Rank Significantly better than

(1) overlap + Mloc 8.00 (2), (3), (4), (5), (6), (7), (8)
(2) FCA + Mloc 6.55 (4), (5), (6), (7), (8)
(3) overlap + Mop 6.30 (4), (5), (6), (7), (8)
(4) FCA + Mop 4.55 (6), (7), (8)
(5) Overlap 4.40 (6), (7), (8)
(6) Random Samp. 2.70 (8)
(7) FCA 2.50 (8)
(8) Weak Mut. 1.10 -

find that mutant location is more important than mutation

operator, as the absolute error decreases by 4% on average,

with a minimum improvement of 1% for assertj and a

maximum improvement of 13% for zt-zip. This is an

important novel contribution distinct from most related work,

which consider mutation operators as a key element to detect

redundant mutants or subsuming mutants (e.g. [25]–[27]).

Hence, we found that mutation location trumps mutation
operator information when selecting mutants to evaluate for
strong mutation.

According to results of Friedman’s test, the different mu-

tation strategies achieve significantly different absolute error

values (p-value = 10−16). To better understand which strate-

gies perform best, Table V reports the final ranking produced

by Friedman’s test as well as the results of the pairwise

comparison from Conover’s procedure. As we can observe,

overlap with mutant location knowledge (mloc) is ranked first

and performs significantly better than all other strategies in the

comparison. FCA based on maximal groupings with mutant

location knowledge is ranked second and statistically outper-

forms all other strategies with lower ranks. Finally, random

sampling is statistically worse than all overlap strategies and

FCA enhanced with mloc and mop. Instead, the original FCA

approach proposed by our previous study [18] is statistically

equivalent to random sampling in terms of absolute error.

Accuracy. The results for the accuracy are also reported

in Table II. Since random sampling selects 10% mutants

to evaluate in strong mutation, it cannot be used to esti-

mate whether the other non-selected mutants are killable or

not. Conversely, the six compression strategies can estimate

whether each mutant is killable even if only a few mutants

are actually evaluated for strong mutation. This is possible

thanks to the two-way clusters generated by FCA: if a mutant

is strongly killed, then we assume that all other mutants within

its own cluster are killable as well. In weak mutation, we

consider as strongly killable all mutants that lead to a state

infection (i.e., the weakly killed ones).

Similar to results of the absolute error, the top three strate-

gies are overlap+mloc, fca+mloc and overlap+mop in terms of

accuracy. Again, weak mutation produces the worst accuracy

in terms of both mean and standard deviation values. The three

compression methods based on the overlapped grouping are

slightly better than those in FCA. These differences are due

to the fact that FCA considers only the maximal groupings

as clusters from which selecting tests and mutants to run.

However, as explained in Section III, maximal groupings can

miss some mutants, which therefore are not assigned to any

cluster. Hence, we cannot accurately estimate whether the

missed mutants are likely to be strongly killed or not based

on the results of other selected mutants. We also notice that

compression with additional mutant information can enhance

the predication accuracy. Finally, the finding that mutation

location trumps mutation operator information still holds: the

improvements range between 1% (for commons-lang) and

13% (for junit-quickcheck) in terms of accuracy.

Overlap with mutation location knowledge outperforms all

other mutation strategies in terms of both absolute error
and prediction accuracy. Random sampling is statistically

worse than all mutant compression techniques.

B. RQ2: speed-up

Speed-up performance. Table IV summarises the overall

speed-up for the eight approaches in our comparison. For

each project, we highlight the two strategies achieving the
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TABLE IV
SUMMARY OF THE RESULTS FOR RQ2

Overhead summary (compression overhead 10−4%/ overall overhead%) Speed-up summary (selected mutant% / speed-up)

PID
Overlap FCA Overlap FCA Random Weak

Simple w/ Mop w/ Mloc Simple w/ Mop w/ Mloc Simple w/ Mop w/ Mloc Simple w/ Mop w/ Mloc Sampling Mutation

1 1.04/0.06 1.18/0.06 1.04/0.06 1.05/0.06 0.21/0.06 0.78/0.06 8.4/52.1 9.9/27.3 12.5/22.4 3.1/94.3 4.9/43.3 9.0/25.8 10.0/22.7 0/1747.8
2 0.28/0.08 0.30/0.08 0.28/0.08 0.30/0.08 0.09/0.08 0.01/0.08 1.2/32.8 2.2/27.8 12.0/7.6 0.6/42.1 1.0/34.1 3.9/7.6 10.0/7.6 0/1257.0
3 2.92/0.27 3.19/0.27 3.01/0.27 3.35/0.27 0.17/0.27 0.02/0.27 15.0/8.8 22.1/5.4 30.7/4.8 3.2/30.8 8.5/14.2 25.6/5.4 10.1/4.9 0/369.2
4 0.01/0.30 0.02/0.30 0.03/0.30 0.02/0.30 0.01/0.30 0.02/0.30 2.0/27.3 5.1/13.0 17.4/3.8 1.3/34.2 3.0/14.5 11.3/3.8 10.0/3.8 0/334.6
5 0.01/1.10 0.02/1.10 0.07/1.10 0.03/1.10 0.01/1.10 0.03/1.10 0.6/37.6 1.6/21.0 16.0/3.9 0.4/42.5 1.1/22.0 5.8/3.9 10.0/4.0 0/91.2
6 0.02/9.23 0.02/9.23 0.03/9.23 0.03/9.23 0.02/9.23 0.01/9.23 0.7/5.5 1.1/4.9 2.0/4.6 0.4/6.3 0.7/5.4 1.1/4.9 10.0/8.0 0/10.8
7 0.03/0.03 0.04/0.03 0.04/0.03 0.05/0.03 0.02/0.03 0.01/0.03 9.7/11.2 14.5/8.6 25.2/3.1 3.5/16.1 6.9/11.5 18.8/3.2 10.0/3.1 0/3280.9
8 1.56/0.23 2.09/0.23 1.97/0.23 1.93/0.23 0.41/0.23 0.18/0.23 5.2/7.0 8.2/5.2 21.5/3.0 1.7/13.2 3.4/8.3 11.4/3.1 10.0/3.1 0/432.9
9 0.11/0.18 0.15/0.18 0.13/0.18 0.13/0.18 0.02/0.18 0.01/0.18 2.7/7.8 4.5/5.7 8.6/4.2 0.7/36.9 1.9/14.4 6.2/4.9 10.0/4.3 0/561.7
10 0.01/1.08 0.02/1.08 0.02/1.08 0.05/1.08 0.02/1.08 0.01/1.08 4.5/10.1 8.2/6.4 14.2/3.9 2.0/15.0 4.3/8.2 9.4/4.1 10.0/4.1 0/92.9
11 0.03/0.32 0.08/0.32 0.08/0.32 0.12/0.32 0.08/0.32 0.07/0.32 0.6/19.8 1.5/7.6 3.5/4.8 0.5/19.8 1.0/7.6 1.8/4.8 10.0/4.9 0/310.9
12 3.95/0.21 4.43/0.21 3.86/0.21 3.78/0.21 0.16/0.21 0.03/0.21 1.0/12.0 1.6/7.4 7.4/3.9 0.2/64.9 0.5/27.9 4.1/4.0 10.0/4.0 0/481.9
13 0.01/0.16 0.02/0.16 0.02/0.16 0.03/0.16 0.02/0.16 0.01/0.16 6.5/17.8 12.8/8.3 25.4/4.6 3.9/21.9 8.4/9.9 20.6/4.7 10.0/4.7 0/630.9
14 0.03/0.91 0.07/0.91 0.07/0.91 0.11/0.91 0.03/0.91 0.03/0.91 41.1/5.6 48.2/4.6 52.9/4.2 13.3/11.1 24.5/7.2 41.5/4.4 11.4/4.4 0/110.2
15 0.15/1.29 0.37/1.29 0.37/1.29 0.45/1.29 0.18/1.29 0.12/1.29 21.0/4.8 25.5/3.9 35.4/3.0 6.2/9.1 11.1/5.9 26.3/3.1 10.0/3.2 0/77.5
16 0.39/3.01 0.83/3.01 1.00/3.01 1.58/3.01 1.22/3.01 0.84/3.01 9.9/4.6 14.5/3.5 31.3/2.1 4.9/6.8 8.2/4.1 17.7/2.2 10.0/2.3 0/33.3
17 0.00/0.16 0.01/0.16 0.01/0.16 0.01/0.16 0.00/0.16 0.00/0.16 4.9/23.9 9.8/10.7 18.7/6.3 1.3/94.6 4.1/31.0 15.2/6.4 10.0/6.3 0/626.7
18 0.00/1.56 0.01/1.56 0.01/1.56 0.01/1.56 0.00/1.56 0.00/1.56 2.5/15.8 5.2/9.1 13.6/3.9 1.3/18.1 2.7/10.4 8.5/3.9 10.0/4.2 0/63.9
19 2.55/2.48 6.57/2.48 6.38/2.48 8.59/2.48 4.66/2.48 3.19/2.48 20.7/5.1 29.5/4.0 44.7/3.1 9.4/8.7 14.6/5.6 29.5/3.1 10.8/3.3 0/40.3
20 0.01/0.09 0.04/0.09 0.07/0.09 0.09/0.09 0.04/0.09 0.02/0.09 1.1/68.5 3.4/24.4 18.6/5.4 0.9/69.0 2.1/25.7 10.2/5.4 10.0/5.5 0/1157.8

Mean 0.66/1.14 0.97/1.14 0.92/1.14 1.09/1.14 0.37/1.14 0.27/1.14 7.97/18.91 11.47/10.44 20.58/5.13 2.94/32.77 5.65/15.56 13.90/5.44 10.12/5.42 0/585.62

best speed-up scores in bold. Notice that speed-up measures

the overall execution time of strong mutation divided by the

overall execution time of a mutation strategy. Hence, higher

values denote a larger improvement in execution time.

We observe that weak mutation shows the highest speed-up

scores since it requires only one test suite execution against

the original program. Except for weak mutation, FCA achieves

the highest speed-up scores in 19 out of 20 cases. FCA is also

faster than random sampling, which selects 10% mutants for

strong mutation. Indeed, the former is 6.6 times faster than

the latter on average, with a minimum speed-up of 2.6X (in

vraptor) and a maximum one of 15.4X (in stream-lib).

This is because FCA suggests on average less than 10% of

mutants (with a minimum of 0.4% of mutants) to evaluate

in strong mutation analysis. Instead, the sampling strategy

constantly (and randomly) selects 10% of mutants to execute.

The only exception to the previous finding is represented

by distributedlog for which random sampling is faster

than FCA. In this case, the total percentage of mutants that

are injected into statements covered by the test suite (reach-
ability condition) is fairly low, being 2.8%. Thus, random

sampling can achieve a considerable speed-up if we leverage

the coverage-based optimisation, i.e., if we skip uncovered

mutants (i.e., mutants of uncovered statements). Instead, FCA
selects almost twice as many mutants for these projects.

To further ease the comparison, in Table IV we underline the

compression strategies that achieve better speed-up scores than

random sampling in each project. We observe that overlap,

FCA+mop and overlap+mop outperform random sampling in

terms of speed-up for 19 projects out of 20. On average, they

are respectively 3.7X, 3.0X, and 2.1X faster than random

sampling. It is worth noticing that the number of selected

mutants does not directly determine the overall speed-up.

For example, for the project pac4j, overlap selected 21.0%

of mutants, which is larger than the percentage of mutants

selected by mutation sampling (i.e., 10%). However, overlap
achieves a larger speed-up of 4.8X against 3.1X of mutation

TABLE V
RANKING PRODUCED BY THE FRIEDMAN’S (SMALLER RANK INDICATES

BETTER SPEED-UP) AND STATISTICAL SIGNIFICANCE BY THE CONOVER’S

POST-HOC PROCEDURE.

ID Algorithms Rank Significantly better than

(1) Weak Mut. 1.00 (2), (3), (4), (5), (6), (7), (8)
(2) FCA 2.10 (3), (4), (5), (6), (7), (8)
(3) Overlap 3.50 (5), (6), (7), (8)
(4) FCA + Mop 3.55 (6), (7), (8)
(5) overlap + Mop 5.05 (6), (7), (8)
(6) Random Samp. 6.25 (8)
(7) FCA + Mloc 6.65 (8)
(8) overlap + Mloc 7.90 -

sampling. The reason is that compression strategies uses weak

mutation information to further filter out the unnecessary test

executions, while mutation sampling does not.

From the comparison of the six compression strategies,

we observe that including mutant location leads to selecting

more mutants for strong mutation, thus, reducing the overall

speed-up. For example, overlap+mloc achieves lower speed-up

scores than overlap in all 20 projects. Moreover, by comparing

the two strategies based on mutation location knowledge

(i.e., overlap+mloc, and fca+mloc) with random sampling,

we observe that the differences in terms of speed-up are

small. Indeed, the average speed-up scores of overlap+mloc,

fca+mloc and random sampling are 5.13, 5.44 and 5.42,

respectively. Instead, selecting mutants according to mutation

operator generates a lower number of mutants to evaluate in

strong mutation compared to mutation location.

Our findings are confirmed by Friedman’s test: the mutation

strategies are statistically different in terms of speed-up scores

(p-value = 10−16). According to Conover’s procedure, weak
mutation and FCA statistically outperform all other mutation

strategies. Moreover, random sampling is ranked sixth and is

statistically more efficient than overlap+mloc only, although

the difference is marginal as suggested by the average scores

reported in Table IV. Instead, FCA, overlap, FCA+mop and

overlap+mop are statistically superior to random sampling.

Overhead In the previous paragraphs, we observed that
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most of mutation compression strategies are more efficient

than random sampling. Here, we investigate the overhead that

is due to the different steps that such strategies implement.

In the following, we consider as compression overhead the

execution time needed to compute the maximal and/or over-

lapped groupings; while the overall overhead is the sum of

the compression overhead, the time for running all tests once

for weak mutation, and the time to select the mutants.

Table IV reports the compression overhead and overall
overhead as a percentage (ratio) of the full execution time of

each strategy, which also includes the time needed to run the

selected tests and mutants for strong mutation. The highest

values for each project are highlighted in bold face. From

Table IV, we can observe that the compression overhead takes

up less than 0.001% of the total execution time; thus, it is

negligible with respect to the execution time of evaluating the

selected mutants for strong mutation. The overall overhead

accounts for up to 9.30% of the total execution time and weak

mutation represents the larger portion of this overhead. Among

the 20 projects, the overall overhead of the strategy FCA is

likely higher than the other compression strategies. However,

the differences among them are lower than 0.1%.

Weak mutation scores best among the eight techniques in

terms of speed-up. Without considering weak mutation, four

mutant compression strategies are statistically more effi-

cient (have better speed-up scores) then random sampling.

C. RQ3: trade-offs

From the results of RQ1 and RQ2, it is clear that the

mutation strategies that perform best in terms of accuracy

are also the more expensive to perform. Weak mutation and

FCA grouping strategies perform best in terms of speed-up,

while the overlapped grouping strategies, and overlap+mloc
in particular, better approximate the strong mutation score.

Therefore, in this section, we analyse the trade-offs between

speed-up, absolute error and accuracy.

From Figure 3, we observe that weak mutation achieves the

best speed-up, while its absolute error and accuracy typically

score worst when compared to other techniques. FCA comes

second in terms of the overall speed-up, but its absolute error

as well as accuracy are better than weak mutation for most

of the projects. We notice that overlap is slightly slower

than FCA, but shows a small improvement in both absolute

error and accuracy when compared to FCA. FCA+mop and

overlap+mop have quite similar trade-offs considering speed-

up and absolute error as their data points are very close to each

other. However, in terms of speed-up and accuracy, fca+mop is

slightly faster than overlap+mop, while overlap+mop is more

accurate than fca+mop. Moreover, overlap+mloc, fca+mloc
and random sampling have the same speed-up score; however,

the absolute error of random sampling is higher than for

the other two strategies. Overlap+mloc and fca+mloc are the

most accurate strategies in terms of both absolute error and

accuracy, but their speed-up performance is the least good.
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Fig. 3. Graphical comparison of the eight mutation strategies in terms of
speed-up, absolute error and accuracy.

TABLE VI
NUMBER OF PROJECTS FOR WHICH EACH STRATEGY Mj PROVIDES THE

BEST SPEED-UP SCORE AT DIFFERENT THRESHOLDS.

Absolute Overlap FCA Random Weak
Error Simple w/ Mop w/ Mloc Simple w/ Mop w/ Mloc Sampling Mut.

≤5% 2 4 10 0 1 3 0 0
≤10% 4 1 1 5 7 1 0 1
≤15% 1 0 1 11 3 0 0 4

overall 7 5 12 16 12 4 0 5

(a) error rate

Accuracy Overlap FCA Random Weak
Simple w/ Mop w/ Mloc Simple w/ Mop w/ Mloc Sampling Mut.

≥95% 2 2 9 0 0 7 - 0
≥90% 5 4 2 3 1 5 - 0
≥85% 4 2 1 8 1 1 - 3

overall 11 8 12 11 2 13 - 3

(b) accuracy

Table VI shows the number of projects for which each

strategy M provide the best speed-up score at different

thresholds of absolute error (σei ) or accuracy (σai ). As we

can observe, overlap+mloc has the highest speed-up score

when considering an absolute error ≤5% for 10 projects out

of 20. This indicates that using mutation location leads to

more accurate estimations of the actual strong mutation. When

considering a 10% error rate threshold, FCA+mop and FCA
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show the largest speed-up for the majority of projects. Instead,

when the goal is to reach an absolute error ≤15%, FCA has the

best speed-up scores for 11 out of 20 projects. Moreover, we

notice that random sampling performs worst as it has speed-up

scores that are always lower then the other mutation strategies

at the same (or higher) level of absolute error.

Similar results can be observed when considering differ-

ent thresholds for accuracy. As reported in Table VI, over-
lap+mloc and fca+mloc show the best speed-up for accuracy

≥95% for the relative majority of the projects. When consid-

ering an accuracy ≥90%, overlap and fca+mloc show the best

speed-up for 5 out of 20 projects each. Instead, if we focus on

85% of accuracy, we observe that FCA is the best approach

to choose as it shows a speed-up ranging from 6.3X up to

94.3X compared to strong mutation. Finally, if we focus on

85% accuracy, we observe that FCA is the best approach to

choose.

Overlap+mloc provides the best speed-up scores when

the goal is to achieve an accuracy >95% or an absolute

error <0.05. Other mutation compression strategies provide

larger speed-up, but with a corresponding decrease in

accuracy. Random sampling is less accurate and/or slower

than all compression strategies.

D. Discussion

Looking at all the results, we can observe that random

sampling with 10% sampling ratio is able to speed up (strong)

mutation testing from 2.0 to 22.7X with an absolute error

within 15% for 80% of the projects. Mutation sampling is

also easy to apply in mutation tools as it does not require any

prerequisite knowledge of the program context and mutation

operators. However, mutation strategies based on compression
techniques achieve better speed-up (i.e., are more efficient)
and/or lower absolute error than random sampling. For ex-

ample, overlap+mloc yields an absolute error which is always

lower than 9% with a speed-up ranging between 2.0 to

53X. This represents an important finding if we consider the

recent study by Gopinath et al. [17], which showed that other

mutation reduction techniques (including e-selective) provide

small or negligible improvements in effectiveness and are more

expensive compared to random sampling.

Another disadvantage of random sampling is that it can es-

timate the overall mutation score, but cannot estimate whether

each mutant is strongly killable or not (it only does for the

sampled mutants). The overall mutation score is of course

very important when assessing the test suite quality at a high

level; however, Coles [39, slide 57] observed that programmers

prefer to obtain specific insights into which mutants their test

suite is able to kill. From this perspective, mutation compres-

sion strategies select a subset of “representative” mutants for

the programmers to investigate. In addition, overlap+mloc and

FCA+mloc guarantee that for every possible statement that can

be mutated, at least one mutant will be selected. Although

this may negatively affect the speed-up compared to random

sampling, programmers can benefit from the killable mutant

results at every possible mutant location.

VI. THREATS TO VALIDITY

Threats to external validity: Our results are based on

mutants generated by the operators implemented in EvoSuite;

these results might be different when using other mutation

tools [40]. With regard to the subject selection, we chose

18 out of the 20 projects from GitHub’s top starred 3000

repositories; the selected projects differ in size, number of test

cases and application domain.
Threats to internal validity: The main threat for our study

is the implementation of the compression strategies. For FCA,

we use its implementation available in MATLAB [41], which

is a well-known scientific software. For the instrumentation

and the mutation operators, we relied on their implementation

available in EvoSuite [42]. Moreover, we carefully reviewed

and tested all code for our study to eliminate potential faults

in our implementation.
Threats to construct validity: The main threat is the

measurement we used to evaluate our methods. We minimise

this risk by adopting evaluation metrics that are widely used

in research, as well as proper statistical analysis to assess the

significance.

VII. CONCLUSIONS

In this paper, we have conducted a detailed investigation

of different compression techniques to speed up mutation

testing based on the work by our previous work [18]. We

have enhanced our original FCA-based compression strategy
in two distinct ways: (1) by proposing a novel mutant clus-

tering algorithm, overlapped grouping, in addition to FCA;

(2) by incorporating mutation location and mutation operator

information in the compression procedure. Thereby, we have

introduced and investigated six compression strategies based

on two clustering algorithms and three mutant selection strate-

gies.
The results of an empirical study with 20 open-source

projects show that mutant compression techniques can ef-

fectively speed up strong mutation testing up to 94.3 times

with an accuracy > 90%. FCA is the fastest strategy while

overlap + mloc is the most accurate. In comparison, weak
mutation attains a higher absolute error (23%) and lower

accuracy (75%). Random sampling with 10% as sampling

percentage is statistically less accurate than all mutant com-

pression strategies, and worse in terms of speed-up than four

compression strategies (excluding the two with knowledge of

mutation locations).
Another important finding is that mutation location trumps

mutation operator information when selecting mutants to
evaluate for strong mutation. Hence, researchers should take

into account the mutation location in addition to the mutation

operators when detecting redundant or subsuming mutants

(e.g. [25]–[27]). This is a clear invitation for future work.
Since our results are encouraging, we envision the following

future work: (i) combining mutant location and mutation oper-

ator information; (ii) investigating other compression methods,
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such as Principal Component Analysis [43]; (iii) applying

compression techniques in mutation-based test case genera-

tion [44], [45].
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