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ABSTRACT

Functional ultrasound (fUS) is an exciting new neuroimaging tech-
nique that is able to record brain activity similar to functional mag-
netic resonance imaging, yet with higher spatiotemporal resolution
and at lower cost. We consider the problem of jointly estimating the
underlying neural sources and the hemodynamic response function
(HRF) from fUS recordings. We propose to model the measured
voxel time-series as a convolutive mixture of multiple source signals
and solve the blind deconvolution problem via block-term decompo-
sition. This allows us to estimate both the source time courses and
a different HRF for each voxel and source combination, which ac-
counts for the variability of HRF across different brain regions and
events respectively. The proposed approach is proven to be robust
against noise via simulations and further validated on real fUS data
by performing a visual experiment on a mouse. The obtained results
show that the proposed method is able to recover the timings of the
visual paradigm.

Index Terms— hemodynamic response function, neural activa-
tion, convolutive mixtures, functional ultrasound

1. INTRODUCTION

Functional ultrasound (fUS) is a novel neuroimaging modality that
infers brain activity by measuring the changes in blood flow and vol-
ume. When a brain region becomes active, it demands an increased
supply of oxygen-rich blood, resulting in a rise of blood flow to the
region. This interaction between blood flow and metabolic activity
is known as neurovascular coupling (NVC) whereas the associated
changes in blood flow are referred as the hemodynamic response.
When ultrasonic waves are transmitted to an imaging region, the
changing number of moving red blood cells in response to neural ac-
tivity directly affects the power of back-scattered waves. This way,
fUS records the hemodynamic response of the brain, which gives
an indirect measure of the underlying neural activity through NVC.
In other words, similar to functional magnetic resonance imaging
(fMRI), the strength of NVC in the local region determines the char-
acteristics of the hemodynamic activity acquired with fUS [1].

Hemodynamic response is typically modeled as the output of a
linear time-invariant (LTI) system. This model allows measurements
to be characterized in terms of an impulse response, known as the
hemodynamic response function (HRF). Correct prediction of HRF
plays a crucial role in analysis and interpretation of the neuroimag-
ing data, and there are several methods dedicated to this particular
task in the fMRI literature. These methods can be categorized into
four. In the first approach, an a priori shape of the HRF is assumed
and only its amplitude, i.e. the activation level is of concern. This
shape is mostly selected after the canonical HRF model, which was

determined as a result of many empirical observations [2]. How-
ever, it is shown that not only the magnitude, but also parameters
such as the time-to-peak and duration of HRF change significantly
between subjects, brain regions and events [3]. Hence, assuming a
constant shape for the HRF regardless of such variables, can result in
misspecification of the HRF and mislead the estimation of brain ac-
tivity. Therefore, in the second category, parameters that define the
shape of the HRF are estimated as well. The third approach, known
as the general linear model (GLM), expresses the HRF as a linear
combination of several basis functions and attempts to find the opti-
mum regression coefficients [4]. The fourth and final category makes
no assumptions on the shape of the HRFs and predicts the value of
the HRF separately at each time point, which increases the compu-
tational complexity and might result in arbitrary or physiologically
meaningless shapes [5].

The HRF estimation methods described so far heavily rely on
prior knowledge about the stimulus signal, which is quite commonly
modeled as a binary vector based on the known onsets and durations
within the experimental paradigm. However, such information may
not always be available (for instance, resting state data) whereas its
recovery remains of interest, as in cases where neural activity occurs
spontaneously such as for epileptic seizure detection. Furthermore,
if different stimulus conditions are incorporated during an experi-
ment, such as a changing image contrast or odor concentration in vi-
sual and olfactory paradigms respectively, a binary on-off represen-
tation of the stimulus will not be enough to model the non-identical
conditions [6]. As such, [7] and [8] estimate the stimulus signal by
assuming a fixed HRF and do not take into account the variability of
the HRF in different regions, subjects or events.

Following the significance of both problems, we consider joint
estimation of the HRFs and stimulus signal. This issue has been ad-
dressed by [9] where the authors first find the time intervals in which
the received hemodynamic signal shows activation by thresholding
the data. The stimulus signal is expressed as an impulse train by pre-
dicting the optimal time lag between the possible stimulus spikes and
the hemodynamic activity based on when the activation starts. Next,
the unknown HRF is estimated by fitting a GLM over the impulse
train. Using this HRF, the stimulus signal estimation is updated by
applying a Wiener filter. For the same task, [10] utilizes a two-step
optimization approach that sequentially updates the stimulus signal
and predicted HRF. However, both approaches are presented for one-
dimensional data, which means either a single voxel or the average
response of a region of interest (ROI) can be analyzed and any mu-
tual information that can be shared among various voxels is lost. On
the other hand, with multi-dimensional processing methods based
on instantaneous mixtures such as independent component analysis
which models the measurement signals as linear combinations of
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several sources, the extracted source signals still need to be decon-
volved into HRFs and stimulus signals [11].

Convolutive mixtures provide a multiple-input-multiple-output
setting through convolutive mixing filters (HRFs) which relate multi-
ple input signals (sources or stimuli) to multiple observations (voxel
measurements). The characteristics of convolutive mixing filters de-
pend on the source type and measurement number, which allows
capturing of the HRF variability across different brain regions and
events. Due to their flexibility, convolutive mixtures are used in
various applications including audio, image and biomedical signal
processing and telecommunications [12]. We propose to model fUS
recordings as convolutive mixtures and assume very little prior infor-
mation, namely that the shape of the HRFs can be parametrized and
that the source signals are uncorrelated. Considering the flexibility
of tensor-based models while representing such constraints that exist
in different modes or factors of data [13], we solve the blind decon-
volution problem by applying block-term decomposition (BTD) on
the tensor of lagged measurement autocorrelation matrices.

2. PROBLEM FORMULATION
A convolutive mixture of R time-varying sources sr(t) ∈ RN , r =
1, 2, . . . , R detected in M measurements ym(t) ∈ RN ,m =
1, 2, . . . ,M can be written as

ym(t) =

R∑
r=1

L∑
l=0

hmr(l)sr(t− l) (1)

where hmr(l) is the convolutive mixing filter of length L + 1, be-
longing to the measurement m and source r [14]. The convolutive
mixing filter can be considered as an extension of an LTI filter by
introducing the mixing effect of multiple sources.

In the context of fUS, each m corresponds to a voxel. Some of
the sources are task-related (T ), corresponding to the stimuli of the
experiment. Such sources are expected to be convolved with an HRF.
On the other hand, the rest of the sources, which are artifact-related
(A), are directly additive on the measurements [15]. To incorporate
this in Eq. 1, each hmr(l) with r ∈ A should correspond to a unit
impulse function. Thus, we rewrite Eq. 1 as:

ym(t) =
∑
r∈T

L∑
l=0

hmr(l)sr(t− l) +
∑
r∈A

L∑
l=0

δ(l)sr(t− l)

=
∑
r∈T

L∑
l=0

hmr(l)sr(t− l) +
∑
r∈A

sr(t). (2)

We aim at solving the blind deconvolution problem to recover
the source signals of interest (sr, r ∈ T ) and the corresponding
HRFs (hmr, r ∈ T ) distinctly for each voxel m.

3. PROPOSED METHOD

We start by expressing the convolutive mixtures formulation in Eq.
1 in matrix form as Y = HS. The columns of Y, and S are given
as y(n), n = 1, . . . , N − L′ and s(n), n = 1, . . . , N − (L + L′),
respectively. These column vectors are constructed by selecting the
samples of measurement and source signals as follows [16]:

y(n) = [y1(n), ..., y1(n− L′ + 1),

..., yM (n), ..., yM (n− L′ + 1)]T and

s(n) = [s1(n), ..., s1(n− (L+ L′) + 1),

..., sR(n), ..., sR(n− (L+ L′) + 1)]T

(3)

where L′ is chosen such that ML′ ≥ R(L+ L′). Note that both Y
and S consists of Hankel blocks.

The mixing matrix H is equal to

H = [H1 . . . HR] =

H11 . . . H1R

...
. . .

...
HM1 . . . HMR

 (4)

whose any block-entry Hmr is the Toeplitz matrix of hmr(l):

Hmr =

hmr(0) . . . hmr(L) . . . 0
. . .

. . .
. . .

0 . . . hmr(0) . . . hmr(L)

 . (5)

Next, the autocorrelation Ry(τ) for a time lag τ is expressed as:

Ry(τ) = E{y(n)y(n+ τ)T } = E{Hs(n)s(n+ τ)THT }

= HRs(τ)HT , ∀τ. (6)

The lagged output autocorrelation matrices Ry(τ) are stacked
for all τ values to obtain a tensor T which gives rise to the de-
composition shown in Fig. 1 following Eq. 6. Note that, due
to the Hankel-block structure of Y and S, Ry(τ) and Rs(τ) are
Toeplitz-block matrices. Furthermore, assuming that the sources
are uncorrelated, Rs(τ)’s should also be block-diagonal, i.e. non-
block-diagonal terms representing the correlations between different
sources should be 0. This assumption leads to a unique BTD known
as (L+L′, L+L′, ·)-BTD. In general, a BTD approximates a tensor
by a sum of low multilinear rank terms, which for the given case all
carry a rank of (L+ L′, L+ L′, ·) [17].

1

𝓣

𝜏

= 𝐇"
𝐇"# 𝐇$

𝐇$#+
𝓒" 𝓒$

𝐇 𝐇#=

𝓒

Proposed Method

Fig. 1: A demonstration of BTD forR = 2. The tensor T of stacked
voxel autocorrelations Ry(τ), ∀τ is first expressed in terms of the
mixing matrix H and a core tensor C which shows the stacked source
autocorrelations Rs(τ), ∀τ . Each Rs(τ) corresponds to a frontal
slice of C and exhibits a block-diagonal structure with Toeplitz-
blocks. T is decomposed into R = 2 terms, each of which contains
a core tensor (C1 or C2, which represents the autocorrelation of the
corresponding source) and a block column of H (H1 or H2).

The solution provided so far has been for the general case of
convolutive mixtures. Considering our signal model where we sep-
arate the signal subspace from the noise subspace (Eq. 2), we write
S = [ST SA]T where ST and SA shows the sources of inter-
est and artifact sources respectively. Similarly, H = [HT Hδ]
where HT stands for the block columns of H that are of interest
(i.e., contains the HRFs) and Hδ denotes the artifact-related block
columns of H, whose subscript δ is used to emphasize that the block

247

Authorized licensed use limited to: TU Delft Library. Downloaded on February 11,2022 at 10:02:30 UTC from IEEE Xplore.  Restrictions apply. 



entries of such columns are constant and constructed using filters
hmr(l) = δ(l) ∀m. That being the case, relative scaling of artifact
sources at each voxel is currently not accommodated in the model,
i.e. we assume that the artifacts affect each voxel at the same extent.

In addition, a shape constraint is applied to the HRFs such that
they are physiologically interpretable. HRFs are most commonly
expressed as the difference of two gamma functions [18] and depend
on a set of parameters θ:

f(t,θ) = θ1(Γ(θ2)−1θθ23 t
θ2−1e−θ3t−θ4Γ(θ5)−1θθ56 tθ5−1e−θ6t).

(7)
where θ1 is the scaling parameter to account for the strength of an
HRF and the rest of the parameters define the shape of the HRF.

Finally, the BTD is computed by minimizing the cost function:

J(C,θ) = ‖T −
∑
r∈T

Cr ×1 Hr(θr)×2 Hr(θr)

−
∑
r∈A

Cr ×1 Hδ ×2 Hδ‖2F (8)

while all Hr’s and Cr’s are structured to have Toeplitz blocks. The
operator || · ||F is the Frobenius norm. The BTD is implemented
using the structured data fusion (SDF) framework, more specifically
using the quasi-Newton algorithm sdf minf, offered by Tensorlab
[19] with 50 iterations.

The optimal parameters θ̂r calculated via Eq. 8 determine the
predicted HRFs and thus ĤT = [Hr(θ̂r)]r∈T . Finally, the task-
related sources are recovered by:

ŜT = Ĥ†TY (9)

where (.)† shows the Moore-Penrose pseudo-inverse.
Truncated singular value decomposition is a common method

used for calculating the pseudo-inverse of a matrix that is rank defi-
cient, which is the case for many signal processing applications in-
cluding extraction of signals from noisy environments [20]. We fol-
low this approach and set the singular values of ĤT that are below a
tolerance value to 0. Although currently the tolerance is determined
heuristically, this selection can be automated using an appropriate
model selection approach [21].

4. SIMULATION RESULTS
In simulations, we assume that there are two sources and three vox-
els. One of the sources stands for the artifacts such as subject motion
and modeled in accordance with [22]. The second source is a binary
vector (equal to 1 during a task and 0 during rest) representing the
stimulus. The stimulus paradigm, which will also be used in exper-
iments with the mouse, consists of varying task (0.25,0.5,1,2,...,10
s) and rest ([20-25] s) durations in order to observe the response of
the mouse under different stimulus conditions and suppress the ha-
bituation of the mouse respectively. The stimulus is later convolved
with an HRF and the artifact source is directly added to the result of
the convolution to construct the measurement signal of a voxel. We
assumed that the HRF is the same for the first two voxels and differ-
ent for the third in order to check if the proposed method is able to
capture both the similarities and differences of HRFs.

The results are provided in Fig. 2. The estimated HRFs, stim-
ulus and measurement signals reveal a significant resemblance with
the actual versions. In addition, the performance of the proposed
method is shown to be robust against noise when evaluated against
different signal-to-noise ratio (SNR) values using the Pearson corre-
lation coefficient between the recovered and original stimulus signal.
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Fig. 2: Simulation results. Predicted HRFs (a), stimulus (b) and
measurement (for one voxel) (c) signals are shown under an SNR
value of 10. The change in the correlation between the original and
reconstructed stimulus with respect to SNR is shown in (d).

5. EXPERIMENTAL RESULTS

The experimental setup is shown in Fig. 3. During data acquisition,
14 tilted plane waves are transmitted from the ultrasonic transducer
which is placed on the cranial window of the mouse. After Fourier-
domain beamforming and angular compounding of the echo waves,
singular value decomposition-based clutter filtering [23] is utilized
to remove the tissue echoes. Finally, 120 compound images are used
to compute one power-Doppler image. Each voxel is temporally nor-
malized and low-pass filtered at a cut-off frequency of 0.2 Hz.

20 cm

Ultrasound 
probe

20 cm 20 cm

Cranial 
window

Fig. 3: Experimental setup.

The visual stimulus paradigm is the same as in simulations
where the task periods are determined by displaying high-contrast
images on two screens placed in front of the mouse. Note that we
intentionally chose a setting where we know the actual stimulus
onsets to validate our source estimation. However, in many impor-
tant neuroscience applications including rather spontaneous events,
stimuli will be unknown, such as in the case of detection of epileptic
seizures.

To determine the regions that are involved in processing of the
stimulus, the correlation image provided in Fig. 4a is obtained by
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correlating each voxel time-series with a delayed version of the stim-
ulus (the optimal amount of delay is adjusted as the one produc-
ing the highest correlation value). Two voxels are selected from a
highly-correlated region around superior colliculus (SC) and a third
voxel is selected from a relatively poorly-correlated region, near pri-
mary visual cortex (V1). We assume there are two sources.

The results of HRF estimation in both regions point out an ear-
lier peak response than the canonical model (Fig. 4b), which was
expected as the changes in blood oxygenation have been reported to
lag those in blood flow and volume [24]. Furthermore, the estimated
HRFs in SC carry a similar time-to-peak that is observed to be pre-
ceding the HRF estimated in V1 by approximately 1 second, which
is again consistent with prior studies [25].

Reconstructed stimulus signals are shown in Fig. 5. Note that
due to high noise contribution in the real data, we only considered
two singular vectors while solving Eq. 9, which produces smooth
stimulus signal estimations. We compare the proposed method with
the BTD solution where only the scaling parameters (θ1 in Eq. 7)
of HRFs are estimated whereas the shape of all HRFs are assumed
constant according to the canonical model. With fewer parameters
to be estimated, the problem then becomes easier to solve, yet at
the cost of ignoring probable variations in the shape of HRFs. The
correlation coefficient between the recovered and original stimulus
signal is 0.7 with the proposed method and 0.67 with only scaling
estimation.
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Canonical HRF

(b)

Fig. 4: Selected voxels (a) (two from SC and one from V1) with the
corresponding HRF estimations (b).

6. DISCUSSION

The stimulus estimation results reveal that varying only the scaling
of HRFs leads to more shifting of peaks (local maxima, i.e. data
samples that are greater than their two neighboring samples) and in
general a higher number of peaks than the actual stimulus signal has.
The extra peaks and peaks that appear before the actual stimulus on-
sets (such as around the 50th second) are observed to be particularly
concentrated around short stimulus durations. The results of [25]
show that HRF peaks especially faster for shorter visual stimuli, and
assuming that is the case, the fixed and relatively slow peak of the
canonical model might cause the peaks of the recovered stimulus
signal to appear differently than expected. On the other hand, the
proposed method provides a less noisy estimation of the stimulus
signal, and all-but-one of its peaks fall into the actual task periods.

The presented approach performs blind deconvolution with the
help of very little prior information. This constitutes a severely ill-
posed problem and results in a vast amount of possible solutions.
In order to provide more guidance and limit the range of these so-
lutions, gamma-model parameters defining the HRF shapes can be
bounded to a priori determined intervals [10] or can be subject to

Time (s)

SC #1 SC #2 V1 Original Stimulus Signal

Time (s)

Recovered Stimulus Singal with Scaling of Canonical HRF Original Stimulus Signal

0 50 100 150 200 250 300 350
Time (s)

Recovered Stimulus Singal with the Proposed Method Original Stimulus Signal

Fig. 5: Acquired measurement signals (top row), from which the
original stimulus signal is recovered with scaling estimation of the
canonical model (middle row) and the proposed method (bottom
row).

spatial regularization. It is known that HRF changes smoothly across
brain regions, which means that the parameters of neighboring vox-
els should be similar [26]. Furthermore, the effect of HRF mismod-
eling (e.g. when a fixed shape is assumed) will have a stronger
impact on the deconvolution in case of event-related experimental
designs which incorporate much shorter stimulus durations, making
proper HRF estimation even more important.

7. CONCLUSION

We proposed to model fUS measurements as convolutive mixtures
for the problem of jointly estimating HRFs and stimuli. Based on
the second-order statistics of lagged output autocorrelation matrices,
a tensor-based solution is used for the blind deconvolution problem.
The proposed method is shown to be robust against noise in simula-
tions and provided meaningful results on real data. In the future, we
aim to extend our approach for various experimental paradigms and
brain regions while taking into account prior information on neu-
rosignals by means of spatial regularization.
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