
 
 

Delft University of Technology

Fiber-Optic Communications Using Nonlinear Fourier Transforms
Algorithms and a Bound
Chimmalgi, S.

DOI
10.4233/uuid:50ed87d8-2ec2-40e4-88b2-02ac63ef8413
Publication date
2022
Document Version
Final published version
Citation (APA)
Chimmalgi, S. (2022). Fiber-Optic Communications Using Nonlinear Fourier Transforms: Algorithms and a
Bound. [Dissertation (TU Delft), Delft University of Technology]. https://doi.org/10.4233/uuid:50ed87d8-
2ec2-40e4-88b2-02ac63ef8413

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.4233/uuid:50ed87d8-2ec2-40e4-88b2-02ac63ef8413
https://doi.org/10.4233/uuid:50ed87d8-2ec2-40e4-88b2-02ac63ef8413
https://doi.org/10.4233/uuid:50ed87d8-2ec2-40e4-88b2-02ac63ef8413


FIBER-OPTIC COMMUNICATIONS 

USING NONLINEAR FOURIER 

TRANSFORMS

ALGORITHMS AND A BOUND

F
IB

E
R

-
O

P
T

IC
 C

O
M

M
U

N
IC

A
T

IO
N

S
 U

S
IN

G
 N

O
N

L
IN

E
A

R
 F

O
U

R
IE

R
 T

R
A

N
S

F
O

R
M

S
     S

h
rin

iv
a
s
 C

h
im

m
a
lg

i

Shrinivas Chimmalgi



FIBER-OPTIC COMMUNICATIONS USING

NONLINEAR FOURIER TRANSFORMS

ALGORITHMS AND A BOUND





FIBER-OPTIC COMMUNICATIONS USING

NONLINEAR FOURIER TRANSFORMS

ALGORITHMS AND A BOUND

Dissertation

for the purpose of obtaining the degree of doctor
at Delft University of Technology

by the authority of the Rector Magnificus, prof.dr.ir. T.H.J.J. van der Hagen,
chair of the Board for Doctorates

to be defended publicly on
Thursday 8 September 2022 at 10:00 o’clock

by

Shrinivas CHIMMALGI

Master of Science in Systems and Control, Delft University of Technology, the
Netherlands

born in Panvel, India.



This dissertation has been approved by the promotors.

Composition of the doctoral committee:
Rector Magnificus, chairperson
Dr.-Ing. S. Wahls, Delft University of Technology, promotor
Prof. dr. ir. M. Verhaegen, Delft University of Technology, promotor

Independent members:
Prof. dr. G. V. Vdovine, Delft University of Technology
Prof. dr. S. Randoux, University of Lille, France
Prof. dr. S. K. Turitsyn, Aston University, United Kingdom
Dr. A. Alvarado, Eindhoven University of Technology
Prof. dr. ir. B. H. K. De Schutter, Delft University of Technology, reserve member

This project has received funding from the European Research Council (ERC) under the
European Union’s Horizon 2020 research and innovation programme (grant agreement
No 716669)

Keywords: nonlinear Fourier transforms, nonlinear Schrödinger equation, fiber-
optic communications, forward and inverse algorithms, numerical
methods, fast algorithms, Riemann theta function, theoretical bounds

Printed by: Drukkerij Haveka

Front & Back: Numerical approximation of a genus-60 solution of the Korteweg–
De Vries equation computed using the Hyperbolic_cross algorithm
from Chapter 3 of this dissertation.

Copyright © 2022 by S. Chimmalgi

ISBN 978-94-6384-357-7

An electronic version of this dissertation is available at
http://repository.tudelft.nl/.

https://haveka.nl/
http://repository.tudelft.nl/


CONTENTS

Summary ix

Samenvatting xiii

Acknowledgements xvii

1 Introduction 1

1.1 Brief History of Nonlinear Fourier Transforms and the Nonlinear Schrödinger
Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Nonlinear Fourier Transforms for the Nonlinear Schrödinger Equation . . . 4

1.2.1 Nonlinear Fourier Transform for Vanishing Signals . . . . . . . . . 4

1.2.2 Nonlinear Fourier Transform for Periodic Signals . . . . . . . . . . 7

1.3 Nonlinear Schrödinger Equation in Fiber-Optic Communications . . . . . 10

1.3.1 Soliton Communications . . . . . . . . . . . . . . . . . . . . . . 13

1.3.2 Nonlinear Frequency Division Multiplexing System Design . . . . . 14

1.4 Numerical Aspects of Nonlinear Fourier Transforms . . . . . . . . . . . . 18

1.4.1 Numerical Aspects of Forward NFTs . . . . . . . . . . . . . . . . . 19

1.4.2 Numerical Aspects of Inverse NFTs . . . . . . . . . . . . . . . . . 24

1.5 Outline of the Dissertation . . . . . . . . . . . . . . . . . . . . . . . . . 25

2 Fast Nonlinear Fourier Transform Algorithms Using Higher Order Exponen-

tial Integrators 29

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.3 Numerical Computation of NFT using Higher Order Exponential Integra-
tors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.3.1 Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.3.2 Numerical Scattering . . . . . . . . . . . . . . . . . . . . . . . . 33

2.3.3 Exponential Integrators . . . . . . . . . . . . . . . . . . . . . . . 33

2.3.4 Error Metric and Numerical Examples . . . . . . . . . . . . . . . . 35

2.4 Fast Fourth-Order NFT . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.4.1 Fast Scattering Framework . . . . . . . . . . . . . . . . . . . . . . 41

2.4.2 Fast Evaluation. . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

2.4.3 Numerical Examples . . . . . . . . . . . . . . . . . . . . . . . . . 43

2.5 Main Result: Fast Sixth-order NFT . . . . . . . . . . . . . . . . . . . . . 47

2.5.1 Richardson Extrapolation . . . . . . . . . . . . . . . . . . . . . . 48

2.5.2 Numerical Examples . . . . . . . . . . . . . . . . . . . . . . . . . 48

2.5.3 Remarks on Computing Eigenvalues . . . . . . . . . . . . . . . . . 49

v



vi CONTENTS

2.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

2.A Comparison of FLOP Counts and Execution Times . . . . . . . . . . . . . 51

2.B Interpolation Based on Fourier Transform . . . . . . . . . . . . . . . . . 51

2.C Computing Eigenvalues. . . . . . . . . . . . . . . . . . . . . . . . . . . 53

2.C.1 Existing Approaches . . . . . . . . . . . . . . . . . . . . . . . . . 53

2.C.2 Proposed Method . . . . . . . . . . . . . . . . . . . . . . . . . . 54

2.C.3 Numerical Example . . . . . . . . . . . . . . . . . . . . . . . . . 57

3 On Computing High-dimensional Riemann Theta Functions 61

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.2.1 Truncated Riemann Theta Functions . . . . . . . . . . . . . . . . 63

3.2.2 Siegel Transform . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.2.3 Tensor-Train Decomposition. . . . . . . . . . . . . . . . . . . . . 65

3.3 Analysis of the Truncation Error. . . . . . . . . . . . . . . . . . . . . . . 66

3.3.1 Lower Bounds on the Truncation Error . . . . . . . . . . . . . . . 66

3.3.2 An Upper Bound for I g (∞, N ). . . . . . . . . . . . . . . . . . . . 68

3.3.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

3.4 Summing over Hypercubes Using Tensor Trains and Scaling and Squaring . 70

3.4.1 Complexity Analysis for Fixed K and s . . . . . . . . . . . . . . . . 71

3.4.2 Complexity Analysis for a Given Error Bound . . . . . . . . . . . . 71

3.5 Numerical Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

3.5.1 Choice of Benchmark Algorithms . . . . . . . . . . . . . . . . . . 73

3.5.2 Generation of Test Data . . . . . . . . . . . . . . . . . . . . . . . 73

3.5.3 Accuracy for Genus-2 and Genus-6 KdV Solutions . . . . . . . . . . 74

3.5.4 Accuracy for Genus-3 NLS Solution . . . . . . . . . . . . . . . . . 76

3.5.5 Computing High Genus KdV Solutions. . . . . . . . . . . . . . . . 81

3.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

3.A Proof of Theorem 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

3.B Proof of Lemma 2 and Proposition 5 . . . . . . . . . . . . . . . . . . . . 87

4 Theoretical Analysis of Maximum Transmit Power in a b-Modulator 91

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

4.2 Review of b-Modulation . . . . . . . . . . . . . . . . . . . . . . . . . . 92

4.3 Theoretical Analysis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

4.4 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

4.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

4.A Improved INFT Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 96

5 Bounds on the Transmit Power of b-Modulated NFDM Systems in Anomalous

Dispersion Fiber 99

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

5.2 Review of NFDM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

5.2.1 Nonlinear Fourier Transform for Vanishing Signals . . . . . . . . . 101

5.2.2 NFDM Signal Generation . . . . . . . . . . . . . . . . . . . . . . 102



CONTENTS vii

5.3 Upper Bounds on the Transmit Power of b−Modulators . . . . . . . . . . 104
5.3.1 Power Bound for a Fixed Gap to Singularity. . . . . . . . . . . . . . 105
5.3.2 Uniform Power Bound for Arbitrary Gaps to Singularity . . . . . . . 107

5.4 Conclusions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

6 Software Contributions: FNFT and NFDMLab 115

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
6.2 FNFT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
6.3 NFDMLab. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
6.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

7 Conclusions and Recommendations 123

7.1 Conclusions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
7.2 Recommendations for Future Work . . . . . . . . . . . . . . . . . . . . . 126

List of Publications 151

Curriculum Vitæ 153





SUMMARY

Due to the ever increasing global connectivity, the demand on the fiber-optic commu-
nication infrastructure is projected to keep increasing rapidly. A major factor currently
limiting transmission capacity is the fiber nonlinearity. Some researchers have suggested
the application of nonlinear Fourier transforms to exploit the fiber nonlinearity rather
than ignoring or mitigating it. Nonlinear Fourier transforms allow us to solve certain
nonlinear partial differential equations by transforming the complex evolution of the
solution in the time-domain to a simple multiplication with a nonlinear frequency re-
sponse in the nonlinear Fourier domain. This method is analogous to solving linear
partial differential equations using the Fourier transform. The nonlinear Schrödinger
equation is a suitable model for the propagation of light through a single-mode optical
fiber. Its lossless version is solvable through a nonlinear Fourier transform. In recent
years, several nonlinear Fourier transform based communication systems have been
proposed. Such systems require numerical algorithms to compute the nonlinear Fourier
transforms as nonlinear Fourier spectra are known analytically for only a handful of sig-
nals, and linear superposition cannot be used to compute the spectrum of a more com-
plex signal. Computationally efficient algorithms are therefore not only essential for the
real-time operation of nonlinear Fourier transform based communication systems, but
are also important for their simulation. One common way to improve the spectral effi-
ciency of a communication system is to increase the signal power in order to reduce the
impact of noise. Another is to increase the signal duration in order to reduce the im-
pact of information-free guard intervals that are inserted between transmissions to deal
with the channel memory. Longer signals however require more resources to process
them. The numerical problem of computing nonlinear Fourier transforms furthermore
gets harder for both higher power and longer durations. Hence in the literature, we ob-
serve that the inability to perform efficient communication in these regimes is typically
attributed to numerical problems of existing algorithms. In this dissertation we develop
new algorithms that require shorter computation times for achieving similar accuracies
as existing algorithms. Furthermore, we theoretically investigate whether some of the
problems that are commonly attributed to numerical difficulties could occur in the ab-
sence of numerical effects.

The nonlinear Fourier transform for signals that decay sufficiently fast is currently
the most commonly used transform in nonlinear Fourier transform based communi-
cation systems. We developed new algorithms for computing the continuous nonlin-
ear Fourier spectrum which is one part of the nonlinear Fourier spectrum for decaying
signals. We demonstrated significant improvements over existing algorithms in multi-
ple numerical benchmarks, and implemented the algorithms in the open source soft-
ware library FNFT. We also developed NFDMLab, which is a Python based open source
simulation environment for nonlinear Fourier transform based communication systems
that relies on FNFT. The developed forward nonlinear Fourier transform algorithms are

ix
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fast higher-order methods with a complexity of O (D log2 D) for computing the continu-
ous nonlinear Fourier spectrum from D samples of a decaying signal. In the numerical
benchmarks, we introduced the trade-off between accuracy and computation time as a
new way to compare nonlinear Fourier transform algorithms and found that the newly
proposed algorithms perform significantly better than prior work in this regard. We also
provided the first counting analysis of a fast nonlinear Fourier transform algorithm.

There is also interest in using the nonlinear Fourier transform for periodic signals, as
it is closer to the method used in conventional orthogonal frequency division multiplex-
ing communication systems. The definition of the nonlinear Fourier transform for pe-
riodic signals is different from that of decaying signals. Communication systems based
on nonlinear Fourier transforms for periodic signals make use of so-called finite-genus
solutions of the nonlinear Schrödinger equation. Riemann theta functions are the tra-
ditional way to realize inverse nonlinear Fourier transforms that are used to synthesize
finite-genus solutions. They are multi-dimensional Fourier series and their numerical
computation suffers from the curse of dimensionality. This limits the genus of the signals
used in the communication systems and is seen as a major bottleneck. We derived new
bounds on the series truncation error and proposed two tensor-train based and a hyper-
bolic cross index set based algorithms for computing high-dimensional Riemann theta
functions. We compared them to existing algorithms in multiple numerical benchmarks.
The bounds that we derived on the truncation error of the Riemann theta functions al-
lowed us to rule out several of the existing approaches for the high-dimension regime.
We demonstrated that the algorithm based on the hyperbolic cross can compute Rie-
mann theta functions upto 60 dimensions with moderate accuracy which is significantly
higher than what was previously feasible.

We also tried to improve the performance of nonlinear Fourier transform based com-
munication systems known as b-modulators in the highly nonlinear regime using im-
proved numerical algorithms. When we did not see improvements, we conducted a the-
oretical analysis of b-modulation systems. The analysis allowed us to prove theoretically
that nonlinear bandwidth, signal duration and power are coupled when singularities in
the nonlinear spectrum are avoided. When the nonlinear bandwidth is fixed, the cou-
pling results in an upper bound on the transmit power. The power bound decreases
with increasing signal duration which consequently decreases the signal-to-noise ratios
for long signals, which explains the observed performance degradation in this regime
without resorting to numerical difficulties. This result is the first of its kind as such a
behaviour is not known from conventional linear systems. We also demonstrated nu-
merically that the transmit powers achieved by an exemplary b-modulated system are
close to its theoretical limits.

Fiber-optic communication systems based on nonlinear Fourier transforms have
been proposed to potentially tackle fiber nonlinearity, which is a major factor currently
limiting transmission capacity. Efficient numerical algorithms are essential for real-time
operation as well as efficient simulations of nonlinear Fourier transform based fiber-
optic communication systems. The algorithms presented in this dissertation potentially
make already published nonlinear Fourier transform based communication systems
more practical and also allow for development of new designs which were previously
infeasible. In this dissertation furthermore a limitation on communication system de-
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sign imposed by the structure of the nonlinear Fourier transform was identified. It can
be used to explain the inability to perform efficient communication with long duration
signals, which was previously attributed to numerical problems, and guide the design of
future systems.





SAMENVATTING

Vanwege de steeds toenemende wereldwijde verbondenheid voor communicatie zal de
vraag naar de infrastructuur voor glasvezelcommunicatie naar verwachting snel blijven
toenemen. Een belangrijke factor die momenteel de transmissiecapaciteit beperkt, is
de niet-lineariteit van de glasvezelkabels. Sommige onderzoekers hebben de toepas-
sing van niet-lineaire Fouriertransformaties voorgesteld om de niet-lineariteit van de
vezels te benutten in plaats van deze te negeren of te verminderen. Niet-lineaire Fou-
riertransformaties stellen ons in staat om bepaalde niet-lineaire partiële differentiaal-
vergelijkingen op te lossen door de complexe evolutie van de oplossing in het tijddo-
mein te transformeren naar een eenvoudige vermenigvuldiging met een niet-lineaire
frequentierespons in het niet-lineaire Fourierdomein. Deze methode is analoog aan
het oplossen van lineaire partiële differentiaalvergelijkingen met behulp van de Fourier-
transformatie. De niet-lineaire Schrödinger vergelijking is een geschikt model voor de
voortplanting van licht door een single-mode optische vezel. De verliesloze versie er-
van is oplosbaar via een niet-lineaire Fouriertransformatie. In de afgelopen jaren zijn
verschillende niet-lineaire op Fouriertransformatie gebaseerde communicatiesystemen
voorgesteld. Dergelijke systemen vereisen numerieke algoritmen om de niet-lineaire
Fouriertransformaties te berekenen, aangezien niet-lineaire Fourierspectra voor slechts
een handvol signalen analytisch bekend zijn, en lineaire superpositie niet kan worden
gebruikt om het spectrum van een complexer signaal te berekenen. Computationeel
efficiënte algoritmen zijn daarom niet alleen essentieel voor de real-time werking van
niet-lineaire Fouriertransformatie-gebaseerde communicatiesystemen, maar zijn ook
belangrijk voor hun simulatie. Een veelgebruikte manier om de spectrale efficiëntie van
een communicatiesysteem te verbeteren, is door het signaalvermogen te vergroten, zo-
dat de invloed van informatieloze bewakingsintervallen (die tussen pulsen worden inge-
voegd omwille van het kanaalgeheugen ) wordt vermindert. Langere signalen vereisen
echter meer middelen om ze te verwerken. Het numerieke probleem van het berekenen
van niet-lineaire Fouriertransformaties wordt bovendien moeilijker voor zowel hogere
vermogens als langere duur. Daarom zien we in de literatuur dat het onvermogen om in
deze regimes efficiënt te communiceren doorgaans wordt toegeschreven aan numerieke
problemen van bestaande algoritmen. In dit proefschrift ontwikkelen we nieuwe algorit-
men die kortere rekentijden nodig hebben om vergelijkbare nauwkeurigheid te bereiken
als bestaande algoritmen. Verder onderzoeken we theoretisch of sommige van de pro-
blemen die typisch worden toegeschreven aan numerieke problemen, zouden kunnen
optreden in de afwezigheid van numerieke effecten.

De niet-lineaire Fouriertransformatie voor signalen die voldoende snel vervallen is
momenteel de meest gebruikte transformatie in niet-lineaire op-Fouriertransformatie-
gebaseerde communicatiesystemen. We hebben nieuwe algoritmen ontwikkeld voor
het berekenen van het continue niet-lineaire Fourierspectrum, dat deel uitmaakt van het
niet-lineaire Fourierspectrum voor vervallende signalen. We hebben significante ver-

xiii



xiv SAMENVATTING

beteringen aangetoond ten opzichte van bestaande algoritmen in meerdere numerieke
benchmarks en hebben de algoritmen geïmplementeerd in de open source software-
bibliotheek FNFT. We hebben ook NFDMLab ontwikkeld, een op-Python-gebaseerde
open-source simulatieomgeving voor niet-lineaire Fouriertransformatie-gebaseerde
communicatiesystemen die afhankelijk zijn van FNFT. De ontwikkelde voorwaartse
niet-lineaire Fouriertransformatiealgoritmen zijn snelle methoden van hogere orde met
een complexiteit van O (D log2 D) voor het berekenen van het continue niet-lineaire
Fourierspectrum uit D-meetpunten van een vervallend signaal. In de numerieke ben-
chmarks hebben we de afweging tussen nauwkeurigheid en rekentijd als een nieuwe
manier om niet-lineaire Fouriertransformatiealgoritmen te vergelijken geïntroduceerd
en hebben ontdekt dat de nieuw voorgestelde algoritmen in dit opzicht aanzienlijk beter
presteren dan voorgaande methoden. We hebben ook de eerste telanalyse van een snel
niet-lineair-Fouriertransformatiealgoritme geleverd.

Er is ook interesse in het gebruik van de niet-lineaire Fouriertransformatie voor
periodieke signalen, omdat deze dichter bij de methode ligt die wordt gebruikt in
conventionele orthogonale-frequentieverdeling-multiplexingcommunicatiesystemen.
De definitie van de niet-lineaire Fouriertransformatie voor periodieke signalen ver-
schilt van die van vervallende signalen. Communicatiesystemen op basis van niet-
lineaire Fouriertransformaties voor periodieke signalen maken gebruik van zogenaamde
eindige-genusoplossingen van de niet-lineaire Schrödinger-vergelijking. Riemann-
thèta-functies zijn de traditionele manier om inverse niet-lineaire Fouriertransforma-
ties te realiseren die worden gebruikt om eindige-genusoplossingen te synthetiseren.
De Riemann-thètafuncties zijn multidimensionale Fourierreeksen en de numerieke be-
rekening ervan lijdt onder de vloek van de dimensionaliteit. Dit beperkt de genus van
de signalen die in de communicatiesystemen worden gebruikt en wordt gezien als een
belangrijk knelpunt. We hebben nieuwe grenzen afgeleid voor de afbreekfout van de
reeks en hebben twee op-tensorketen-gebaseerde algoritmes en een op-hyperbolisch-
kruis-indexset-gebaseerde algoritmen voor voor het berekenen van hoog-dimensionale
Riemann-thètafuncties. We hebben ze met bestaande algoritmen in meerdere nume-
rieke benchmarks vergeleken. De grenzen die we hebben afgeleid op de afbreekfout
van de Riemann-thètafuncties stelden ons in staat om verschillende van de bestaande
benaderingen voor het regime met hoge dimensies uit te sluiten. Het op-hyperbolische-
kruis-gebaseerde algoritme kan Riemann-thètafuncties tot 60 dimensies berekenen met
een redelijke nauwkeurigheid, wat aanzienlijk hoger is dan voorheen haalbaar was.

We hebben ook geprobeerd om de prestaties van niet-lineaire-Fouriertransformatie-
gebaseerde communicatiesystemen, bekend als b-modulatoren in het sterk niet-lineaire
regime, te verbeteren met behulp van verbeterde numerieke algoritmen. Toen we geen
verbeteringen zagen, voerden we een theoretische analyse uit van b-modulatiesystemen.
De analyse stelde ons in staat om theoretisch te bewijzen dat niet-lineaire bandbreedte,
signaalduur en vermogen gekoppeld zijn indien singulariteiten in het niet-lineaire spec-
trum worden vermeden. Wanneer de niet-lineaire bandbreedte vast ligt resulteert de
koppeling in een bovengrens van het zendvermogen. De vermogensgrens neemt af met
toenemende signaalduur, waardoor de signaal-ruisverhoudingen voor lange signalen
afnemen, wat de waargenomen prestatievermindering in dit regime verklaart zonder
toevlucht te nemen tot numerieke problemen. Dit resultaat is het eerste in zijn soort,
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aangezien een dergelijk gedrag niet bekend is voor conventionele lineaire systemen. We
hebben ook numeriek aangetoond dat de zendvermogens die worden bereikt door een
b-gemoduleerd voorbeeldsysteem dicht bij zijn theoretische limieten liggen.

Vezeloptische-communicatiesystemen op basis van niet-lineaire Fouriertransforma-
ties zijn voorgesteld om mogelijk niet-lineariteit van vezels aan te pakken, wat momen-
teel een belangrijke beperkende factor voor de transmissiecapaciteit. Efficiënte nume-
rieke algoritmen zijn essentieel voor real-time werking, evenals efficiënte simulaties van
niet-lineaire-Fouriertransformatie-gebaseerde glasvezelcommunicatiesystemen. De al-
goritmen die in dit proefschrift worden gepresenteerd, maken mogelijk reeds gepubli-
ceerde op-niet-lineaire-Fouriertransformatie-gebaseerde communicatiesystemen prak-
tischer en maken ook de ontwikkeling mogelijk van nieuwe ontwerpen die voorheen
onhaalbaar waren. In deze dissertatie is bovendien een beperking geïdentificeerd op het
ontwerp van communicatiesystemen, wat veroorzaakt wordt door de structuur van de
niet-lineaire Fouriertransformatie. Dit kan worden gebruikt om het onvermogen om ef-
ficiënte communicatie uit te voeren met signalen van lange duur uit te leggen, wat voor-
heen werd toegeschreven aan numerieke problemen. Ten slotte kan deze beperking ook
worden meegenomen in het ontwerp van toekomstige systemen.
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1
INTRODUCTION

CHAPTER ABSTRACT
This chapter gives an introduction to the concept of nonlinear Fourier transforms (NFTs)
for the nonlinear Schrödinger equation and their application in the field of fiber-optic
communications. We start the introduction with a brief history of NFTs and the nonlin-
ear Schrödinger equation. In the second section, we furnish details of particular NFTs for
the nonlinear Schrödinger equation. In the third section, we discuss the role of the non-
linear Schrödinger equation in the development of fiber-optic communication systems.
Recent interest and progress of NFT based approaches for fiber-optic communications
are also discussed. In the fourth section we review numerical methods for computing
NFTs for the nonlinear Schrödinger equation. The final section presents an outline of
this dissertation.

1
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1.1. BRIEF HISTORY OF NONLINEAR FOURIER TRANSFORMS

AND THE NONLINEAR SCHRÖDINGER EQUATION

Integral transforms are useful tools for solving initial value problems involving linear
partial differential equations (PDEs). For a given PDE defined on a domain, applying
a suitable integral transform allows it to be expressed in a form that can be operated
on more easily than the original one. If a solution is found in the transformed domain,
the inverse integral transform can be applied to obtain the solution of the original PDE.
Hence, the PDE can be solved by the means of an integral transform using the scheme
of transform-solve-invert. One of the most known and widely applied transforms is the
Fourier transform (FT) [1]. The Fourier transform can be used to decompose a function
of, for example, time into a function of temporal frequency. The frequency domain rep-
resentation can give insights into the solutions of linear PDEs and reduces the evolution
of the solutions to simple multiplication with a frequency response [2]. However, the
evolution of the frequency domain representation of solutions to nonlinear PDEs typi-
cally remains complicated. The nonlinearity furthermore enables new wave phenomena
which are not possible in linear systems. The solitary wave solution of the Korteweg-de
Vries (KdV) equation is an representative example of such a solution. The solitary wave
was first described in 1834 by John Scott Russell who observed the wave in the Union
Canal in Scotland. A solitary wave is a wave packet that maintains its shape while it prop-
agates at a constant velocity even after collision with another solitary wave. Figure 1.1
shows a photo of the solitary wave that was recreated on the Union canal in 1995 [3]. In

Figure 1.1: Soliton on the Scott Russell Aqueduct on the Union Canal near Heriot-Watt University, 12 July
1995. Photo from [3]. Reprinted by permission from Springer Nature: Nature Soliton wave receives crowd of
admirers. Nature 376, 373 (1995)

1965 Zabusky and Kruskal [4], [5] coined the word “soliton" for these special waves. We
now know that solitons are caused by a cancellation of nonlinear and dispersive effects
in the medium [6]. They arise as solutions of a widespread class of weakly nonlinear dis-
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persive PDEs which describe physical systems [7, p. 481]. While studying one such PDE,
the KdV equation, in 1967 Gardner et al. found an ingenious new method for solving the
associated Cauchy problem [8]. In the following year, Peter Lax developed the framework
of Lax pairs [9], which not only covered the results of Gardner et al., but also were appli-
cable to many other nonlinear PDEs. Soon Lax pairs were identified for other equations
such as the nonlinear Schrödinger equation (NLSE) [10], the Sine-Gordon equation [11],
and the Toda lattice equation [12]–[14]. The method developed by Gardner et al. is tradi-
tionally known as the inverse scattering transform (IST) method. The IST method follows
the transform-solve-invert scheme. In the first step of the IST method, a spectral repre-
sentation of the initial condition is computed. The spectral representation is obtained
as the spectrum of a linear operator associated with the PDE and the initial condition.
This representation is specific to the nonlinear evolution equation and boundary con-
ditions of the solution. The spectral representation evolves in a simple way that can be
solved in closed form. In the third step, the spectral representation is inverted to ob-
tain the evolved solution. Evolution equations to which the IST method is applicable
belong to a class known as integrable equations. Ablowitz et al. developed a framework
to generate integrable equations associated with Lax pairs of a certain structure [11]. A
general approach for finding a Lax pair for a given PDE (should it exist) however remains
an open problem. The IST methods can be viewed as nonlinear analogues of the Fourier
transform and are hence often called nonlinear Fourier transforms (NFTs). NFTs should
not only be seen as tools for solving PDEs, but also as tools to analyze data since they
transform signals into special representations that reveal nonlinear features such as po-
tentially hidden solitonic components. Conventional linear analysis methods are not
able to detect such features.

The nonlinear Schrödinger equation is one of the most widely studied integrable
nonlinear PDEs [15]. It finds application in modelling the propagation of weakly non-
linear narrow-band wave trains in diverse fields such as fluid dynamics [16], nonlinear
optics [17], magnetic spin waves [18], [19] and plasma physics [20]. A version of the
nonlinear Schrödinger equation which models the complex valued envelope of a pulse
A(τ, z) transmitted through an ideal silica fiber without loss is given by [21, Section 2.6]

∂A

∂z
+

iβ2

2

∂2 A

∂τ2
= iγ|A|2 A. (1.1)

Here z denotes distance (in km) along the fiber and the symbol τ represents retarded
time (in seconds). The retarded time τ = t̃ −β1z, where t̃ is ordinary time and β1 is a
constant. The symbol i denotes the imaginary unit. Chromatic dispersion is the phe-
nomenon by which different spectral components of a pulse travel at different veloci-
ties. The coefficient β2 (in s2/km) is called the chromatic dispersion coefficient. The
nonlinear term in the NLS equation models self-phase modulation (SPM) and the coef-
ficient γ (in W−1 km−1) is the corresponding nonlinearity parameter. SPM occurs due
to the Kerr effect which is a change in the refractive index of a material in response to
an applied electric field. Different forms of the NLS equation can be derived specific to
the application. It is often convenient to develop the theory and numerical methods for
a normalized NLS equation, as they can be adapted to the particular physical problem
using the appropriate change of variables. A commonly used normalized form of the
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nonlinear Schrödinger equation is [21, Chap. 2]

i
∂q

∂x
+
∂2q

∂t 2
+2κ|q|2q = 0, (1.2)

where q(t , x) denotes a complex valued envelope function, x ≥ 0 denotes the normalized
spatial coordinate and t denotes normalized temporal coordinate. Note that the roles of
x and t can be switched depending on the application. We obtain (1.2) from (1.1) by
changing the variables as

q =
A

p
P0

, x =−sign(β2)
z

LD
, t =

τ

T0
(1.3)

with LD = 2T 2
0 /|β2| and P0 = 2/(γLD ). The constants LD and P0 are usually obtained

by choosing a normalization time T0, which is a free parameter. The parameter κ = −1
if β2 is positive (normal dispersion). In that case (1.2) is known as the defocusing NLS
equation. For β2 negative (anomalous dispersion), κ = 1 and (1.2) is known as the fo-
cusing NLS equation. The equation (1.1) is integrable, while in practical applications,
other terms such as loss and higher-order dispersion terms can be present, which break
integrability. The integrable approximation (1.2) nevertheless can provide meaningful
insights into the nonlinear dynamics.

In an optical fiber, two pulses can be transmitted simultaneously on the same carrier
frequency by using waves of two orthogonal polarization states. The NLS equation mod-
els the evolution of only one of the polarization states. The evolution of orthogonally
polarized pulse envelopes can be approximated by the normalized Manakov equation
[22]

i
∂q1

∂x
+
∂2q1

∂t 2
+2κ(|q1|2 +|q2|2)q1 = 0,

i
∂q2

∂x
+
∂2q2

∂t 2
+2κ(|q1|2 +|q2|2)q2 = 0

(1.4)

which is a vector valued integrable equation. The normalized signals q1(t , x) and q2(t , x)
can be converted to physical units using a change of variables similar to that given for
the NLS equation in (1.3).

1.2. NONLINEAR FOURIER TRANSFORMS FOR THE NONLINEAR

SCHRÖDINGER EQUATION
Nonlinear Fourier transforms for the NLS equation have been studied extensively for
solutions with different boundary conditions [10], [23]–[29]. In recent years these NFTs
have been used in engineering applications for signal processing and data analysis [30]–
[37]. The most widely used ones are the NFTs for solutions with vanishing boundaries
and periodic boundaries. In the following Sections 1.2.1 and 1.2.2, we will describe the
details of the NFTs for these two boundary conditions.

1.2.1. NONLINEAR FOURIER TRANSFORM FOR VANISHING SIGNALS

The NFT that solves the NLS equation (1.2) was first developed for the case of vanishing
signals by Zakharov and Shabat [10]. It transforms any signal q(t ) that vanishes suffi-
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ciently fast for t →±∞ from the time-domain to the nonlinear Fourier domain through
the analysis of the linear ordinary differential equation (ODE)

∂V(t ,λ)

∂t
= P(t ,λ)V(t ,λ) =

[
−iλ q(t )

−κq∗(t ) iλ

]

V(t ,λ), (1.5)

where q(t ) = q(x0, t ) for any fixed x0. The system (1.5) can be reorganized into an eigen-
equation LV = λV [11], which is one half of the Lax pair for the NLS equation. Since q(t )
decays fast for |t | →∞, we can single out two sets of solutions, V(t ,λ) =

[

φ(t ,λ) φ̄(t ,λ)
]

and V(t ,λ) =
[

ψ(t ,λ) ψ̄(t ,λ)
]

, of the system (1.5) that are distinguished by their be-
haviour at the boundaries as

V(t ,λ) =
[

φ(t ,λ) φ̄(t ,λ)
]

→
[

e−iλt 0
0 −eiλt

]

as t →−∞,

V(t ,λ) =
[

ψ̄(t ,λ) ψ(t ,λ)
]

→
[

e−iλt 0
0 eiλt

]

as t →∞.

(1.6)

The term λ ∈C is a spectral parameter similar to the parameter s in the Laplace domain.
The matrix V(t ,λ) is said to contain the eigenfunctions. The spatial evolution of these
eigenfunctions is given by

∂V(x,λ)

∂x
= N(x,λ)V(x,λ) =

[

−2iλ2 + iκ|q(t , x)|2 2λq(t , x)+ i
∂q(t ,x)

∂t

−2κλq∗(t , x)+ iκ
∂q∗(t ,x)

∂t
2iλ2 − iκ|q(t , x)|2

]

V(x,λ),

(1.7)
which follows from the second operator in the Lax pair. Note that for t →±∞, the spa-
tial evolution of the eigenfunctions becomes independent of q(t , x) since the signal is
assumed to vanish quickly. The so-called zero-curvature condition [38]

∂P

∂x
−
∂N

∂t
+PN−NP = 0

then is equivalent to the normalized NLS equation (1.2). Each set of solutions of the
system (1.5) for the boundary conditions (1.6) has two linearly independent components
and thus can span the space of solutions, except for a discrete set of values of λ. Later we
shall see that these values are eigenvalues of the L operator. For values of λ not in this
set, every other solution can be expressed as a linear combination of the components of
either the sets in (1.6). These sets of solutions are related via a unique matrix

S(λ) =
[

a(λ) b̄(λ)
b(λ) −ā(λ)

]

, (1.8)

called the scattering matrix, such that [11]

[
φ(t ,λ) φ̄(t ,λ)

]

=
[
ψ̄(t ,λ) ψ(t ,λ)

]

S(λ). (1.9)

The components a(λ), b(λ), b̄(λ) and ā(λ) are known as the scattering data. The com-
ponents a(λ) and b(λ) are sufficient to describe the signal completely due to symme-
try in the Zakharov-Shabat problem [10]. The reflection coefficient is then defined as
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ρ(λ) = b(λ)/a(λ) for λ ∈ R. The function ρ(λ) is said to constitute the continuous spec-
trum as it exists for all λ ∈ R. It is analogous to the frequency spectrum of the linear
Fourier transform. Although the evolution of the solution q(x, t ) with x is complicated,
the evolution of the scattering data is simple due to the fact that the evolution of the
eigenfunctions is independent of q(t , x) for t →±∞. The evolution of the reflection co-
efficient is consequently simple as well [11],

ρ(λ, x1) = ρ(λ, x0)e4iλ2(x1−x0), b(λ, x1) = b(λ, x0)e4iλ2(x1−x0), a(λ, x1) = a(λ, x0).
(1.10)

Since this is similar to multiplication with a frequency response for linear systems, we
can say that the NFT as described above linearizes the evolution of the solution for the
NLS equation.

Remark 1. In the literature, sometimes other normalizations of the nonlinear Schrödinger

equation are used. The nonlinear Fourier transforms however remain the same. Only the

evolution of the scattering data in (1.10) changes with a scalar factor.

In the case of the focusing NLS equation (κ= 1), the nonlinear Fourier spectrum can
also contain a so-called discrete spectrum. It corresponds to the complex poles of the re-
flection coefficient in the upper half-plane H= {z|z ∈ C,ℑ{z} > 0}, or equivalently to the
zeros λk ∈H of a(λ). The zeros λk are also known as eigenvalues as they correspond to
the finite energy solutions of the system (1.5). The finite energy solutions are thus the
eigenfunctions of the associated L operator. It is often assumed that there are finitely
many such zeros and that they all are simple zeros. However, it is possible to have zeros

of higher order. For simple zeros a corresponding set of values ρk := b(λk )/ da(λ)
dλ

∣
∣
∣
λ=λk

are known as residues [11, Appendix 5]. The zeros λk correspond to the solitonic com-
ponents of the signal, with ℜ{λk } and ℑ{λk } indicating the soliton amplitude and speed
respectively. In Figure 1.2 we can see a single soliton solution of the NLS equation. The
soliton maintains its shape while moving at a constant speed. Unless some solitons have
the same speed, the non-solitonic components will spread out while the solitonic com-
ponents will separate for x →∞. Solutions that have only a discrete spectrum are known
as multi-solitons. The eigenvalues of a solution q(t , x) are invariant with respect to x and
the residues evolve with x as

ρk (x1) = ρk (x0)e4iλ2
k

(x1−x0).

In Figure 1.3 we can see an exemplary nonlinear Fourier spectrum of a solution of the
focusing NLS equation. The figure is based on Figure 1 from [35]. The reflection coeffi-
cient ρ(λ) decays to zero on both sides for all vanishing signals for both the focusing and
defocusing NLS equations.

Computing the nonlinear Fourier spectrum for a given signal is known as the forward
NFT and corresponds to the transform step of the transform-solve-invert scheme. The
evolution of the scattering data as per (1.10) is the solve step and the invert step involves
computing the signal from a given nonlinear Fourier spectrum. This inverse step is thus
known as the inverse NFT. Nonlinear Fourier transforms have also been developed for
the Manakov equation (1.4) [22].
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Figure 1.2: A single soliton solution of the nonlinear Schrödinger equation. The soliton maintains its shape
while moving at a constant speed.

1.2.2. NONLINEAR FOURIER TRANSFORM FOR PERIODIC SIGNALS

The nonlinear Fourier transform for vanishing signals is suitable to analyze wave packets
such as the solitary wave in water or a burst of data in fiber, but in other situations the
periodic boundary condition is more appropriate. The study of the NFT for the case
of periodic signals started in the mid-seventies [39]–[43] and remains an active area of
research [44], [45]. In the following we will describe the periodic NFT for the focusing
NLS equation as defined by Kotlyarov and Its [23], [24]. For a periodic signal with period
T ,

q(t , x) = q(t +T, x).

Setting V(t ,λ) = I2 and integrating (1.5) over one period T , we get V(t +T,λ). A part of
the nonlinear spectrum known as the main spectrum is given by values λk that indicate
the eigenvalues of the L operator with (anti-)periodic eigenfunctions. Alternatively, the
main spectrum is given by values λk for which the monodromy-matrix M,

M(t , x,λ) := V(t +T, x,λ)V−1(t , x,λ), (1.11)

has eigenvalues ±1. Any sufficiently smooth periodic solution of the NLS equation can
be approximated arbitrarily well on any fixed finite time interval by a periodic finite-

genus solution [46]. A finite-genus solution has a finite number of main spectrum points.
In the focusing case (κ = +1), the main spectrum always consists of complex conjugate
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Continuous spectrum

- Complex zeros of 𝑎𝑎(𝜆𝜆)

𝜆𝜆1

𝜆𝜆2
𝜆𝜆3 𝜆𝜆4

𝜆𝜆5

𝜆𝜆6
Eigenvalues

𝜌𝜌𝑘𝑘 = �𝑑𝑑𝜌𝜌(𝜆𝜆)𝑑𝑑𝜆𝜆 𝜆𝜆=𝜆𝜆𝑘𝑘
Residues

𝜌𝜌 𝜉𝜉 = 𝑏𝑏 𝜉𝜉 /𝑎𝑎 𝜉𝜉

ℑ 𝜆𝜆

𝜉𝜉 = ℜ 𝜆𝜆
Figure 1.3: Exemplary NF spectrum (anomalous dispersion case), containing solitons (discrete eigen-
values) and continuous nonlinear spectrum. Based on Figure 1 in “Nonlinear Fourier transform
for optical data processing and transmission: advances and perspectives,” by S. K. Turitsyn et al.
(https://doi.org/10.1364/OPTICA.4.000307). Copyright 2017 Optica Publishing Group.

pairs. The main spectrum can thus be described by g +1 points in the upper-half com-
plex plane H with the value g being the genus of the solution. Similar to the eigenvalues
of a vanishing solution, the main spectrum of a periodic solution is invariant. When
ℑ{λk } = 0, the eigenvalue is a degenerate point and does not contribute to the dynamics
of q(t , x) [24]. Hence it is not considered a part of the main spectrum.

The dynamics of the signal are captured by the time- and space-dependent part
of the spectrum known as the auxiliary spectrum. It is formed of g complex points
µ j (t , x) and g sheet indices σ j (t , x) = ±1. At µ j (t , x) the off-diagonal term M12 of the
monodromy-matrix vanishes:

M12(t , x,µ j (t , x)) = M21(t , x,µ∗
j (t , x)) = 0. (1.12)

For finite-genus solutions, the evolution of the auxiliary spectrum is governed by a set of
coupled partial differential equations [24]:

∂ log q(t , x)

∂t
= 2i

(
g∑

j=1

µ j (t , x)−
1

2

2g+2∑

k=1

λk

)

, (1.13)

∂µ j (t , x)

∂t
=

−2iκσ j (t , x)
√

∏2g+2
k=1

(λk −µ j (t , x))
∏

l 6= j (µ j (t , x)−µl (t , x))
, (1.14)

∂µ j (t , x)

∂x
= 4iκσ j (t , x)

(
g∑

l=1

µl −
1

2

2g+2∑

k=1

λk −µ j

)
√

∏2g+2
k=1

(λk −µ j (t , x))
∏

l 6= j (µ j (t , x)−µl (t , x))
. (1.15)
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For a given set of main spectrum points λk , the solution to these equations is fully spec-
ified by the initial conditions µ j (0,0), σ j (0,0) and q(0,0). The absolute value of q(0,0) is
determined by the initial condition for the auxiliary spectrum, while the phase is a free
parameter. Not every choice of auxiliary spectrum corresponds to a periodic solution of
the NLSE. Although the evolution of the periodic spectrum appears more complicated
than that for the vanishing spectrum, it can still be solved in closed form.

Kotlyarov and Its noted that the auxiliary variables
(

µ j (t , x),σ j (t , x)
)

should be inter-
preted as points on a Riemann surface. A Riemann surface is a one-dimensional com-
plex manifold that can be thought of as a deformed version of the complex plane. Locally
near every point on the Riemann surface, it looks like a patch of the complex plane, but
its global topology can be quite different like a sphere or a torus [47]. As an example
consider the function f (λ) =

p
λ, λ ∈ C. If we set the discontinuity of the square-root

function to be along the negative real line, the associated Riemann surface can be vi-
sualized as in Figure 1.4. The figure has been taken from [47]. From the figure we can
see that the function takes two values for most λ. We can denote this mathematically as
f (λ) = σ

p
λ, where the sheet index σ = ±1 indicates the two solutions of the equation

λ= z2. Now consider the multi-valued function

Figure 1.4: Riemann surface for the function f (λ) =
p
λ. The two horizontal axes represent the real and imagi-

nary parts of λ, while the vertical axis represents the real part of
p
λ. The imaginary part of

p
λ is represented

by the coloration of the points. For this function, it is also the height after rotating the plot 180° around the
vertical axis. Leonid 2, CC BY-SA 3.0 [48], via Wikimedia Commons.

P (λ) =σ

√
√
√
√

g+1∏

k=1

(λ−λk )(λ−λ∗
k

), (1.16)

where λ1, . . . ,λg+1 are the points in the main spectrum, σ=±1 and g is the genus. On the
associated Riemann surface, the multi-valued function P (λ) can be considered a single-
valued analytic function. A point on the surface is denoted by p = (P,λ). Each value λ of
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the projective plane C∪∞ corresponds to two points on the Riemann surface. They are
distinguished by their sheet indices σ = ±1. The points where P = 0 are called branch
points and they correspond to points in the main spectrum. As an auxiliary spectrum
point µ j moves over the Riemann surface, the sheet index σ j keeps track of the sheet
changes.

The inverse periodic NFT problem is solved primarily either through the algebro-
geometric approach [23], [24], [41], [42] or through the solution of a Riemann-Hilbert
problem [44]. Here we present the algebro-geometric approach in which we can write
an analytical expression for a finite-genus solution using the Riemann theta function.
The Riemann theta function is defined as [49]

θ(z |Ω) =
∑

n∈Zg

e2πi
( 1

2 n·Ωn+n·z
)

. (1.17)

The argument z ∈ C
g×1 and the period-matrix Ω ∈ C

g×g , and Ω is symmetric (ΩT =Ω)
with a strictly positive definite imaginary part. The scalar product of the integer vector n

with z is denoted as

n ·z =
g∑

i=1

ni zi (1.18)

and

n ·Ωn =
g∑

i , j=1

Ωi j ni n j . (1.19)

A finite-genus solution of the focusing NLS equation is then given by

q(t , x) = K0
θ

( z−
2π |Ω

)

θ
( z+

2π |Ω
)eiω0t+ik0x , (1.20)

with z± = kx +ωt +δ±, where Ω,k,ω,δ±,k0,ω0 and K0 are constants. The positive defi-
niteness of ℑ{Ω} guarantees the convergence of (1.17), for all values of z. The constants
are collectively known as the Riemann spectrum. The values Ω,k,ω,k0,ω0 and K0 de-
pend only on the main spectrum [23]. The vectors δ± are determined by the auxiliary
spectrum.

1.3. NONLINEAR SCHRÖDINGER EQUATION IN FIBER-OPTIC

COMMUNICATIONS
Fiber-optic communication systems are optical communication systems which trans-
mit high frequency (∼ 130THz) electromagnetic carrier waves through optical fibers for
information transmission. The availability of low-loss optical fibers and compact op-
tical sources were essential in the development of fiber-optic communication systems
[50, Section 8.1]. They allowed for the first-generation of systems to be developed in
the 1970s. By 1980 commercial systems were installed. In the modern day, fiber-optic
communication systems form the backbone of telecommunications and the internet. In
Figure 1.5 we can see a simplified block diagram of a fiber-optic communication system
(based on [50, Figure 8.3]). An electrical input with embedded information is converted
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Figure 1.5: Simplified block diagram for a fiber-optic communication system based on [50, Figure 8.3].

into an optical signal by the transmitter which is then injected into the optical fiber. Op-
tical fibers transmit light over long distances by confining the optical wave to the vicinity
of a microscopic cylindrical glass core through a phenomenon known as total internal
reflection [50, Section 8.2.2]. An optical fiber can be designed to support a single spa-
tial mode by reducing its core diameter to below 10µm. They are known as single-mode
fibers and are made from silica. The envelope of a pulse A(τ, z) transmitted through a
single-mode silica fiber can be approximated by the nonlinear Schrödinger equation [21,
Section 2.6]

∂A

∂z
+

iβ2

2

∂2 A

∂τ2
= iγ|A|2 A−

α

2
A, (1.21)

where fiber losses are included through the α parameter while β2 accounts for the
second-order dispersion effects. The non-linearity parameter γ depends on the wave-
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length of transmitted light, physical dimensions and material properties of the fiber.
Due to losses in the fiber, the power of the transmitted signal decreases as it moves
through the fiber. This loss is compensated by amplifying the signal back to the trans-
mitted power level using optical amplifiers which are placed at regular intervals between
sections of the fiber. The sections of the fiber are commonly known as fiber spans. The
effect of the loss on the signal can be assessed better by rewriting (1.21) as

∂B

∂z
+

iβ2

2

∂2B

∂τ2
= iγe−αz |B |2B , A(z,τ) = B(z,τ)e−αz/2. (1.22)

The variations in the signal power due to loss can thus be transformed into variations in
the nonlinear parameter γ. We can approximate the varying nonlinear parameter with
its average value over a span γavg. We then have a lossless NLS equation which is known
as the path-average model [51]

∂B

∂z
+

iβ2

2

∂2B

∂τ2
= iγavg|B |2B. (1.23)

The path-average model is an integrable approximation over a single fiber span. Be-
tween the spans, amplifiers raise the power such that the power is same at the beginning
of each span. Lumped and distributed amplification schemes are two of the major tech-
niques for loss management [21, Chap. 7]. In lumped amplification, the signal amplifi-
cation is carried out within the amplifier between two spans. Distributed amplification
on the other hand uses the transmission fiber itself for signal amplification by exploiting
the nonlinear phenomenon of stimulated Raman scattering (SRS). The path-average ap-
proximation (1.23) is a good model when the variation of the signal power over the span
is low. Hence it is a better approximation of the signal transmission through a lossy fiber
with distributed amplification when compared with lumped amplification. In special
fibers, the dispersion parameter β2 and the nonlinear parameter γ can be varied within
the span. For certain profiles of the two parameters, the NLS equation (1.21) remains
integrable even in the presence of loss [52]. Such fibers can be combined with lumped
amplification to form completely integrable channels over long distances [53].

At the receiver, the optical signal is converted back into an electrical signal. Most
fiber-optic communication is digital, where the data is represented in terms of bits. In
the simplest transmitter, the optical signal is switched on or off for a fixed duration to
represent either a 1 or a 0. At the receiver, a photodetector is used to detect changes in the
optical signal magnitude which is converted back to an electrical signal. More sophisti-
cated techniques can be implemented using coherent receivers which can measure both
the optical signal magnitude and phase. Usually the processing units at both ends of the
fiber can transmit as well as receive signals. Such units are known as transceivers. The
rate of data transmitted through a fiber (bit rate) is measured in bits/s. A commonly used
figure of merit for communication systems is the bit rate-distance product BL, where B is
the bit rate and L is distance after which the signal fidelity is lost [50, Section 8.1]. Modern
systems can achieve BL product of 1018 bits/s−km [50, Figure 8.2]. Many bitstreams can
be transmitted at the same time by spacing them apart in the frequency domain. This
technique is known as wavelength division multiplexing (WDM). The (de)-multiplexing
of the bitstreams can be done in the optical domain, therewith circumventing the band-
width constraints of electrical components. The total data rate thus depends upon the
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data rate of each bitstream and the frequency window available for all the bitstreams. A
figure of merit known as spectral efficiency, measured in bits/s/Hz, is commonly used to
compare communication systems. Modern transceivers employing sophisticated hard-
ware and modulation techniques can achieve spectral efficiencies up to 8.3bits/s/Hz
over a distance of 960 km [54].

1.3.1. SOLITON COMMUNICATIONS

Access to the internet has grown vastly in the past two decades allowing the world to be
more interconnected than ever. The number of users, traffic per user and applications
dependent on the internet is projected to keep increasing in the foreseeable future [55].
Keeping up with the rising demand requires deployment of new fibers but also maxi-
mizing the data throughput of existing networks. Data throughput could be potentially
increased by expanding the bandwidth in WDM systems or by employing more spatial
degrees of freedom using space-division multiplexing (SDM) in multi-mode fibers. An
increase in the rate of data transmission through a single-mode fiber crudely translates
to an increase in transmit power. For low transmit powers, the optical fiber behaves like
a linear channel for which the data transmission capacity of conventional systems in-
creases with the power. However at high powers, the nonlinear effects are significant
and lead to a reduction in the data transmission capacity of conventional systems [56,
Section 10]. The mitigation of nonlinear propagation effects is hence an important topic
of research and is expected to allow for a significant increase in the data transmission
capacity of optical fibers [56, Section 6].

As early as 1973, Hasegawa and Tappert [57] demonstrated using numerical simula-
tions a novel approach for data transmission based on the concept of optical solitons.
Solitons preserve their shape during propagation by counteracting the effect of disper-
sion through the Kerr nonlinearity as we saw in Figure 1.2. In an ideal lossless fiber,
solitons can preserve their shape forever. Due to the losses in real fibers, they however
start to degrade with increasing distance. The proposal by Hasegawa and Tappert ex-
ploited the nonlinearity rather than just trying to mitigate it. The data was to be em-
bedded in the soliton amplitude. Optical solitons in a fiber were first observed in ex-
periments by Mollenauer et al. in 1980 [58]. They experimentally demonstrated the
feasibility of data transmission using solitons in 1988 [59]. These systems came to be
known as “soliton transmission" or “soliton communication" systems. Due to the loss in
the fiber, the transmitted pulses are not true solitons as their amplitude undergoes large
changes. However, the pulse-width almost remains constant. They are called average

solitons or dynamic solitons [60, Section 3] since the average nonlinearity (see Equation
(1.23)) balances with the dispersion. Further research into soliton transmission systems
identified several problems, the major ones being the Gordon-Haus effect and soliton
timing jitter, interaction between two solitons and effects of high-order dispersion [61,
Section 3]. Various ingenious techniques were developed to address these problems,
allowing for better control on the behaviour of the solitons [61, Section 4]. In the lat-
ter half of the 1990s, management of the fiber dispersion emerged as a possible rem-
edy for the many problems intrinsic to soliton transmission systems. The core idea of
dispersion management is that the fiber dispersion is varied such that the imbalance
between the nonlinear and dispersive effects is minimized [61, Section 5]. The transmit-
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ted pulses are known as dispersion managed solitons and they behave on average like
the ideal solitons [60, Section 3]. Employing dispersion managed solitons, the authors
of [60] achieved 1Tbit/s data transmission rate over a distance of 1500km. The ideal
soliton is a solution of the homogeneous (β2 and γ are constant) conservative (α = 0)
NLS equation (1.21). In [62] Ganapathy et al. showed that nonlinear pulses with soli-
ton like behavior can exist even for the inhomogeneous nonconservative NLS equation
with periodic amplification. They achieved this by designing special profiles for the dis-
persion and nonlinearity parameters which allowed them to control the behaviour of
the dispersion managed solitons. Controlling more than one aspect of the dispersion
managed solitons at the same time however remains a challenging problem. Dispersion
management as described above requires special fibers with variable parameters which
can be difficult to manufacture. More importantly it means that already deployed ho-
mogeneous fibers are not suited for dispersion-managed soliton transmission. In 1993,
Hasegawa and Nyu proposed to use multiple solitons as an extension to single soliton
transmission systems [63]. Multi-solitons can be viewed as several solitons merged to-
gether. This approach indirectly modulates the eigenvalues, which constitute part of
the discrete nonlinear Fourier spectrum (see Section 1.2.1). They named this approach
“eigenvalue communication". In their approach a signal with multiple soliton compo-
nents indicated by different eigenvalues is transmitted. This allows for more information
to be transmitted per pulse. In recent years, advancements in optical and digital signal
processing (DSP) hardware have led to renewed interest in systems exploiting solitons
and more generally in the application of nonlinear Fourier transforms for optical data
processing and transmission [35]. Fiber-optic communication systems based on non-
linear Fourier transforms started gaining considerable attention around 2013 [64]–[71].
The idea of modulating the nonlinear Fourier spectrum is now commonly known as non-

linear frequency division multiplexing (NFDM) in analogy to OFDM for linear channels.

1.3.2. NONLINEAR FREQUENCY DIVISION MULTIPLEXING SYSTEM DESIGN

The nonlinear Fourier spectrum has multiple degrees of freedom which can be modu-
lated with data. In principle, all of them can be used simultaneously. However, that is
not straightforward as it is difficult to control pulse properties such as temporal spread
and bandwidth. We will first consider the modulation of the discrete and continuous
spectra, i.e., we modulate the nonlinear spectrum for vanishing signals. As discussed in
Section 1.2.1, the reflection coefficient ρ(λ) ∀ λ ∈R constitutes the continuous spectrum
while the the eigenvalues λk and the residues ρk form the discrete spectrum. The b(λ)
scattering coefficient can be modulated instead of the reflection coefficient ρ(λ). Simi-
larly, the norming constants bk can be modulated instead of the residues ρk . In Figure
1.6 we can see a simplified block diagram of a NFDM system based on the vanishing
NFT. The data to be transmitted is represented by the bits which are embedded by the
NFDM modulator into either or both the discrete and continuous spectrum. The inverse
NFT is then used to obtain the corresponding vanishing signal. This signal is transmit-
ted through the optical channel. At the receiver, the forward NFT is used to compute the
nonlinear spectrum of the received signal. The effect of the channel is compensated in
the equalizer using the relation (1.10). The compensation is exact only when the optical
channel represents the lossless homogeneous NLS equation (1.2). The NFDM demod-
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ulator then extracts the information bits from the equalized spectrum. In the following
we will discuss specific modulation strategies that have been devised for the discrete and
continuous spectrum modulation.
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Figure 1.6: Simplified block diagram of a NFDM system based on the vanishing NFT.

DISCRETE SPECTRUM MODULATION

In systems that modulate only the discrete spectrum, the eigenvalues λk and/or the
residues ρk (or the norming constants bk ) can be modulated. The “eigenvalue com-
munication" approach by Hasegawa and Nyu is a type of discrete spectrum modulation.
Early discrete spectrum modulated systems [72], [73] employed on-off keying. In such
systems, the bits are mapped to a set of eigenvalues. The eigenvalues are included in
the signals depending on the corresponding bits. The spectral efficiency of on-off key-
ing systems was observed to decrease with increasing size of the set [72, Table 1]. This



1

16 1. INTRODUCTION

was partially attributed to the choice of the residues. The authors in [74] improved on
the on-off keying design by optimizing the choice of the discrete spectrum. Later works
[75]–[77] developed and studied systems which modulated the residues for a fixed set
of eigenvalues. These systems allowed for better control over the characteristics of the
signals. In [78], authors studied the noise correlation between the scattering coefficients
and demonstrated that systems that modulate the norming constants bk have higher ro-
bustness to noise when compared to systems that modulate the residues ρk . To develop
systems with higher spectral efficiencies, the authors in [79] studied the evolution of the
signal duration and bandwidth of multi-soliton pulses during propagation. They opti-
mized the location of eigenvalues and the magnitudes of residues for 2- and 3-solitons in
order to minimize the time-bandwidth product. They observed that the time-bandwidth
product per eigenvalue improves very slowly with the multi-soliton order. In another
interesting observation they noted that the optimal multi-soliton pulses looked simi-
lar to a train of single solitons. Interactions of the soliton pulses [80] and the impact
of noise [81] have also been studied to aid system design. Optimizing the spectrum to
minimize the time-bandwidth product for higher-order solitons remains a highly chal-
lenging problem. Joint modulation of the eigenvalues and the residues was proposed in
[82] as another way to improve spectral efficiency.

In Section 1.2.1 we mentioned that it is possible to have eigenvalues with higher mul-
tiplicity (zeros of higher order). In [83] the modulation of such higher multiplicity eigen-
values was proposed. The multiplicity is an additional degree of freedom that may be
beneficial in improving system efficiency.

CONTINUOUS SPECTRUM MODULATION

NFDM systems that modulate the continuous spectrum are inspired by conventional
OFDM systems where the data to be transmitted is embedded in the linear frequency
domain. The reflection coefficient ρ(λ) which constitutes the continuous spectrum is
defined for all λ ∈ R. To transmit discrete data, we make use of special functions called
carriers. A signal u(λ) is then defined in the nonlinear frequency domain as the sum of
modulated carriers,

u(λ) =
M∑

k=−M

ckΨ(λ−k∆λ), (1.24)

where ck are complex valued symbols from a fixed constellation alphabet and Ψ(λ) is the
carrier function. The symbols are determined from the bits of data that are to be trans-
mitted. The raised-cosine function and the sinc function are examples of commonly
used carrier functions as they are bandlimited and satisfy the Nyquist intersymbol in-
terference criterion. For certain choices of carrier function and spacing ∆λ, the carriers
are orthogonal. In ρ-modulated systems we set ρ(λ) = u(λ). This construction is car-
ried out in the modulator (Figure 1.6). At the receiver, after equalization, knowledge of
the carrier function and the spacing is used to retrieve the transmitted symbols and ul-
timately the bits of data. The characteristics of ρ-modulated systems have been studied
extensively through simulations and experiments [84]–[87]. They have also been com-
bined with discrete spectrum modulation [88]. In practical implementations of NFDM
systems, there are many things to consider such as the choice of normalization parame-
ters and scaling of symbols to generate signals of desired characteristics. The vanishing
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NFT requires the signals to be transmitted in the so-called burst mode where we need
to have sufficiently large gaps between the signals to avoid interference due to channel
memory. Hence for efficient data transmission, it is beneficial to have long signals that
decay quickly on both ends since that reduces the impact of the gap. For ρ-modulated
systems with carriers such as the sinc function, the NFDM signals tend to have slowly de-
caying tails [89, Figure 4]. Truncating these tails prematurely can introduce non-trivial
changes to the ρ-coefficient of the signals, which can impact performance. To address
this problem, it was proposed by Wahls [90] to instead modulate the b-coefficient, i.e. set
b(λ) = u(λ). For certain carrier functions it was shown that b-modulation leads to sig-
nals with finite duration. This idea was proven rigorously in [91]. It has been observed
that b-modulated systems perform better than ρ-modulated systems [92]. Next to the
improved time-domain pulse shapes, this can also be attributed to the relatively higher
robustness of the b-coefficient to noise [78].

The ideas of NFDM have been extended to the Manakov equations [93]–[100]. In
[99], a simulated 56GHz dual-polarization b-modulated system was shown to have a
spectral efficiency of 3.6bits/s/Hz/Pol with net data rate of 400Gbits/s over 960km.
More recently a 5GHz b-modulated system [101] demonstrated a spectral efficiency of
5.51bits/s/Hz over a distance of 960km. However, the design of high data rate NFDM
systems with spectral efficiencies comparable to conventional systems remains a chal-
lenge.

PERIODIC SPECTRUM MODULATION

We now discuss modulation of the main and auxiliary spectra which form the nonlin-
ear spectrum for periodic signals. Here we only consider finite-genus solutions. As dis-
cussed in Section 1.2.2, the main spectrum of a genus g solution comprises of g +1 com-
plex points λk and g pairs of values (µ j (t , x),σ j (t , x)) form the auxiliary spectrum. In
Figure 1.7 we can see a simplified block diagram of a NFDM system based on the peri-
odic NFT. The idea of periodic NFT based NFDM was first demonstrated in [102], [103].
Instead of computing the inverse NFT numerically, the authors made use of special pe-
riodic signals whose spectrum is known analytically. The data was mapped to certain
parameters of the signals which was equivalent to main spectrum modulation. In [104],
using such a special signal known as a perturbed plane wave, the authors demonstrated
a spectral efficiency of 2.5bits/s/Hz over a distance of 1000km. In [105], a system was
designed using genus-2 solutions with certain symmetry in the main spectrum which
allows the solution to be expressed analytically in terms of elliptic functions [106]. The
work [107] was the first demonstration of a NFDM system that computed the inverse
numerically. They made use of the Riemann-Hilbert problem approach [44] to compute
genus-1 solutions. The data was embedded in the imaginary part of the main spectrum
points. In [108] authors proposed a system which employed the algebro-geometric ap-
proach to compute quasi-periodic solutions. The relationship between the main spec-
trum points and period of the solution is non-trivial for g ≥ 2. Hence the authors in
[109] adjusted the Riemann spectrum of a genus-2 solution such that the resulting solu-
tion would have a predefined period and would closely approximate the genus-2 solu-
tion. Auxiliary spectrum modulation was demonstrated for the first time in [110]. The
Riemann-Hilbert problem approach was employed to compute solutions of upto genus-
10. In [111], [112] the authors experimentally demonstrated transmission of a modulated
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Figure 1.7: Simplified block diagram of a NFDM system based on the periodic NFT.

genus-2 solution over a distance of 2000km. They could achieve a spectral efficiency of
only 0.45bits/s/Hz. They note that spectral efficiency can be improved by increasing the
genus and the length of the signal. They also remark that periodic NFT based NFDM
may be extendible to the Manakov equations. Additional research is necessary to in-
vestigate whether the systems based on the periodic NFT can achieve similar or better
performance compared to those that use the vanishing NFT.

1.4. NUMERICAL ASPECTS OF NONLINEAR FOURIER TRANS-

FORMS
NFT based communication systems are required to compute the nonlinear Fourier spec-
trum of complex signals. Like the Fourier transform, computing the nonlinear Fourier
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transform analytically is not always possible. In fact there are only a handful of signal
types for which the nonlinear Fourier spectrum is known analytically [68], [106], [113]–
[115]. As the NFT does not obey the principle of superposition, the spectrum of more
complicated waveforms cannot be constructed from these simpler ones by shifting, scal-
ing and adding. Thus numerical algorithms have been developed for performing the
forward and inverse NFTs. In this section we present a common framework for typical
numerical NFT algorithms for the NLS equation with vanishing and periodic boundary
conditions. First, forward NFT algorithms are considered. Then, inverse NFT algorithms
are discussed.

1.4.1. NUMERICAL ASPECTS OF FORWARD NFTS

The forward NFT involves the computation of the nonlinear Fourier spectrum of a given
signal. We discussed the NFT for vanishing signals in Section 1.2.1 and for periodic sig-
nals in Section 1.2.2. For both the vanishing and periodic signals, we need to solve the
Zakharov-Shabat (1.5) problem. In the following, we will first discuss numerical meth-
ods for solving the Zakharov-Shabat problem. We will then explain the computation of
numerical approximations of the nonlinear spectra.

NUMERICALLY SOLVING THE ZAKHAROV-SHABAT SYSTEM

We consider the case where the numerical computation of NFTs is carried out with
finitely many discrete signal samples. Computing NFTs numerically requires us to make
assumptions which are specific to the signal’s boundary condition. For the vanishing
case we make the following assumptions:

1. The support of the signal q(t ) is truncated to a finite interval, t ∈ [T−,T+], instead
of t ∈ (−∞,∞). The values T± need to be chosen such that the resulting truncation
error is sufficiently small. The approximation is exact if q(t ) = 0 ∀ t ∉ [T−,T+].

2. The interval [T−,T+] is divided into D subintervals of width h = (T+−T−)/D . We
assume that the signal is sampled at the midpoints of each subinterval tn = T−+
(n +0.5)h, n = 0,1, . . . ,D −1 such that qn := q(tn).

In Figure 1.8 we can see the example of a vanishing signal and its equispaced sampling
in the interval [−8,8].

Using numerical ODE solvers for equispaced data, we solve (1.5) for an approxima-
tion V̂(T+,λ) of V(T+,λ). We do this for two initial conditions V̂1(T−,λ) = [1 0]T and
V̂2(T−,λ) = [0 1]T . Stacking the results we get a numerical approximation

M̂(λ) =
[

V̂1(T+,λ) V̂2(T+,λ)
]

. (1.25)

The matrix M̂(λ) is a direct approximation of the monodromy matrix M(λ) in (1.11) for
the periodic NFT, or upon an additional transformation which will be discussed later an
approximation of the scattering matrix S(λ) in (1.8) for the vanishing NFT.

One of the first works on forward NFT methods for the NLS equation was by Boffetta
and Osborne [116]. Their method is commonly referred to as the “Boffetta-Osborne" or
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Figure 1.8: Example of a vanishing signal (blue) and its equispaced sampling (red) in the interval [−8,8].

“BO" method. In this method the approximation M̂s(λ) has the structure

M̂s(λ) =
(

D−1∏

n=0
Gn(λ)

)

= GD−1(λ)GD−2(λ) · · ·G0(λ).

(1.26)

The terms Gn(λ) are the transition matrices of the individual sampling intervals. In the
Boffetta-Osborne method, the signal value is assumed to be constant in each sampling
interval. In Figure 1.9 we can see an illustration of this assumption for the signal from
Figure 1.8. In each interval, the Zakharov-Shabat system can be solved analytically under
this assumption. The transition matrices are given by

Gn(λ) = expm(hCn(λ)),

Cn(λ) =
[
−iλ qn

−κq∗
n iλ

]

,
(1.27)

where expm(·) is the matrix exponential. This method is also known as the midpoint
exponential integrator. We shall refer to this as the base numerical method. For a 2×2
matrix the exponential can be computed in closed form [117]. This allows for simple
yet efficient implementations of the BO method. Other authors have experimented with
various base numerical methods to develop more efficient algorithms [118]–[123], many
of which have the same structure as (1.26).
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Figure 1.9: Constant signal approximation (black) in each subinterval centered around the sampled location
(red).

COMPUTING CONTINUOUS SPECTRUM OF THE VANISHING NFT
The continuous spectrum consists of the reflection coefficient ρ(λ) = b(λ)/a(λ), which
we can compute by first computing the scattering coefficients a(λ) and b(λ) for a de-
sired value of lambda by solving equation (1.9). Using the numerical approximations
[
V̂1(T+,λ) V̂2(T+,λ)

]

from (1.25) and accounting for the boundary conditions (1.6), an

approximation of the scattering matrix Ŝ(λ) can be obtained by solving

[
V̂1(T+,λ) V̂2(T+,λ)

]
[

e−iλT− 0

0 −eiλT−

]

=
[

e−iλT+ 0

0 eiλT+

]

Ŝ(λ). (1.28)

From the definition of the scattering matrix (1.8), we can write the approximations â(λ)
and b̂(λ) of the scattering coefficients a(λ) and b(λ) as

â(λ) =
(

V̂1(T+,λ)
)

1 eiλ(T+−T−), b̂(λ) =
(

V̂1(T+,λ)
)

2 e−iλ(T++T−). (1.29)

Finally, a numerical approximation of the reflection coefficient is given by ρ̂(λ) =
b̂(λ)/â(λ).

COMPUTING EIGENVALUES OF THE VANISHING NFT
As discussed in Section 1.2.1, in case of the focusing NLS equation, the eigenvalues
are the zeros of a(λ) in the complex upper half-plane. If present, they can be approx-
imated by the zeros of â(λ). This root-finding problem has been tackled through various
approaches [69], [116], [118]–[120], [124]–[126]. Boffetta and Osborne [116] proposed
the use of the Newton-Raphson method for localizing the zeros. The Newton-Raphson
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method is an iterative root-finding method and requires approximation of the deriva-
tive aλ(λ) which is usually computed by extending the transfer matrices Gn(λ) in (1.26).
The use of other root-finding methods like the Muller’s method and the secant method
that do not require the derivative have also been proposed [118]. The rate of conver-
gence of these methods is generally lower than that of the Newton-Raphson method but
they usually have a larger region of convergence. All the iterative methods require initial
guesses for the roots within this region to converge successfully. Hence for arbitrary sig-
nals the initial guesses are taken to be on a grid or other root-finding methods are used
to find them. The authors in [69] propose to compute the eigenvalues of finite matrix
approximations of the Zakharov-Shabat operator L

L =
(

i ∂
∂t

−iq(t )

−iq∗(t ) −i ∂
∂t

)

, (1.30)

which can be obtained by rearranging (1.5) to an eigenvalue equation of the form LV =
λV. The proposed methods do not require initial guesses and hence are better suited
for arbitrary signals. Their computation cost is however higher than the iterative meth-
ods and grows quickly with the number of signal samples. Hence it was proposed to use
them with a subset of the samples to find preliminary approximations of the zeros which
are used as initial guesses for the iterative methods. In [124], the authors proposed an-
other global root-finder based on special contour integrals. The idea is to approximate
a(λ) in a region of the complex plane with a polynomial, the zeros of which are then the
approximations of the discrete eigenvalues. The coefficients of the polynomial can be
computed via certain contour integrals. The method can be very accurate if the poly-
nomial approximation has low degree. If the polynomial degree is high, computing the
roots of the polynomial becomes ill-conditioned even if the polynomial is a very accu-
rate approximation of a(λ). To overcome this limitation, the authors in [124] suggest the
use of multiple local polynomial approximations. This however creates the challenge of
choosing these regions and also increases the computation cost. The authors of [125]
proposed a similar approach which utilizes a rational approximation. The a(λ) coeffi-
cient can be written as [10]

a(λ) = ac (λ)
N∏

k=1

λ−λk

λ−λ∗
k

, ∀ λ ∈R, (1.31)

where ac (λ) is the part corresponding to the non-solitonic component of the signal.
In the algorithm proposed in [125], the approximation â(λ) is computed using a stan-
dard ODE solver. The approximation âc (λ) is computed from â(λ) using the Hilbert-
transform. An optimization algorithm is then used to identify the number of zeros N

and locate the zeros λ̂k . Assuming the continuous spectrum has already been com-
puted, this approach can be very efficient. The optimization step can however become
ill-conditioned when the number of zeros is large as in the case of the algorithm in
[124]. The algorithm proposed in [126] shares aspects with those in [124] and [125]. It
is based on the theory that for a meromorphic function such as a(λ), on a closed non-
intersecting contour of a region containing its N zeros, the argument arg{a(λ)} ∈ (−π,π]
has N discontinuities. The algorithm starts by choosing a region in the upper-half com-
plex plane based on the linear Fourier spectrum of the signal. The jumps in arg{a(λ)}
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along a contour which encloses this region are identified. A tracking routine such as
marching-squares is used to track the individual discontinuities to the zeros. The algo-
rithm is efficient and is demonstrated to work on signals where other algorithms such
as [124] fail. The algorithm heuristically determines the step-sizes for locating the dis-
continuities and tracking them. Hence it can miss some discontinuities and fail to find
approximations for all the eigenvalues. The eigenvalues form only a part of the discrete
spectrum. We also need to compute the associated norming constants. Computing the
norming constants numerically is a challenging problem on its own. We shall not pro-
vide the specifics here. Please see [127] and references therein for recent developments.

FAST NFT ALGORITHMS

Given D samples of a signal q(t ), computing the approximation M̂(λ) in (1.26) for D

values of λ has a computational cost of O
(

D2
)

. This is akin to the cost of computing
the discrete Fourier transform naively. In the work [128], Wahls and Poor presented an
approach where the components of M̂(λ) are approximated as rational functions of a
variable z related to λ. The transition matrices Gn(λ) in (1.26) are approximated by ra-
tional function matrices Ĝn(z), with z = z(λ) being a mapping. We then have the rational
matrix function approximation

M̂f(λ) =
(

D−1∏

n=0
Ĝn(z)

)

= ĜD−1(z)ĜD−2(z) · · ·Ĝ0(z).

(1.32)

In numerical implementations of this approach, the polynomials are represented by
their coefficient vectors. We first compute the products of the pairs of matrices Ĝn(z) and
Ĝn−1(z). After all the pairs are multiplied, the same procedure is applied to their prod-
ucts. The process is repeated until only one matrix is left. The multiplication of polyno-
mials is equivalent to the convolution of their coefficient vectors which can be computed
efficiently using the FFT algorithm. The resulting polynomials can be evaluated for mul-
tiple values of z efficiently using the chirp z-transform [129]. It was shown that the com-
plexity of computing the continuous spectrum using this approach is O

(

D log2 D
)

. These
algorithms are thus commonly referred to as fast NFT algorithms. For low number of
samples the base methods maybe faster than the corresponding fast methods. In case
of the fast methods, the rational function matrix Ĝn(z) can be exactly equal to Gn(λ) for
some base numerical methods while being an approximation for others. If it is only an
approximation, the accuracy of the fast NFT algorithm maybe lower than that of the base
numerical method. Various base numerical methods and rational approximations have
been explored by other authors [130], [131].

COMPUTING THE PERIODIC SPECTRUM

As discussed in Section 1.2.2, the periodic spectrum consists of the main spectrum and
the auxiliary spectrum. To compute the spectrum of a periodic signal numerically, we
make the following assumptions:

1. The period T of the signal is known.
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2. The interval [T−,T+] = [Ts ,Ts +T ] is divided into D subintervals of width h = T /D .
The point Ts is an arbitrary starting point. We assume that the signal is sampled
at the points tn = T−+nh, n = 0,1, . . . ,D −1 such that qn := q(tn). Note that the
sample points are shifted by h/2 compared the vanishing case. This is helpful in
ensuring that the auxiliary spectrum which depends on t is computed correctly.

As for the vanishing case, we can solve the Zakharov-Shabat system numerically to ob-
tain approximations M̂(λ) of the Monodromy matrix (1.11). Approximations of the main
spectrum points λ̂k are found by solving M̂11(λ̂k )+ M̂22(λ̂k )± 2 = 0 using root-finding
algorithms. Similarly, approximations of the auxiliary spectrum points µ̂ j are obtained
by solving M̂12(µ̂ j ) = 0 (1.12).

1.4.2. NUMERICAL ASPECTS OF INVERSE NFTS

Unlike the discrete Fourier transform where the inverse problem is identical to the for-
ward problem, inverse NFTs are more challenging. Inverting the continuous spectrum
in the vanishing case is equivalent to solving a system of integral equations [11], [68].
This has been accomplished numerically by many authors [69], [132]–[137]. The com-
plexity of such algorithms is usually O

(

D2
)

or higher. Wahls and Poor extended the idea
of using rational approximations to the inverse NFT problem [138], resulting in a first
fast inverse NFT algorithm for multi-solitons with a complexity of O

(

D log2 D
)

. The ap-
proach was explored further for other cases in [139]–[141]. Most of the inverse NFT al-
gorithms invert the ρ(λ) coefficient. In [90] a fast algorithm was proposed for inverting
the b-coefficient which could be employed directly in b-modulated NFDM systems. In
the case of multi-soliton signals, the inverse problem reduces to the solution of a system
of linear equations [11], [16], [142], [143]. They can be solved iteratively using so-called
Darboux transforms [144], [145]. Darboux transforms can be combined with methods to
invert the continuous spectrum to obtain a full inverse NFT algorithm. Numerical imple-
mentations of the Darboux transform can invert a discrete spectrum with K eigenvalues
in O

(

K 2D
)

operations [69], [120]. Multiple efforts have been made to further reduce the
computational complexity of multi-soliton generation [146]–[148].

Numerical algorithms for the inverse periodic NFT have received relatively less at-
tention when compared to the vanishing counterpart. The proposal to utilize the peri-
odic NFT for fiber-optic communications has renewed interest for their development in
recent years. The algorithms for generating finite-genus solutions are based either on
the algebro-geometric approach [41] or the Riemann-Hilbert problem (RHP) approach
[44]. In [107] the authors developed a periodic NFT based communication system using
the RHP approach. They made use of a software package written in Wolfram Mathemat-
ica for solving Riemann-Hilbert problems [149]. A Julia based package is also available
[150]. The authors in [107] note that solving the RH problem from [44] requires extra
caution due to the presence of singularities at the end of jump contours. They provide
a transformation of the RH problem to improve the numerical implementation. Never-
theless they remark that the software package [150] is not optimal for this particular ap-
plication. For the algebro-geometric approach we first need to compute the constants
Ω,k,ω,δ±,k0,ω0 and K0, which form the Riemann spectrum (see Section 1.2.2), from
the given finite-genus spectrum. Several advancements have been made on this front
allowing for the Riemann spectrum to be computed accurately [111], [151]. Given the
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Riemann spectrum, computing the finite-genus solution reduces to the evaluation of
the Riemann theta function (1.20). The Riemann theta function is a form of a multi-
dimensional Fourier series which is computed numerically by truncating the series [49].
For classical implementations [49], [152], [153], the number of coefficients in the sum-
mation grows exponentially with the number of dimensions/genus of the solution. This
is known famously as the curse of dimensionality and it significantly limits the genus of
the solutions for which the algebro-geometric approach is practical.

1.5. OUTLINE OF THE DISSERTATION

The principal objective of this dissertation is to understand and address numerical is-
sues that currently complicate the practical use of nonlinear Fourier transform-based
fiber-optic communication systems. To achieve this objective, new numerical algo-
rithms are developed and theoretical analysis is performed.

The remaining chapters of the dissertation are structured as follows.

CHAPTER 2
Conventionally, the computation cost for a given number of samples is used as a per-
formance metric for NFT algorithms. However, this does not give the complete picture
as the accuracy depends on the underlying discretization of the Zakharov-Shabat prob-
lem. In Chapter 2 we look, for the first time in literature, at the accuracy achieved by
NFT algorithms at comparable run times. We design new fast forward NFT algorithms
that achieve accuracies that are orders of magnitudes better than existing methods, at
comparable run times and even for moderate sampling intervals. The new algorithms
are compared to existing algorithms in multiple, extensive numerical examples.

This chapter is based on the following publication:

S. Chimmalgi, P. J. Prins and S. Wahls, “Fast Nonlinear Fourier Transform Algorithms Us-
ing Higher Order Exponential Integrators," in IEEE Access, Vol. 7, No. 1, pp. 145161–145176,
Dec. 2019.

CHAPTER 3
It has been suggested in the literature that the spectral efficiency of NFDM systems
based on the periodic NFT discussed in Section 1.3.2 may be improved by the use of
high-genus solutions. The algebro-geometric approach discussed in Section 1.2.2 al-
lows for the computation of finite-genus solutions using the Riemann theta function.
The computation of multi-dimensional Riemann theta functions is however a notori-
ously difficult problem in high dimensions. This limits the tractable genera of solutions.
In Chapter 3 we address the challenge of computing high dimensional Riemann theta
functions efficiently. We investigate conventional computational methods theoretically
and propose new methods. We demonstrate that one of the new methods allows us to
compute solutions with genus much higher than what was previously feasible.
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This chapter is based on the following publication:

S. Chimmalgi and S. Wahls, “On Computing Riemann Theta Functions," under review.

CHAPTER 4
In certain b-modulated systems such as in [92], a drop in performance was observed
with increasing signal duration. This was typically attributed in the literature to limita-
tions of the numerical algorithms of the forward and inverse NFT. We improved the NFT
algorithms but were unable to achieve better performance. We speculated that the limi-
tation might be fundamental to the b-modulator and not due to numerical problems. In
Chapter 4 we investigate this question further by studying the relationship between the
signal duration and transmit power for the b-modulator from [90]. The maximal trans-
mit power is observed to decrease with the signal duration when bandwidth is fixed. We
provide a new theoretical explanation for this behavior and validate it in simulations.
These results explain that performance will degrade with signal duration even for nu-
merical methods using infinite precision.

This chapter is based on the following publication:

S. Chimmalgi and S. Wahls, “Theoretical analysis of maximum transmit power in a
b-modulator”, in 45th European Conference on Optical Communication (ECOC2019).

CHAPTER 5
The derivation of the coupling between signal duration and power in Chapter 4 ex-
ploited specific features of a b-modulation system that had been used for the experi-
ments in [92]. However, we soon realized that this explanation can be extended to most
b-modulators. In Chapter 5 we show that for b-modulators, the nonlinear bandwidth,
signal duration and power are coupled when singularities in the nonlinear spectrum are
avoided. For fixed nonlinear bandwidth, the coupling results in an upper bound on the
transmit power that decreases with increasing signal duration which in-turn leads to
decrease in the signal-to-noise ratios conceivably affecting performance. This result is
first of its kind as such a phenomenon is not known from conventional linear systems.

This chapter is based on the following publication:

S. Chimmalgi and S. Wahls, “Bounds on the Transmit Power of b-Modulated NFDM
Systems in Anomalous Dispersion Fiber," in Entropy: Special Issue Information Theory

of Optical Fiber, Vol. 22, No. 6, Article 639, 2020.

CHAPTER 6
The implementation of a numerical algorithm for computing a NFT is not as straight-
forward as for the linear Fourier transform. At the start of this project, there was not
a single publicly available software library that implemented numerical NFTs. The ab-
sence of a reliable software library for computing NFTs resulted in a high entry cost for
the use of NFTs as an engineering tool. For this reason, we have developed the “Fast
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Nonlinear Fourier Transforms" (FNFT) software library. The library is open source and
includes many tests, examples and extensive documentation. During the research work
for this dissertation, we furthermore developed an open source software environment
for the simulation of fiber-optic NFDM communication systems that is based on FNFT -
NFDMLab [154]. In Chapter 6 we discuss the structure and features of the FNFT library
and the NFDMLab simulation environment. We elaborate on the contributions of this
dissertation to them and their scope in NFT based signal processing.

This chapter is based on the following publications:

S. Wahls, S. Chimmalgi and P. J. Prins, “FNFT: A Software Library for Computing Nonlin-
ear Fourier Transforms," in Journal of Open Source Software, 3(23), 597, 2018.

S. Wahls et al., FastNFT/FNFT: Version 0.4.1, 2020

M. Brehler, C. Mahnke, S. Chimmalgi and S. Wahls, “NFDMLab: Simulating Nonlin-
ear Frequency Division Multiplexing in Python," in Proceedings of 2019 Optical Fiber

Communications Conference and Exhibition (OFC), 2019, pp. 1-3.
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CHAPTER ABSTRACT
The nonlinear Fourier transform (NFT) has recently gained significant attention in fiber
optic communications and other engineering fields. Although several numerical algo-
rithms for computing the NFT have been published, the design of highly accurate low-
complexity algorithms remains a challenge. In this chapter, we present new fast forward
NFT algorithms that achieve accuracies that are orders of magnitudes better than cur-
rent methods, at comparable run times and even for moderate sampling intervals. The
new algorithms are compared to existing solutions in multiple, extensive numerical ex-
amples.

The text in this chapter has previously appeared in modified form in the open access article S. Chimmalgi, P.
J. Prins and S. Wahls, “Fast Nonlinear Fourier Transform Algorithms Using Higher Order Exponential Integra-
tors," IEEE Access, Vol. 7, No. 1, pp. 145161–145176, Dec. 2019. [155]. Its reuse is licensed under CC BY 4.0
[156]
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2. FAST NONLINEAR FOURIER TRANSFORM ALGORITHMS USING HIGHER ORDER

EXPONENTIAL INTEGRATORS

2.1. INTRODUCTION
The fast Fourier transform (FFT) is a well-known success story in engineering. From
a numerical point of view, the FFT provides a mere first-order approximation of the
discrete-time Fourier transform one is actually interested in. Hence the success of the
FFT is quite surprising. Upon closer inspection, it however turns out that approxima-
tions based on FFTs are very accurate if the signal is smooth [157]. Recently, nonlinear

Fourier transforms (NFTs) have been gaining much attention in engineering areas such
as fiber-optic communications [35], [56] and coastal engineering [158], [159]. NFTs are
generalizations of the conventional Fourier transform that allow to solve specific nonlin-
ear evolution equations in a way that is analogous to how Fourier solved the heat equa-
tion [11]. The evolution of the nonlinear Fourier spectrum is, exactly like in the linear
case, much simpler than the evolution of the original signal. NFTs also have unique data
analysis capabilities that enable the detection of particle-like signal components known
as solitons [160].

Recently, a nonlinear variant of the FFT has been derived [128], [161]. These type of
fast NFTs (FNFTs) can provide up to second-order accuracy [35]. Unfortunately, unlike
for the FFT, the accuracy of the FNFTs in [35], [128], [161] remains (at most) second-
order even when the signal is smooth. As a result, engineers currently have to strongly
oversample even smooth signals in order to get reliable numerical results [96, Section 4].
Several authors have proposed NFT algorithms with higher orders of accuracy, utilizing
either Runge-Kutta [69], [119] or implicit Adams methods [130]. However, even though
these methods have higher accuracy orders, they require very small sampling intervals in
order to actually perform better than standard second-order method such as [116]. For
practically relevant sampling intervals, they are typically not the best choice as they are
slower and may even perform worse in these regimes. Numerical methods that provide
better complexity-accuracy trade-offs in practically relevant regimes have been an open
problem until recently.

In [121], the authors introduced a new numerical method that can compute the NFT
with accuracies that are orders of magnitudes better than those of standard methods
while having comparable run times. The key enabler for this large improvement in the
complexity-accuracy trade-off was that, for the first time, a so-called commutator-free
exponential integrator [162] of higher order was used to compute the NFT. In a nutshell,
the absence of commutator terms drastically reduces the computational cost whereas
the excellent performance of exponential integrators is retained. However there is one
drawback remaining in [121]: The complexity of the algorithm grows quadratically with
the number of signal samples D , which makes the algorithm attractive only if the num-
ber of samples is not too high. In other words the algorithm is not fast. In this chapter
we overcome this limitation. Our main contribution is the first fast higher-order NFT
algorithm based on an exponential integrator. By combining it with Richardson extrap-
olation scheme, we arrive at an NFT algorithm that requires only O (D log2 D) floating
point operations, but achieves a sixth-order [O (D−6)] error decay.1 To the best of our
knowledge no such algorithm has been investigated in the literature before. We show

1The complexity estimate only contains the cost of computing the so-called continuous spectrum as is usual
in the NFT literature. Details on the continuous spectrum will be given later in the text. The cost of computing
the discrete spectrum are highly problem dependent.
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that the complexity-accuracy trade-off of the proposed algorithm is dramatically better
than that of existing standard methods. To give an illustration, we point out that in one
of our numerical examples, our new method achieves an accuracy that is hundred mil-

lion times better than the standard second-order method in [116] at a comparable run
time.2

The rest of this chapter is structured as follows. In Section 2.2 we recapitulate the
required mathematical background of the NFT. In Section 2.3 we derive improved ver-
sions of our recently proposed numerical NFT in [121], and compare them with both
conventional second-order and other higher-order NFT algorithms in multiple numer-
ical examples. Then, in Section 2.4, we demonstrate how some of our new numerical
NFTs can be made fast. The fast versions are compared to their slow counterparts. Next,
in Section 2.5, we investigate how Richardson extrapolation can improve the complexity-
accuracy trade-off of the fast NFT methods even further. The chapter is finally concluded
in Section 2.6.3

NOTATION

Real numbers: R; R≥0 := {x ∈ R : x ≥ 0}; Complex numbers: C; Complex numbers with
positive imaginary part: H; Integers: Z; i :=

p
−1; Euler’s number: e; Real part: Re(·);

Complex conjugate: (·)∗; Floor function: ⌊·⌋; Absolute value: |·|; Matrix exponential:
expm(·); Matrix product:

∏K
k=1 Ak := AKAK−1 · · ·A1; Matrix element in the i th column and

j th row: [·]i , j ; Fourier transform of the function f (t ), F ( f (t )) = f̃ (ξ) =
∫∞
−∞ f (t )e−itξdt ;

Inverse Fourier transform of the function f̃ (ξ), F−1( f̃ (ξ)) = f (t ) = 1
2π

∫∞
−∞ f̃ (ξ)eitξdξ.

2.2. PRELIMINARIES
In this section we describe the mathematical machinery behind the nonlinear Fourier
transform (NFT). For illustration purposes we will describe the NFT in the context of
fiber-optic communications. Let q(x, t ) denote the complex envelope of the electric field
in an ideal optical fiber, whose evolution in normalized coordinates is described by the
nonlinear Schrödinger equation (NSE) [21, Chap. 2]

i
∂q

∂x
+
∂2q

∂t 2
+2κ|q |2q = 0. (2.1)

Here, x ≥ 0 denotes the location in the fiber and t denotes retarded time. The parameter
κdetermines if the dispersion in the fiber is normal (-1) or anomalous (+1). Whenκ=+1,
(2.1) is referred to as the focusing NSE and for κ=−1 (2.1) is referred to as the defocusing
NSE. The NFT that solves the NSE (2.1) is due to Zakharov and Shabat [10]. It transforms
any signal q(t ) that vanishes sufficiently fast for t → ±∞ from the time-domain to the
nonlinear Fourier domain through the analysis of the linear ordinary differential equa-
tion (ODE)

∂V(t ,λ)

∂t
= C(t ,λ)V(t ,λ) =

[
−iλ q(t )

−κq∗(t ) iλ

]

V(t ,λ), (2.2)

2Compare the error for CF[2]
1 in Figure 2.6 with that of FCF_RE[4]

2 in Figure 2.13 for the execution time 1 sec.
We remark that although the execution times are implementation specific, they still give a good indication of
the advantages of our proposed algorithm (see Section 2.A).

3Some of the results were presented at the OSA Advanced Photonics Congress, Zurich, July 2018 (SpM4G.5)
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where q(t ) = q(x0, t ) for any fixed x0, subject to the boundary conditions

V(t ,λ) =
[

φ(t ,λ) φ̄(t ,λ)
]

→
[

e−iλt 0

0 −eiλt

]

as t →−∞,

V(t ,λ) =
[

ψ̄(t ,λ) ψ(t ,λ)
]

→
[

e−iλt 0

0 eiλt

]

as t →∞.

(2.3)

The term λ ∈ C is a spectral parameter similar to s in the Laplace domain. The matrix
V(t ,λ) is said to contain the eigenfunctions since (2.2) can be rearranged into an eigen-
value equation with respect to λ [11]. One can view the eigenfunctions V (t ,λ) as being
scattered by q(t ) as they move from t →−∞ to t →∞. Hence (2.2) is referred to as the
scattering problem [10]. (Many problems in signal processing can be expressed through
such scattering problems [133].) For (2.2) subject to boundary conditions (2.3), there
exists a unique matrix

S(λ) =
[

a(λ) b̄(λ)
b(λ) −ā(λ)

]

, (2.4)

called the scattering matrix, such that [11]

[
φ(t ,λ) φ̄(t ,λ)

]

=
[
ψ̄(t ,λ) ψ(t ,λ)

]

S(λ). (2.5)

The components a(λ), b(λ), b̄(λ) and ā(λ) are known as the scattering data. The com-
ponents a(λ) and b(λ) are sufficient to describe the signal completely. Their evolution
along the x dimension (along the length of the fiber) is simple [11, Section III]

a(x,λ) = a(0,λ),

b(x,λ) = b(0,λ)e4iλ2x .
(2.6)

The reflection coefficient is then defined as ρ(λ) = b(λ)/a(λ) for λ ∈ R and it represents
the continuous spectrum. In the case of κ= 1, the nonlinear Fourier spectrum can also
contain a so-called discrete spectrum. It corresponds to the complex poles of the reflec-
tion coefficient in the upper half-plane H, or equivalently to the zeros λk ∈H of a(λ). It
is known that there are only finitely many (N ) such poles. The poles λk are also referred

to as eigenvalues and a corresponding set of values ρk := b(λk )/ da(λ)
dλ

∣
∣
∣
λ=λk

are known as

residues [11, App. 5]. There are different ways to define a nonlinear Fourier spectrum.
One possibility is {ρ(λ)}λ∈R, (λk ,ρk )N

k=1 [11]. The other is {b(λ)}λ∈R, (λk ,b(λk ))N
k=1 [38]. In

this chapter we are primarily interested in computation of ρ(λ) but some notes regard-
ing computation of b(λ) and the λk will also be given. Although we will illustrate our
algorithms by applying them to the specific case of NFT of NSE with vanishing bound-
ary condition, it should be noted that we in fact presenting algorithms for solving a class
of equations similar to (2.2) [11, Eq. 2]. Hence the algorithms presented in this chap-
ter should carry over to NFTs w.r.t. other nonlinear evolution equations such as the
Korteweg–de Vries equation [163] and other boundary conditions.
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2.3. NUMERICAL COMPUTATION OF NFT USING HIGHER OR-

DER EXPONENTIAL INTEGRATORS
In this section we will start by outlining some assumptions that are required for the nu-
merical methods that will be presented. We will give a brief overview of one of the ap-
proaches for computing the NFT and then talk specifically about implementations using
commutator-free exponential integrators. To evaluate the methods, we describe exam-
ples and performance criteria. We will finally show and compare the results for various
methods applied to the mentioned examples.

We remark that only one of the investigated commutator-free exponential integrators
can later serve as basis for our new fast method. However, the remaining higher order
integrators have their own merits when the number of samples is low, since (asymptot-
ically) slow NFT algorithms can be faster than (asymptotically) fast NFT algorithms in
that regime.

2.3.1. ASSUMPTIONS

Just like the FFT, the numerical computation of the NFT is carried out with finitely many
discrete data samples. Hence, we need to make the following assumptions:

1. The support of the signal q(t ) is truncated to a finite interval, t ∈ [T−,T+], instead
of t ∈ (−∞,∞). The values T± are chosen such that the resulting truncation error
is sufficiently small. The approximation is exact if q(t ) = 0 ∀ t ∉ [T−,T+].

2. The interval [T−,T+] is divided into D subintervals of width h = (T+−T−)/D . We
assume that the signal is sampled at the midpoints of each subinterval tn = T−+
(n +0.5)h, n = 0,1, . . . ,D −1 such that qn := q(tn).

2.3.2. NUMERICAL SCATTERING

The main step in numerically computing the NFT is to solve the scattering problem (2.2)
for φ(T+,λ) for different values of λ. We can view the D subintervals as layers which
scatter the eigenfunction φ(t ,λ) as it moves from t = T− to t = T+. Using numerical
ODE solvers we solve for an approximation φ̂(T+,λ) of φ(T+,λ). By taking ψ̄(T+,λ) and
ψ(T+,λ) equal to the limit in (2.3) at t = T+, we can compute with (2.5) a numerical
approximation of the scattering data and ultimately the reflection coefficient.

2.3.3. EXPONENTIAL INTEGRATORS

Almost any numerical method available in literature for solving ODEs can be used to
solve for φ(T+,λ)[118], [119]. However, we are particularly interested in so-called expo-
nential type integrators. These methods have been shown to provide a very good trade-
off between accuracy and computational cost in several numerical benchmark problems
while being fairly easy to implement, see [164] and references therein. We propose to use
a special sub-class known as commutator-free quasi-Magnus (CFQM) exponential inte-
grators as some NFT algorithms based on these integrators turn out to have the special
structure [161] that is needed to make them fast. We show this in Section 2.4.
The results in [165] provide a scheme to compute a numerical approximation φ̂(T+,λ)
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of φ(T+,λ). We start by fixing φ̂(T+,λ) = H(λ)φ(T−,λ), where

H(λ) =
(

D−1∏

n=0
Gn(λ)

)

= GD−1(λ)GD−2(λ) · · ·G0(λ),

(2.7)

with n being the index of samples of q(t ).
The structure of Gn(λ) depends on the integrator and the exact values depend on the
signal samples qn and the value of λ. For the integrator in [165], Gn(λ) = CF[r ]

J
(tn ,λ)

which leads to the following iterative scheme:

φ̂n+1(λ) = CF[r ]
J

(tn ,λ)φn(λ)

=
J∏

j=1

expm
(

Bj(tn ,λ)
)

φ(tn ,λ)

= expm
(

BJ(tn ,λ)
)

· · ·expm(B1(tn ,λ))φn(λ)

=φ(tn+1,λ)+O (hr+1),

(2.8)

where expm is the matrix exponential

Bj(tn ,λ) = h
K∑

k=1

a j k Ck(tn ,λ), j ∈ {1, . . . , J },

Ck(tn ,λ) = C(tn + (ck −0.5)h,λ),

(2.9)

where a j k and ck ∈ [0,1] for k ∈ {1, . . . ,K } are constants that are specific to the integra-
tor and C(t ,λ) as in (2.2). By iterating with (2.7) from n = 0,1, . . . ,D − 1, we obtain the
numerical approximation of φ(T+,λ) that we need to compute the NFT.

For an integrator CF[r ]
J

, r is the order and J is the number of matrix exponentials
required for each subinterval. K is the number of points within each subinterval where
the signal value needs to be known. We refer the reader to [165] for their derivation.

An integrator of order r has a local error (error in each subinterval) of O (hr+1). Over
D (∝ 1/h) such subintervals i.e., over the interval [T−,T+], the global error will be O (hr ).
This distinction of local and global error will become important when we define the error
metric used to compare the various algorithms in Section 2.3.4.
The integrator CF[2]

1 is also sometimes referred to as the exponential midpoint rule. It
was used in the context of NFT for the defocusing NSE (κ =−1) by Yamada and Sakuda
[136] and later by Boffetta and Osborne[116]. For CF[2]

1 , (2.8) reduces to

φ̂n+1(λ) = Gn(λ)φn(λ), where

Gn(λ) = expm(hCn(λ)) ,

Cn(λ) =
[
−iλ qn

−κq∗
n iλ

]

.

(2.10)

This is applied repeatedly as in (2.7) to obtain φ̂(T+,λ). In [121] we investigated the pos-
sibility of using CF[4]

2 (first introduced in [162]) to obtain φ̂(T+,λ). We were able to show
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its advantage over CF[2]
1 when considering the trade-off between an error and execution

time. Here we investigate further in this direction and evaluate CF[4]
3 , CF[5]

3 and CF[6]
4 ,

which are fourth-, fifth- and sixth-order methods respectively.

The CFQM exponential integrators require multiple non-equispaced points within
each subinterval. However, it is unrealistic to assume that signal samples at such non-
equispaced points can be obtained in a practical setting. In [121] we used local cubic-
spline based interpolation to obtain the non-equispaced points from the mid-points of
each subinterval. (We will refer to the samples at these midpoints as the given samples.)
However we found that local cubic-spline based interpolation is not accurate enough for
higher-order methods. Here, we propose to utilize the Fourier transform and its time-
shift property for interpolation, i.e.,

q(t − ts ) =F−1
(

e−iξts F
(

q(t )
))

, (2.11)

to obtain the samples on shifted time grids required for (2.9) with ts =−(ck −0.5)h. This
interpolation rule is also known in signal-processing literature as sinc or bandlimited
interpolation [166, Section 7.4.2] and it is accurate when q(t ) is sampled in accordance
with the Nyquist criterion. As we are working with discrete signal samples, the inter-
polation can be implemented efficiently using the FFT. The MATLAB code that we used
can be found in Section 2.B. We remark that we use band-limited interpolation for all
methods that require non-equispaced samples: CF[4]

2 , CF[4]
3 , CF[5]

3 and CF[6]
4 .

2.3.4. ERROR METRIC AND NUMERICAL EXAMPLES

In this subsection, we compare the performance of CFQM exponential integrators CF[2]
1 ,

CF[4]
2 , CF[4]

3 , CF[5]
3 and CF[6]

4 , the two-step Implicit-Adams method (IA2) introduced in
[130] and the fourth-order Runge-Kutta method [119] (RK4) for computation of the re-
flection coefficient. The fourth-order Runge-Kutta method (r = 4) was the first fourth-
order method used for the computation of the reflection coefficient in [69], [119]. We
include the third-order two-step Implicit-Adams method (r = 3) here as it was the first
higher-order method that was introduced in the context of fast nonlinear Fourier trans-
form. The meaning of “fast" will be made precise in Section 2.4.
We are interested in evaluating the trade-off between the increased accuracy and ex-
ecution time due to use of higher-order methods. We assess the accuracy of different
methods using the relative L2-error

Eρ =

√
∑M−1

n=0 |ρ(λn)− ρ̂(λn)|2
√

∑M−1
n=0 |ρ(λn)|2

, (2.12)

where ρ(λ) is the analytical reflection coefficient, ρ̂(λ) is the numerically computed re-
flection coefficient and λn are M equally-spaced points in [−λmax,λmax]. Eρ is a global
error and hence it is expected to be O (hr ) for an integrator of order r as explained in
Section 2.3.3. We compute the reflection coefficient at the same number of points M as
the number of given samples D , i.e. M = D , unless mentioned explicitly otherwise.
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EXAMPLE 1: HYPERBOLIC SECANT, κ= 1

As the first numerical example we chose the signal q(t ) = q̊e−2iλ0t sech(t ). The closed
form of the reflection coefficient is given by applying the frequency-shift property [68,
Section D] to the analytical known reflection coefficient of the secant-hyperbolic signal
[113],

ρ(λ) =
b(λ)

a(λ)
,

b(λ) =
−sin(π)

cosh(π(λ−λ0))
,

a(λ) =
Γ

2 (0.5− iλ)

Γ
(

0.5− i(λ−λ0)+ q̊
)

Γ
(

0.5− i(λ−λ0)− q̊
) ,

(2.13)

where Γ(·) is the gamma function. The discrete spectrum is

λk =λ0 + i(q̊ +0.5−k), k = 1,2, . . . , MD , (2.14)

bk = (−1)k , k = 1,2, . . . , MD , (2.15)

MD = ⌊(q̊ +0.5)⌋. (2.16)

We set q̊ = 5.4, λ0 = 3, λmax = 10, and chose [T−,T+] = [−32,32] to ensure negligible
truncation error.

EXAMPLE 2: RATIONAL REFLECTION COEFFICIENT WITH ONE POLE, κ= 1
The signal is given by [114]

q(t ) =
{

−2iγ α
|α| sech

(

2γt +arctanh
(
β
γ

))

, t ≤ 0

0, t > 0,
(2.17)

where α, β are scalar parameters and γ =
√

αα∗+β2. We used α = 1 and β = −1. The
corresponding reflection coefficient is then known to be

ρ(λ) =
α

λ− iβ
. (2.18)

We set λmax = 60 and chose [T−,T+] = [−12,0]. As the signal in (2.17) has a discontinuity,
it cannot be interpolated well using bandlimited interpolation. We hence assume only
in this example that we can sample the signal at exactly the points that we require.

EXAMPLE 3: HYPERBOLIC SECANT, κ=−1
The signal is given by

q(t ) =
Q

L

(

sech

(
t

L

))1−2iG

, (2.19)

where G , L and Q are scalar parameters. We used G = 1.5, L = 0.04 and Q = 5.5. The
corresponding reflection coefficient is known to be [167]

ρ(λ) =−2−2iG Q
Γ(d)Γ( f−)Γ( f+)

Γ(d∗)Γ(g−)Γ(g+)
, (2.20)
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Figure 2.1: Error using slow NFT algorithms for Example 1 with λmax = 1.

where Γ(·) is the gamma function, d = 0.5+i (λL −G ), f± = 0.5−i
(

λL ±
p

G 2 +Q2
)

, and

g± = 1− i
(

G ±
p

G 2 +Q2
)

. We set λmax = 250 and chose [T−,T+] = [−1.5,1.5].

The numerical methods were implemented and tested in 64-bit MATLAB (R2018a)
running in Ubuntu 16.04 on a machine with an Intel® Core™ i7-5600U CPU with a max-
imum clock rate of 3200 MHz and 8192 MB of DDR3 memory at 1600 MHz. The CPU
was set to the highest available performance setting and the number of computational
threads was set to 1 using the maxNumCompThreads function of MATLAB. The closed-
form expression of a 2×2 matrix exponential as in [168] was used for the CFQM expo-
nential integrators.

As we are interested in studying the complexity-accuracy trade-off of the NFT algo-
rithms, we need a measure of computational complexity. In the literature, either num-
ber of floating point operations (FLOPs) or execution times are used as a measure of the
computational complexity. Both are not ideal. Although FLOP counting seems more ob-
jective, in practice FLOP counts are (just like execution times) implementation specific
and it is hard to determine even the number of FLOP counts of basic operations such as
square roots. FLOP counts also do not account for typical capabilities of modern pro-
cessors and neglect critical issues such as memory access. We will present our results
in terms of execution times as we believe that they are more realistic than FLOP counts.
However, to ensure that our implementations were equally efficient, we carried out an
additional FLOP count analysis in Section 2.A. By comparing the FLOP counts with the
measured execution times we show there that the measured execution times agree well
with the FLOP counts for medium to high number of samples. We also show there that
the FLOP counts are not representative of computation costs for low number of samples.

Execution times were recorded using the MATLAB stopwatch function (tic-toc). We
report the best execution time among three runs to ensure that we minimize the impact
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Figure 2.2: Error using slow NFT algorithms for Example 1 with λmax = 10.
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Figure 2.3: Error using slow NFT algorithms for Example 2.
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Figure 2.4: Error using slow NFT algorithms for Example 3.

of unrelated background processes.

Figure 2.1 shows the error measure Eρ , as defined in (2.12), for Example 1 for a range
of relatively large step-sizes h. To read such error plots we look at the error achieved
by each method for a particular step-size. For the largest two step-sizes, all the errors
are above 100 percent and hence a comparison of the methods is not meaningful. The
remaining results suggest that the higher-order methods can always be preferred over
the lower-order methods.

The error measure Eρ for smaller sampling intervals h for Example 1, 2, and 3 are
shown in Figures 2.2, 2.3 and 2.4 respectively.4 For all three examples, the slopes of the
error-lines are in agreement with the order r of each method except for IA2. For smooth
signals IA2 is seen to have an error of order four rather than the expected three. This
observation is in agreement with [130, Figure 2]. However, for the discontinuous signal
of Example 2 we see third-order behavior as expected. We can also see that a higher
r generally corresponds to better accuracy (lower Eρ) for the same h. However, that is

not necessarily obvious as seen in Figure 2.2, where CF[5]
3 is more accurate than CF[6]

4

for larger h. The advantage of using three exponentials (J = 3) in CF[4]
3 instead of two

in CF[4]
2 is also clear from the figures. The third-order Implicit-Adams method (IA2 with

r = 3) and fourth-order Runge-Kutta method (RK4) may be more accurate than CF[2]
1

depending on the signal and other parameters, but have lower accuracy compared to
CF[4]

2 and CF[4]
3 .

The error Eρ reaches a minimum around 10−12 and can start rising again as seen

in Figure 2.4 for CF[4]
6 . To understand this behavior, note that the local error in (2.8)

is actually O (hr+1 + ε), where ε is a small constant due to finite precision effects that
can normally be neglected. The global error is thus O (hr + εh−1). As h is becoming

4To ensure that the discontinuity in Example 2 is faithfully captured, we use tn = T−+nh for the Runge-Kutta
method and the Implicit-Adams method, instead of the description in Section 2.3.1.
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Figure 2.5: Execution time using slow NFT algorithms for Example 1.

smaller and smaller, the second component also known as the arithmetic error, becomes
dominant and eventually causes the total error to rise again [169].

For the CFQM exponential integrators, computation of the transfer-matrix H(λ) in
(2.7) for each λ requires JD multiplications of 2× 2 matrices (2.8) for D(∝ 1/h) given
samples. If the reflection coefficient is to be computed at D points then the overall com-
putational complexity will be of the order O (D2). In Figure 2.5 we plot the execution
times of all the methods for Example 1. These execution times are representative for all
examples. We can see that the execution time scales quadratically with 1/h. The exe-
cution time of the CFQM exponential integrators is approximately a linear function of
J . The IA2, RK4 and CF[4]

2 methods have similar execution times. Although both CF[4]
3

and CF[5]
3 methods require 3 matrix exponentials, the execution times of CF[5]

3 are higher

because it involves more operations using complex numbers compared to CF[4]
3 .

To evaluate the trade-off between the execution time and accuracy, we plot the exe-
cution time on the x-axis and the error on the y-axis in Figure 2.6 for Example 1. To read
such trade-off plots we look at the error achieved by each method for a given amount of
time. For Example 1 it turns out that CF[5]

3 provides the best trade-off, but we can con-
clude that extra computation cost of the higher-order methods is generally justified by
increased accuracy.

Although performing matrix multiplications of 2×2 matrices is fast, the total cost of
the NFT

(

O
(

D2
))

is significantly higher when compared to its linear analogue, the FFT,
which has a complexity of only O (D logD). So the natural question to ask is: Can the
complexity be reduced? – Yes, this will be shown in the next section.

2.4. FAST FOURTH-ORDER NFT
In this section we investigate which of the new higher-order NFT algorithms from the
previous section can be made fast by using suitable splittings of the matrix exponential.
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Figure 2.6: Error vs. Execution time trade-off using slow NFT algorithms for Example 1.

We find that only the CF[4]
2 NFT can be made fast. The result is a fast fourth-order NFT

algorithm. We then compare the slow CF[4]
2 NFT with its fast variant to ensure that the

gain in computational complexity outweighs the loss in accuracy introduced by approx-
imations of the matrix exponential.

2.4.1. FAST SCATTERING FRAMEWORK

In the framework proposed in [161], each matrix Gn(λ) is approximated by a rational
function matrix Ĝn(z), where z = z(λ) is a transformed coordinate. By substituting these
approximations in (2.7), a rational function approximation Ĥ(z) of H(λ) is obtained.

Ĥ(z) =
D−1∏

n=0
Ĝn(z). (2.21)

We want to compute the coefficients of the numerator and denominator polynomials,
respectively. A straightforward implementation of the matrix multiplication where each
entry is a polynomial, has a complexity of O (D2). Instead, by using a binary-tree struc-
ture and FFTs [161, Alg. 1], the computational complexity can be reduced to O

(

D log2 D
)

.
Hence it is referred to as fast scattering. In [161], the number of samples D was assumed
to be a power of two. In cases where D is not a power of two, we use the following ap-
proach. We write D = 2D1 +2D2 + . . .+2Dm , where D1, D2, . . .,Dm are non-negative inte-
gers. We first choose D1 as large as possible. Then we choose D2 as large as possible and
repeat until all Dk are fixed. This step splits the D samples into m sets to each of which
the fast scattering is applied. The results Ĥ1(z),Ĥ2(z) . . .Ĥm(z) are then multiplied us-
ing the rule Ĥ(z) = [. . . [[Ĥ1(z)Ĥ2(z)]Ĥ3(z)] . . .]Ĥm(z). Each multiplication is carried out
using the same FFT based algorithm as in [161].

The rational function approximation Ĥ(z) is explicitly parameterized in z and hence
(2.7) is reduced to polynomial evaluations for each z. To elaborate, we again restrict
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ourselves to Gn(λ) of the form (2.8). Hence for CF[2]
1 , we need to approximate Gn(λ) =

expm(hCn(λ)). The matrix exponential can be approximated to various orders of accu-
racy using rationals [170] or using splitting-schemes such as the well-known Strang-
splitting and the higher-order splitting-schemes developed in [163]. The splitting-
schemes map λ ∈ R, the domain of the reflection coefficient, to z = exp(iλh/m) on
the unit circle, where m is a real rational. Such mappings have a certain advantage
when it comes to polynomial evaluations which we cover in Section 2.4.2. Note that the
mapping z = exp(iλh/m) is periodic in λ with period 2πm/h. Hence we can resolve the
range |Re(λ)| < πm/h. (See e.g. [135].) This is similar to the Nyquist–Shannon sampling
theorem for the FFT.

For a higher-order CF[r ]
J

integrator, each Gn(λ) is a product of J matrix exponentials.

For example let us look at CF[4]
2 . We can write

Gn(λ)=expm
(

hC2
n(λ)

)

expm
(

hC1
n(λ)

)

,

C2
n(λ)=a2C(T−+(n+c1)h,λ)+a1C(T−+(n+c2)h,λ),

C1
n(λ)=a1C(T−+(n+c1)h,λ)+a2C(T−+(n+c2)h,λ),

a1 =
1

4
+
p

3

6
, a2 =

1

4
−
p

3

6
,

c1 =
1

2
−
p

3

6
, c2 =

1

2
+
p

3

6
.

(2.22)

Each of the two matrix exponentials can be approximated individually using a
splitting-scheme from [163]. Ĥ(z) can then be obtained as in (2.21). However, there
are a few caveats which prevent extension of this idea to higher-order methods. The
splitting-schemes in [163] should not be applied to CFQM exponential integrators with
complex coefficients a j k . Complex coefficients mean that λ ∈ R is no longer mapped to
z on the unit circle. Such a mapping is undesirable for polynomial evaluation as will be
explained in Section 2.4.2. In addition, we do not even obtain a polynomial structure if
there exists no z such that exp

(

iλh
∑K

k=1 a j ,k
)

is an integer power of this z for all j . Fur-

thermore, if such a z exists but only for high co-prime integer powers, Ĝn(λ) will consist
of sparse polynomials of high degree, which can significantly hamper the computational
advantage of using the approximation. Due to these reasons we restrict ourselves to fast
implementations of CF[2]

1 and CF[4]
2 which will be referred to as FCF[2]

1 and FCF[4]
2 . Even

though we made the FCF[2]
1 algorithm available in the FNFT software library [171] al-

ready, accuracy and execution times for it haven’t been assessed and published formally
anywhere in literature. The FCF[4]

2 algorithm is completely new. For both FCF[2]
1 and

FCF[4]
2 we use the fourth-order accurate splitting [163, Eq. 20].

2.4.2. FAST EVALUATION

Once we obtain the rational function approximation Ĥ(z) of H(λ) in terms of numerator
and denominator coefficients, we only have to evaluate the numerator and denominator
polynomials for each value of z = z(λ) in order to compute the reflection coefficient. The
degree of the polynomials to be evaluated will be at least D which can be in the range of
103–104. It is known that evaluation of such high-degree polynomials for large values of z
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can be numerically problematic [128, Section IV-E]. However, by choosing the mapping
z = exp(iλh/m), which maps the real line to the unit circle, the polynomials need to be
evaluated on the unit circle where evaluation of even high-degree polynomials is numer-
ically less problematic. The higher-order splitting schemes in [163] were developed with
such a mapping in mind allowing for approximations of the matrix exponentials as ra-
tional functions in z. Evaluating any polynomial of degree D using Horner’s method has
a complexity of O (D) [128, Section IV-E]. Hence for M values of z, the total cost of fast
scattering followed by polynomial evaluation would be O (D log2 D)+O (MD).

Mapping λ ∈R to z on the unit circle has an additional computational advantage. Let
p(z) = pN zN +pN−1zN−1 + . . .+p0 be a polynomial in z of degree N . Evaluation of p(z)
at a point zk can be written as

p(zk ) =
N∑

n=0
pn zn

k = zN
k

N∑

n=0
pN−n z−n

k . (2.23)

For M equispaced points zk , k = 1, . . . , M , on a circular arc, this amounts to taking the
chirp Z-transform (CZT) of the polynomial coefficients. The CZT can be computed ef-
ficiently using the algorithm in [129] which utilizes FFTs. We can also see (2.23) as a
non-uniform discrete Fourier transform of the polynomial coefficients which allows us
to utilize efficient non-uniform FFT (NFFT) algorithms in [172] for evaluating the poly-
nomial. If the number of evaluation points M is in the same order of magnitude as D , the
complexity of evaluation becomes O (D logD) and hence the overall complexity of the
fast nonlinear Fourier transform (FNFT) is O (D log2 D). In the next section we will see
that the error of the FCF[4]

2 algorithm reaches a minimum value and then starts rising.
This is again due to the arithmetic error as we already saw in Section 2.3.4. We remark
that in numerical tests the CZT was found to perform equally well as the NFFT before
the error minimum but the error rise thereafter was significantly steeper. We hence used
the NFFT routine from [172] for evaluating the polynomials.

2.4.3. NUMERICAL EXAMPLES

REFLECTION COEFFICIENT

We now compare the implementations of CF[2]
1 and CF[4]

2 presented in Section 2.3.4 and

their fast versions FCF[2]
1 and FCF[4]

2 for computing the reflection coefficient ρ(λ). We
plot the error versus the execution time for Example 1 in Figure 2.7, for Example 2 in Fig-
ure 2.8 and for Example 3 in Figure 2.9. In the three figures we can see that the fast FCF
algorithms achieve similar errors as their slow CF counterparts in a significantly shorter
time. From the other viewpoint, for the same execution time, the FCF algorithms achieve
significantly lower errors compared to CF algorithms. Our new algorithm FCF[4]

2 outper-

forms FCF[2]
1 in the trade-off for all the examples which again highlights the advantage

of using higher-order CFQM exponential integrators.
Since the NFT is a nonlinear transform, it changes its form under signal amplifica-

tion, and computing it typically becomes increasingly difficult when a signal is amplified
[118]. Hence it is of interest to study amplification of error with increase in signal am-
plitude. To test the amplification we use Example 1 and sweep the signal amplitude q̊

from 0.4 to 10.4 in steps of 1.0 while keeping all other parameters the same as before. As
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Figure 2.7: Error vs. Execution time trade-off using CF and FCF algorithms for Example 1.
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Figure 2.8: Error vs. Execution time trade-off using CF and FCF algorithms for Example 2.
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Figure 2.9: Error vs. Execution time trade-off using CF and FCF algorithms for Example 3.

the time-window remains the same, amplification the signal amplitude leads to directly
proportional amplification of the signal energy. We compute the error Eρ for decreasing
h for each value of q̊ for the CF and FCF algorithms. We plot Eρ versus the sampling in-
terval h on a log-scale for CF algorithms in Figure 2.10 and for FCF algorithms in Figure
2.11. Instead of plotting individual lines for each value of q̊ , we represent the amplitude
using different shades of gray. As shown in the colourbar, lighter shades represents lower
q̊ and darker shades represent higher q̊ . The stripes with a higher slope are the higher-
order methods. All the four algorithms i.e., CF[2]

1 , CF[4]
2 , FCF[2]

1 and FCF[4]
2 show similar

trends for the amplification of error with signal amplitude. The CF[2]
1 algorithm was com-

pared with other methods in [118] (where it is referred to as BO), and they conclude that
CF[2]

1 scales the best with increasing signal amplitude. Hence the results shown in Figure

2.10 are very motivating as the amplification in the error of CF[4]
2 is similar to the ampli-

fication for CF[2]
1 . The error of approximations used in the FCF algorithms also depends

on q̊ . However, comparing Figure 2.10 and Figure 2.11 we can see that the contribu-
tion of the approximation error is small. These results combined with the results in the
trade-off plots (Figures 2.7, 2.8, and 2.9) make a strong case for our new FCF[4]

2 algorithm.

B-COEFFICIENT

The accurate and fast computation of the scattering coefficient b(λ) (Section 2.2) is of
interest to the fiber-optic communication community, as an efficient FNFT algorithm
can be combined with the recently proposed b-modulation [90], [92], [173] scheme to
develop a complete NFT based fiber-optic communication system. Hence to test the
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Figure 2.10: Variation of error of CF algorithms with amplitude for Example 1. The fourth-order CF[4]
2 algorithm

is seen to have gradual increase in error with increase in amplitude similar to the second-order CF[2]
1 algorithm.
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Figure 2.11: Variation of error of FCF algorithms with amplitude for Example 1. Approximating the matrix
exponentials with splitting schemes does not significantly affect the amplification of error with increasing am-
plitude.
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Figure 2.12: Error in b-coefficient using FCF algorithms for Example 1. The execution times for some of the
points are shown to give an indication of the computational complexity.

performance of both the FCF algorithms in computation of the b-coefficient, we define

Eb =

√
∑M−1

n=0 |b(λn)− b̂(λn)|2
√

∑M−1
n=0 |b(λn)|2

, (2.24)

where b(λ) is the analytically known and b̂(λ) is the numerically computed scattering
coefficient. For the numerical test we again use the signal from Example 1 as b(λ) is
known. We plot the error Eb for both the FCF methods for decreasing sampling interval
h in Figure 2.12. FCF[4]

2 clearly outperforms FCF[2]
1 even after considering the additional

computational cost.
From the results of the numerical tests presented in this section it is clear that ap-

proximating H(λ) in (2.7) using rational functions to make the method fast, provides a
significant computational advantage: similar accuracy, shorter execution time. How-
ever, as mentioned earlier we could only make the fourth-order method CF[4]

2 fast. To
further improve the accuracy and order of convergence while restricting ourselves to a
fourth-order method, we explore the possibility of using Richardson extrapolation in the
next section.

2.5. MAIN RESULT: FAST SIXTH-ORDER NFT
In this section we arrive at our main result by integrating Richardson extrapolation into
our new fast fourth-order NFT FCF[4]

2 from the previous section. We show numerically
that the resulting algorithm has sixth-order accuracy rather than fifth-order as would be
expected. We furthermore show that the added complexity due to Richardson extrapo-
lation is outweighed by the gain in accuracy so the complexity-accuracy trade-off of our
final algorithm is the best among all methods investigated in this chapter.
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2.5.1. RICHARDSON EXTRAPOLATION

Richardson extrapolation is a technique for improving the rate of convergence of a series
[174].5 Given an r th-order numerical approximation method ρ̂(λ,h) for the reflection
coefficient ρ(λ) that depends on the step-size h, we can write

ρ(λ) = ρ̂(λ,h)+O (hr ). (2.25)

We assume that ρ̂(λ,h) has a series expansion in h,

ρ̂(λ,h) = ρ(λ)+ρr (λ)hr +ρr+1(λ)hr+1 + . . . (2.26)

In Richardson extrapolation [174], we combine two numerical approximations ρ̂(λ,h)
and ρ̂(λ,2h) as follows,

ρ̂[RE](λ,h) =
2r ρ̂(λ,h)− ρ̂(λ,2h)

2r −1
. (2.27)

Using the series expansion, we find that the order of the new approximation ρ̂[RE](λ,h)
is at least r +1:

ρ̂[RE](λ,h) =
2r (ρ(λ)+ρr (λ)hr +ρr+1(λ)hr+1 + . . . )

2r −1

−
ρ(λ)+ρr (λ)(2h)r +ρr+1(λ)(2h)r+1 + . . .

2r −1

= ρ(λ)−
2r

2r −1
ρr+1(λ)hr+1 +O (hr+2).

(2.28)

We apply this idea to FCF[2]
1 and FCF[4]

2 to obtain the algorithms FCF_RE[2]
1 and

FCF_RE[4]
2 respectively. Note that the range of |Re(λ)| that can be resolved is determined

by the larger of the two step-sizes h (see Section 2.4.1). We also remark that Richardson
extrapolation can also be applied to the slow algorithms in Section 2.3.3.

2.5.2. NUMERICAL EXAMPLES

We test FCF_RE[2]
1 and FCF_RE[4]

2 against FCF[2]
1 and FCF[4]

2 for all three examples. Since
Richardson extrapolation requires us to compute two approximations, which increases
the computational complexity, we again evaluate the complexity-accuracy trade-off. We
plot the error versus execution time curves for the three examples in the Figures 2.13 to
2.15. In all figures we can see that the FCF_RE algorithms achieve slopes of r +2 rather
than the expected slope of r +1. This is an example of superconvergence [175]. Specif-
ically, the error of FCF_RE[2]

1 decreases with slope four and that of FCF_RE[4]
2 decreases

with slope six. As seen before in Section 2.3.4, the arithmetic error starts to dominate af-
ter a certain point and causes the error to rise. Although the executions times of FCF_RE
algorithms are higher for the same step-size h, the error achieved is almost an order
of magnitude lower even for large h. From the other viewpoint, for the same execu-
tion time, the FCF_RE algorithms achieve significantly lower errors compared to FCF
algorithms. FCF_RE[4]

2 outperforms FCF_RE[2]
1 in the trade-off for all the three exam-

ples again highlighting the advantage of using higher-order CFQM exponential integra-
tors. These results suggest that Richardson extrapolation should be applied to improve

5It was used to improve an inverse NFT algorithm for the defocusing case in [134].
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Figure 2.13: Error vs. Execution time trade-off of FCF and FCF_RE algorithms for Example 1.

the considered FNFT algorithms. The FCF_RE[4]
2 algorithm provides the best trade-off

among all the algorithms presented in this chapter.

2.5.3. REMARKS ON COMPUTING EIGENVALUES

The main focus of this chapter has been the efficient computation of the reflection coef-
ficient. The computation of the discrete spectrum (see Section 2.2) is more involved and
problem specific. The best approach strongly depends on the available a priori knowl-
edge on the number and location of the eigenvalues. In scenarios where little a priori
knowledge is available, some of the ideas presented for the reflection coefficient can be
applied to the discrete spectrum as well. Some possible approaches are discussed in
Section 2.C.

2.6. CONCLUSION

In this chapter, we proposed new higher-order nonlinear Fourier transform algorithms
based on a special class of exponential integrators. We also showed that one of these
algorithms can be made fast using special higher-order exponential splittings. The ac-
curacy of the fast algorithm was improved even further, to sixth-order, using Richardson
extrapolation. To the best of our knowledge this is the first fast sixth-order NFT algorithm
ever presented in the literature. Numerical demonstrations showed that the proposed
algorithm is highly accurate and provides much better complexity-accuracy trade-offs
than existing algorithms. We finally remark that the development of a fast higher-order
inverse NFT is an interesting open topic for future research.
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Figure 2.14: Error vs. Execution time trade-off of FCF and FCF_RE algorithms for Example 2.
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Figure 2.15: Error vs. Execution time trade-off of FCF and FCF_RE algorithms for Example 3.
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Figure 2.16: The number of FLOPs and measured execution times of a slow fourth-order algorithm and its fast
variant.

2.A. COMPARISON OF FLOP COUNTS AND EXECUTION TIMES
In this section we show a comparison between the number of floating-point operations
(FLOPs) and execution times of two algorithms proposed in this chapter. We counted all
the operations of the slow algorithm and the fast algorithm based on the CF[4]

2 integra-
tor. We list the different operations and how often they occur in Table 2.1. For the FFT
and CZT, the size of the input is also specified. The number of FLOPs required for each
operation type are provided in Table 2.2. Note that these values are only rules of thumb
and vary widely across programming languages and CPU architectures. The number of
FLOPs required for the fast scattering step (see Section 2.4.1) is given by

FLOPs(Fast scattering of size N)

=
⌈log2 N⌉∑

k=0

2⌈log2 N⌉−k
(

12FLOPs(FFT of size(2k+1 +1))

+ (8FLOPs(Mult)+4FLOPs(Add))(2k+1 +1)
)

.

(2.29)

In Figure 2.16, we plot the total number of FLOPs and the execution times from our MAT-
LAB implementations against the number of given samples D . At medium to high num-
ber of samples we see that the MATLAB execution times match the number of FLOPs
very well. Moreover the crossover point at which the fast algorithm becomes faster than
the slow variant (D > 300 in Figure 2.16) is almost the same. At lower number of samples,
the execution times deviate from the number of FLOPs. This is due to the unaccounted
overheads dominating over the floating-point operations.

2.B. INTERPOLATION BASED ON FOURIER TRANSFORM
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Table 2.1: Number of operations per type

Operation
Algorithm

CF[4]
2 FCF[4]

2
FFT (no, sz) 3, D 3, D

Multiplication
14D +9M +

18DM
86D +4(M +1)

Addition 4(D +1)+10DM 34D +6
Division 2DM 24D +M

Conjugation 2D 2D

Square-root 2DM 2D

sinh 2DM -
cosh 2DM -
cos - 4D

sinc - 4D

Exponential 2M 2M

CZT (no, sz) - 2, 4D +1
Fast scattering

(no,sz)
- 1, 2D

The abbreviations no and sz are short for number and
size respectively. All operations are assumed to be on
complex numbers. The number of signal samples (D)
is assumed to be greater than the number of reflection
coefficient samples (M) being computed, i.e. D ≥ M .

function qs = bandlimited_interp (tn ,qn ,ts)

% Inputs

% tn - Sorted vector of equispaced points at

% which qn samples are known

% qn - Vector of signal samples at

% points tn

% ts - Value by which samples are

% to be shifted

% Output

% qs - Vector of interpolated signal

% samples at tn -ts

ep = tn (2) -tn (1);

Qn = fft(qn);

N = length (qn);

Np = floor(N/2);

Nn = -floor ((N -1) /2);

Qn = Qn.* exp (2i*pi *[0:Np ,Nn : -1]* ts/(N*ep));

qs = ifft(Qn);

end



2.C. COMPUTING EIGENVALUES

2

53

Table 2.2: Number of FLOPs for various operations

Operation Number of FLOPs
FFT of size N 5N log2 N

Multiplication 1
Addition 1
Division 4

Conjugation 1
Square-root 4
sinh or cosh 8

sin or cos 8
sinc 12

Exponential 8
CZT of size N 3(5(2N −1)log2(2N −1))

Fast scattering of size N See (2.29)
The number of FLOPs for the basic operations
have been taken from [176, p. 5]. The number of
FLOPs for a sinc are the sum of number of FLOPs
for a sin and a division. The number of FLOPs
for a FFT are based on the asymptotic number
of operations for the radix-2 Cooley-Tukey algo-
rithm [177, p. 3]. The number of FLOPs for a CZT
are approximated using three FFTs of size 2N−1.

2.C. COMPUTING EIGENVALUES

Recall that for the case of focusing NSE (κ = 1), the nonlinear Fourier spectrum has
two parts: a continuous and a discrete part. In this section, we are concerned with the
numerical computation of the discrete part. We first mention some of the existing ap-
proaches and then show how one of them can be extended to work with the new fast
higher-order NFT algorithms. We will also show that Richardson extrapolation can be
applied to improve the accuracy at virtually no extra computational cost.

2.C.1. EXISTING APPROACHES

Finding the eigenvalues consists of finding the complex upper half-plane roots of the
function a(λ). Most of the existing approaches can be classified into four main cate-
gories.

1. Search methods: Newton’s method.

2. Eigenmethods: Spectral methods based on the solution of a suitably designed
eigenproblem [68].

3. Gridding methods: They find λk using iterative methods or optimized grid search
[68], [119]. Recently a method based on contour integrals was proposed [124].
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4. Hybrid methods: Any combination of the above. Eigenmethods with rougher sam-
pling can e.g. be used to find initial guesses for a search method [88].

Our proposed method will be a hybrid of a eigenmethod and a search method in the
spirit of [88], where an eigenproblem is solved to obtain initial guesses for Newton’s
method.

2.C.2. PROPOSED METHOD

Remember that the discrete spectrum consists of eigenvalues, which are the zeros of a(λ)
in the complex upper half-plane (H), and their associated residues. We start with dis-
cussing an approximation of a(λ) that will be useful for locating the eigenvalues. From
(2.3), (2.4) and (2.5) we can write

a(λ) = lim
t→∞

φ1(t ,λ)e iλt . (2.30)

Over the finite interval [T−,T+] using (2.7) we can see that

a(λ) ≈ H1,1(λ)e iλT−e iλT+ . (2.31)

Hence we hope that the zeros of H1,1(λ) are approximations of the zeros of a(λ) if the sig-
nal truncation and discretization errors are small enough. In Section 2.4.1 we explained
how H(λ) can be approximated by a rational function in a transformed coordinate z.
Hence we can further write

a(λ) ≈
ânum(z)

âden(z)
e iλT−e iλT+ , (2.32)

where ânum(z) and âden(z) are polynomials in z(λ). Let ânum(z) = âN zN + âN−1zN−1 +
. . .+ â0. Thus ânum(z) will have N zeros. These zeros or roots of ânum(z) can be found
using various methods [178]. Of these N zeros, there should be K (typically, K ≪ N )
values that are approximations of zeros of a(λ) in H.

EXAMPLE

We would like to add clarity through a visual representation of the roots. We choose the
signal from Example 1 with D = 29. We plot all the zeros of ânum(z) of FCF[2]

1 with ‘x’ in
Figure 2.17. Here z = exp(iλh). We can then map these zeros back to obtain values of λ.
These are plotted with ‘x’ in Figure 2.18. From the definition of discrete spectrum, we can
filter out all the values that are not in H. Recall that we can resolve the range |Re(λ)| <
π/h. (See Section 2.4.1.) Since we observed that spurious eigenvalues tend to cluster
around |Re(λ)| = π/h, we filter out the corresponding roots of ânum(z). More precisely
we keep only values of λ for which |Re(λ)| < 0.9π/h. The filtered roots are plotted in
Figures 2.17 and 2.18 with ‘o’. For the chosen value of q̊ = 5.4 the set of eigenvalues is
Λ = [3+4.9i, 3+3.9i, 3+2.9i, 3+1.9i, 3+0.9i]. From Figure 2.18 we see that the values
marked with ‘o’ are indeed approximations of the values in set Λ. However, there is no
guarantee that we will always be able to locate approximations for all values in Λ as that
depends on several factors, some of which are the signal magnitude qo , signal interval
[T−,T+], step-size h and values of the eigenvalues themselves.
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Figure 2.17: Zeros of ânum(z) for Example 1 with D = 29.

For the example chosen in the visual demonstration, the number of zeros is N = 1024
and the number of eigenvalues is K = 5. For the chosen mapping from λ→ z, the K val-
ues of interest will always lie inside the unit circle in Figure 2.17 and most other spurious
zeros of ânum(z) will lie on the unit circle. Even with the best eigenmethods available for
polynomial root-finding, which have a complexity of O (N 2) [179], execution time grows
very steeply, making this approach infeasible for large N . To reduce the complexity, it
was suggested in [88] to sub-sample the given signal to reduce the dimensionality of the
root-finding problem. The algorithm is summarized in Figure 2.19.

We now discuss the three stages of the algorithm in detail.

1. Root finding from a subsampled signal

The given signal qn is subsampled to give qsub
n with Dsub samples. The corre-

sponding step-size is hsub. There are no results for the minimum number of sam-
ples that guarantee that all eigenvalues will be found. One choice can be based
on limiting the overall computational complexity to O (D log2 D), which is the
complexity for the reflection coefficient. For a root-finding algorithm with O (D2)

complexity, we choose to use Dsub = round
(
√

D log2 D
)

samples. The polynomial

ânum(z) is then built from these Dsub samples. For FCF[4]
2 , the non-equispaced

samples should be obtained from the original D samples and not the Dsub sam-
ples. An eigenmethod is then used to find all zeros of ânum(z). We used the
algorithm in [179]. The values of z are mapped backed to λ and filtered to remove
implausible values.

2. Root refinement using Newton method

The Newton method based on the slow CF methods is used for root refinement.
The derivative da(λ)/dλ is calculated numerically along with a(λ) as in [116] using
all the given samples qn . The values of λ that remain after filtering in the previous
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Figure 2.18: Mapped zeros of ânum(z) for Example 1 with D = 29.

Input: Samples q0, . . . , qD−1, Dsub, [T−,T+]
Output: Estimated eigenvalues λ̂k

1: Subsample the given samples → qsub
n := qn⌊D/Dsub⌉, where ⌊·⌉ rounds to the closest

integer.
Build a polynomial approximation ânum(z) using the Dsub subsampled samples.
Apply a fast eigenmethod to find the roots of ânum(z).
Filter the roots.

2: Refine the roots via Newton’s method using all samples.
Filter the refined roots.

3: Apply Richardson extrapolation to the unrefined and refined roots.

Figure 2.19: Algorithm : Subsample and refine

step are used as the initial guesses for the Newton method. We chose to stop the
iterations if the change in value goes below 10−15 or if a maximum of 15 iterations
is reached. The resulting roots are filtered again.

3. Richardson extrapolation

We pair the roots resulting from the Newton step, λ̂Newton
k

, with the corresponding

initial guesses λ̂init
k

. Then, we apply Richardson extrapolation:

λ̂k =

(
hsub

h

)r
λ̂Newton

k
− λ̂init

k
(

hsub
h

)r
−1

. (2.33)

λ̂k is then an improved approximation and constitutes the discrete part of the
FCF_RE algorithm. It may so happen that more than one λ̂init

k
converge to the

same λ̂Newton
k

. In such cases the value λ̂init
k

closest to λ̂Newton
k

should be used for
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Richardson extrapolation. The other values λ̂init
k

that also converged to the same

λ̂Newton
k

should be treated as spurious values and discarded.

The numerical algorithms may not find particular eigenvalues or find spurious ones.
Let Λ̂ be the set of approximations found by an algorithm. To penalize both missed val-
ues and incorrect spurious values at the same time, we define the error

EΛ= max
{

max
λi∈Λ

min
λ̂ j ∈Λ̂

|λi − λ̂ j |,

max
λ̂ j ∈Λ̂

min
λi∈Λ

|λi − λ̂ j |
}

.
(2.34)

Note that the first term in the outer maximum grows large if an algorithm fails to ap-
proximate a part of the set Λ while the second term becomes large if an algorithm finds
spurious values that have no correspondence with values in Λ. EΛ is expected to be of
order r for an algorithm of order r .

2.C.3. NUMERICAL EXAMPLE

In this section, we compare different variants of our proposed algorithm using Example
1. We compute the error EΛ for the following three types of algorithms:

1. Discrete part of FCF algorithms. An eigenmethod is applied to the approximation
ânum(z) built using all samples. No sub-sampling is used.

2. Discrete part of FCF algorithms with sub-sampling. Only steps 1 and 2 of the algo-
rithm mentioned above.

3. Discrete part of FCF_RE algorithms. All the three steps mentioned above.

To demonstrate the effect of sub-sampling, we show in Figure 2.20 the errors for the
second- and fourth-order algorithms of types 1 and 2. For h > 0.3 the errors are high ei-
ther due to failure to find approximations close to the actual eigenvalues or due to spu-
rious values. For h ≤ 0.3, FCF[4]

2 of type 1 and FCF[2]
1 of type 2 find exactly five values that

are close approximations of the values in Λ. However FCF[2]
1 of type 1 and FCF[4]

2 of type

2 find good approximations only for h ≤ 0.06. The error of FCF[2]
1 algorithms decreases

with slope two and that of FCF[4]
2 algorithms decreases with slope four as expected from

the order of the underlying numerical schemes.
In Figure 2.21 we show the errors for the second- and fourth-order algorithms of

type 2 and 3 to indicate the advantage of the extrapolation step. The extrapolation step
improves the approximation significantly for FCF_RE[2]

1 while adding negligible com-
putation cost to the algorithm. However, there is only minor improvement in case of
FCF_RE[4]

2 over FCF[4]
2 .

In Figure 2.22 we plot the execution times for the FCF algorithms of types 1 and 2.
The execution times of algorithms of type 3 are almost the same as those of type 2. For
type 1 algorithms, these times include the time required to build ânum(z) and the time
taken by the root-finder. For algorithms of type 2, the additional time required for root-
refinement by Newton’s method is also included. Even with sub-sampling, we see that
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Figure 2.20: Error in approximation of the eigenvalues by the fast second- and fourth-order algorithms of type
1 (no sub-sampling) and type 2 (sub-sample and refine, no Richardson extrapolation).

the execution times are an order of magnitude higher than the execution times for the
continuous part. The FCF_RE algorithms seem to provide the best trade-off between
accuracy and computation cost similar to the case of continuous part. The overall com-
putational complexity may be decreased by using alternative methods to find the initial
guesses.
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Figure 2.21: Error in approximation of a eigenvalues computed using FCF and FCF_RE algorithms.
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Figure 2.22: Execution time of FCF[4]
2 and FCF[4]

2 algorithms for computing eigenvalues of Example 1.
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ON COMPUTING

HIGH-DIMENSIONAL RIEMANN

THETA FUNCTIONS

CHAPTER ABSTRACT
Riemann theta functions play a crucial role in the field of nonlinear Fourier analysis,
where they are used to realize inverse nonlinear Fourier transforms for periodic signals.
The practical applicability of this approach has however been limited since Riemann
theta functions are multi-dimensional Fourier series whose computation suffers from
the curse of dimensionality. In this chapter, we investigate several new approaches to
compute Riemann theta functions with the goal of unlocking their practical potential.
Our first contributions are novel theoretical lower and upper bounds on the series trun-
cation error. These bounds allow us to rule out several of the existing approaches for the
high-dimension regime. We then propose to consider low-rank tensor and hyperbolic
cross based techniques. We first examine a tensor-train based algorithm which utilizes
the popular scaling and squaring approach. We show theoretically that this approach
cannot break the curse of dimensionality. Finally, we investigate two other tensor-train
based methods numerically and compare them to hyperbolic cross based methods. Us-
ing finite-genus solutions of the Korteweg-de Vries (KdV) and nonlinear Schrödinger
(NLS) equations, we demonstrate the accuracy of the proposed algorithms. The tensor-
train based algorithms are shown to work well for low genus solutions with real argu-
ments but are limited by memory for higher genera. The hyperbolic cross based algo-
rithm also achieves high accuracy for low genus solutions. Its novelty is the ability to
feasibly compute moderately accurate solutions for high dimensions (up to 60). It there-
fore enables the computation of complex inverse nonlinear Fourier transforms that were
so far out of reach.

The text in this chapter is based on the article S. Chimmalgi and S. Wahls, “On Computing Riemann Theta
Functions," which has been submitted to IEEE Open Journal of Signal Processing.
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3.1. INTRODUCTION
The Riemann theta function

θ(z |Ω) =
∑

n∈Zg

e2πi
( 1

2 n·Ωn+n·z
)

, z ∈C
g , (3.1)

where Ω =Ω
T ∈ C

g×g has a strictly positive definite imaginary part and · indicates the
dot product, is a particular multi-dimensional Fourier series that plays a key role in the
area of nonlinear Fourier analysis [39], [41]. There, it is used to synthesize periodic sig-
nals as part of inverse nonlinear Fourier transforms. Periodic nonlinear Fourier analysis
has recently received a lot of attention in nonlinear signal processing problems arising in
fiber-optic communications [102], [107], [111], [112], [128] and coastal and ocean engi-
neering [30], [180]–[185]. The Riemann theta function also sees application in quantum
coding [186], algebraic geometry [187]–[189], number theory [190], discrete mathemat-
ics [191], cryptography [192] and statistics [193]. Despite its applicability in many fields,
the practical utility of the Riemann theta function is limited to low number of dimen-
sions due to its high computational cost. While there has been much work on designing
efficient algorithms for the computation of the Riemann theta function [30], [49], [152],
[194], [195], the complexity of these methods nevertheless increases exponentially with
the number of dimensions. Hence, they are limited to low-dimensional problems. In
this chapter we propose novel approaches that overcome this limitation and allow us
to synthesize high-dimensional non-trivial signals for fiber-optic communications and
coastal engineering problems.

Algorithms for computing the Riemann theta function can be primarily classified
into two categories. The first category of algorithms concentrate on computing the Rie-
mann theta function value up to a certain number of bits [194]. The second category of
algorithms aim at computing the theta function value up to a small threshold. In this
chapter we focus on the second category of algorithms [30], [49], [152], [195]. These
methods approximate the theta function value by summing a truncated series. The
number of terms in the summation grows exponentially with the number of dimensions
g . Hence, the computational cost grows exponentially as well. It becomes infeasible to
compute the sum even for moderate values of g . This is famously known as the curse of

dimensionality. The curse is seen in many high-dimensional problems where the num-
ber of operations required for a particular action grow exponentially with the underly-
ing dimensionality [196]. In recent years tensor based methods have been increasingly
employed to mitigate the curse of dimensionality. They have been applied with great
success in signal processing, statistics, data mining, and machine learning [197]–[205].
In particular, they have been used to develop efficient algorithms for computing multi-
dimensional Fourier series [206], [207]. Another approach used to reduce the computa-
tion cost of the multi-dimensional Fourier series is the utilization of special index sets
[208]–[212].

In this chapter we study the applicability of tensor based algorithms and special in-
dex sets to efficiently compute approximations of the high-dimensional Riemann theta
function. Our main contributions are: 1) Lower and upper bounds on the error in-
troduced from the series truncation for certain index sets, 2) theoretical proof that a
standard scaling-and-squaring approach applied to tensor-train approximations cannot
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break the curse of dimensionality, and 3) numerical investigations of other tensor-train
and hyperbolic-cross based algorithms. To the best of our knowledge, this is the first time
that tensor-train and hyperbolic-cross methods have been proposed for the computa-
tion of Riemann theta functions. In our numerical experiments, we are able to compute
Riemann theta function values for very high number of dimensions (g = 60) that dra-
matically exceed the current state of the art in this area, which significantly extends the
range of practical problems to which Riemann theta functions can be applied.

The remainder of this chapter has the following structure. In Section 3.2 we introduce
some preliminaries about the Riemann theta function and the tensor-train decomposi-
tion. In Section 3.3 we derive some lower bounds and an upper bound on the series
truncation error for certain index sets. In Section 3.4 we provide a theoretical analysis
to prove that a tensor-train based approach using scaling and squaring cannot break the
curse of dimensionality. In Section 3.5 we present two alternatives for the tensor-train
based algorithm and use the hyper-elliptic solutions of the KdV and NLS equations as
numerical examples to study the accuracies of the algorithms. We conclude our findings
in Section 3.6.

NOTATIONS

C - complex numbers; N - Natural numbers; Z - Integers; #A denotes the number of
elements in the set A. We use e(·) and exp(·) interchangeably to indicate the exponential
function (applied element-wise for tensors).

3.2. PRELIMINARIES
In this section, we recapitulate several results related to the computation of the Riemann
theta function from the literature. First, the most common ways to truncate the infi-
nite series (3.1) are introduced. Then, a technique to make truncation more efficient
by transforming the Riemann matrix Ω that is known as Siegel transform is discussed.
Finally, tensor trains are introduced as a potential tool to evaluate the truncated series.

3.2.1. TRUNCATED RIEMANN THETA FUNCTIONS

For numerical purposes, the Riemann theta function (3.1) is typically approximated by a
truncated series of the form

θ̂(z |Ω) =
∑

n∈N g (N )

C(n)e2πi(n·z), (3.2)

where C is a g -dimensional tensor with

C(n) = eiπn·Ωn. (3.3)

The index set N g = N g (N ) depends on a truncation parameter N ∈ N. Before we can
introduce several popular index sets, the definition of the matrix p-norms has to be re-
called.

Definition 1. Let p ∈ N∪ {∞}. The p-norm of z ∈ C
g is ‖z‖p := (|z1|p + ·· · + |z|pg )1/p for

p <∞ and ‖z‖p := max{|z1|, . . . , |zg |} for p =∞. The corresponding induced p-norm of a

matrix A ∈C
g×g is ‖A‖p := max z∈Cg

‖z‖p≤1
‖Az‖p .
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The first popular family index set, I g , is defined as follows.

Definition 2. For any N ∈N and p ∈N∪ {∞}, we set

I g =I g (p, N ) :=
{

n ∈Z
g : ‖n‖p ≤ N

}

.

The most common choices of p are p = 1 (summation over a cross-polytope), p = 2
(summation over a hypersphere), and p =∞ (summation over a hypercube). The sym-
metric hyperbolic cross H g is another interesting index set [213, Figure 2.1(b)]. It is
defined as follows.

Definition 3. For any N ∈N, we set

H g =H g (N ) :=
{

n ∈Z
g :

g∏

j=1

max
(

1,2|n j |
)

≤ N

}

.

The hyperbolic cross H g can be built recursively using the algorithm given in [214,
Section 2.6]. In contrast to the index sets I g (p, N ), the number of elements in the hy-
perbolic cross H g does not grow exponentially in the genus g if N is fixed.

Lemma 1. The number of elements in H g (N ) satisfies

#H g (N ) ≤ e2N 2g log2 N .

Proof. Since 1 + |n j | ≤ max(1,2|n j |), we have that max(1,2|n j |) ≤ N ⇒ 1 + |n j | ≤ N .

Therefore, H g (N ) ⊆ {n ∈ Z
g :

∏g

j=1(1 + |n j |) ≤ N }. The bound [215, Eq. 10.2.3] im-

plies #H g (N ) ≤ e2N 2+log2 g = e2N 2N log2 g . The lemma now follows since N log2 g =
(2log2 N )log2 g = (2log2 g )log2 N = g log2 N .

The Riemann theta function is well-known to converge absolutely and uniformly in
z [216, Ch. II.1]. Therefore, we have the following result.

Theorem 1 (Convergence). Let Z ⊂C be compact. Then

lim
N→∞

max
z∈Z

∣
∣θ(z |Ω)− θ̂(z |Ω)

∣
∣= 0

for any of the index sets I g and H g .

3.2.2. SIEGEL TRANSFORM

For certain Riemann matrices Ω, it may happen that an index set contains many coef-
ficients that could be neglected during the summation. If we sum over a hypersphere,
this issue would for example arise if the indices of the non-negligible coefficients form
an hyper-ellipsoid with high eccentricity. An algorithm for finding an hyper-ellipsoid of
indices that includes all terms above a threshold is given in [49, Section 4]. The algo-
rithm for identifying the hyper-ellipsoid of indices however unfortunately has a signifi-
cant computational cost itself that grows sharply with increasing g . Furthermore, even
if the hyper-ellipsoid is known, the number of terms inside it can still be very large [49,
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p. 1734]. In [49, Section 7], it was therefore proposed to use a modular transform of the
form

Ω 7→ Ω̂= (AΩ+B)(CΩ+D)−1, A,B,C,D ∈Z
g , (3.4)

where the integer matrices A, B, C and D must satisfy

[
A B

C D

][
0g Ig

−Ig 0g

][
A B

C D

]T

=
[

0g Ig

−Ig 0g

]

, (3.5)

known as Siegel transformation to reduce the eccentricity of the set of non-negligible
indices. The relation between the two Riemann theta functions that correspond to the
two Riemann matrices Ω and Ω̂ is then given by [216, Eq. 5.1]

θ(z |Ω) =
θ((CΩ+D)−1z | Ω̂)

ζ
p

det(CΩ+D)eπiz·(CΩ+D)−1Cz
, (3.6)

where ζ is an eighth root of one, i.e., ζ8 = 1. The main computational step in the con-
struction of the modular transform is the approximation of the shortest vector in a lat-
tice. In [49], the authors employed the LLL algorithm [217] for that purpose. The com-
plexity of the LLL algorithm is only polynomial in the g , but the error in the approxima-
tion increases exponentially in g . Several authors therefore investigated replacements
for the LLL algorithm [152], [193].

The authors of [153] mention that once a Siegel transform has been applied, the sum-
mation can be carried over a hyper-cube instead of the hyper-ellipsoid as it was done in
[49], at an additional cost.

3.2.3. TENSOR-TRAIN DECOMPOSITION

The truncated Riemann theta function (3.2) is a multi-dimensional Fourier series. In
[206], it was observed that if the coefficient tensor has a low-rank representation in the
tensor-train format [218], a multi-dimensional Fourier series can be evaluated with low
computational complexity. The idea was to exploit that a multi-dimensional Fourier se-
ries constitutes the inner product between the coefficient tensor and the rank one tensor
formed by the terms e2πin·z, which can be then computed efficiently using the method
in [218, Section 4.2]. Later in this chapter, we will exploit this idea for the computation of
the truncated Riemann theta function. Since this requires us to investigate approxima-
tions of the coefficient tensor (3.3), we now quickly recall some facts about the tensor-
train format.

Any given tensor Y can be approximated arbitrarily well by a tensor X ≈ Y of the form
X = G(1) ×1 G(2) ×1 · · ·×1 G(g ), [218], where ×1 is the contracted product [219, Section 2.2]
and the G(k) are 3rd-order tensors with sizes Rk−1 ×Nk ×Rk , k = 1, . . . , g and R0 = Rg = 1.

Any tensor of this form is said to be a tensor train. The tensors G(k) are called the tensor-
train cores, while the integers R1, . . . ,Rg−1 are called the tensor-train ranks. A tensor-train
can alternatively be written entry-wise as a product of slice matrices,

xn = xn1,n2,...,ng = G(1)
n1

G(2)
n2

· · ·G(g )
ng

, (3.7)

where G(k)
nk

= G(k)(:,nk , :) ∈ C
Rk−1×Rk is the lateral slice of the nth tensor-train core, k =

1, . . . , g , and G(1)
n1

∈ C
1×R1 and G

(g )
ng

∈ C
Rg−1×1. There exist efficient algorithms with which
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a tensor-train approximation of a given tensor can be found under accuracy and rank
constraints, see e.g. [218], [220].

3.3. ANALYSIS OF THE TRUNCATION ERROR

For the numerical evaluation of the truncated Riemann theta function θ̂(z |Ω), the trun-
cation parameter N has to be chosen large enough such that the truncation error

|θ(z |Ω)− θ̂(z |Ω)| =
∣
∣
∣
∣
∣

∑

n∉N g (N )

cne2πin·z
∣
∣
∣
∣
∣

(3.8)

is sufficiently small. The truncation error depends on the choice of the index set N g (N ).
The parameters g and N furthermore determine the complexity of evaluation methods
for the truncated Riemann theta function. In this section, we show that the two param-
eters are connected. We derive lower and upper bounds on the truncation parameter
N such that a certain truncation error can be guaranteed. Since we are interested in
high dimensional cases, their behavior is studied for large g . The consequences of these
studies are discussed.

3.3.1. LOWER BOUNDS ON THE TRUNCATION ERROR

Some authors have proposed to choose the truncation parameter N such that the trun-
cated tensor coefficients satisfy |cn| < ε, where ε> 0 denotes some small parameter such
as machine precision [153, Section 3.3], [152, p. 150], [30]. However, even if the errors
in the individual coefficients cn are very small, the truncation error (3.8) can be large
since the number of neglected coefficients grows exponentially with the genus g . (Note
that it is possible to sum terms accurately even when the numbers have significantly dif-
ferent orders of magnitude and are smaller than the machine precision [221]. Hence, it
would be possible include coefficients below machine precision also in finite precision
arithmetic.) The following proposition, which is our first contribution, formalizes this
observation for most of the index sets I g . It demonstrates that the strategy of truncat-
ing coefficients below machine precision can achieve small truncation errors only for
small values of g with these index sets since the truncation error in general grows expo-
nentially in the number of dimensions g if N is fixed.

Proposition 1. Let the index set be N g = I g (p, N ) for any p ∈N, p ≥ 2. The truncation

error is then lower bounded as

∣
∣θ(z |Ω)− θ̂(z |Ω)

∣
∣≥ e

g

(

log(2)−πλmax

⌈
N+1

ppg

⌉2
)

(3.9)

at z = 0g×1 whenever ℜ{Ω} = 0g , where λmax denotes the largest eigenvalue of ℑ{Ω}.

Proof. Let J g (N + 1) denote the index set that contains all n ∈ Z
g of the form n =

⌈
N+1

ppg

⌉[

s1 s2 · · · sg

]T
where sk =±1 for k = 1,2, . . . , g . Then

n ∈J g (N +1) ⇒‖n‖p ≥ N +1 ⇒ n ∉I g (p, N ). (3.10)
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The truncation error thus satisfies

∣
∣θ(z |Ω)− θ̂(z |Ω)

∣
∣=

∣
∣
∣
∣
∣
∣

∑

n∉I g (p,N )

cn exp(2πin ·z)
︸ ︷︷ ︸

=1

∣
∣
∣
∣
∣
∣

(cn ∈R
+) =

∑

n∉I g (p,N )

cn

(3.10) ≥
∑

n∈J g (N+1)

e−πn·ℑ{Ω}n

(n ·ℑ{Ω}n ≤λmax‖n‖2
2) ≥

∑

n∈J g (N+1)

e
−πλmaxg

⌈
N+1

ppg

⌉2

(since #J g (N +1) = 2g ) = 2g e
−πλmaxg

⌈
N+1

ppg

⌉2

= e
g

(

log(2)−πλmax

⌈
N+1

ppg

⌉2
)

To the best of our knowledge, this is the first lower bound on the approximation error
of Riemann theta functions. Note that in order to keep the lower bound (3.9) on the
truncation error from blowing up as g increases, the truncation parameter N should
grow at least proportionally to ppg .

The previous result did not cover the cases p ∈ {1,∞}. The next proposition provides
a weaker but more lower general bound on the truncation error, which shows that it must
grow at least linearly in the genus g .

Proposition 2. Let the index set be N g = I g (p, N ) for any p ∈ N∪ {∞}. The truncation

error is then lower bounded as

∣
∣θ(z |Ω)− θ̂(z |Ω)

∣
∣≥ 2g e−πλmax(N+1)2

at z = 0g×1 whenever ℜ{Ω} = 0g , where λmax denotes the largest eigenvalue of ℑ{Ω}.

Proof. Let J g (N +1) denote the index set that contains all n ∈Z
g for which exactly one

element is non-zero, and this element is either N +1 or −(N +1). Then

n ∈J g (N +1) ⇒‖n‖p = N +1 ⇒ n ∉I g (p, N ). (3.11)
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The truncation error thus satisfies

∣
∣θ(z |Ω)− θ̂(z |Ω)

∣
∣=

∣
∣
∣
∣
∣
∣

∑

n∉I g (p,N )

cn exp(2πin ·z)
︸ ︷︷ ︸

=1

∣
∣
∣
∣
∣
∣

(cn ∈R
+) =

∑

n∉I g (p,N )

cn

(3.11) ≥
∑

n∈J g (N+1)

e−πn·ℑ{Ω}n

(n ·ℑ{Ω}n ≤λmax‖n‖2
2) ≥

∑

n∈J g (N+1)

e−πλmax(N+1)2

(since #J g (N +1) = 2g ) = 2g e−πλmax(N+1)2

The next proposition finally provides a similar bound for the hyperbolic cross.

Proposition 3. Let the index set be N g = H g (N ). The truncation error is then lower

bounded as
∣
∣θ(z |Ω)− θ̂(z |Ω)

∣
∣≥ 2g e−πλmax

⌈
N+1

2

⌉2

at z = 0g×1 whenever ℜ{Ω} = 0g , where λmax denotes the largest eigenvalue of ℑ{Ω}.

Proof. Let J g (N +1) denote the index set that contains all n ∈Z
g for which exactly one

element is non-zero, and this element is either
⌈

N+1
2

⌉

or −
⌈

N+1
2

⌉

. Then

n ∈J g (N +1) ⇒
g∏

j=1

max
(

1,2|n j |
)

≥ N +1

⇒n ∉H g (N ).

(3.12)

Following the same steps as in the proof of Prop. 2, we arrive at the lower bound on the
truncation error for H g .

3.3.2. AN UPPER BOUND FOR I g (∞, N )
The lower bounds in the previous subsection have shown that the truncation parameter
N in general has to grow with the genus g if small truncation errors are desired. We are
now investigating upper bounds. Upper bounds for the truncation errors of transformed
Riemann theta functions that are summed over ellipsoids are provided in [49, Thm. 3],
[195, Thm. 3.1]. Upper bounds with respect to the hyperbolic cross H g (N ) and I g (1, N )
are provided in [212, Ch. 8.1] for the case z ∈R

g , but the influence of the genus on these
bounds is unfortunately not investigated.

The following proposition, which is our next contribution, shows that the truncation
error can be bounded independently of the genus for the hypercube if the truncation
parameter grows slightly faster than Ω(

p
g ) for real z, or Ω(g ) for non-real z. This case

is later of special interest since it is possible to evaluate the truncated Riemann theta
function fast over the hypercube if the coefficient tensor is in some sense low rank.
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Proposition 4. Let the index set be I g (∞, N ) and fix any δ ∈ (0,1) and a > 0. Then there

exists a constant c > 0 (independent of g and N ) such that the truncation error is upper

bounded as

∣
∣θ(z |Ω)− θ̂(z |Ω)

∣
∣≤

∞∑

k=N+1

e−(π/2)‖ℑ{Ω}−1‖−1
p k2

whenever cN 2−δ ≥ g and ℑ{z} = 0g×1. If ‖ℑ{z}‖∞ ≤ a, the same bound holds whenever

cN ≥ g (for a different c > 0).

Proof. Recall that from the proof of Theorem 1 that
∣
∣θ(z |Ω)− θ̂(z |Ω)

∣
∣

≤
∞∑

k=N+1

eg log(2k+1)+2π‖ℑ{z}‖∞g k−π‖ℑ{Ω}−1‖−1
p k2

.

We first consider the case g ≤ cN 2−δ and ℑ{z} = 0g×1. The constants are then chosen

as M := maxx>0
log(1+2x)

xδ > 0, which is finite because x−δ log(1+ 2x) is continuous and

converges to zero for both x → 0 and x →∞, and c :=
π‖ℑ{Ω}−1‖−1

p

2M
> 0. The bound on the

truncation error becomes
∣
∣θ(z |Ω)− θ̂(z |Ω)

∣
∣

≤
∞∑

k=N+1

ecN 2−δ log(2k+1)−π‖ℑ{Ω}−1‖−1
p k2

≤
∞∑

k=N+1

eck2−δ log(2k+1)−π‖ℑ{Ω}−1‖−1
p k2

=
∞∑

k=N+1

e

(

ck−δ log(2k+1)−π‖ℑ{Ω}−1‖−1
p

)

k2

≤
∞∑

k=N+1

e

(

cM−π‖ℑ{Ω}−1‖−1
p

)

k2

=
∞∑

k=N+1

e−(π/2)‖ℑ{Ω}−1‖−1
p k2

.

In the case g ≤ cN and ℑ{z} 6= 0g×1, we instead choose M := maxx>0
log(1+2x)

x
> 0, c :=

π‖ℑ{Ω}−1‖−1
p

2(M+2πa) > 0. We arrive at the same bound as before:
∣
∣θ(z |Ω)− θ̂(z |Ω)

∣
∣

≤
∞∑

k=N+1

ecN log(2k+1)+2π‖ℑ{z}‖∞cN k−π‖ℑ{Ω}−1‖−1
p k2

≤
∞∑

k=N+1

e

(

cM+2πac−π‖ℑ{Ω}−1‖−1
p

)

k2

≤
∞∑

k=N+1

e−(π/2)‖ℑ{Ω}−1‖−1
p k2

.
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3.3.3. DISCUSSION

In this section, we have found that the truncation parameter N needed to achieve a cer-
tain truncation error (3.8) increases with the genus g . The exact behavior depends on
the choice of the index set N g (N ). We have shown that for the hypersphere I g (2, N ),
N has in general to grow at least as

p
g for real z. Since we have to sum approximately

Vg (N ) ∼ 1p
gπ

(
2πe

g

)g /2
N g terms for the naive evaluation of the truncated Riemann func-

tion, we see that this approach quickly becomes infeasible as the genus g increases. For
the hypercube I g (∞, N ), we have shown that the truncation parameter N has to grow at

most slightly faster than
p

g for real z. Naive evaluation of the truncated Riemann theta
function requires us to sum (2N +1)g terms, which also becomes quickly infeasible. The
complexity of evaluating the truncated Riemann theta function over a hypercube how-
ever becomes low even for large genus and truncation parameter if the coefficient tensor
is approximated well by a low-rank tensor-train [206]. Therefore, we will investigate this
case further in the following.

The behavior of the hyperbolic cross is less clear at the moment. We will later inves-
tigate its performance numerically.

3.4. SUMMING OVER HYPERCUBES USING TENSOR TRAINS

AND SCALING AND SQUARING

The truncated Riemann theta function θ̂(z | Ω) in (3.2) over a hypercube can be rep-
resented as the inner product between the tensor C in (3.3) and the tensor e2πin·z. If
the tensor C has a low rank approximation in the tensor-train format, the complexity of
computing the Riemann theta function value will be low since the tensor-train rank of
the second tensor is one [218, Section 4.2]. The tensor C is the point-wise exponential
of the tensor formed from iπn ·Ωn, which can be represented exactly in the tensor-train
format (see Section 3.B). The most common approach to approximate the pointwise ex-
ponential of a tensor is the scaling and squaring method. In our case, this means that
the truncated Riemann theta function is approximated with

θ̃(z |Ω) =
∑

n∈I g (∞,N )

c̃ne2πin·z, (3.13)

where the coefficient tensor C̃ with terms

c̃n :=
[

K−1∑

k=0

1

k !

( qn

s

)k
]s

, qn :=πin ·Ωn, K , s ∈N,

is an approximation of the true coefficient tensor C with terms

cn = eqn = [eqn/s ]s =
[

∞∑

k=0

1

k !

( qn

s

)
]s

,

in tensor-train format. The scaling and squaring approach is easy to implement and
has been proven to work well for matrices [222]. It has been used for computing the
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elementwise exponential of tensor-trains and other tensor formats [223], [224]. It is also
the method implemented in the tt_exp function in the TT-toolbox [225].

In this section, we analyze the applicability of the scaling and squaring method for
computing the tensor-train approximation of the tensor C in (3.3). For all its merits we
nevertheless show in this section that it is not suitable for our problem.

3.4.1. COMPLEXITY ANALYSIS FOR FIXED K AND s

We now provide a lower bound for the computational cost of evaluating θ̃(z | Ω) using
the efficient inner product approach discussed above. That is, θ̃(z | Ω) is computed as
the inner product between the tensor C̃ and the tensor with terms e2πin·z using the inner
product algorithm in [218, Section 4.2] for tensor trains. (A full description is provided
in Section 3.B.) We start by noticing that the tensor C̃ has the following special diagonal
representation in the tensor train format.

Lemma 2. Let ĝ := g 2+g
2 , R := ĝ K −1

ĝ−1 , and R̂ := R s . The terms c̃n = p s
n of the tensor C̃ have

the tensor train representation

c̃n =
(

P(1)
n1

)⊗s (

P(2)
n2

)⊗s · · ·
(

P
(g )
ng

)⊗s
,

where the inner cores are diagonal R̂ × R̂ matrices, and A⊗s := A⊗·· ·⊗A (s times) denotes

the s-fold Kronecker product of a matrix with itself.

Proof. See Section 3.B.

In the proof of the lemma, it is shown that the rank of the tensor Q is not larger than

R. Since rank(A⊗s ) = rank(A)s , the rank of C̃ therefore cannot be larger than R̂ = R s .
In general, the rank of Q is equal to R. In that case, the rank of C̃ will be equal to R̂.

Otherwise, R̂ provides an upper bound on the rank of C̃.

Proposition 5. The computational cost of evaluating θ̃(z |Ω) using the standard tensor-

train inner product algorithm [218, Section 4.2] applied to the diagonal representation in

Lemma 1 is lower bounded by Ω
(

(g −1)(2N +1)sR s + (2N +1)R s
)

.

Proof. See Section 3.B.

Note that this lower bound grows exponentially with s even for small parameter val-
ues such as R = 2 and N = 1.

3.4.2. COMPLEXITY ANALYSIS FOR A GIVEN ERROR BOUND

Scaling and squaring can be implemented in different ways, where the freedom mostly
lies in the choice of K and s. These parameters should be chosen such that the approxi-
mation error is below a given bound. Here we consider a simple strategy for choosing K

and s that is similar to the one used in older versions of MATLAB (with Padé approxima-
tions instead of Taylor expansions) [226]. The Taylor polynomial

PK (x) =
K−1∑

k=0

xk

k !
(3.14)
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is a good approximation of exp(x) at x = 0. The worst case approximation error for |x| < 1
can be made arbitrarily small by increasing K . Once such a K is found, the argument z

has to be rescaled such that |z/s| < 1. Since ez = [ez/s ]s , the terms of the coefficient tensor
c̃n = [PK (qn/s)]s approximate cn. The strategy for choosing the parameters therefore is
as follows.

• Choose K large enough so that |exp(x)−PK (x)| ≤ ǫ for all |x| < 1, where ǫ > 0 is a
error parameter [227].

• Choose s large enough so that |z/s| < 1 ∀ z ∈ Z ⊂C.

The following proposition provides a lower bound on the computational complexity of
the scaling and squaring method if K and s are chosen in this way.

Proposition 6. If K and s are chosen as above and we have ℜ{Ω} = 0g , then the nu-

merical complexity of evaluating θ̃(z | Ω) using the standard tensor-train inner prod-

uct algorithm applied to the diagonal representation in Lemma 1 is lower bounded by

o
(

(g −1)(2N +1)πλming N 2Rπλming N 2
)

with λmin being the smallest eigenvalue of ℑ{Ω}.

Proof. For the Riemann theta function we have z = qn = πin ·Ωn. For the index vec-
tor n = [N N . . . N ]T , we have z ≤ −πλming N 2. Thus, to have |z/s| < 1 we need s ≥
πλming N 2. Hence, even for a fixed N , s would grow linearly in g . (Recall from Propo-
sition 2 that N actually has to grow with g to keep the error of the truncated Riemann
theta sum bounded.) Application of Proposition 3 with s ≥ πλming N 2 now provides the

following lower bound on the complexity, o
(

(g −1)(2N +1)πλming N 2Rπλming N 2
)

.

The lower bound on the computational complexity thus grows exponentially in g

even if there are lower and upper bounds on the eigenvalues of ℑ{Ω} that are indepen-
dent of g . Since we sum over (2N +1)g coefficients in the truncated Riemann theta sum,
ǫ should actually decrease with g to keep the error introduced by the approximation of
the coefficient tensor fixed. The constant K is inversely proportional to ǫ and hence K

increases with g increasing the computational complexity even further. Thus, scaling
and squaring is not suited for the numerical computation of high dimensional Riemann
theta functions.

We finally remark that in practice, a rounding procedure is applied to the tensor-
trains to reduce their ranks (like in the implementation tt_exp in the TT-toolbox [225]).
We nevertheless observed in numerical experiments that even with rounding, scaling
and squaring was ill-suited for our purposes.

3.5. NUMERICAL EXPERIMENTS

In this section, several methods for computing truncated Riemann functions (3.2) are
investigated numerically and compared with respect to accuracy, for both low and high
genus cases. First, the choice of algorithms is motivated. Then, the background of the
numerical experiments is discussed. Finally, the results are presented.



3.5. NUMERICAL EXPERIMENTS

3

73

3.5.1. CHOICE OF BENCHMARK ALGORITHMS

We so far considered two different approaches to approximate the Riemann theta func-
tion (3.1). The first approach is the naive computation of the truncated Riemann theta
function (3.2) over the index sets N g (N ) = I g (p, N ) and H g (N ), that were introduced
in Section 3.2. Even for N = 2, the number of elements in I g (p, N ) grows exponen-
tially in the genus g for any p. Hence, naive evaluation of (3.1) can be applied when the
genus g is small for these index sets, but it is not well-suited for computing high-genus
solutions. For the index set I g (∞, N ), we will refer to this approach as the Hypercube

algorithm. When the Riemann matrix is diagonal, the multi-dimensional Riemann theta
function can be computed efficiently using multiple one-dimensional Riemann theta
functions. We will refer to the algorithm that neglects the off-diagonal elements in or-
der to exploit this fact to facilitate fast computation as Hypercube_diag_approx in the
following. This algorithm will allow us to verify that the Riemann matrices used in the
examples cannot be approximated well with just the diagonal part of the matrix. We
furthermore know from Lemma 1 that the complexity of naive computation over the hy-
perbolic cross N g (N ) = H g (N ) grows at a slower rate. Therefore, it might be better
suited for high genus cases. We will refer to this algorithm as Hyperbolic_cross in the
following.

The second approach to approximate the Riemann theta function is to replace the
true coefficient tensor in the truncated Riemann function (3.2) with an approximation in
the tensor-train format. The resulting approximation (3.13) of the Riemann theta func-
tion can then be evaluated with low numerical complexity since it is an inner product
between low-rank tensor-trains. There are different ways how the tensor-train approxi-
mation of the coefficient tensor can be obtained. In the previous section, we showed that
the popular scaling and squaring approach is not a good choice when then the genus g

is high. However, there are other methods for this task. The first method we consider
is from the paper [220] and will be referred to as TT_cross. Specifically, we employ the
dmrg_cross routine from the TT-toolbox [225]. We also investigate the performance of
the funcrs routine from the toolbox, for which unfortunately no reference is provided.
This algorithm will be referred to as TT_funcrs in the following.

3.5.2. GENERATION OF TEST DATA

Riemann theta functions play, as was already mentioned in the introduction, a funda-
mental role in the area of nonlinear Fourier analysis [39]. The (quasi-)periodic solutions
of many integrable systems can be approximated arbitrarily well using so-called hyper-
elliptic (or also finite-gap, finite-genus or finite-band) solutions, which have especially
simple closed-form representations that involve the Riemann theta function. For the
numerical demonstrations we make use of the hyperelliptic solutions of the normalized
KdV equation

ut +uxxx +6uux = 0 (3.15)

and the normalized NLS equation

iqx +qt t +2|q|2q = 0. (3.16)
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The hyperelliptic solutions of the KdV equation are given in terms of the Riemann theta
function as [153, Eq. (19)]

u(x, t ) = 2
∂2

∂x2
logθ(z |Ω), z = kx −ωt +φ, (3.17)

whereΩ is typically called the period matrix in the literature, and k, ω andφ are constant
real vectors. The matrix Ω is of size g × g , where g is as before called the genus. The
parameters Ω, k, ω and φ cannot be chosen freely. The theory of integrable systems
shows that the parameters provide a valid solution if and only they can be derived from
a so-called hyperelliptic Riemann surface, which is a special kind of one-dimensional
complex manifold. In our examples, we computed the parameters numerically using
the methods given in [153, Section 3.2], [30, Section 14.4]. The hyperelliptic Riemann
surfaces that we used are specified by their so-called branch points, which we provide
for each example.

The finite-genus solutions of the NLS equation are given by

q(x, t ) = K0
θ

( z−
2π |Ω

)

θ
( z+

2π |Ω
)eiω0t+ik0z , z± = kx +ωt +δ±, (3.18)

where Ω,k,ω,δ±,k0,ω0 and K0 are again constant parameters [111]. The vectors δ± can
be complex valued and hence arguments to the Riemann theta function z± can be com-
plex valued. As before, these parameters have to be obtained from a hyperelliptic Rie-
mann surface, which is specified by branch points. In our test we used the period matrix
and parameter vectors provided in [111, Table II].

In the following we will look at three scenarios. In the first case we will assess the
accuracy of the algorithms for a genus-2 and a genus-6 solution of the KdV equation. In
the second case we will test the accuracy in computing a genus-3 solution of the NLS
equation for which the Riemann theta function has complex arguments. In the third
case, we compute solutions of the KdV equation up to the very high genus of 60. To the
best of our knowledge, a successful computation of non-trivial Riemann theta functions
for genera this large has never been reported in the literature before.

3.5.3. ACCURACY FOR GENUS-2 AND GENUS-6 KDV SOLUTIONS

In this scenario, we evaluate the accuracy of computing the Riemann theta function for
z ∈ R

g with z as defined in (3.17). The period matrices Ω were derived from the finite-
genus KdV solutions in [153, Section 4]. First we have the genus-2 solution of the KdV
equation with branch points [0 0.5 1 1.5 5]. We compute the Riemann theta function
for 16384 arguments z corresponding to the grid formed by 128 equispaced values of
x in [0,4] and 128 equispaced values of t in [−0.5,0.5]. Secondly we have the genus-6
solution with branch points [0 0.5 2 2.5 4 4.5 6 6.5 8 8.5 10 10.5 12]. We again compute
the Riemann theta function for 16384 arguments z corresponding to the grid formed by
128 equispaced values of x in [0,3] and 128 equispaced values of t in [−0.3,0.3]. The
values of x and t chosen are sufficiently representative for the respective solutions. The
phases φ are set to 0. We then define the point-wise error as

E(z) =
∣
∣θ̂ (z |Ω)− θ̃ (z |Ω)

∣
∣ (3.19)
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where θ̂ (z |Ω) is the reference value and and θ̃ (z |Ω) is the value computed by the other
methods. The reference value θ̂ (z |Ω) is computed using the Hypercube algorithm. The
truncation parameter for each example is fixed by starting with N = 1 and increasing it
until

max
z

∣
∣θ̂ (z |Ω) |N+1 − θ̂ (z |Ω) |N

∣
∣< 1×10−14, (3.20)

where θ̂ (z |Ω) |N is the Riemann theta function calculated by the Hypercube algorithm
with the truncation parameter N . If equation (3.20) is satisfied for N = N̂ , then the val-
ues θ̂ (z |Ω) |N̂+1 are set as the reference values in (3.19). Note that we can compute the
solution classically only because the genera are low in this example. For the algorithms
TT_cross and TT_funcrs, we set the accuracy parameter of the coefficient tensor C ap-
proximation to 10−12.

In Table 3.1 we see the median and maximum of the error E(z), the truncation pa-
rameter N and the number of terms in the summation used for the genus-2 solution. As
the coefficient tensor approximation step in the TT_cross and TT_funcrs algorithms
is non-deterministic, we report the errors for both the algorithms over 20 runs. For the
TT_cross and TT_funcrs algorithms, the number of terms corresponds to the number
of non-zero terms in the tensor-train approximation of the coefficient tensor C̃. The ∗

symbol over the number indicates that the value listed is the median value over 20 runs.
Correspondingly, we report the maximum, median and minimum over the 20 runs of the
median and maximum of the pointwise error E(z). For the Hypercube_diag_approx al-
gorithm we use the same truncation parameter as the reference Hypercube algorithm.
For the Hyperbolic_cross algorithm we initially choose the truncation parameter NHC

such that the number of terms in the sum is close to that of the Hypercube algorithm.
We also run the Hyperbolic_cross algorithm with approximately 50 %, 10 % and 1 %
of NHC as the truncation parameter. The errors for the Hypercube_diag_approx al-
gorithm are high indicating that the period matrix has significant non-diagonal com-
ponents. Both the TT_cross and TT_funcrs algorithms have very low errors and the
variation over the multiple runs is very small. The error for the Hyperbolic_cross al-
gorithm with NHC as the truncation parameter is also low. However, it is higher than
that of the tensor-train based methods. The tensor-train methods on the other hand
use more terms. The errors of the Hyperbolic_cross algorithm increase slowly with
decreasing truncation parameter.

In Table 3.2 we again show the errors for the genus-2 case. The only difference being
the application of the Siegel transform 3.2.2 in all the algorithms. The process to cal-
culate the truncation parameter is repeated as described previously. For this example
the Siegel transform does not lead to a reduction in the truncation parameter. The main
differences in between Tables 3.1 and 3.2 are the maximum errors for the tensor-train
based methods. The maximum errors are significantly higher when the Siegel transform
is applied. The errors for the other algorithms have similar magnitudes.

In Tables 3.3 and Table 3.4 we have the results for the genus-6 example. Without the
Siegel transform the truncation parameter was fixed to 5. The Hypercube_diag_approx

algorithm has high errors indicating the presence of significant non-diagonal terms.
Both TT_cross and TT_funcrs algorithms have low errors while using significantly less
number of terms compared to the classical Hypercube algorithm. The Hyperbolic_cross

algorithm also performs well but is less accurate when compared to the tensor-train
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based methods for the same number of terms. Application of the Siegel transform helps
reduce the truncation parameter to 4 in Table 3.4. Both the TT_cross and TT_funcrs al-
gorithms fail for this genus-6 example when the Siegel transform is applied. We attribute
this to numerical ill-conditioning arising from the faster decay of the coefficients cn. It
seems to become harder to approximate the tensor C̃ with a tensor-train as the range
of magnitudes of the coefficients cn increases. For the Hyperbolic_cross algorithm,
the maximum errors are slightly higher however the median errors are lower when the
Siegel transform is applied.

The number of terms listed in Tables 3.1-3.4 indicate the memory requirements of
the algorithms and is also related to the computational complexity. The total computa-
tion cost for the Hyperbolic_cross algorithm is the sum of the cost for generating the
index set H g and the sum (3.2) over H g . Even with the recursive algorithm from [214,
Section 2.6], the cost of generating the index set grows quickly with N and g . The cost
of the summation depends on the specific implementation and can be made quite effi-
cient using parallelized implementations. For the TT_cross and TT_funcrs algorithms
the computation cost is divided into the cost of computing the tensor-train approxima-
tions and the cost of computing the inner-product. Given the rank of the tensor-train
approximation of C̃, the computation cost of the inner-product can be estimated (see
Section 3.B or [218, Section 4.2]). The cost of computing the tensor-train approxima-
tion C̃ is however non-trivial due to the iterative nature of both the dmrg_cross and
funcrs routines. The actual complexity of all three algorithms depends significantly on
the specific implementations. Hence, we have chosen to avoid a detailed comparison
of the computational complexity and instead provided only the number of terms as an
indicator. Furthermore, they are also an indicator for the memory requirements of the
algorithms, which in our experience has been the major limiting factor for larger genera.

3.5.4. ACCURACY FOR GENUS-3 NLS SOLUTION

The solution of the NLS equation is given as the ratio of Riemann theta function values
(3.18). We use the genus-3 example from [111, Figure 3]. We did not have to compute
the period matrix and parameter vectors from the branch points in this case since they
are provided in [111, Table II]. The theta function values are computed for 16384 argu-
ments z± as defined in (3.18) for 128 equispaced points x ∈ [−0.002,0.002] and for 128
equispaced points t ∈ [−0.08,0.08]. For both the Riemann theta functions in the numer-
ator and denominator of (3.18), the truncation parameter was fixed to be 6 using the
procedure described for the KdV solutions in the previous subsection. The tensor-train
methods were run 20 times and the truncation parameter for the Hyperbolic_cross

algorithm was set to have similar number of terms as the Hypercube algorithm.

In Tables 3.5 and 3.6, we list the errors in computing the Riemann theta function
with arguments z− and the Riemann theta function with arguments z+. In this ex-
ample the arguments z− are complex valued while the arguments z+ are real valued.
Both the tensor-train based algorithms TT_cross and TT_funcrs fail to compute the
Riemann theta function values correctly. We suspect the reason to be the same ill-
conditioning that we observed for the genus-6 KdV solution in the previous subsection.
The Hyperbolic_cross algorithm appears to be moderately accurate even for lower
number of terms. Application of the Siegel transform did not lead to a reduction in the
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Algorithm N #terms E1 = maxz{E(z)} E2 = medianz{E(z)}
Hypercube 4 81 0 by definition 0 by definition

TT_funcrs 4 125∗
max{E1} over 20 runs: 7.3286×10−13 max{E2} over 20 runs: 5.1681×10−13

median{E1} over 20 runs: 7.3286×10−13 median{E2} over 20 runs: 5.1681×10−13

min{E1} over 20 runs: 7.3286×10−13 min{E2} over 20 runs: 5.1681×10−13

TT_cross 4 101∗
max{E1} over 20 runs: 7.3319×10−13 max{E2} over 20 runs: 5.1692×10−13

median{E1} over 20 runs: 7.3313×10−13 median{E2} over 20 runs: 5.1686×10−13

min{E1} over 20 runs: 7.3308×10−13 min{E2} over 20 runs: 5.1675×10−13

Hypercube_diag_approx 4 81 8.3307×10−2 5.3869×10−2

Hyperbolic_cross 20 81 2.4035×10−9 1.5476×10−9

Hyperbolic_cross 10 33 6.2295×10−6 4.3971×10−6

Hyperbolic_cross 2 5 8.5271×10−2 5.9622×10−2

Hyperbolic_cross 1 2 3.3724×10−1 1.1661×10−1
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Algorithm N #terms E1 = maxz{E(z)} E2 = medianz{E(z)}
Hypercube 4 81 1.7763×10−15 2.2216×10−16

TT_funcrs 4 124∗
max{E1} over 20 runs: 1.4664×10−5 max{E2} over 20 runs: 6.6613×10−15

median{E1} over 20 runs: 1.4664×10−5 median{E2} over 20 runs: 6.6613×10−15

min{E1} over 20 runs: 1.4664×10−5 min{E2} over 20 runs: 6.6613×10−15

TT_cross 4 104∗
max{E1} over 20 runs: 2.9409×10−5 max{E2} over 20 runs: 3.5527×10−15

median{E1} over 20 runs: 2.9409×10−5 median{E2} over 20 runs: 3.5527×10−15

min{E1} over 20 runs: 2.9409×10−5 min{E2} over 20 runs: 3.5527×10−15

Hypercube_diag_approx 4 81 2.2379 4.3191×10−2

Hyperbolic_cross 20 81 5.5177×10−10 5.1231×10−13

Hyperbolic_cross 10 33 1.6653×10−5 2.9255×10−8

Hyperbolic_cross 2 5 3.5881×10−1 2.5139×10−2

Hyperbolic_cross 1 2 7.7519×10−1 2.7817×10−1
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Algorithm N #terms E1 = maxz{E(z)} E2 = medianz{E(z)}
Hypercube 5 1771561 0 by definition 0 by definition

TT_funcrs 5 69005∗
max{E1} over 20 runs: 1.3615×10−11 max{E2} over 20 runs: 1.8069×10−12

median{E1} over 20 runs: 7.8933×10−12 median{E2} over 20 runs: 1.2623×10−12

min{E1} over 20 runs: 3.6349×10−12 min{E2} over 20 runs: 6.4602×10−13

TT_cross 5 37904∗
max{E1} over 20 runs: 7.8628×10−9 max{E2} over 20 runs: 8.7031×10−10

median{E1} over 20 runs: 1.4163×10−9 median{E2} over 20 runs: 3.4114×10−10

min{E1} over 20 runs: 1.2142×10−9 min{E2} over 20 runs: 3.1115×10−10

Hypercube_diag_approx 5 1771561 1.02710 1.1549×10−1

Hyperbolic_cross 1430 1753893 8.2058×10−11 3.9893×10−11

Hyperbolic_cross 715 615521 5.9266×10−9 2.3027×10−9

Hyperbolic_cross 143 47353 8.3491×10−6 1.2015×10−6

Hyperbolic_cross 15 545 1.3741×10−1 1.0142×10−2
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Algorithm N #terms E1 = maxz{E(z)} E2 = medianz{E(z)}
Hypercube 4 531441 3.7750×10−14 5.8950×10−15

TT_funcrs 4 18138∗
max{E1} over 20 runs: 9.7672×1012 max{E2} over 20 runs: 1.4351

median{E1} over 20 runs: 1.7581×1012 median{E2} over 20 runs: 7.3642×10−1

min{E1} over 20 runs: 6.0793×1011 min{E2} over 20 runs: 2.3702×10−1

TT_cross 4 13494∗
max{E1} over 20 runs: 1.3213×1013 max{E2} over 20 runs: 5.6102×10−1

median{E1} over 20 runs: 5.6749×1011 median{E2} over 20 runs: 1.0112×10−1

min{E1} over 20 runs: 1.0188×108 min{E2} over 20 runs: 8.6124×10−5

Hypercube_diag_approx 4 531441 1.2994 5.0057×10−1

Hyperbolic_cross 640 549113 2.3065×10−7 4.0635×10−14

Hyperbolic_cross 320 188993 1.6138×10−5 3.5885×10−11

Hyperbolic_cross 64 15241 6.15386×10−3 2.4742×10−6

Hyperbolic_cross 7 97 1.0231 1.6241×10−1
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truncation parameter. Hence we have not mentioned specific error values for the same.
From the results for the NLS example and the KdV examples in the previous subsection,
the Hyperbolic_cross algorithm emerges as a practical algorithm for computing the
Riemann theta function.

3.5.5. COMPUTING HIGH GENUS KDV SOLUTIONS

In this subsection we will test the ability of the Hyperbolic_cross algorithm to com-
pute the Riemann theta function value for high number of dimensions. Unfortunately,
both the TT_funcrs and TT_cross algorithms were limited by memory even for moder-
ate number of dimensions. Hence we only test the Hyperbolic_cross algorithm in the
following. As there are no non-trivial Riemann matrices for which the Riemann theta
function value is known analytically and using the Hypercube algorithm is not feasi-
ble, we resort to an alternative approach to verify the correctness of the approxima-
tions. We use the hyperelliptic solutions of the KdV equations with the branch points
λ j = 0.5 j , j = 0,1, . . . , g for different values of the genus g . We would like to remark
that to compute the period matrices Ω reliably we had to use 1000 bits of precision. We
accomplished this using the Julia programming language. For a given g and N the Rie-
mann theta function value is computed for x j = −2.0518+0.0120 j , j = 0,1, . . . ,340 and
t = [−0.2460 − 0.2457 − 0.2455]. The approximate solution ũ(x, t ) is computed using
central-difference to calculate the derivatives in (3.17).

To quantify the error in the calculated solutions, we first compute approximations of
the time derivative ut and space derivatives ux and uxxx using central differences. We
then calculate the relative error

Er =
√∑

i |LHSi −RHSi |2
√∑

i 0.25(|LHSi |+ |RHSi |)2
, (3.21)

where LHSi = −ut (xi , t ) and RHSi = uxxx (xi , t )+ 6u(xi , t )ux (xi , t ). Due to the absence
of the true values of LHSi or RHSi , we have used the mean value 0.5(|LHSi | + |RHSi |)
as the reference value in the relative error. We discard the values at the boundaries for
which the numerical derivative cannot be calculated correctly using central-difference.
As an example, for the solution computed using the Hyperbolic_cross algorithm for
g = 30 and N = 4, we plot −ut and uxxx +6uux in Figure 3.1. We can see that the lines
almost overlap which indicates that the error is small and that the computed values do
correspond to a solution of the KdV equation. In Figure 3.2 we show the error Er for the
Hyperbolic_cross algorithm for varying values of g and N . The choices of g and N

were limited by the available system memory. We can observe that the relative error is
small even for high genus solutions. From our understanding, this is the first instance in
literature where such high genus solutions have been computed.

We can thus surmise that the Hyperbolic_cross algorithm is suited for computing
remarkably high genus Riemann theta function with moderate accuracy. The tensor-
train based algorithms TT_funcrs and TT_cross work well for low genus but do not
scale well with the number of dimensions. We would like to remark that for both the
tensor-train based algorithms and the Hyperbolic_cross algorithm, the truncation pa-
rameter N can be chosen independently for each dimension to further reduce the com-
putation cost. The impact of such a choice would be a topic for future research.
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Algorithm N #terms E1 = maxz{E(z)} E2 = medianz{E(z)}
Hypercube 6 2197 0 by definition 0 by definition

TT_funcrs 6 1918∗
max{E1} over 20 runs: 1.4971 max{E2} over 20 runs: 1.3031

median{E1} over 20 runs: 3.9583×10−1 median{E2} over 20 runs: 3.5048×10−1

min{E1} over 20 runs: 2.0053×10−3 min{E2} over 20 runs: 1.35539×10−3

TT_cross 6 1220∗
max{E1} over 20 runs: 4.4819×1012 max{E2} over 20 runs: 9.9790×1011

median{E1} over 20 runs: 2.1824×107 median{E2} over 20 runs: 2.0426×107

min{E1} over 20 runs: 2.0406×10−1 min{E2} over 20 runs: 1.7638×10−1

Hypercube_diag_approx 6 2197 1.5084 1.1001
Hyperbolic_cross 112 2237 3.7768×10−11 2.9799×10−11

Hyperbolic_cross 56 885 9.3304×10−6 9.3077×10−6

Hyperbolic_cross 12 105 3.4411×10−2 3.0213×10−2

Hyperbolic_cross 2 7 1.5242 1.0956
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Algorithm N #terms E1 = maxz{E(z)} E2 = medianz{E(z)}
Hypercube 6 2197 0 by definition 0 by definition

TT_funcrs 6 1918∗
max{E1} over 20 runs: 1.4971 max{E2} over 20 runs: 1.3031

median{E1} over 20 runs: 3.9583×10−1 median{E2} over 20 runs: 3.5048×10−1

min{E1} over 20 runs: 2.0053×10−3 min{E2} over 20 runs: 1.35539×10−3

TT_cross 6 1220∗
max{E1} over 20 runs: 4.4819×1012 max{E2} over 20 runs: 9.9790×1011

median{E1} over 20 runs: 2.1824×107 median{E2} over 20 runs: 2.0426×107

min{E1} over 20 runs: 2.0406×10−1 min{E2} over 20 runs: 1.7638×10−1

Hypercube_diag_approx 6 2197 9.1129×10−2 3.2034×10−2

Hyperbolic_cross 112 2237 4.8849×10−15 1.3323×10−15

Hyperbolic_cross 56 885 8.9268×10−10 3.9137×10−10

Hyperbolic_cross 12 105 3.6694×10−4 2.5105×10−4

Hyperbolic_cross 2 7 9.1123×10−2 3.2032×10−2
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Figure 3.1: Checking the genus-30 solution computed using the Hyperbolic_cross algorithm with N = 4. We
can see that −ut ≈ uxxx +6uux verifying that u(x, t ) is a good approximation of the finite-gap KdV solution.
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Figure 3.2: The error Er for KdV solutions computed using the Hyperbolic_cross algorithm for varying val-
ues of g and N .
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3.6. CONCLUSION
The Riemann theta function plays a crucial role in the nonlinear Fourier analysis of sig-
nals in fields such as fiber-optic communications and coastal engineering. It is used to
synthesize periodic signals through the inverse nonlinear Fourier transforms. Numeri-
cal computation of the Riemann theta function as a multi-dimensional Fourier series is
challenging due to the curse of dimensionality. This significantly limits the practical ap-
plicability despite much interest. To better understand the limitations, we derived some
lower bounds and an upper bound on the series truncation error for certain index sets
in Section 3.3. We investigated a tensor-train method to compute the function which
utilizes the scaling and squaring approach for computing the exponential. We theoret-
ically proved in Section 3.4 that such a tensor-train based approach cannot break the
curse of dimensionality. Following that we proposed to exploit two other tensor-train
based algorithms and another algorithm based on the hyperbolic cross index set. Using
hyperelliptic solutions of the KdV and NLS equations as numerical examples, in Section
3.5 we showed that while the two tensor-train based algorithms work for low genus ex-
amples with real arguments, they are prone to numerical ill-conditioning. Their mem-
ory requirement is a limiting factor for high genera. While the algorithm based on the
hyperbolic-cross index set can also achieve high accuracy for the low genus solutions,
its novelty is the ability to compute moderately accurate solutions of high genera (up to
60) with relatively low computational cost. It therefore enables the computation of high
dimensional inverse nonlinear Fourier transforms that were so far impractical. Similar
algorithms based on related yet more general index sets such as the weighted Zaremba
cross [214] may provide further reduction in the computation cost of high genus solu-
tions.

3.A. PROOF OF THEOREM 1
Lemma 3. Let p ∈N∪ {∞} and N̄ ∈N. Then

n ∉I g (p, N̄ ) ⇒ |cn| ≤ exp

(

−π
(N̄ +1)2

‖ℑ{Ω}−1‖p

)

. (3.22)

Proof. The matrix lower bound ℓ(A) of a matrix A is the smallest number m such that
m‖x‖p ≤ ‖y‖p whenever y = Ax [228]. Since ℑ{Ω} is symmetric and positive definite,

min
n∉I g (p,N̄ )

n ·ℑ{Ω}n = min
n∉I g (p,N̄ )

‖n ·ℑ{Ω}n‖p

≥ min
n∉I g (p,N̄ )

ℓ(nT ℑ{Ω})‖n‖p

≥ min
n∉I g (p,N̄ )

ℓ(nT )ℓ(ℑ{Ω})‖n‖p

≥ min
n∉I g (p,N̄ )

∥
∥
∥

n

n ·n

∥
∥
∥

−1

p
‖ℑ{Ω}−1‖−1

p ‖n‖p

= min
n∉I g (p,N̄ )

‖ℑ{Ω}−1‖−1
p n ·n

≥ ‖ℑ{Ω}−1‖−1
p (N̄ +1)2,
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where we used [228, Lem. 4.4] in the third step, and [228, Lem. 2.2] in the fourth step
(twice). Hence,

|cn| = |exp(πin ·Ωn)|
= |exp(πin · [ℜ{Ω}+ iℑ{Ω}]n)|
= |exp(πin ·ℜ{Ω}n)|

︸ ︷︷ ︸

=1

exp(−πn ·ℑ{Ω}n
︸ ︷︷ ︸

>0

)

≤ exp(−π‖ℑ{Ω}−1‖−1
p (N̄ +1)2). (3.23)

The following results is well-known, but we present an explicit proof for the conve-
nience of the reader. The explicit bounds given in the proof will furthermore be useful
later.

Proof of Theorem 1 for p =∞. Let us look at the sets I g (∞, N + k)\I g (∞, N + k − 1),
where k ∈N. The number of elements satisfy

#I g (∞, N +k)\I g (∞, N +k −1)

= (2(N +k)+1)g − (2(N +k −1)+1)g (3.24)

< (2(N +k)+1)g ,

Using Lemma 3 with N̄ = N +k −1 shows that

n ∈I g (∞, N +k)\I g (∞, N +k −1) (3.25)

⇒ n ∉I g (∞, N +k −1)

⇒|cn|
(3.22)
≤ exp(−π‖ℑ{Ω}−1‖−1

p (N +k)2).

Note that for any column vector x, the matrix norm ‖xT ‖∞ is equal to the vector norm
‖x‖1. We thus have

|e2πin·z| = e−2πnT ℑ{z} ≤ e2π‖nT ‖∞‖ℑ{z}‖∞ = e2π‖n‖1‖ℑ{z}‖∞

≤ e2πg (N+k)‖ℑ{z}‖∞ , ∀ n as in (3.25).
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With these results, we find that

max
z∈Z

|θ(z |Ω)− θ̂(z |Ω)| ≤
∑

n∉I g (∞,N )

|e2πin·z||cn|

=
∞∑

k=1

∑

n∈I g (∞,N+k)\I g (∞,N+k−1)

|e2πin·z||cn|

≤
∞∑

k=1

(2(N +k)+1)g e2π‖ℑ{z}‖∞g (N+k)−π‖ℑ{Ω}−1‖−1
p (N+k)2

=
∞∑

k=N+1

(2k +1)g e2π‖ℑ{z}‖∞g k−π‖ℑ{Ω}−1‖−1
p k2

=
∞∑

k=N+1

eg log(2k+1)+2π‖ℑ{z}‖∞g k−π‖ℑ{Ω}−1‖−1
p k2

→ 0, for N →∞.

3.B. PROOF OF LEMMA 2 AND PROPOSITION 5
Lemma 4. The quadratic form tensor

Q
(

n1,n2, . . . ,ng

)

:=πin ·Ωn, n ∈I g

has tensor-train representation with rank not larger than
g 2+g

2 .

Proof. Recall that the Riemann matrixΩ is symmetric, thus we haveπin·Ωn =
∑g

k=1
πiΩkk n2

k
+

∑g

k=1

∑g

l=k+1
2πiΩkl nk nl . The tensors Skl = skl

n := πiΩkl nk nl , n ∈ I g , can be written in

the tensor-train form skl
n = Skl(1)

n1
Skl(2)

n2
· · ·Skl(g )

ng
with

Skl(m) =







1, m ∉ {k, l }

πiΩkl u, m = k

2u, m = l

∈C
(2N+1)×1

for k 6= l , u = [−N −N +1 · · · 0 · · · N ]T and

Skk(m) =
{

1, m ∉ {k, l }

πiΩkl u2, m = k
∈C

(2N+1)×1

with u2 =
[

(−N )2 (−N +1)2 · · · 0 · · · N 2
]T

. Thus, all Skl are tensor-trains of rank one. It
implies that

Q =
g∑

k=1

Skk +
g∑

k=1

g∑

l=k+1

Skl (3.26)

is a tensor-train with rank at most ĝ = g 2+g
2 .
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Trivial implementation of the tensor-train Q contains ((g − 2)ĝ 2 + 2ĝ )(2N + 1) ele-

ments. The first and last tensor cores Q(1) and Q(g ) consist of rank one matrices (vectors)

while all other cores consist of rank ĝ 2 matrices. However, the tensor-train Q is a sum of

rank one tensors. Therefore each of the rank ĝ 2 matrix is a diagonal matrix. Hence the
tensor-train Q can be represented using only ĝ g (2N +1) non-zero elements.

Proof of Lemma 2. The scaling and squaring based approximation of cn is given by c̃n =
p s

n, where pn := 1+ 1
1! q̂n + 1

2! q̂2
n +·· ·+ 1

(K−1)! q̂K−1
n and q̂n = qn/s. Let q̂n = Q̂(1)

n1
Q̂(2)

n2
· · ·Q̂(g )

ng

and pn := P(1)
n1

P(2)
n2

· · ·P(g )
ng

. Then by the properties of the tensor-train format [218]

P(k)
nk

=











1
(

Q̂(k)
nk

)⊗1

. . .
(

Q̂(k)
nk

)⊗(K−1)











for k ∉ {1, g }, and

P(1)
n1

=
[

1 1p
1!

(

Q̂(1)
n1

)⊗1
· · · 1p

K−1)!

(

Q̂(1)
n1

)⊗(K−1) ]

,

P
(g )
ng

=
[

1 1p
1!

(

Q̂
(g )
ng

)⊗1
· · · 1p

K−1)!

(

Q̂
(g )
ng

)⊗(K−1) ]T

.

The inner cores P(k)
nk

, k ∉ {1, g } thus are diagonal R ×R matrices with R =
(

ĝ K −1
ĝ−1

)

. There-

fore c̃n = p s
n has the tensor-train representation c̃n =

(

P(1)
n1

)⊗s (

P(2)
n2

)⊗s
· · ·

(

P
(g )
ng

)⊗s
. It fol-

lows that the inner cores are diagonal R̂ × R̂ matrices with R̂ = R s .

Remark 2. As the cores P(k) consist of only diagonal matrices, the number of non-zero

elements in the tensor-train P is only
ĝ K −1
ĝ−1 g (2N +1).

Proof of Proposition 5. Computing the approximation of the Riemann theta function is
equivalent to the inner product of two tensors in the tensor-train format. We can work it
out as the following.

θ̃(z |Ω) =
∑

n∈{−N ,...,N }g

c̃n exp(2πin ·z)

=
∑

n∈{−N ,...,N }g

e2πin1z1
(

P(1)
n1

)⊗s · · ·e2πing zg

(

P
(g )
ng

)⊗s

= Γ1Γ2 · · ·Γg , Γk :=
N∑

j=−N

e2πi j zk

(

P(k)
j

)⊗s
.

Note that γg := Γg is a column vector. With

γk−1 := Γk−1γk =
N∑

j=−N

e2πi j zk−1

((

P(k−1)
j

)⊗s
γk

)

,
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we have θ̃(z |Ω) = γ1.
We count the number of multiplications required to compute γ1 as a measure of the

computation cost. For computing θ̃(z |Ω), we start withγg which requiresΩ ((2N +1)R s )

multiplications for R = ĝ K −1
ĝ−1 . In the next stage, as the matrices P

(g−1)
nk

are diagonal,

the matrix-vector products
(

P
(g−1)
nk

)⊗s
γg can be evaluated as the Hadamard product

diag
{(

P
(g−1)
nk

)⊗s}

⊙γg . Here diag{·} means the vector of the diagonal elements of a ma-

trix. Using the ideas from [229]–[231] the computation of the term
(

P
(g−1)
nk

)⊗s
γg given

P
(g−1)
nk

∈ C
R×R and γg ∈ C

R s×1 requires at least Ω (sR s ) multiplications. Computing γg−1

given γg thus requires Ω ((2N +1)sR s ) multiplications. Continuing the same way, we
can see that computing γ1 requires at least Ω

(

(g −1)(2N +1)sR s + (2N +1)R s
)

multipli-
cations.





4
THEORETICAL ANALYSIS OF

MAXIMUM TRANSMIT POWER IN A

b-MODULATOR

CHAPTER ABSTRACT
The optimal transmit power in various nonlinear Fourier transform-based transmission
systems has been observed to decrease with the signal duration when bandwidth is fixed.
A new theoretical explanation for this behavior is provided for a specific b-modulator
and validated in simulations.

The text in this chapter has previously appeared in modified form in S. Chimmalgi and S. Wahls, “Theoretical
analysis of maximum transmit power in a b-modulator”, in 45th European Conference on Optical Communi-
cation (ECOC2019).[232]
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4.1. INTRODUCTION
The nonlinear Fourier transform (NFT) [10] can solve the normalized nonlinear Schrödinger
equation (NSE)

i
∂q

∂x
+
∂2q

∂t 2
+2|q|2q = 0, q = q(x, t ), (4.1)

which is a model for an ideal lossless single-mode fiber obtained after suitable normal-
ization and path averaging [21, Ch. 5]. Here q(x, t ) is the slowly varying pulse envelope,
x is the location and t is retarded time, all in normalized units. The nonlinear evolution
of the signal along the fiber equals a simple phase rotation in the nonlinear Fourier do-
main (NFD) [10]. Hence it was suggested to embed data in the NFD and use the NFT to
recover the data [66], [68]. This idea is known as nonlinear frequency division multiplex-
ing (NFDM).

NFDM has garnered much attention in recent years and many different NFDM sys-
tem designs have been proposed [35], [85], [93], [95]. A common problem with many
NFDM designs is that the optimum transmit power decreases with signal duration, mak-
ing it difficult to utilize signals significantly longer than the channel memory [86], [233],
[234]. Thus, signals are typically short with a large portion acting as a guard interval that
contains no information, leading to low spectral efficiencies. The difficulties with trans-
mitting longer signals at sufficiently high powers are typically attributed to interactions
between the signal and noise during the numerical computation of the NFT [86], [98],
[233], [234].

In this chapter we provide a new explanation for this phenomenon. We derive an up-
per bound on transmit power for the specific NFDM system proposed in [92]. The bound
decreases with signal duration when the bandwidth is kept constant. Since our imple-
mentation achieves transmit powers close to that bound, we show that signal-noise in-
teractions are not a major limiting factor in our setup.

4.2. REVIEW OF b-MODULATION
The NFT is obtained by solving the initial-value problem [10]

∂φ(λ, t )

∂t
=

[
−iλ q(t )

−q∗(t ) iλ

]

φ(λ, t ), lim
t→−∞

φ(λ, t ) =
(
e−iλt

0

)

,

where x is considered fixed and thus dropped. The Jost scattering coefficients are de-
fined as a(λ) = lim

t→∞
φ1(λ, t )eiλt and b(λ) = lim

t→∞
φ2(λ, t )e−iλt , where λ is a complex pa-

rameter. Information can be embedded in the Jost scattering coefficients in various
ways. The NFDM technique in which information is embedded in b(ξ), ξ ∈ R, is known
as b-modulation [90]. The advantages of b-modulation are tight control over signal du-
ration and lower sensitivity w.r.t. noise [90], [234]. For b-modulation the energy of the
normalized field

E [q(t )] =
∫∞

−∞
|q(t )|2dt (4.2)

is equal to [90]

E [b(ξ)] =−
1

π

∫∞

−∞
ln

(

1−|b(ξ)|2
)

dξ, (4.3)
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where E [·] denotes the operation of computing the energy either from the time-domain
signal q(t ) or the nonlinear Fourier coefficient b(ξ).

POWER CONTROL BY CONSTELLATION RESHAPING (PCCR)

In this chapter we analyze the system from [92]. In such a system the data is transmitted
using signal bursts. For each burst, we have

b(ξ) =
N∑

k=−N

skΨ(ξ−k∆ξ). (4.4)

Here, Ψ(ξ) is a specific flat-top carrier (see [92, Eq. 17, Eq. 18 and Figure 1]), ∆ξ is the car-
rier spacing and the sk are information symbols. The average signal power is controlled
by using a suitably shaped constellation for the sk . The constellation is shaped such that
E{E [skΨ(ξ)]} = Ed , where E{·} denotes expectation w.r.t. the sk , Ed > 0 is a design param-
eter, and E [snΨ(ξ)]/E [skΨ(ξ)] = |sn |2/|sk |2 for n 6= k. This system design ensures that
[92]

E{E [b(ξ)]} ≈ (2N +1)Ed (4.5)

assuming that ∆ξ is not too small. By definition of the NFT, for the case of anomalous
dispersion, |b(ξ)| < 1. The parameter Ed thus has to stay below the maximum carrier
energy [92]:

MCE[Ψ(ξ)] := lim
A→(1/supξ |Ψ(ξ)|)−

E [AΨ(ξ)] ≥ Ed . (4.6)

The MCE has been observed to be finite for common carriers which result in time-
limited signals [92, Section 2.4]. The duration of the generated signals can be manipu-
lated by scaling the carrier Ψ(ξ) →Ψ(cξ) ⇒ q(t ) → q(t/c), c > 0, [68, pp. IV–D]. To keep
utilizing the complete provided bandwidth, we choose cN = (2N + 1)c0 and increase
the number of subcarriers proportionally. We thus consider the following nonlinear
spectrum

bN (ξ) =
N∑

k=−N

skΨ
(

cNξ−k∆ξ

)

(4.7)

in this chapter. The generated signals have 2N +1 subcarriers and are of duration TN =
(2N +1)T0. The bandwidth stays approximately constant because the subcarriers shrink
with N .

4.3. THEORETICAL ANALYSIS
In this section we analyze how the maximum power that the b-modulator discussed in
the previous section can achieve depends on the number of subcarriers, which is directly
proportional to the signal duration. Our analysis rests on two simple insights. First, since
the signals are of finite duration, energy translates directly into power. Second, since
E [Ψ(cNξ)] = c−1

N E [Ψ(ξ)] by basic integration laws,

MCE[Ψ(cNξ)] = c−1
N MCE[Ψ(ξ)]. (4.8)
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Figure 4.1: Each of the four colours in both subfigures corresponds to the design energy per subcarrier Ed =
{2,4,8,16}. The solid and dashed lines represent the values of mean energy per subcarrier computed from b(ξ)
and q(t ) respectively for each of the four design values of Ed . a) PCCR: The two energy estimates agree almost
upto the theoretical maximum. b) PCRB: The two estimates also start to decrease with number of subcarriers
(signal duration) due to signal truncation and finite precision (similar to [98, Figure 6a]).

We bound the average power PN achieved with 2N +1 subcarriers using (4.5), (4.6), (4.8)
and cN = (2N +1)c0:

PN =
E{E [bN (ξ)]}

TN
≈

(2N +1)Ed

TN

≤
(2N +1)MCE[Ψ(cNξ)]

TN
=

c−1
0 MCE[Ψ(ξ)]

TN
.

(4.9)

Note that the numerator is a constant independent of the number of subcarriers, so that
the bound on the transmit power PN decreases with the signal duration TN . To the best
of our knowledge this is the first bound on transmit power ever reported for a NFDM sys-
tem. We will observe in the simulation results that instructing the algorithms to achieve
powers beyond this bound leads to numerical failure and rapidly decaying system per-
formance. Hence our bound strongly suggests that for any signal duration TN there is a
finite optimum transmit power. We remark that even though our analysis holds for the
particular b-modulation scheme in [92], similar observations have been reported also
for other NFDM architectures [86], [233], [234].
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4.4. SIMULATIONS
The goal of this section is two-fold. First, we demonstrate that our theoretical bound is
useful to describe actual system behavior. Second, we compare the analyzed PCCR ap-
proach from Section 4.2 with an alternative scheme from [99] that we call power control
by reshaping b(ξ) (PCRB). The advantage of PCRB is that – in theory – arbitrarily large
energies can be achieved. The disadvantage is that the generated signals are not of finite
duration anymore. We want to investigate whether in practice PCRB can generate higher
signal powers than PCCR.

SETUP

We used the carrier waveform [92, (18)] with T = 0.5 for both systems. We chose the
constants c0, T0 and ∆ξ from Section 4.2 as 1.0, 0.5 and 135 respectively. The signals
generated using PCRB were truncated to duration TN . The signals generated using PCCR
were of duration TN by design. The symbols sk were drawn from a QPSK constellation.
The simulations were carried out using NFDMLab [154], which uses the software library
FNFT [128] to compute (inverse) NFTs. To avoid algorithm breakdowns, all b(ξ) were
clipped such that |b(ξ)| ≤ 1−2.2204×10−15. Furthermore a numerical improvement to
the inverse NFT (INFT) described in the appendix was used. The fiber parameters were
β2 = −5ps2 km−1, γ = 1.2W−1 km−1 and α = 0.2dBkm−1. The signal duration in real-
world units was 1.25TN ns. The transmitted and received signals were low-pass filtered
to 40GHz. Amplification was carried out using EDFAs with a 6dB noise figure.

IMPACT OF FINITE PRECISION

Recall that the energy of the signal can be computed from b(ξ) via (4.3) or from q(t ).
Since b(ξ) is the input to the INFT and q(t ) is the output, we compare these two ener-
gies in order to assess the accuracy of the INFT. In Figure 4.1, we show the average sig-
nal energy (taken over 20 signal realizations) divided by the number of subcarriers for
both PCCR and PCRB. In Figure 4.1a we see that both energy estimates stay close to-
gether which hints that numerical effects in the INFT are not the major limiting factor
for PCCR. The numerical values also confirm that the achievable energy per subcarrier
is always less than the maximum carrier energy for PCCR (4.6). In Figure 4.1b we see
that the energy via b(ξ) eventually starts decreasing even though it should stay constant
in theory. This behavior is due to the clipping mentioned above. The gap to energy via
q(t ) is larger than in Figure 4.1a, which we attribute to the signal truncation mentioned
above. The energies via q(t ) in Figure 4.1b are higher than those in Figure 4.1a but show
a similar decay.

BACK-TO-BACK (B2B)
We simulated 1m of fiber followed by a single amplifier to add noise. After demodulation
and equalization, estimates ŝk of the transmitted symbols sk were obtained. For PCCR,
error vector magnitudes (EVMs) between ŝk and sk were computed. For PCRB the in-

verse of the map R(u) =
√

1−e−|u|
2
ei∠u [99, Figure 2a] was applied to ŝk before comput-

ing the EVM. This was done to ensure similarly shaped noise balls. We can see examples
of the noise balls for both systems in Figures 4.3 and 4.4. The EVM results are shown in
Figures 4.2a-b. In Figure 4.2a, PCCR eventually breaks down due to ill-conditioning in
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the INFT algorithms. However, this happens only when trying to exceed the theoretical
limit depicted in Figure 4.1a. The initial decay of the curves seems to be a result of the
nonlinear nature of the NFT which squeezes the noise balls [235, Figure 2]. From Figure
4.2b we observe that PCRB performs better than PCCR at low subcarrier energies but
worse at the high one.

TRANSMISSION

We finally compared PCCR and PCRB in a transmission scenario. To make the scenario
more realistic, we added precompensation as in [233], [234] and truncated the signals to
0.556TN ns before transmission so that now both methods suffer from truncation errors.
The signals were transmitted over a 8 × 80 km link. The results are shown in Figures
4.2c-d. By comparing Figures 4.2a and 4.2c, we observe that the breakdowns still occur
approximately for the same number of subcarriers, which hints that the transmit power
limitation from our theoretical analysis is a dominant effect even in our transmission
setup. The spike in the Ed = 16 curve seems to occur due to numerical issues. We remark
that it occurs when the maximum number of subcarriers for this Ed has been exceeded.
Similar observations can be made when comparing Figures 4.2b and 4.2d.

4.5. CONCLUSION
We derived an upper bound on the achievable transmit power for the b-modulator from
[92] (PCCR) that decreases with signal duration for fixed bandwidth. It seems to be the
first such bound for NFDM. In simulations we achieved transmit powers close to the the-
oretical bound which suggests that – in our setup – numerical signal-noise interactions
were a minor issue. We found that another b-modulator from [99] (PCRB) suffers from
similar limitations even though the maximum carrier energy argument used in our anal-
ysis does not apply to that case. We plan to use our analysis to improve NFDM system
designs.

4.A. IMPROVED INFT ALGORITHM
The INFT was computed as described in [90] with FNFT [128]. To run the algorithm we
require D samples of

B(τ) =
1

2π

∫∞

−∞
b(ξ)eiτξdξ≈

eiτξ−

2π

∫ξ+

ξ−
b(ξ)eiτ(ξ−ξ−)dξ (4.10)

on a grid τk = τ−+kδ. We approximate the right integral by

B̂(τk ) =
eiτkξ−

2π

M−1∑

n=0
b(ξn)eiτk (ξn−ξ−)ǫ

=
ǫe−iτkξ−

2π

M−1∑

n=0
b(ξn)

(

eiτ−ǫ
(

eiδǫ
)−k

)−n

,

(4.11)

where ξn = ξ−+nǫ. The B(τk ) are computed fast by applying chirp z-transform [236] to
the last sum.
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Figure 4.2: a) B2B for PCCR b) B2B for PCRB c) Transmission for PCCR d) Transmission for PCRB
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Figure 4.3: PCCR: Transmitted and received symbols after transmission with Ed = 16 and 16 subcarriers. The
noise balls are squeezed due to the nonlinear nature of the NFT.
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Figure 4.4: PCRB: Transmitted, received and transformed received symbols after transmission with Ed = 16
and 16 subcarriers. The noise balls of the received symbol are very different compared to the case of PCCR.
However, after the inverse mapping is applied, the transformed received symbols have similar noise balls.
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CHAPTER ABSTRACT
The performance of various nonlinear frequency division multiplexed (NFDM) fiber-
optic transmission systems has been observed to decrease with increasing signal dura-
tion. For a class of NFDM systems known as b-modulators, we show that the nonlinear
bandwidth, signal duration, and power are coupled when singularities in the nonlinear
spectrum are avoided. When the nonlinear bandwidth is fixed, the coupling results in
an upper bound on the transmit power that decreases with increasing signal duration.
Signal-to-noise ratios are consequently expected to decrease, which can help explain
drops in performance observed in practice. Furthermore, we show that there is often
a finite bound on the transmit power of b-modulators even if spectral singularities are
allowed.

The text in this chapter has previously appeared in modified form in the open access article S. Chimmalgi and
S. Wahls, “ Bounds on the Transmit Power of b-Modulated NFDM Systems in Anomalous Dispersion Fiber,"
Entropy, Vol. 22, No. 6, Article 639, 2020. Special Issue Information Theory of Optical Fiber [237]. Its reuse is
licensed under CC BY 4.0 [156]
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5.1. INTRODUCTION
The nonlinear Fourier transform (NFT) [10] is a mathematical tool to solve the normal-
ized nonlinear Schrödinger equation (NSE)

i
∂q

∂z
+

1

2

∂2q

∂t 2
+κ|q|2q = 0, q = q(z, t ), (5.1)

which is a model for an ideal lossless single-mode fiber obtained after suitable normal-
ization and path averaging [17]. (The path average can be avoided by using tapered fibers
[53].) Here, q(z, t ) is the slowly varying pulse envelope, z is the location, and t is retarded
time, all in normalized units. The parameter κ determines if the dispersion in the fiber is
normal (−1) or anomalous (+1). The nonlinear evolution of the signal according to the
NSE equals a simple phase rotation in the nonlinear Fourier domain (NFD) [10]. Hence,
it was suggested to embed data in the NFD at the transmitter and use the NFT to recover
the data at the receiver [66], [68]. This idea is known as nonlinear frequency division
multiplexing (NFDM).

NFDM has garnered much attention in recent years and many different NFDM sys-
tem designs have been proposed [35], [53], [80], [85], [86], [88], [93]–[95], [98], [100],
[234], [238]. A common problem with many NFDM designs is that the optimum transmit
power decreases with signal duration, making it difficult to utilize signals significantly
longer than the channel memory [86], [232]–[234], [239]. Thus, signals are typically short
with a relatively large portion acting as a guard interval that contains no information,
leading to low spectral efficiencies. The difficulties with transmitting longer signals have
been suspected to be caused by limitations of numerical NFT algorithms and increased
signal-noise interactions [233, p.3], [234, Section 3.3], [98, Section 4].

In Chapter 4 (first reported in [232]), we discovered a new factor contributing to this
phenomenon when we derived an upper bound on the transmit power of one specific
NFDM system proposed in [92]. It was shown that the transmit power bound decreases
with signal duration when the nonlinear bandwidth is kept constant. Since signals with
lower power are more susceptible to corruption by noise, this leads to reduced transmis-
sion performance. In this paper, we look at a class of systems where only a part of the
nonlinear Fourier spectrum known as continuous spectrum is modulated, which is the
nonlinear analogue of linear frequency division multiplexing. More specifically, we look
at so-called b-modulators in the case of anomalous dispersion. The paper is organized
as follows. In Section 5.2, we briefly review nonlinear frequency division multiplexing
(NFDM). In Section 5.3, we derive two different upper bounds on the transmit power of
b-modulated systems. We conclude our findings in Section 5.4.

NOTATION

Real numbers: R; R≥0 := {x ∈ R : x ≥ 0}; Complex numbers: C; Complex numbers with
positive imaginary part: H; Integers: Z; Natural numbers: N; i :=

p
−1; Euler’s num-

ber: e; Real part: ℜ(·); Imaginary part: ℑ{·}; Complex conjugate: (·)∗; Absolute value: |·|;
Lebesque spaces: L p (X ) contains all measurable complex-valued functions f on X for
which

‖ f ‖p :=
{

(
∫

X | f (x)|p dx)1/p , if 1 ≤ p <∞
supx∈X | f (x)|, if p =∞

<∞. (5.2)
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5.2. REVIEW OF NFDM
In this section, we describe the mathematical machinery behind the nonlinear Fourier
transform (NFT) and review the idea of nonlinear frequency domain multiplexing
(NFDM).

5.2.1. NONLINEAR FOURIER TRANSFORM FOR VANISHING SIGNALS

The nonlinear Fourier transform (NFT) that solves the NSE (5.1) is due to Zakharov and
Shabat [10]. It transforms any signal q(t ) that vanishes sufficiently quickly for t →±∞
from the time domain to the nonlinear Fourier domain through the analysis of the linear
ordinary differential equation (ODE)

∂V(t ,λ)

∂t
= C(t ,λ)V(t ,λ) =

[
−iλ q(t )

−κq∗(t ) iλ

]

V(t ,λ). (5.3)

The term λ ∈C is a spectral parameter similar to the parameter s in the Laplace domain.
Since |q(t )| → 0 fast for t →±∞, the ODE has solutions that fulfill the boundary condi-
tions

V (t ,λ) =
[

φ(t ,λ) φ̄(t ,λ)
]

→
[

e−iλt 0

0 −eiλt

]

as t →−∞,

V(t ,λ) =
[

ψ̄(t ,λ) ψ(t ,λ)
]

→
[

e−iλt 0

0 eiλt

]

as t →∞.

(5.4)

The matrix V (t ,λ) is said to contain (generalized) eigenfunctions since Equation (5.3)
can be rearranged into an eigenvalue equation with respect to λ [11]. For the solutions
Equation (5.4) of Equation (5.3), there exists a unique matrix

S(λ) =
[

a(λ) b̄(λ)
b(λ) −ā(λ)

]

, (5.5)

called the scattering matrix, such that [11]

[
φ(t ,λ) φ̄(t ,λ)

]

=
[
ψ̄(t ,λ) ψ(t ,λ)

]

S(λ). (5.6)

The components a(λ), b(λ), b̄(λ), and ā(λ) are known as the scattering coefficients. The
scattering coefficients satisfy [11] (p. 260 and p. 271)

b̄(λ) = κb∗(λ∗), ā(λ) = a∗(λ∗), a(λ)ā(λ)+b(λ)b̄(λ) = 1. (5.7)

The evolution of the scattering coefficients along the location z in the fiber is simple: [11,
Section III]

a(z,λ) = a(0,λ),

b(z,λ) = b(0,λ)e4iλ2z .
(5.8)

The reflection coefficient is then defined as ρ(λ) = b(λ)/a(λ) for λ ∈ R. It provides a rep-
resentation of the continuous spectrum. In the anomalous dispersion case κ= 1 consid-
ered in this paper, the nonlinear Fourier spectrum can also contain a so-called discrete

spectrum. It corresponds to the complex poles of the reflection coefficient in the up-
per half-plane H, or equivalently to the zeros λk ∈ H of a(λ). Usually, there are only
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finitely many (N ) such poles, all simple [11, Section VI]. The poles λk are also referred
to as eigenvalues and a corresponding set of values ρk := b(λk )

/
da
dλ (λk ) are known as

residues [11, App. 5]. The eigenvalues correspond to the solitonic components of the
signal. There are different ways to define a nonlinear Fourier spectrum. One possibil-
ity is {ρ(λ)}λ∈R, (λk ,ρk )N

k=1 [11]. Another is {b(λ)}λ∈R, (λk ,b(λk ))N
k=1 [38]. In the case of

anomalous dispersion (κ= 1), the energy of the signal q(t ) is related to the components
of the nonlinear spectrum as [68, p.9]

∫∞

−∞
|q(t )|2dt =

1

π

∫∞

−∞
log(1+|ρ(ξ)|2)dξ+4

N∑

k=1

ℑ{λk }. (5.9)

Substituting ρ(ξ) = b(ξ)/a(ξ) and using |a(ξ)|2+|b(ξ)|2 = 1 for ξ ∈R due to (5.7) we equiv-
alently have

∫∞

−∞
|q(t )|2dt =−

1

π

∫∞

−∞
log(1−|b(ξ)|2)dξ+4

N∑

k=1

ℑ{λk }. (5.10)

Note that Equation (5.7) implies that |b(ξ)| ≤ 1 for real ξ. When |b(ξ)| = 1 for some real ξ,
then the integrand in Equation (5.10) is undefined at that point. Such points are known
as spectral singularities in the literature [240]. Even though simple signals such as the
rectangle and hyperbolic secant can have isolated spectral singularities [241, Chapter 2],
most of the literature on NFTs assumes that |b(ξ)| < 1 for all real ξ. From here on, ξ will
be used to denote the spectral parameter if it is strictly real and λ if otherwise.

Information can be embedded in the scattering coefficients in various ways. In this
paper, we consider the techniques where information is embedded only in b(ξ) for ξ ∈R,
i.e., we consider signals without solitons. The idea of embedding information in b(ξ)
is known as b-modulation [90]. The advantages of b-modulation are tight control over
signal duration and lower sensitivity w.r.t. noise [90], [234]. If the signals are of infinite
duration, they are truncated to some finite interval [T1,T2]. From Equation (5.10), we
can see that the energy of a b-modulated signal can be controlled by varying b(ξ). This
indirectly allows us to control the average power of the truncated signal. In this chapter,
we will concentrate on b-modulation in the case of anomalous dispersion (κ= 1).

5.2.2. NFDM SIGNAL GENERATION

As in any digital transmission scheme, the data to be transmitted are fed to the transmit-
ter as a stream of bits. The system then takes a block of Nb ∈N bits and generates a signal
for transmission through the optical fiber channel. This is the process of modulation. At
the receiver, the effect of the channel on the nonlinear spectrum is first reverted using
Equation (2.6). Then, the block of bits is recovered. The NFDM transmission scheme is
illustrated in Figure 5.1. In order to be able to make concise statements in the coming
sections, we now introduce formal definitions for a modulator and a b-modulator. An
illustrating block diagram is shown in Figure 5.2.

Definition 4. A modulator is a function-valued function

M : {0,1}Nb →L 2([T1,T2]) (5.11)

that maps vectors of Nb bits to transmit signals of finite energy and duration.
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Figure 5.1: Nonlinear frequency domain multiplexing (NFDM) transmission of one block of Nb bits.

This definition of a modulator makes no assumptions about how data are embedded
in the signal q(t ) and is thus very general. A b-modulator on the other hand is a specific
type of modulator that embeds data in the scattering coefficient b(ξ) that was defined in
Equation (5.5).

Definition 5. A b-modulator is a modulator of the form

M (v ) =T (Q(B(v ))), (5.12)

where B maps vectors of bits to nonlinear spectra b(ξ) with ξ ∈ R, Q is the inverse NFT

that maps scattering coefficients b(ξ) to the corresponding time-domain signals q(t ), t ∈R,

without solitonic components, and

T : L 2(R) →L 2([T1,T2]), [T (q)](t ) = q(t ) ∀ t ∈ [T1,T2], (5.13)

simply truncates infinite duration signals to a finite duration. We assume that b = B(v)
and q =Q(b) satisfy

‖b‖∞ ≤ 1,

∫∞

−∞
|q(t )|2dt =−

1

π

∫∞

−∞
log(1−|b(ξ)|2)dξ<∞, ∀ v ∈ {0,1}Nb . (5.14)

Remark 3. The first assumption in Equation (5.14) is necessary since |a(ξ)|2 +|b(ξ)|2 = 1
on the real axis for any NFT (see Equation (5.7)). Note that we do not make the common

stronger assumption that ‖b‖∞ < 1 (no spectral singularities). The second assumption in

Equation (5.14) is simply Equation (5.10) specialized to nonlinear spectra without soli-

tonic components. It is known to hold in the absence of spectral singularities. We expect

this result to hold even in the presence of spectral singularities. However, as we could not

find this result in the literature, we are stating it as an assumption here. We remark that,

even if b-modulators that satisfy Equation (5.14) with ‖b‖∞ = 1 would not exist, our re-

sults still apply to any b-modulator that ensures ‖b‖∞ < 1. This still includes all cases in

the current literature.
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Remark 4. For sufficiently rapidly decaying b(ξ) with ‖b‖∞ < 1, it is possible to verify

that the second integral in Equation (5.14) will be finite. However, when ‖b‖∞ = 1, the

integrand will have singularities at which it becomes infinite. The integral may or may

not be infinite in such cases. It was observed in [92] that it remains finite in specific cases.

In this chapter, we will show in Lemma 5 that this behavior is the norm, not the exception.

Remark 5. The results that will be derived in this chapter for b-modulated systems for

anomalous dispersion fiber also apply to ρ-modulated NFDM systems with normal dis-

persion (κ=−1, see, e.g., [87], [97]) when b is replaced by ρ. Let us check that the assump-

tions in Equation (5.14) are fulfilled by ρ in that case. For normal dispersion, |a(ξ)|2 −
|b(ξ)|2 = 1 [16, p. 25]. Thus, ρ = b/a satisfies ‖ρ‖∞ ≤ 1. Using [16, Equations 1.6.7 and

1.6.21b], the signal energy is found to satisfy

∫∞

−∞
|q(t )|2dt =−

1

π

∫∞

−∞
log(1−|ρ(ξ)|2)dξ. (5.15)

�(0, �) � 0, �
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Figure 5.2: Transmitter side components of a NFDM transmission scheme employing b-modulation.

In the next section, we will derive two different bounds on the transmit power of
information bearing signals q(0, t ) that are generated by b-modulators at the fiber input.

5.3. UPPER BOUNDS ON THE TRANSMIT POWER OF b−MODUL-

ATORS
With fiber-optic transmission systems that modulate the conventional “linear” Fourier
spectrum, the power of the transmit signal can theoretically be made arbitrarily high
without increasing the bandwidth or duration of the signal, simply by scaling (ampli-
fying) it in the time domain. Although b-modulated systems are in many ways similar
to such linear systems, there are also some important differences. Scaling the signal in
time domain distorts its nonlinear Fourier spectrum in complicated ways. For exam-
ple, scaling a signal without solitonic components can give rise to many solitons. In
linear systems, bandwidth and signal duration are coupled, but the transmit power is
independent of the two. We show in the following that, under certain conditions the
nonlinear bandwidth, duration, and transmit power in b-modulators are coupled. We
already showed this for one specific b-modulator in [232]. In this section, we will de-
rive two more general bounds on the power of b-modulated systems that apply to many
systems considered in the literature. In Section 5.3.1, we derive and discuss a bound
for systems that have no spectral singularities. In Section 5.3.2, we will show that, even
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in the presence of spectral singularities, the power still remains bounded for a class of
b-modulators.

5.3.1. POWER BOUND FOR A FIXED GAP TO SINGULARITY.
As already discussed earlier, in the case of anomalous dispersion, it is required that
|b(ξ)| ≤ 1 for real ξ. In special cases, even simple signals such as the rectangle and hyper-
bolic secant can have isolated spectral singularities at which |b(ξ)| = 1 [241, Chapter 2].
In the presence of spectral singularities, the usual theory behind the NFT unfortunately
breaks down and has be to extended in a quite complicated manner [240]. Many algo-
rithms available in literature for computing the time-domain signal starting from b(ξ)
break down in their presence [90], [242]. In practice, to avoid the complications arising
from the spectral singularities, a “gap to singularity” εb := 1−‖b‖2

∞ > 0 is typically en-
forced by either clipping [173], [232] 1, scaling [90], [173], and/or reshaping [98] of b(ξ).
In [92], the constellation was reshaped. The gap to singularity εb cannot be made arbi-
trarily small as the numerical algorithms are limited by the computing precision. Since
any number that is closer to one than the machine precision is rounded to one, gaps
to singularity smaller than machine precision cannot be represented with floating point
numbers. As soon as the gap to singularity is never zero, the following power bound
applies.

Theorem 2. Let M be any b-modulator (see Definition 5) with a gap to singularity. That

is,

ε := 1− max
v∈{0,1}Nb , b=B(v )

‖b‖2
∞ > 0. (5.16)

Then, the maximum transmit power of the modulator is upper bounded as

Pmax = max
q=M (v ), v∈{0,1}Nb

1

T2 −T1

∫T2

T1

|q(t )|2dt ≤
−2W logε

πγ(T2 −T1)
, (5.17)

where 0 < γ< 1 can be chosen arbitrarily and W > 0 is any finite constant such that

γE :=−
γ

π

∫∞

−∞
log(1−|b(ξ)|2)dξ ≤ EW :=−

1

π

∫W

−W
log(1−|b(ξ)|2)dξ, ∀ b =B(v ).

(5.18)
It is always possible to find such a W .

Remark 6. Note that 2W is a bound on the nonlinear γ×100-percent bandwidth of the

modulator, which is illustrated in Figure 5.3 together with the gap to singularity εb . Figure

5.4 illustrates the decay of the power bound.

Remark 7. The most important implication of Theorem 2 is that as soon as there is a

nonlinear bandwidth constraint (γE ≤ EW ) and the gap to singularity cannot be made

arbitrarily small (e.g., due to clipping or finite precision effects), the transmit power of any

b-modulator producing long transmit signals must be low. Longer signals are preferred as

they are more data dense. However, making the signals longer decreases the SNRs. Hence,

one expects there to be a finite optimal signal duration.

1The use of clipping in [173] was reported in [98, p. 1574], not in the paper itself.
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Figure 5.3: In this example, 2W is exactly the 90% bandwidth: 90% (γ= 0.9) of the energy corresponding to the
left spectrum (E) are equal to the energy corresponding to right spectrum (EW ). That is, γE = EW .

20

0

20

Figure 5.4: The power bound from Theorem 1 for W = 6.0338, γ = 0.9 and ε ≥ 0.1. The transmit power of any

b-modulator with these fundamental parameters must approach zero for long durations.

Proof of Theorem 2. Let 0 < γ< 1 be fixed. We start with finding W > 0. For any fixed b =
B(v ), the assumptions in Equation (5.14) ensure that γE ≤ EWb

for some finite Wb > 0.
Since the number of bit vectors v ∈ {0,1}Nb that can be passed to the modulator is finite,
there is only a finite number of nonlinear spectra b = B(v ). Hence, Equation (5.18) is
fulfilled if we choose W to be the largest of the Wb .
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For any fixed q =M (v ) with corresponding b =B(v ), the transmit power satisfies

Pb =
1

T2 −T1

∫T2

T1

|q(t )|2dt

≤
1

T2 −T1

∫∞

−∞
|q(t )|2dt

︸ ︷︷ ︸

=E

(5.18)
≤

1

T2 −T1

EW

γ

=
1

T2 −T1

−1

πγ

∫W

−W
log(1−|b(ξ)|2)dξ

(5.16)
≤

1

T2 −T1

−1

πγ

∫W

−W
log(1− (1−ε))dξ

=
1

T2 −T1

−1

πγ
2W logε.

(5.19)

Since this bound is independent of v , we obtain Equation (5.17).

5.3.2. UNIFORM POWER BOUND FOR ARBITRARY GAPS TO SINGULARITY

The bound derived in Theorem 2 describes many practical situations and applies to most
of the b-modulators currently seen in the literature. However, the bound is not mean-
ingful in the limit ε → 0 as it diverges to infinity. It is interesting to know if we could
achieve arbitrary powers in scenarios where the gap to singularity could be made ar-
bitrarily small. In the following Theorem 3, we show that the power will still remain
bounded for many typical b-modulators even in the limit ε→ 0.

Theorem 3. Let M be a b-modulator (see Definition 5) such that any b = B(v ) is of the

form

b(ξ) = A
N∑

n=−N

snΨ(ξ−n∆ξ), s−N , · · · , sN ∈ S∗, A, ∆ξ> 0, (5.20)

where S∗ ⊂ C is a finite constellation alphabet and Ψ ∈ L 2(R) is a real-analytic carrier

waveform with

lim
ξ→±∞

Ψ(ξ) = 0 and sup
k=2,3,...

∥
∥
∥
∥
∥

dk
Ψ

dξk

∥
∥
∥
∥
∥
∞

<∞. (5.21)

The power control factor A ≥ 0 and the symbols sn in Equation (5.20) may depend on the

bit vector v . All other quantities are assumed independent of v . Then, the maximum

transmit power of the modulator is bounded as

Pmax = max
q=M (v ), v∈{0,1}Nb

1

T2 −T1

∫T2

T1

|q(t )|2dt ≤
E

T2 −T1
<∞,

where the constant E is independent of the power control factors A = A(v ) and data sym-

bols sn = sn(v ) in Equation (5.20), as well as of the temporal domain [T1,T2].
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The proof of Theorem 3 requires us to establish some lemmas first, which will be
given later in this section. Before we proceed to the lemmas, let us first discuss the theo-
rem.

Theorem 3 is formulated such that it is applicable to the carriers typically used in
NFDM systems. One of the commonly used carriers is the sinc function [86], [91], [98],
[234]

Ψ(ξ) = sinc(ξ) =
{

1, ξ= 0
sin(ξ)

ξ , otherwise
. (5.22)

The function sinc(ξ) is real-analytic [243], square-integrable, and decays to zero as ξ→
±∞. To apply Theorem 3, we need to show that supk=2,3,...

∥
∥
∥

dk

dξk sinc(ξ)
∥
∥
∥
∞

<∞. To check

this, we first note that sinc ∈ L∞(R) with ‖sinc‖∞ = 1. The Fourier transform of sinc(ξ)
is furthermore a rectangle function,

F {sinc}(ω) =
{

π, |ω| < 1

0, otherwise
. (5.23)

The set of ω for which the Fourier transform is non-zero thus satisfies suppF {sinc}(ω) ⊂
[−1,1], where “supp” is short for support. Then, [244, Theorem 4] tells us that ‖ dk

dξk sinc‖∞ ≤
1k‖sinc‖∞ so that Equation (5.21) is indeed fulfilled. Theorem 3 now tells us that the b-
modulator is bounded in transmit power.

Remark 8. The argument above for showing that the sinc(ξ) carrier satisfies the condi-

tions in Theorem 3 exploits that the support of its Fourier transform is contained in the

interval [−1,1]. For a b-modulator M as in Theorem 3 where the Fourier transform is not

contained in [−1,1], but in some larger interval [−α,α], the following method can be ap-

plied. For any b =B(v), we define bα(ξ) = b(ξ/α) and qα :=Q(bα). By basic properties of

the NFT, we have that qα(t ) =αq(αt ). The b-modulator

Mα : {0,1}Nb →L 2([T1/α,T2/α]), v 7→ qα, (5.24)

has the maximum transmit power

Pα :=
1

T2/α−T1/α

∫T2/α

T1/α
|qα(t )|2dt (5.25)

=
α

T2 −T1

∫T2/α

T1/α
|α|2|αq(t )|2dt (5.26)

=
|α|2

T2 −T1

∫T2

T1

|q(t̃ )|2dt̃ = |α|2P, (5.27)

where we used the substitution t̃ := αt , dt̃ = dt/α. The carrier waveform of Mα will by

construction have a Fourier transform with support in [−1,1], so that the argument given

above for sinc(ξ) can again be made. Thus the power P of the modulator M will also be

bounded.

Similar arguments show that raised cosine carriers [90] and flat-top carriers [245] also
fulfill the conditions of Theorem 3. Having seen that Theorem 3 is applicable to many
b-modulated systems, we now prove two lemmas which we need to prove the theorem.
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Lemma 5. Let b(ξ) be any real-analytic function for ξ ∈R with

‖b‖∞ ≤ 1, lim
ξ→±∞

b(ξ) = 0 and sup
k=2,3,...

∥
∥
∥
∥
∥

dk

dξk
b(ξ)

∥
∥
∥
∥
∥
∞

<∞. (5.28)

Then, the energy contained in any finite interval [−W,W ] is finite:

EW :=−
1

π

∫W

−W
log(1−|b(ξ)|2)dξ<∞. (5.29)

Proof. Let us set f (ξ) := b(ξ)b̄(ξ), where b̄(ξ) = b∗(ξ∗). If b(ξ) is real-analytic, then b̄(ξ)
is real-analytic which implies f (ξ) is also real-analytic [246, Proposition 1.1.4]. For ξ ∈R,
f (ξ) := |b(ξ)|2. Let ξ0 denote any spectral singularity (i.e., |b(ξ0)| = 1). We are interested
in showing that the contribution of the singularity to the signal energy is finite, i.e.,

I :=
∫ξ0+δ/2

ξ0−δ/2
log(1− f (ξ))dξ>−∞ (5.30)

for δ> 0 small enough. Since f (ξ) ∈ [0,1], this would imply that I is real and not positive.
In a interval (ξ0 −δ/2,ξ0 +δ/2) with δ > 0 small enough, we can write ([246, Corollary
1.1.10])

f (ξ) = f (ξ0)+
f (1)(ξ0)

1!
(ξ−ξ0)+

f (2)(ξ0)

2!
(ξ−ξ0)2 +

f (3)(ξ0)

3!
(ξ−ξ0)3 + . . . , (5.31)

where f (k) := dk

dξk f . The derivative test tells us that ξ0 will be an isolated maximum point

of f only if f (k)(ξ0) = 0 for k = 1, . . . ,n with n odd and f (n+1)(ξ0) < 0. Plugging these into
Equation (5.31), we get

f (ξ) = 1+
f (n+1)(ξ0)

(n +1)!
(ξ−ξ0)(n+1) +

f (n+2)(ξ0)

(n +2)!
(ξ−ξ0)(n+2) + . . . . (5.32)

(Spectral singularities are maximum points because f (ξ) = |b(ξ)|2 ≤ 1 for all ξ. They must
be isolated because otherwise f (ξ) = |b(ξ)|2 = 1 for all ξ ∈ R since f is real-analytic [246,
Corollay 1.2.6], which contradicts the second condition in Equation (5.28).)

For showing Equation (5.30), let us define a second integral I I by substituting only
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the first two non-zero terms of the expansion Equation (5.32) for f (ξ) in Equation (5.30):

I I :=
∫ξ0+δ/2

ξ0−δ/2
log

(

1−
(

1+
f (n+1)(ξ0)

(n +1)!
(ξ−ξ0)(n+1)

))

dξ (5.33)

=
∫ξ0+δ/2

ξ0−δ/2
log

(

−
f (n+1)(ξ0)

(n +1)!
(ξ−ξ0)(n+1)

)

dξ (5.34)

=
∫ξ0+δ/2

ξ0−δ/2
log

(

−
f (n+1)(ξ0)

(n +1)!

)

dξ+
∫ξ0+δ/2

ξ0−δ/2
log

(

(ξ−ξ0)(n+1))dξ (5.35)

= δ log

(

−
f (n+1)(ξ0)

(n +1)!

)

+
∫δ/2

−δ/2
log

(

(ξ2)(n+1)/2)dξ (5.36)

= δ log

(

−
f (n+1)(ξ0)

(n +1)!

)

+2
n +1

2

∫δ/2

0
log

(

ξ2)dξ (5.37)

= δ

(

log

(

−
f (n+1)(ξ0)

(n +1)!

)

+ (n +1)

(

log

(
δ

2

)

−1

))

. (5.38)

For any δ> 0, I I is real and finite.

Our next goal is to show that the term I I I := I−I I is also finite for δ> 0 small enough.

We start by bounding S := f (n+2)(ξ0)
(n+2)! + f (n+3)(ξ0)

(n+3)! (ξ−ξ0)1 + . . .:

|S| =
∣
∣
∣
∣

f (n+2)(ξ0)

(n +2)!
+

f (n+3)(ξ0)

(n +3)!
(ξ−ξ0)1 + . . .

∣
∣
∣
∣

≤
∣
∣
∣
∣

f (n+2)(ξ0)

(n +2)!

∣
∣
∣
∣+

∣
∣
∣
∣

f (n+3)(ξ0)
(n+3)!

(ξ−ξ0)1

∣
∣
∣
∣+ . . .

(5.39)

The largest value for |ξ−ξ0| we have to consider is |ξ−ξ0| = δ/2. Hence,

|S| ≤
∣
∣
∣
∣

f (n+2)(ξ0)

(n +2)!

∣
∣
∣
∣+

∣
∣
∣
∣

f (n+3)(ξ0)

(n +3)!2

∣
∣
∣
∣δ+

∣
∣
∣
∣

f (n+4)(ξ0)

(n +4)!4

∣
∣
∣
∣δ

2 +|. . .| (5.40)

Since, by assumption supk=n+2,n+3,... | f (k)(ξ0)| <∞, we find that

|S| ≤ sup
k=n+2,n+3,...

∣
∣
∣ f (k)(ξ0)

∣
∣
∣

(
1

(n +2)!
+

δ

(n +3)!2
+

δ2

(n +4)!4
+ . . .

)

→ sup
k=n+2,n+3,...

∣
∣
∣ f (k)(ξ0)

∣
∣
∣

1

(n +2)!
for δ→ 0,

(5.41)

Hence,

|S| <
2

(n +2)!
sup

k=n+2,n+3,...

∣
∣
∣ f (k)(ξ0)

∣
∣
∣<∞ (5.42)
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for δ> 0 small enough. The integral

I I I := I − I I (5.43)

=
∫ξ0+δ/2

ξ0−δ/2
log(1− f (ξ))− log

(

−
f (n+1)(ξ0)

(n +1)!
(ξ−ξ0)(n+1)

)

dξ (5.44)

=
∫ξ0+δ/2

ξ0−δ/2
log




1− f (ξ)

− f (n+1)(ξ0)
(n+1)! (ξ−ξ0)(n+1)



dξ (5.45)

=
∫ξ0+δ/2

ξ0−δ/2
log




− f (n+1)(ξ0)

(n+1)! (ξ−ξ0)(n+1) − f (n+2)(ξ0)
(n+2)! (ξ−ξ0)(n+2) + . . .

− f (n+1)(ξ0)
(n+1)! (ξ−ξ0)(n+1)



dξ (5.46)

=
∫ξ0+δ/2

ξ0−δ/2
log



1+
f (n+2)(ξ0)

(n+2)! (ξ−ξ0)(n+2) + . . .

f (n+1)(ξ0)
(n+1)! (ξ−ξ0)(n+1)



dξ (5.47)

=
∫ξ0+δ/2

ξ0−δ/2
log

(

1+ (ξ−ξ0)
(n +1)!

f (n+1)(ξ0)
S

)

dξ, (5.48)

is, in light of Equation (5.42), thus indeed finite forδ> 0 small enough. Earlier, we already
found that the integral I I is finite for any δ > 0. However, then, the integral I = I I + I I I

has to be finite as well for δ > 0 small enough since the Lebesgue integrable functions
form a vector space.

As f (ξ) is real-analytic on R, there can be only a finite number of points ξ◦1,ξ◦2, . . . ,ξ◦M
in [−W,W ] at which f (ξ◦m) = 1 [246, Corollary 1.2.6]. (An infinite sequence ξ◦1,ξ◦2, · · ·
of spectral singularities in a finite interval [−W,W ] would have an accumulation point.
Similarly to before, this would imply f (ξ) = |b(ξ)|2 = 1 for all ξ, which contradicts Equa-
tion (5.28).) As shown above, we can choose δ1,δ2, . . . ,δM > 0 small enough such that

Im :=
∫ξ◦m+δm /2

ξ◦m−δm /2
log(1− f (ξ))dξ>−∞ (5.49)

for all m. The set

X := [−W,W ]
∖ M⋃

m=1
(ξ◦m −δm/2,ξ◦m +δm/2) (5.50)

is compact. The function f (ξ) thus attains a maximum on X , which has to be smaller
than one since we removed all points where f (ξ) = 1 from X . Summarizing, we find that

EW =−
1

π

(∫

X
log(1− f (ξ))dξ+

∫

[−W,W ]\X
log(1− f (ξ))dξ

)

≤−
1

π

(

min
ξ∈X

log(1− f (ξ))

︸ ︷︷ ︸

>−∞

∫

X
dξ+

M∑

m=1
Im

)

<∞.
(5.51)

Lemma 1 implies that there is a bound on the energy of b(ξ) when the nonlinear
bandwidth is fixed. This leads us to the following lemma.
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Lemma 6 (Energy bound for b-modulation). We consider the b-modulator in Theorem

3. Let 0 < W < ∞. Then, there exists a finite constant EW such that the energy of any

generated b(ξ) in [−W,W ] satisfies

EW =−
1

π

∫W

−W
log(1−|b(ξ)|2)dξ≤ EW . (5.52)

The constant EW depends on Ψ, S∗, N , ∆ξ, and W , but is independent of A and the choice

of the sn .

Figure 5.5 presents a graphical illustration of Lemma 6.

0

0

1

0

0

6

Figure 5.5: The left plot shows a b(ξ) of the form Equation (5.20) for several values of the power control factor
A, resulting in different gaps to singularity εb = 1−‖b‖2

∞. The right plot shows the corresponding integrand in
Equation (5.52). The shaded areas thus represent the signal energy EW in the shown interval. Lemma 6 tells us
that EW will stay below a finite bound no matter how small the gap to singularity becomes.

Proof of Lemma 6. Let us fix s−N , . . . , sN ∈ S∗. For a real-analytic Ψ(ξ), snΨ(ξ) will also
be real-analytic [246, Proposition 1.1.4]. The sum of real-analytic functions is also real-
analytic [246, Proposition 1.1.4], thus b(ξ) will be real-analytic. Since A is assumed ad-
missible, the first condition in Equation (5.28) is fulfilled. The first assumption in Equa-
tion (5.21) ensures that the second condition in Equation (5.28) is fulfilled as well. By
applying the triangle inequality to Equation (5.28) and using Equation (5.21) to bound
the individual summands, we find that also the third condition in Equation (5.28) is ful-
filled. Hence, we can apply Lemma 5. The admissible A that results in the largest energy
in [−W,W ] is given by 2

A∗ = 1
/

max
ξ∈R

∣
∣
∣
∣
∣

N∑

n=−N

snΨ(ξ−n∆ξ)

∣
∣
∣
∣
∣
. (5.53)

Lemma 5 shows that EW is finite for the choice A = A∗. Since EW can only be lower
for other admissible choices of A, we have obtained a finite upper bound on EW for the

2We assume without loss of generality that the denominator in Equation (5.53) is not zero. In such cases, the
energy is zero for all A ≥ 0.
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chosen s−N , . . . , sN that is independent of A. Since our constellation alphabet is finite,
there is only a finite number of choices for the s−N , . . . , sN . By taking the maximum over
the upper bounds on EW for each possible choice, we obtain an upper bound on EW that
is independent of both A and the sn .

Now that we have proved the existence of an energy bound for the modulator in The-
orem 3, we shall proceed to prove the power bound.

Proof of Theorem 3. Our first goal is to bound the energy corresponding to the nonlinear
spectrum

b(ξ) = Ab0(ξ) := A
N∑

n=−N

snΨ(ξ−n∆ξ).

As the energy is always zero if ‖b0‖∞ = 0, we assume without loss of generality that
‖b0‖∞ > 0. Let us fix an arbitrary 0 < δ < ‖b0‖∞. Since Ψ(ξ) → 0 for ξ → ±∞, also
b0(ξ) → 0 for ξ → ±∞. Hence, we can choose 0 < W < ∞ such that |b0(ξ)| < δ for all
|ξ| >W . Since A‖b0‖∞ ≤ 1 by Equation (5.14), we obtain

Aδ≤
δ

‖b0‖∞
=: η< 1

for any admissible A ≥ 0. Choose now EW as in Lemma 6. Then,

E =−
1

π

∫∞

−∞
log(1− A2|b0|2)dξ (5.54)

=−
1

π

∫

R\[−W,W ]
log(1− A2|b0|2)dξ−

1

π

∫W

−W
log(1− A2|b0|2)dξ (5.55)

≤−
1

π

∫

R\[−W,W ]
log(1− A2|b0|2)dξ+EW (5.56)

=
1

π

∫

R\[−W,W ]

(

A2|b0(ξ)|2 +
1

2
A4|b0(ξ)|4 +

1

3
A6|b0(ξ)|6 +·· ·

)

dξ+EW (5.57)

≤
1

π

∫

R\[−W,W ]
A2|b0(ξ)|2

(

1+
1

2
A2δ2 +

1

3
A4δ4 +·· ·

)

dξ+EW (5.58)

≤
1

π

η2

δ2
(1+η2 +η4 +·· · )

∫

R\[−W,W ]
|b0(ξ)|2dξ+EW (5.59)

≤
1

π

η2

δ2
(1+η2 +η4 +·· · )‖b0‖2

2 +EW < ∞. (5.60)

In Equation (5.57), the Taylor expansion − log(1− ξ2) = ξ2 + ξ4/2+ ξ6/3+ . . . was used.
In Equation (5.59), it was used that Aδ ≤ η. In the last line, we used ‖b0‖2

2 < ∞, which
follows from Ψ ∈L 2(R), and 0 < η< 1.

The bound on E in Equation (5.60) is independent of A but still depends on the
choice of the s−N , . . . , sN ∈ S∗ used to construct b0(ξ). Since the set S∗ is finite, there is
only a finite number of possible b0(ξ). Let E denote the largest value of Equation (5.60)
over all possible b0(ξ). By construction, E is finite and independent of both A and the
choice of s−N , . . . , sN . From Equation (5.14), we find

∫T2
T1

|q(t )|2dt ≤
∫∞
−∞ |q(t )|2dt = E ≤ E .

Thus, P ≤ E/(T2 −T1) with E independent of A, the choice of the sn , and of course the
duration T2 −T1.
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5.4. CONCLUSIONS
The NFDM technique of b-modulation has received much attention in the last few years.
We have shown, for the first time, that, for b-modulators, the nonlinear bandwidth, sig-
nal duration, and power are coupled when, as it is the case in most practical implemen-
tations, the gap to singularity is bounded. For fixed nonlinear bandwidth, this results
in a bound on the transmit power that decreases with signal duration. This decrease in
the transmit power implies that the supremum of the achievable signal-to-noise ratios
(SNRs) decreases as the signals become longer. Hence, we established a new factor that
contributes to the observed performance degradation of b-modulated systems for long
signals [86], [234]. Furthermore, we showed that, even in the presence of spectral sin-
gularities, the transmit powers of many b-modulators cannot be made arbitrarily large.
The results in this chapter also apply to NFDM systems that modulate the reflection co-
efficient in fibers with normal dispersion when b is replaced with ρ since the underlying
mathematical structure is the same. The cases of b-modulation in normal dispersion
fiber and ρ-modulation in anomalous dispersion fiber require further research.
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SOFTWARE CONTRIBUTIONS:

FNFT AND NFDMLAB

CHAPTER ABSTRACT
In this chapter we discuss the structure and features of the FNFT software library and
NFDMLab simulation environment. We elaborate on the contributions of this disserta-
tion to them and their impact on NFT based signal processing.

Parts of this chapter are based on the following publications:
S. Wahls et al., “FNFT: A Software Library for Computing Nonlinear Fourier Transforms”, Journal of Open
Source Software, vol. 3, no. 23, p. 597, 23 Mar. 2018. [171]
S. Wahls et al., FastNFT/FNFT: Version 0.4.1, 2020 [247]
M. Brehler et al., “NFDMLab: Simulating Nonlinear Frequency Division Multiplexing in Python”, in Optical
Fiber Communication Conference (OFC) 2019, OSA, 2019. [154]
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6.1. INTRODUCTION
The application of nonlinear Fourier transforms (NFTs) to fiber-optic communications
has received significant attention in the recent years. Nonlinear frequency division mul-
tiplexing (NFDM) research is a young field and has many interesting research avenues.
NFTs as engineering tools also have many other potential applications. Having a soft-
ware library with tested implementations of NFT algorithms makes it easier to enter the
field of NFDM research or test NFTs in other applications. At the beginning of the re-
search for this dissertation, no software library of NFT algorithms was available. Wahls
et al. therefore started work on the FNFT software library with the goal of making the
fast NFT algorithms developed by him in [128], [139], [161], [248] available to the pub-
lic. The software library is open access and hosted on GitHub. The releases of the FNFT
are furthermore archived on Zenodo [247]. To showcase FNFT we furthermore collabo-
rated with external partners and developed a software environment for the simulation
of NFDM systems called NFDMLab [154], which is an open source environment for sim-
ulating NFDM systems in Python.

In the following Section 6.2 we will highlight some salient features of the FNFT soft-
ware library and list contributions from this dissertation. In Section 6.3 we describe
structure of NFDMLab and its features.

6.2. FNFT
The initial focus of the FNFT library was to make fast NFT algorithms openly available.
However it has been extended to include more conventional algorithms which are often
used as reference algorithms. FNFT is written in the C programming language [249] for
speed and interoperability and comes with a MATLAB [250] interface. The MATLAB in-
terface allows for faster prototyping in many applications. The source code for FNFT is
publicly available on GitHub at https://github.com/FastNFT/FNFT under the terms
of the GNU General Public License, version 2 [251]. The associated publication [171]
can be used to cite the software library. An external collaborator furthermore develops
a Python interface for FNFT known as FNFTpy [252]. It simplifies using FNFT in Python
projects such as NFDMLab. FNFT can be installed on Windows, Linux or Mac operating
systems.

Below we quote, from the README file, the transforms for the NLS equation sup-
ported by version 0.4.1 of the library [247].

Forward Transforms

• Vanishing boundary conditions

◦ Reflection coefficient and/or scattering coefficients (a and b)

◦ Bound states (eigenvalues)

◦ Norming constants and/or residues

• (Quasi-)Periodic boundary conditions

◦ Main spectrum

https://github.com/FastNFT/FNFT
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◦ Auxiliary spectrum

Inverse Transforms

• Vanishing boundary conditions

◦ Inversion of reflection coefficients, b-scattering coefficients or the inverse
Fourier transform of the b-coefficient

◦ Bound states (eigenvalues) can be added with arbitrary norming constants
or residuals

The library has multiple algorithms for most of the transforms listed above. The algo-
rithms have been implemented using ideas from several publications which are men-
tioned in the extensive documentation of each of the routines. The documentation can
be built from the source code. Alternatively the documentation of the release versions
can be found at https://fastnft.github.io/FNFT/. All of the algorithms developed
in Chapter 2 have been integrated into the library. Ideas from [116], [122], [123], [127],
[128], [161], [163] have also been used in algorithms for computing the forward NFTs.
The routines for the inverse NFTs are based primarily on the works [90], [120], [139],
[253], [254]. Work is ongoing to add more transforms of the NLS and KdV equations. The
library is also being extended to support forward NFTs of the 3×3 system [255] associ-
ated with the Manakov equation [22] which is a model for propagation of light pulse in a
birefringent fiber (see Section 1.3.2).

With multiple contributors and several thousand lines of code, it is necessary to con-
duct comprehensive testing to ensure robustness of the library. This is accomplished
through tests for individual auxiliary routines, complete NFT routines and others to
make sure bugs stay fixed. Users can run these tests to ensure that the library has been
installed properly. The tests also help developers check if their changes unexpectedly
break something. The library also comes with several example files in both C and MAT-
LAB that demonstrate the use of the various features. In Figure 6.1 we can see a screen-
shot of one of the MATLAB examples which recreates Figure 2.13 from Chapter 2.

The FNFT library has been used by many groups as a toolbox for computing the NFTs
[33], [108], [200], [256]–[258]. Some researchers have also used FNFT as a platform to
develop new NFT algorithms [259]. FNFT furthermore forms the basis of NFDMLab,
which we will discuss in the next section.

6.3. NFDMLAB
NFDMLab is a highly reconfigurable open source simulation environment for NFDM
systems. It is written in the Python programming language [260]. It can also be con-
trolled using a simple and intuitive graphical environment built on the celebrated
Jupyter notebook technology [261]. NFDMLab is available at https://github.com/

FastNFT/NFDMLab. It is also provided under the terms of the GNU General Pub-
lic License, version 2. The installation and testing instructions are documented at
https://fastnft.github.io/NFDMLab/.

The structure of NFDMLab is illustrated in Figure 6.2. The core of NFDMLab realizes
all of the simulation and visualization tasks, using standard libraries that can be installed

https://fastnft.github.io/FNFT/
https://github.com/FastNFT/NFDMLab
https://github.com/FastNFT/NFDMLab
https://fastnft.github.io/NFDMLab/
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Figure 6.1: Figure 2.13 recreated using mex_fnft_nsev_example_2 MATLAB example from the FNFT software
library.

Figure 6.2: Overview of components in NFDMLab. Recreation of Figure 2 in "NFDMLab: Simulating Nonlinear
Frequency Division Multiplexing in Python,” by M. Brehler et al. (https://doi.org/10.1364/OFC.2019.M3Z.13)
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with Python’s package manager pip (numpy [262], scipy [263], matplotlib [264]). It is or-
ganized in modules, each of which provides a typical functionality of a fiber-optic com-
munication system. A typical simulation workflow is depicted in Figure 6.3, where the
cyan-colored boxes indicate individual modules. The NFDM (de-)modulator modules
make use of the FNFT library through FNFTpy.

Constellation

NFDM 

Modulator

Stack N 

waveforms

Denormalization

Low-pass filter Fiber-optic Link Low-pass filter

Normalization

Unstack 

waveforms

NFDM 

Demodulator 

(includes 

equalization)

Quality 

assessment

FNFT C Library 

Bits

Block of 

symbols

Block of 

symbols

Normalized 

waveform

Normalized 

waveform

Normalized 

fiber output

Normalized 

fiber input

Figure 6.3: Schematic representation of the Python core. The arrows indicate a typical workflow. Recreation of
Figure 3 in "NFDMLab: Simulating Nonlinear Frequency Division Multiplexing in Python,” by M. Brehler et al.
(https://doi.org/10.1364/OFC.2019.M3Z.13)

The fiber-optic link is able to simulate EDFA amplification (with flat gain and op-
tionally with noise) and Raman amplification (without noise) in multi-span single-mode
fiber links. The nonlinear propagation within the link is simulated using a Python port of
the split-step Fourier algorithm SSPROP [265]. The (de-)normalization modules support
path-averaging techniques that were discussed in Section 1.3. The quality assessment



6

120 6. SOFTWARE CONTRIBUTIONS: FNFT AND NFDMLAB

module provides standard quality measures such as constellation diagrams or (uncoded)
bit error ratios.

NFDMLab comes with NFDM system examples that loosely reproduce experiments
reported in the papers [77], [86], [92]. These examples can be run using just Python
or with graphical interaction through a Jupyter notebook. In Figure 6.4 we can see a
screenshot of the constellation and modulation settings in the Jupyter notebook for the
LeArefBuelow2017 example [86]. In Figure 6.5 we can see a fiber input of five blocks and
the corresponding fiber output from the same Jupyter notebook. The modular structure
of NFDMLab allows researchers to use these examples as a base for their own investi-
gations. The simulations reported in Chapter 4 were performed in NFDMLab. Other
colleagues have modified NFDMLab for their work on NFDM systems with special fibers
[53] and for fiber parameter estimation [31].

Figure 6.4: Constellation and modulation settings in the Jupyter notebook for the LeArefBuelow2017 example
in NFDMLab.

6.4. CONCLUSION
The FNFT open source software library provides several numerical algorithms for non-
linear Fourier transforms. FNFT is quite performant since it is written in the C program-
ming language. It reduces the cost of trying nonlinear Fourier transforms as an engi-
neering tool by providing tested implementations. The NFDMLab simulation environ-
ment makes use of the FNFT software library and functions as a platform for developing
NFDM systems. It is hoped that these software contributions will also aid in the applica-
tion of nonlinear Fourier transforms to other interesting potential applications.
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Figure 6.5: Visualization of the fiber input and fiber output in the Jupyter notebook for the LeArefBuelow2017
in NFDMLab.
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CONCLUSIONS AND

RECOMMENDATIONS

CHAPTER ABSTRACT
In this final chapter we evaluate the progress achieved through this dissertation with
regards to some practical aspects of nonlinear Fourier transforms for fiber-optic com-
munications. Additionally, some recommendations for further research are discussed.
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7.1. CONCLUSIONS

The principal objective of this dissertation was to understand and address numerical is-
sues that currently complicate the practical use of nonlinear Fourier transform-based
fiber-optic communication systems. To achieve this objective, we developed new fast
numerical algorithms that addressed different open issues in the literature. The first are
novel fast forward NFT algorithms for the NLSE with vanishing boundary conditions that
offered a vastly better accuracy-complexity trade-off than prior methods. The second is
an inverse NFT algorithm for the periodic NFT that is able to generate high genus solu-
tions. The investigation of issues with fiber-optic b-modulation communication systems
that were attributed to numerical problems in the literature furthermore lead to the dis-
covery of a novel coupling between nonlinear bandwidth, duration and power for these
systems that has no analog in the linear case. Our results explain the observed issues
with b-modulation systems without resorting to numerical problems. In the following,
we will briefly recapitulate the motivation, progress and likely impact of the work for
each of the chapters.

Nonlinear Fourier transforms do not obey the principle of superposition. Hence
we require numerical algorithms to compute the transforms of more complicated sig-
nals. In Chapter 2, we proposed new higher-order fast forward NFT algorithms based
on a special class of exponential integrators. The proposed algorithms were compared
with existing algorithms in numerical examples and were shown to have a much better
complexity-accuracy trade-off. It was the first time that NFT algorithms were compared
from this point of view. Furthermore, for the first time in literature we presented an exact
count of the various basic mathematical operations for a fast NFT algorithm. Since the
publication of these algorithms, several other higher-order algorithms have been pro-
posed [123], [131], [259], [266] in the literature with focus on complexity-accuracy trade-
off. We have observed that the algorithms proposed in this dissertation remain fairly
competitive to these newer algorithms. The authors in [266] have suggested that sixth-
order methods may offer the best complexity-accuracy trade-off and increasing the or-
der further may not be favorable. The development of new algorithms for computing the
nonlinear Fourier spectrum is ongoing.

The majority of NFT based fiber-optic communication systems employ the vanish-
ing NFT. Systems based on the periodic NFT, which is closer to the commonly used lin-
ear OFDM, have been investigated as well. However, currently proposed systems are not
competitive in terms of spectral efficiency. One reason for this lack of performance is
the use of low genus solutions. Higher performance may be achievable with high genus
solutions, but the numerical complexity of existing inverse NFT methods grows rapidly
with the genus. Finite-genus solutions are typically computed by either the algebro-
geometric approach or by solving Riemann-Hilbert problems. We studied the algebro-
geometric approach in which finite-genus solutions are represented in terms of the Rie-
mann theta function. The Riemann theta function is a multi-dimensional Fourier se-
ries whose numerical computation is challenging due to the curse of dimensionality.
This limits the genus of the solutions used in periodic NFT based systems. In Chapter 3
we investigated multiple conventional methods theoretically and concluded that none
of them are suitable for the high-dimensional regime. We then proposed to consider
low-rank tensor and hyperbolic cross-based techniques. We evaluated the proposed al-
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gorithms in multiple numerical benchmarks. The algorithm based on the hyperbolic
cross index set allows for the computation of high-genus solutions that were so far out
of reach. This removes one major hurdle in the development of periodic NFT based sys-
tems with possibly higher performance.

Of the several NFDM system architectures proposed in the literature, b-modulated
systems have emerged as the currently preferred design. b-modulated systems allow for
control over the signal duration and have been shown to be more robust to noise. The
system spectral efficiency can be theoretically increased by utilizing signals significantly
longer than the channel memory. However in practice, bit errors were observed to in-
crease which outweighed the advantage of using longer signals. This observation has
been typically attributed to increased numerical signal-noise interactions in the NFT for
longer signals [86], [98], [233], [234]. In Chapter 4 we considered the b-modulated system
from [92] and studied the transmission of long signals. We were able to derive a theoret-
ical bound on the transmit power of the signals which decreases with signal duration for
fixed bandwidth. This was the first instance where such a bound on the transmit power
of an NFDM system was derived. Long signals are thus low power signals which “drown"
in noise. This explains the observed increase in bit errors and ultimately drop in perfor-
mance even in the absence of numerical issues. Using an improved numerical algorithm
for the inverse NFT, we performed numerical simulations in which we achieved trans-
mit powers close to the theoretical bound. This suggested that in our setup, numerical
signal-noise interactions was not the major limiting factor. In other numerical simula-
tions we found that the b-modulator from [99], which makes use of a special nonlinear
mapping for the b-coefficient with the hope of avoiding the energy barrier, also suffers
from similar limitations even though the exact argument used in our analysis does not
apply to that case.

We had hoped that the analysis and new insights from Chapter 4 would allow us to
design improved b-modulation systems that can generate long signals with high powers.
However, we soon discovered that the bound on the transmit power was a fundamental
limitation of a wide class of b-modulated systems in the anomalous dispersion regime.
We discussed this in detail in Chapter 5. We showed that for b-modulators the non-
linear bandwidth, signal duration and power are coupled when the gap to singularity is
bounded, i.e. 1−|b(ξ)| ≥ ǫ∀ ξ ∈R. For a fixed nonlinear bandwidth this results in a bound
on the transmit power that decreases with signal duration. Furthermore, we showed
that even in the presence of spectral singularities, that is points at which |b(ξ)| = 1, the
transmit powers of many b-modulators cannot be made arbitrarily large. The underlying
mathematical structure for the reflection coefficient ρ in the normal dispersion regime
is the same as the b-coefficient in the anomalous regime. Hence the bounds also apply
to NFDM systems that modulate the reflection coefficient ρ in fibers with normal disper-
sion [87], [97]. Such a fundamental limitation on the transmit power is not seen in the
case of conventional linear modulators. It is a limitation imposed on NFDM system de-
sign by the structure of the nonlinear Fourier transform. Knowing the presence of such
constraints is crucial for the development of spectrally efficient NFDM systems.

The field of NFDM research is still young with many interesting research opportu-
nities. Having a software library with tested implementations of NFT algorithms makes
it easier for more researchers to enter the field of NFDM research. At the beginning of
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research for this dissertation, no software library of NFT algorithms was available. Wahls
et al. therefore started work on the open source software library FNFT. In Chapter 6 we
explained the structure and some salient features of the FNFT library. The library has
already made a mark with many researchers using it as a toolbox [33], [108], [257] and
others as a platform for developing their own algorithms [259]. We also reviewed the
structure of the simulation environment NFDMLab, which is a Python based environ-
ment for simulating NFDM systems that utilizes FNFT. Although several simulation en-
vironments existed for simulation of fiber-optic communication systems, many were not
developed on freely available platforms and integrating NFT based designs in them was
challenging. NFDMLab was developed with the goal of reducing the barrier to NFDM
research. It is open source and has a modular structure which allows for straightforward
extension to new system designs. NFDMLab also helps to replicate results from the lit-
erature and already includes multiple examples. New system designs developed using
NFDMLab can be replicated with low effort or shared effortlessly across research groups
which will hopefully be beneficial to the field of NFDM research.

7.2. RECOMMENDATIONS FOR FUTURE WORK
In this section we discuss some of the possible directions for further research on the topic
of nonlinear Fourier transforms in fiber-optic communications.

Fast higher-order inverse NFT algorithms for vanishing signals Although we have
made significant progress in the area of forward NFT algorithms, there hasn’t been ade-
quate progress in case of the inverse NFT algorithms. It was already shown by Wahls and
Poor in [138] that their idea of employing rational polynomial function approximations
can be used for developing fast inverse NFT algorithms for vanishing signals. However,
it has not been possible so far to extend the idea of higher-order methods to the case of
fast inverse algorithms. Being able to compute the inverse NFT efficiently is as impor-
tant as the forward case and hence the lack of good algorithms can be a limiting factor in
engineering applications. The development of fast higher-order inverse NFT algorithms
is thus an interesting open topic for future research.

Spectrally efficient NFDM systems While the spectral efficiencies of NFDM systems
have risen to greater than 50% of highly tuned conventional systems, more work remains
to be done. We now know that the transmit power of b-modulators in the anomalous dis-
persion regime, which modulate only the continuous spectrum, is limited. The limita-
tion on the transmit power translates to a limitation on the achievable spectral efficiency.
One possible approach to overcome this limitation is the use of strategically placed soli-
tons that can help increase the signal power without losing the time-limitedness of the
signals [91]. It may also be possible that b-modulated systems in the normal dispersion
regime and ρ-modulated systems in the anomalous dispersion regime do not have such
a limitation. These are two of the many possible directions in which NFDM system de-
sign can be explored.

NFDM systems based on NFTs for other boundary conditions Almost all the re-
search on NFT based fiber-optic communications is centered around vanishing signals
with only a handful of works employing periodic signals. However, the theory of the non-
linear Fourier transforms for the nonlinear Schrödinger equation extends to signals with
other boundary conditions. One of the notable ones is the non-zero boundary condition
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[241]. It would be interesting to explore the possibility of utilizing such signals for com-
munication. The development of NFT algorithms for the specific boundary conditions
would have to be a precursor for research in that direction.
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