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Abstract—Composite Power System Reliability is defined as 

the computational procedure that quantifies the probability that 

the power system will perform the function of delivering electric 

power to customers adequately, on a continuous basis and with 

an acceptable quality. This definition leaves many details 

undefined and exemplifies the ambiguity in reliability analysis. 

The increasing deployment of wind and PV creates additional 

uncertainties that make reliability analysis a rather complex 

issue. Because of increased uncertainty the need for composite 

reliability analysis and utilization of results in power system 

planning is critical. New approaches are emerging for dealing 

with these problems from the operational point of view, 

including demand response programs, tapping on customer and 

distributed resource flexibility and new control approaches. The 

key question to be addressed is: how the new operational 

paradigms affect composite power system reliability. This paper 

presents the ongoing work of the IEEE Composite System 

Reliability Task Force of the IEEE PES Reliability, Risk, 

Probability Application (RRPA) Subcommittee.  

Keywords— Composite power system, renewables, customer 

flexibility, uncertainties, reliability methodologies 

I. INTRODUCTION 

Reliability and security calculations have been and remain 
today of paramount importance to the reliable and economic 
operation of power systems.  Electric utilities maintain 
sufficient generation, transmission and distribution capacity to 
ensure continuity of electric service to their customers under 
normal as well as contingencies and other abnormal 
conditions compounded with uncertainties associated with 
load variations, variability of renewable energy sources, etc. 
Power system reliability and security have received even more 
attention in the last few decades due to widespread 
implementation of electricity markets, power industry 
restructuring, massive integration of renewable energy 
sources and major blackouts that happened around the globe. 
Comprehensive probabilistic methods that quantify these 
effects are very important; they should be capable of taking 
into account: (a) the uncertainty of variable resources (wind, 
PV), (b) flexibility enabled with storage and customer-owned 
resources, (c) uncertainty of primary fuel prices, (d) increased 
weather uncertainty and environmental constraints, and (e) 
random forced outages. The desirable outputs of 
comprehensive probabilistic methods are: (a) expected costs, 
(b) system reliability quantification (via indices), (c) 
operational limitations (overloads, undervoltages, ramping 
violations, etc.), and (d) environmental impacts, and others.  

Today, more and more utilities across the globe, in order 
to stay competitive, operate their systems with heavier flows 
and with lower security margins. This reality has prompted 
improvements of existing or development of new 
methodologies and tools to ensure reliable and secure 
operation, and prevent widespread disturbances. Bulk power 
system reliability comprises two basic attributes: adequacy 
and operating reliability (former security). Adequacy is the 
ability of the electric system to supply the aggregate electrical 
demand and energy requirements of the end-use customers at 
all times, taking into account scheduled and forced outages of 
system elements. Operating reliability is the ability of the 
electric system to withstand sudden disturbances such as 
electric faults and/or random loss of system components [1].  

The large size of power systems presents computational 
challenges for reliability analysis of the entire system that 
comprises generation, transmission, and distribution, see 
Figure 1. Instead, the problem is partitioned into subproblems 
along with the natural splits of the system, i.e. generation, 
transmission, and distribution, and secondary systems.  

 

Fig. 1: Definition of Reliability Analysis Problems 

(Generation Adequacy Evaluation: HL-I, Composite System 

Evaluation: HL-II and Complete System Evaluation: HL-III) 

 

Composite system reliability is the reliability analysis of 
the combined generation and transmission (Fig. 1). It is 
important that generation and transmission be modeled 
simultaneously because there is substantial interaction 
between the generation system reliability and the transmission 
system reliability. A study of composite system reliability in 
the 1980’s using the program CREAM (a model developed by 
PSR from Brazil in collaboration with EPRI) quantified this 
interaction. Results for a specific system indicate that 55% of 
the unreliability is due to combination of events in the 
generation and transmission system. Variable energy 
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resources (VERs), with the bulk of it coming from wind and 
PV, presents a level of uncertainty an order of magnitude 
above the usual uncertainties of legacy power systems. This 
uncertainty necessitates probabilistic methods in dealing with 
reliability analysis, planning and risk mitigation. For proper 
inclusion of the effects of variable generation, it is necessary 
to develop reliability models of variable generation. Because 
of considerable correlation between VER generation models 
and system demand, it is important to use spatially coupled 
reliability models of VERs and loads. Since most of the time 
variable generation (wind, PV) is operating at maximum 
power tracking, lumping variable generation and demand 
results in a “net” load model. The net load model must be 
served by the dispatchable units. This approach provides the 
basis to include and assess the impact of variable generation 
on composite system reliability. The process of computing 
reliability models of the net load is illustrated in Fig. 2. 

 
Fig. 2: Construction of Net Load Reliability Model 

 
Reliability assessment of the system requires 

consideration of the reliability models of all components and 
the operational practices of the power system. This is 
illustrated in Fig. 3, which provides the basis to describe 
reliability analysis needs in the present-day power systems. 
The paper provides an overview of ongoing work to address 
the issues presented in Fig. 3. 

 

Fig.3: Illustration of Interaction of Renewables, Power System 
Component Reliability and Operational Practices on Reliability 

Assessment 

 

II. ANALYSIS OF OUTAGE STATISTICS COLLECTED BY NERC 

TADS 

Critical to composite system reliability analysis is the 
availability of component reliability models. These models are 
extracted from statistical data of component outages. The 
North American Electric Reliability Corporation (NERC) 
uses transmission equipment inventory and outage data to 
analyze outage trends and assist in identifying significant 
reliability risks to the bulk power system (BPS). Since 2008, 

the transmission inventory and automatic outage data from 
eight NERC regions have been collected in TADS, one of the 
data systems supported by NERC [3]-[4].  Transmission 
elements of the BPS reportable in TADS are (1) AC Circuits 
(Overhead and Underground), (2) Transformers (No generator 
step-up units), (3) DC Circuits, and (4) AC/DC Back-to-back 
converters.  

TADS data analysis provides the reliability model of 
individual components. Lack of space prevents detailed 
description of the methods. We discuss here only component 
unavailability, as the basic parameter of component reliability 
models. Unavailability is calculated as the total outage 
duration of all outage types as a percentage of the time. 
Unavailability is more informative since it can be tracked by 
outage type. Fig. 4 provides sample component 
unavailabilities from the TADS database. 

 

Fig. 4: Component Unavailability by Outage Type (2010-2014) 

 
Historical outage data are the basis to estimate model 

parameters of component outages, e.g., outage frequencies 
and durations. It is a common practice to calculate these 
parameters via a maximum likelihood estimation (MLE) 
assuming the same frequency and duration for the same type 
of components across different data sources and a Poisson 
process to describe outage occurrences. This practice, 
however, neglects the variability among utilities/transmission 
owners/regions. The factors that may have significant impacts 
on the outage frequency or the duration may include 
environmental conditions and maintenance schedules that 
differ across utilities. To capture this variability, a formal 
statistical testing was introduced in [5] to determine the 
“poolability” of outage data of different types of grid 
components from various NERC regions. For non-poolable 
outage data of different sources, lognormal distributions were 
developed for the frequencies and durations of various 
component outages (see [6] for the detailed documentation of 
the distributions). 

III. DETERMINISTIC VS. PROBABILISTIC CRITERIA 

Deterministic criteria and techniques have been developed 
and employed by utility industry in power system planning 
and operation for many years and will continue to be a 
benchmark criterion. Planning and operation has been 
traditionally driven by reliability standards and criteria (e.g., 
NERC standards, WECC reliability criteria). NERC has 
developed mandatory and enforceable reliability standards for 
planning (TPL-001-4) and operation (TOP-002-4, IRO-017-
1) to ensure reliable operation of the power grid [1]. Critical 
infrastructure protection (CIP) standards (CIP-002-5) deal 
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with cyber-security of power systems and they are also 
mandatory and enforceable [1].  

Considerable published work over the last several decades 
has been devoted to the various aspects of reliability, security 
and risk calculations for planning and operation. Generally, 
the research in these areas moves along three different 
directions: (a) evaluation of planning projects and calculation 
of security margins based on deterministic criteria [7]-[9]; (b) 
reliability and security assessment based on hybrid 
deterministic-probabilistic approaches often called risk-based 
approaches [10]-[12]; and (c) reliability and security 
assessment based on probabilistic approaches [13]-[20]. 
Deterministic approaches analyze, on a case-by-case basis, a 
certain number of reference scenarios by simulating them and 
evaluating reliability and security margins. The traditional 
way to operate a power system involves the deterministic N-1 
criterion. Operating criteria are designed in a such way that 
the power system shall be operated at all times so that 
instability, uncontrolled separation, cascading outages, or 
voltage collapse, will not occur as a result of any single 
contingency or credible multiple contingencies [1]. The 
fundamental objective of transmission planning is to develop 
the system as economically as possible and maintain an 
acceptable reliability level.   

Deterministic approaches have been successfully used 
over many years, they conceptually require simple 
implementation, they are easy to understand, and enable 
straightforward assessment and judgment by planners and 
operators. However, the deterministic methodologies have 
several shortcomings, which are discussed in references [10]-
[12]. Deterministic planning and operational criteria consider 
the consequence of outages, but the probabilities of outages 
are overlooked. System planning alternatives based only on 
deterministic analysis may not be the best selected 
reinforcement option. Multiple component failures are often 
excluded from consideration. Another weakness of 
deterministic assessment is that they cannot account for the 
stochastic nature of system behavior including random 
behavior of components and system operating states. Many 
major outage events across the world have indicated that the 
N-1 criterion established by the deterministic approach may 
be insufficient for a reasonable level of system reliability. 
Systems typically shift into multiple outages during major 
disturbances, making the N-1 approach irrelevant.  However, 
because of many years of successful use and the relative 
simplicity of deterministic approaches, planners are not eager 
to apply other approaches. The expectation is to develop 
hybrid approaches that may resolve the deficiencies of 
deterministic criteria and add the values of risk-based 
approaches [10], [12]. 

Probabilistic criteria and methods are classified into two 
main techniques: (a) selective contingency enumeration and 
(b) Monte Carlo simulations. Both methods are discussed in 
section V and they have their advantages and drawbacks. It is 
important to know how and when to use either technique so 
they can complement each other. Both methods can use a 
certain depth of contingencies (multiple independent and/or 
common mode outages) depending on the objectives of the 
study. As the depth level increases the computational 
requirements increase exponentially. Monte Carlo simulation 
is easy to implement; however, for statistically meaningful 
results the number of contingency simulations must be huge 
leading to computational challenges [18]-[20].  

The deterministic criteria served the electric utility 
industry well over many years but in order to be able to 
provide customers with the optimum service reliability at the 
right cost, the movement towards reliability-based planning 
and operational criteria and models is inevitable. The risk-
based method is not intended to replace the deterministic 
criterion but adds one more dimension to enhance the 
transmission planning and operation processes. It considers 
both the impact and the likelihood of occurrences of outage 
events and hence, can identify and rank contingencies that 
may be problematic for the system operation. When combined 
with the severity or consequence of a specific event, risk can 
be quantified. The advantages of probabilistic approaches are 
substantial but not well developed. Currently, only adequacy 
performance is addressed in commercial probabilistic 
reliability programs.  

IV. VER MODELING FOR RELIABILITY ANALYSIS 

VER generation and system loads exhibit a degree of 
correlation. Their deciles (intervals of range divided into 10 
equal-probability segments) and vigiciles (20 equal-
probability segments) may be strongly correlated [21]. This 
means for this data the lowest 5% of wind speeds may tend to 
occur in the same hours as the upper 5% of hourly loads. The 
importance of this correlation increases as the penetration of 
VERs in the generation mix increases. 

The most common approach uses synchronously observed 
hourly time series for wind speed or solar insolation [22]. 
Synchronous historical hourly weather data, including wind 
speed, insolation, and temperature data, from which electricity 
demand may be calculated, provide a way to capture the 
correlation between different VER facilities and between 
VER generation and loads. For reasonable accuracy, a 
sufficient amount of historical data is needed. Bothwell and 
Hobbs address this question for resource adequacy analysis at 
HL-I [23]. Starting with 10 years of data, they show the 
impacts of using different subsets of years, finding that five 
years of data are about as good as 10, but less than five years 
risks distorting the results significantly. They strongly advise 
against using mean observed wind speeds, as they understate 
variability [24]. Decades of historical meteorological data are 
available at a medium level of geographical resolution and 
may be combined with site-specific data for a shorter period 
using “reanalysis” to obtain longer site-specific series [25]. 
Use of any historical meteorological data should consider 
adjustments for climate change [26].  

An alternative approach is to use synthetic time series 
generated by sampling from a time series model estimated 
from historical data, as described in [27]. Methods to link the 
synthetic time series to load models and other VER facilities 
include a multivariate normal model (also used in analyzing 
the effects of correlation of bus loads) [28]; copulas [29]- [30]; 
inverse transformation [31], Nataf transformation with Latin 
hypercube sampling [32], dimension reduction [33], and 
multi-dimensional clustering [34]-[36]. Chen et al. created 
models of wind speed for two sites in the Netherlands using: 
inverse transformation, Nataf transformation, and Copula 
method, with Weibull distributions for the marginal 
distributions of the wind speeds at the two locations. For these 
two sites, the Gumbel copula is found to provide the best fit to 
the means, variances, Weibull distribution parameters, and 
Kendall correlation coefficient [37].   

Authorized licensed use limited to: TU Delft Library. Downloaded on July 08,2022 at 06:41:15 UTC from IEEE Xplore.  Restrictions apply. 



Presently, outages/intermittency of renewable generators 
are modeled without considering their effect on generation 
ramping. Ramping can cause significant impacts to the power 
grid, similar to a generator outage [39]. The concept of 
Intermittency Induced Outages (IIOs) has been proposed to 
capture the impact of intermittency. Probabilistic outage 
models for IIOs with loss of generation, under- and over-
generation modes due to wind ramping-down and -up events 
are presented in [39]. The IIO concept was further extended to 
the modeling of common mode outages (CMOs) for multiple 
correlated renewable plants [6]. 

A. Wind Speed Stochastic Model 

A time series model has a stochastic element. Various 
stochastic elements have been used in wind speed models. 
These include the autoregressive (AR) process (perhaps the 
most common) [27]; birth-and-death Markov train [38]; 
hybrid of Markov and AR processes [39]; and estimating the 
stochastic model after applying a Logit transform [41]. 

B. Wind Turbine Availability Model 

Ref [42] states that equipment outages in WFs “can be 
neglected in many practical situations without creating 
unreasonable errors in the calculated reliability indices”. This 
may be true with low penetration levels of VERs but at higher 
penetration levels, the effect can be significant. Approaches 
for incorporating WT equipment outages have been 
developed; failure rates may be dependent on wind speed as it 
has been observed that WT outage rates tend to increase with 
wind speed [38]. These include: individual WT availability;  
grouped availability; derated availability; state probability 
table; capacity outage probability and frequency table 
(COPAFT); and copula for relationship between wind speed 
and failure rate [38]-[39], [43]-[45]. 

C. Solar PV 

We note two approaches to modeling solar PV: (a) 
Bottom-up model of plant availability [46], and (b) 
Chronological probability model [47]. These are combined 
with solar equipment availabilities in similar ways as 
discussed for wind systems to provide the reliability models 
of solar farms. 

D. General Approaches  

When the correlation among VERs and between VERs 
and loads is neglected, one may use a synthetic multi-state 
generator – deriving a multi-state generator model from 
synthetic hourly wind speed time series data [48]-[49]. A five-
state model provides a reasonable WF model for CSR analysis 
[42]. Otherwise more sophisticated approaches must be used 
[70]. 

E. Applications and Results 

A synthetic time series to develop models for two 
locations in Saskatchewan is presented in [27]. The approach 
is used to estimate a model from three years of actual wind 
speed data for a particular location, and calculates synthetic 
wind speed and the total output for a wind farm with 100 
turbines for a large number of years [48]. Then the simulated 
output series are input to a generation reliability analysis (HL-
I) for a test system with the wind farm added to a fleet of 
conventional generation. They find that about 6000 years of 
synthetic wind speed data are needed for convergence of 
calculated LOLE for this case.  

Reference [50] applies ARMA models, one of which was 
presented in [27], to represent two WFs. The models are used 
in a composite system reliability analysis that considers 11 
alternatives for interconnecting the wind farms to a modified 
IEEE reliability test system using a sequential Monte Carlo 
approach.  

Several wind speed models are reviewed in [24]. The 
analysis includes calculating various reliability indices for a 
test system using both the original data and the wind speed 
models. They are compared on the basis of the following 
criteria: (a) differences between resulting wind speed 
distributions from the models and the original data, (b) 
differences between the calculated reliability indices using the 
models and reliability indices using the original data, and (c) 
correlation between wind power output and hourly loads. 

The findings include: (a) The ARMA model provides a 
more comprehensive representation of wind speeds. It does a 
good job at matching the observed correlation for all loads and 
for loads above 80% of peak demand, and (b) The Markov 
chain model does poorly on the wind-load correlations. 

Reference [51] also compares wind speed models and the 
values of system reliability indices they yield. It finds (a) an 
ARMA model is better than other approaches in that it yields 
reliability indices closest to those obtained from observed 
wind speeds; (b) simple sampling from a wind speed 
probability distribution yields higher frequencies of 
transitions between healthy, marginal, and at-risk system 
states and shorter state durations; therefore, this method is not 
recommended if frequency and duration indices are desired; 
and (c) using mean wind speeds results in relatively optimistic 
indices.  

HL-I and HL-II results using various wind speed models 
are compared against the results from the original data for 
various test systems [52]. A key finding is that an ARMA 
model based on only a few years of data produces reliability 
indices closer to what would be obtained from using observed 
hourly wind speeds for a larger number of years.  

V. METHODOLOGIES AND FRAMEWORK FOR CSR ANALYSIS 

The objectives of reliability calculations are to determine 
for a given design whether continuity of electric service to 
their customers is ensured under normal and certain abnormal 
conditions, including uncertainties associated with load 
variations, variable renewable energy sources, etc.  

Increased interest in probabilistic methods prompted 
surveys to identify organizations that use probabilistic 
methods and tools for solving practical problems in planning 
or operations [53]-[55]. A recent survey [56] was conducted 
by the IEEE Composite System Reliability Task Force to 
assess the industry practice in probabilistic assessment in 
general, and composite system reliability (CSR) analysis in 
particular.  Increased interest has been seen in evaluating the 
reliability impact of high penetration of renewables such as 
photovoltaics and wind, retirement of coal plants, regulatory 
requirements and other policies.  

An effort to develop methods and tools that take into 
account impact of common-mode and dependent outage 
events has been initiated and continues [57]. Multiple 
common-mode and dependent outages are the results of 
physical proximity; relaying misoperations, breaker failures, 
weather conditions (e.g., hurricanes); cyber-attacks; etc. and 
they are much more likely to threaten grid reliability. Results 
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of outage data analysis in [57] show that common and 
dependent mode (CDM) outage events may also have a 
significant impact on the resilience of the power grid. 

A. Monte Carlo Methods 

Probabilistic models for individual power system 
components collectively define a probabilistic model for the 
composite system. To estimate reliability metrics for this 
system, one must analyze the possible states of this system and 
assess the effects on the power supply to end users and 
associate with these effects their probability of occurrence. As 
the complexity of a system model increases, enumerating all 
relevant states becomes cumbersome and error-prone at first, 
and eventually impossible due to the explosion of possibilities.  

A reliability assessment method for large systems relies on 
Monte Carlo (MC) methods to evaluate probabilistic model 
outputs. Power system states are sampled at random according 
to the probabilistic system model and analyzed according to 
the requested reliability metrics. Almost without exception, 
metrics of interest are expectation values of random variables 
𝐻(𝑋)  that represent the ‘impact’ associated with random 
(outage) states 𝑋  of the system (e.g. the EENS is the 
expectation of the energy not supplied across states). Using 
MC integration, the value of this reliability metric is 
approximated by the sample average approximation: 

 
1

1
ˆ

n
i

i

r H x
n 

     (1) 

Here, state samples 𝑥𝑖 are drawn from the system’s state 
distribution 𝑓(𝑥)  and their impact is calculated by the 
function 𝐻(𝑥). We can distinguish state sampling MC, where 
states are snapshots of the system at a particular point in time, 
and time-sequential MC, where a single sampled ‘state’ 
represents a time trace of the system. The latter type of 
analysis is clearly more computationally demanding, but is in 
general necessary when the system has significant temporal 
dependencies in its internal state (e.g. due to the dispatch of 
storage, or modelling of startup/ramp constraints) or when 
reliability metrics explicitly depend on time.  

Another output of interest is the probability distribution of 
the outcome 𝐻(𝑋) [58]. Those can also be expressed in terms 
of expectations of (cumulative) distributions [59], so that the 
same general approach can be used. Risk-averse CVaR 
constraints in system planning can similarly be expressed in 
the form of expectations [60].  

Although MC methods are easily adapted to complex 
system models and provably generate unbiased results, the 
random selection of states introduces a sampling error in the 
estimate 𝑟̂  of the reliability metric. For large numbers of 
samples 𝑛 , the error is approximately normally distributed 
with standard deviation: 

    ˆˆ ˆ var /s r H X n    (2) 

This expression both quantifies the sampling error and 
illustrates the two essential methods to reduce the error 
incurred: by increasing the sample count 𝑛, or by reducing the 

sample variance 𝑣𝑎𝑟(𝐻(𝑋̂)). Increasing the sample count can 

be done by running the program for longer, coding it 
efficiently, or using advanced computational resources such 
as GPUs [61] or parallel computing [62]. Variance reduction 
methods are effective in reducing computational burden, 

examples are: (a) Low variance sampling. Choosing 𝑥𝑖  to 
reduce fluctuations in sample placement. This broad category 
includes stratified sampling, dagger sampling, Latin 
hypercube sampling, antithetic variates, and quasi-MC 

methods. (b) Targeted sampling. Choosing 𝑥𝑖 in accordance 

with 𝐻(𝑥𝑖)  to increase the contribution from each sample. 
This category includes importance sampling methods, often in 
combination with the cross-entropy method to optimize 
importance sampling parameters [63]. In addition, as there are 

many states for which 𝐻(𝑥𝑖)  =  0 , various authors have 
pursued methods to avoid sampling these states and replacing 
their contribution to 𝑟̂  with the value 0. Examples of this 
approach include state space pruning [64], machine-learning 
of non-contributing states [65]-[66] and the subset simulation 
method [67]. And (c) Output interpolation. Leveraging 
approximations of 𝐻(𝑥) (surrogate models) to better estimate 
𝑟̂. Control variates 𝑉(𝑥) that closely resemble 𝐻(𝑥) are used 
in [68] (by another name) and [69] to reduce the variance of 
the differences 𝐻(𝑥) –  𝑉(𝑥) . This approach has been 
generalized using the multilevel MC framework in [59].  

B. Selective Enumeration Methods 

The perennial problem of planning for a reliable power 
supply system at acceptable, optimized cost is becoming 
increasingly challenging with the clear need to quantify risks. 
The process should account for increased variability in 
generation resources (wind, PV), increased flexibility on the 
customer side as well as additional fast responding storage 
such as pumped hydro, BESS, customer storage (electric 
vehicles, thermally controlled loads and other), and demand 
response programs, increased concerns of more frequent bad 
weather, and increased volatility in prices and environmental 
concerns. 

A framework for a fully probabilistic methodology to 
power system reliability analysis and planning is shown in 
Fig. 5. The framework is based on a stochastic dynamic 
programming approach that will integrate computational 
reliability analysis procedures over a long period of time into 
a systematic probabilistic planning tool. Each node in the 
figure represents a system “state” at a specific time interval 
(“stage”). The system state represents specific planning 
decisions. There is a transition from each state to any other 
state on the next time interval (stage). The number of stages 
define the planning horizon, for example twenty stages, one 
year each, will make a 20 year planning problem. Transitions 
can be feasible or unfeasible (if a transition requires the 
dismantling of a healthy facility, it is infeasible, if a transition 
requires the addition of a facility that cannot be 
constructed/completed by this time interval, it is infeasible, 
etc.).  

The computational complexity resides in the probabilistic 
evaluation of each state at a stage. This evaluation uses a 
selective enumeration of contingencies algorithm [71-72] as 
shown in the upper right corner of the figure and probabilistic 
computational algorithms [73-76], which are integrated to 
provide a number of probabilistic performance measures 
(metrics) for the state at that stage. The metrics are numerous. 
An incomplete list of metrics is: (a) actual costs (i.e. 
investment cost, operational cost), (b) cycling of thermal units 
and level of ramp rate violations, (c) reliability indices 
categorized into four classes: (1) probability indices (i.e. 
LOLP), (2) frequency indices, (3) duration and (4) expectation 
indices, i.e. EUE (expected unserved energy), expected 
overloads, expected undervoltages, expected ramping 
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violations, etc., (d) production metrics, i.e., consumption by 
fuel, etc., and (e) environmental metrics, i.e., expected 
pollutants, NOx, CO2, etc. 

The results of above analysis are used in the stochastic 
dynamic programming to define the optimal expansion plan, 
optimal is defined in the sense of a linear combination of 
metrics and parametrically in terms of existing flexibility in 
the system. Obviously, changing the coefficients of the linear 
combination of the metrics (relative importance) the optimal 
expansion plan may change. The stochastic dynamic 
programming enables the evaluation of the expansion plans 
with different combination of metrics and it results in a 
number of "best" expansion plans. The dynamic programming 
optimization is symbolically illustrated in the figure. The 
subscripts i,k of state X (highlighted in Fig. 5) represent the 
state i of the bulk transmission system at stage k (time interval 
k). Note that at each stage a number of candidate bulk power 
system states are generated in terms of possible expansion 
decisions. The generation of the states uses a combination of 
sensitivity methods, identification of congested paths and 
available transmission paths.  

The computational problem can be defined as determining 
the optimal sequence of decisions as the plan moves from 
stage 0 (present time) to the final stage of the horizon period. 
The optimization algorithm computes the optimal cost of 
reaching a designation state in a stage by computing the 
minimum cost transition from any state in stage k–1 to a state 
i in stage k, Xi,k, symbolically shown in Fig. 5. The proper 
formulation of the dynamic programming algorithm 
guarantees that the optimal trajectory computations are 
limited to transitions between two successive stages, resulting 
in an efficient algorithm. On the other hand, the number of 
states (decisions) in a stage may be very large resulting in a 
very large decision space (curse of dimensionality). This issue 
is addressed by using a successive dynamic programming 
algorithm that limits the number of states (decisions) to only a 

small number around the current optimal trajectory.  The end 
result is an efficient method to a challenging computational 
problem. An important feature of the method is the 
identification of the first n best expansion plans, best defined 
in terms of the selected linear combination of a number of 
metrics, allowing planners to perform trade-off analysis. This 
feature is very important for planners as it is important to have 
several options for the expansion of the system and to know 
the cost and reliability implications of each one of these plans. 

VI. CONCLUSIONS 

The power industry currently relies on planning methods 
that systematically understate the probability and depth of 
high impact events that can simultaneously impact multiple 
generating units. Power supplies are vulnerable to the 
increasing frequency of severe weather events such as recent 
freezing temperatures, constraints on natural gas supplies, 
cyber-attacks, variability in the output of wind and solar 
resources, and various multi-factor events. Current resource 
adequacy metrics such as Effective Load Carrying Capability 
(ELCC), Loss of Load Expectation (LOLE) and reserve 
margin do not adequately recognize the probability of 
correlated impacts on the output of multiple resources; 
measure the depth, breadth, or duration of outages; or account 
for their economic, public health and safety impacts. The 
methodologies used to calculate resource adequacy typically 
assume that outages and reductions in generator output are 
independent and uncorrelated. This assumption of 
independence, as our report points out, is no longer valid.  
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