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On the Role of Coupled Damping and
Gyroscopic Forces in the Stability and
Performance of Mechanical Systems

Pablo Borja , Member, IEEE , Cosimo Della Santina , Member, IEEE , and Azita Dabiri

Abstract—Damping injection is a well-studied tool in
nonlinear control theory to stabilize and shape the transient
of mechanical systems. Interestingly, the injection of cou-
pled damping yielding gyroscopic forces has received far
less attention. This letter aims to fill this gap for gyroscopic
forces that couple actuated and unactuated coordinates.
First, we establish sufficient conditions for the stabil-
ity of the closed loop. Then, we provide analytic results
proving that injecting coupled damping may improve the
closed-loop performance. We illustrate the results via the
stabilization of three mechanical systems.

Index Terms—Stability of nonlinear systems, Lyapunov
methods, nonlinear output feedback.

I. INTRODUCTION

STABILIZATION of admissible equilibria in underactuated
mechanical systems is a long-lasting challenge in con-

trol theory [1], [2], where passivity-based control (PBC) has
imposed itself as one of the main strategies to achieve this
goal [3]. Damping injection on actuated variables is a key
component of PBC, which guarantees the convergence of the
closed-loop system and it allows to shape its transient [4], [5],
[6], [7], [8]. Some previous work has investigated the advan-
tage of going beyond that by considering velocity couplings in
the form of gyroscopic terms. For instance, in interconnection
and damping assignment passivity-based control (IDA-PBC),
such terms are used to solve the partial differential equa-
tions (PDEs) involved in the control design process, having a
direct impact on the stabilization problem [9], [10], [11], [12],
[13], [14]. Furthermore, [15] remarks that IDA-PBC includ-
ing gyroscopic forces guarantees robustness against matched
disturbances in fully actuated systems. Finally, experimental
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anecdotal evidences, e.g., [16], suggest that damping injection
from the unactuated coordinates through the actuated channel
may improve the performance of the closed-loop system in
PBC approaches. In this regard, in [17], the authors discuss
the effect of gyroscopic terms on the transitory response of the
closed-loop system without formal proof. Nevertheless, ana-
lytical results that elucidate the impact of these terms on the
performance of the closed-loop system are still lacking.

The goal of this letter is to fill this gap by providing analyt-
ical results quantifying the effect that gyroscopic forces and
coupled damping have on the stability and performance of
underactuated mechanical systems. To this end, we adopt a
PBC approach that preserves the mechanical structure and
does not require solving PDEs, contrasting with IDA-PBC.
Hence, we can transparently analyze the effect of the coupled
damping terms and gyroscopic elements. More precisely, we
contribute to the state of the art in PBC with:
(i) A passivity-based regulator for underactuated mechani-

cal systems that injects coupled damping, resulting in
gyroscopic forces.

(ii) A method to tune this injection to obtain a bound for the
L2-norm of the velocities and improve it.

(iii) A preliminary stability analysis for non-negative closed-
loop dissipation matrices.

Interestingly, (iii) cannot be achieved by following energetic
arguments. We show the effectiveness of the proposed tech-
nique and analysis with three examples of underactuated
mechanical systems.

II. PRELIMINARIES

A. Notation
In is the n × n identity matrix, 0 is a vector or matrix

whose entries are zeros, Aij is the element (i, j) of A ∈ R
n×m,

∂f (x)/∂x = [
∂f (x)/∂x1 · · · ∂f (x)/∂xn

]�, ‖x‖ := √
x�x, and

‖x‖D := √
x�Dx - with D ∈ R

n×n. Furthermore, we repre-
sent mappings of the form F : Rn → R

n×m as matrices—i.e.,
F(x) ∈ R

n×m. Given the distinguished vector x� ∈ R
n, we

define f (x�) = f� and (∂f (x)/∂x)� := (∂f (x)/∂x)|x=x� . When
clear from the context, we omit the arguments of functions.

B. Underactuated Mechanical System
We consider mechanical systems of the following form

[
q̇
ṗ

]
=

[
0 In

−In − D(q, p)

][
∂H(q,p)
∂q

∂H(q,p)
∂p

]

+
[

0
B

]
u
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H(q, p) = 1

2
p�M−1(q)p + V(q), (1)

where q, p ∈ R
n are the generalized positions and momenta,

respectively, u ∈ R
m denotes the input vector, H : Rn × R

n →
R is the Hamiltonian of the system (total energy), M(q) ∈
R

n×n is the inertia matrix; V : Rn → R is the potential energy,
which, without loss of generality, is assumed to be bounded
from below; D(q, p) ∈ R

n×n is the dissipation matrix, which
is positive semi-definite; and the input matrix is B = [

Im 0
]�
.

We can split the coordinates into actuated and unactuated as
qu := B⊥q, qa := B�q; pu := B⊥p, pa := B�p, where
B⊥ := [0 Is], with s := n−m. Similarly, we can rewrite M(q)
and D(q, p) as

M(q) =
[

Maa(q) Mau(q)
M�
au(q) Muu(q)

]
;

Maa(q) ∈ R
m×m;

Mau(q) ∈ R
m×s;

Muu(q) ∈ R
s×s.

D(q, p) =
[

Daa(q, p) Dau(q, p)
D�
au(q, p) Duu(q, p)

]
;

Daa(q, p) ∈ R
m×m;

Dau(q, p) ∈ R
m×s;

Duu(q, p) ∈ R
s×s.

Henceforth, we refer to Dau(q, p) as coupled damping because
this term couples the actuated coordinates and the unactu-
ated ones. Moreover, throughout this letter, several functions
are expressed in terms of velocities through the equality
q̇ = M−1(q)p. The set of assignable equilibria for (1) is given
by E := {q ∈ R

n| ∂V(q)/∂qa = 0}. Equivalently, if q� ∈ E,
then there exists u� ∈ R

m such that u� = (∂V/∂qa)�, implying
that (q�, 0) is an equilibrium for (1).

C. Assumptions
The following assumptions characterize the unactuated

dynamics of the mechanical systems studied in this letter.
Assumption 1: (∂2V/∂q2

u)� 	 0.
Assumption 2: Duu(q, p) 	 0,∀ q, p ∈ R

n.
Assumption 1 ensures that the effect of gravity on the unac-
tuated coordinates does not prevent the system from being
stabilized at the desired equilibrium. Notably, a broad range
of underactuated mechanical systems satisfy this assumption,
e.g., marine craft, robots with flexible joints, and a wide
range of soft robots, and wheeled robots, to mention some.
Furthermore, Assumption 2 concerns the natural damping in
the unactuated coordinates. We underscore that dissipation is
inherent in mechanical systems. Thus, this assumption is not
restrictive from a physical point of view.

III. CONTROL DESIGN

In this section, we develop stabilizing controllers consist-
ing of potential energy shaping, standard damping injection,
and coupled damping injection. As a consequence of the last
control component, the closed-loop system exhibits gyroscopic
terms.

The potential energy of the system can be shaped through a
twice differentiable function � : Rm → R that depends on the
actuated positions. Let Vd : Rn → R be the desired potential
energy, given by

Vd(q) := V(q)+�(qa). (2)

Accordingly,

Hd(q, p) = 1

2
p�M−1(q)p + V(q)+�(qa), (3)

such that Hd� = 0. The control input that yields the closed-
loop energy (3) is given by

ues(qa) = −∂�(qa)
∂qa

. (4)

Additionally, damping can be injected into the closed-loop
system through a control input of the form

udi(q̇a) = −Dψ q̇a, (5)

where the matrix Dψ ∈ R
m×m is positive definite.

Furthermore, coupled damping can be injected via the control
input

ugy(q, p) = −2��(q, p)q̇, (6)

where �(q, p) ∈ R
n×m and

q̇ = M−1(q)p. (7)

Moreover, to simplify the notation, we consider

�(q, p) =
[
�a(q, p)
�u(q, p)

]
; �a(q, p) ∈ R

m×m;
�u(q, p) ∈ R

s×m;
and define the following matrix

Dda(q, p) := Daa(q, p)+ Dψ + �a(q, p)+ ��
a (q, p). (8)

Theorem 1 illustrates how to use ues(qa), udi(q̇a), and
ugy(q, p) to solve the stabilization problem for a class of
mechanical systems represented by (1).

Theorem 1: Consider the system (1) and the desired config-
uration q� ∈ E such that Assumptions 1 and 2 hold. If �(qa)
in (2) satisfies
(
∂�

∂qa

)

�

= −
(
∂V

∂qa

)

�
(
∂2�

∂q2
a

)

�

+
(
∂2V

∂q2
a

)

�

	
(
∂2V

∂quqa

)

�

(
∂2V

∂q2
u

)−1

�

(
∂2V

∂qaqu

)

�

(9)

and Dψ and �(q, p) are chosen such that1

Dda −
(
�u + D�

au

)�
D−1
uu

(
�u + D�

au

)
	 0, (10)

then the control law

u = ues(qa)+ udi(q̇a)+ ugy(q, p) (11)

guarantees that the closed-loop system has a locally asymptot-
ically stable equilibrium at (q�, 0). Moreover, the equilibrium
is globally asymptotically stable if Hd(q, p), defined in (3), is
radially unbounded and no other solution than (q�, 0) remains
in the set S := {q, p ∈ R

n | Ḣd = 0}.
Proof: Note that the closed-loop takes the form

[
q̇
ṗ

]
=

[
0 In

−In − Dd + Jd

][
∂Hd
∂q
∂Hd
∂p

]

, (12)

with Hd(q, p) defined in (3), and

Dd = D + BDψB� + �B� + B��
Jd = �B� − B��. (13)

In particular, Dd(q, p) can be rewritten as

Dd =
[

Dda ��
u + Dau

�u + D�
au Duu

]
. (14)

1We omit the arguments for the sake of readability.
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Hence, a Schur complement analysis shows that (10) implies
that Dd(q, p) is positive definite. Thus,

Ḣd = −‖M−1p‖2
Dd

= −‖q̇‖2
Dd

≤ 0, (15)

where (7) is used to obtain the second equality in (15). Now,
note that

(
∂Vd
∂q

)

�

=
[(

∂V
∂qa

)�
�

+
(
∂�
∂qa

)�
�

(
∂V
∂qu

)�
�

]�

(
∂2Vd
∂q2

)

�

=
⎡

⎣

(
∂2V
∂q2

a

)

�
+

(
∂2�

∂q2
a

)

�

(
∂2V
∂quqa

)

�(
∂2V
∂qaqu

)

�

(
∂2V
∂q2

u

)

�

⎤

⎦.

Therefore, (9) implies

(
∂Vd
∂q

)

�

= 0,
(
∂2Vd
∂q2

)

�

	 0,

where the inequality is obtained via a Schur complement anal-
ysis. Hence, the desired equilibrium is a strict local minimum
of Hd(q, p), i.e., this function is positive definite with respect
to (q�, 0), which together with (15) implies that Hd(q, p) qual-
ifies as a Lyapunov function and the desired equilibrium is
locally stable. Consider � ⊆ R

n ×R
n such that the trajectories

starting in � are bounded and the only equilibrium contained
in the mentioned set is the desired one—note that Lyapunov
stability guarantees the existence of �. Moreover,

Ḣd ≡ 0 =⇒ q̇ = 0 =⇒ p = 0 =⇒ ṗ = 0.

However, since (q�, 0) is a strict local minimum of Hd(q, p),
in �, we have that

ṗ = 0 =⇒ Vdq = 0 =⇒ q = q�.

Thus, it follows from LaSalle’s invariance principle (see, for
instance, [18]) that the trajectories of the closed-loop system
converge to the desired equilibrium. Note that if Hd(q, p) is
radially unbounded, then � ≡ R

n ×R
n. Moreover, since only

(q�, 0) can stay in S, there is only one equilibrium for the
closed-loop. Consequently, the desired equilibrium is globally
asymptotically stable.

Each element of the control law (11) has a physical
interpretation. In particular, ues(qa) shapes the potential
energy assigning the desired equilibrium to the closed-loop
system while ensuring that it is a strict minimum of the closed-
loop energy Hd(q, p); udi(q̇a) injects damping through the
actuated coordinates of the systems, guaranteeing that Dd(q, p)
is positive definite; ugy(q, p) injects coupled damping, which
results in gyroscopic terms in the closed-loop system. Notably,
the last term is not required to ensure stability. However, it has
an important role in the performance of the closed-loop system
as discussed in Section IV.

Remark 1: For systems of the form (1) satisfying
Assumption 1, there always exists a smooth function �(qa)
such that (9) holds. See [19] for further details.

Remark 2: The injection of coupled damping ugy(q, p) can
be combined with other PBC techniques that do not require
Assumption 1 but preserve the mechanical structure of the
system, e.g., IDA-PBC. For further details, see the example in
Section VI-C.

IV. PERFORMANCE ASSESSMENT

The terms udi(q̇a) and ugy(q, p) defined in (5) and (6),
respectively, affect the damping of the closed-loop system.
Consequently, these terms play a relevant role in the
performance of the closed-loop system. In particular, the
bound of the L2-norm of the velocities can be improved by
choosing appropriate values for the mentioned control terms.
To show this, we revisit the following linear algebra theorem,
whose proof can be found in [20].

Theorem 2 [20]: For a complex matrix A ∈ C
n×m, n ≤ m,

we have

σn(A) ≥ min
1≤k≤n

⎧
⎨

⎩
|Akk| − 1

2

n∑

j=1;j �=k

(|Akj| + |Ajk|
)
⎫
⎬

⎭
,

where σn(A) denotes the smallest singular value of A.
In light of Theorems 1 and 2 we can establish the following

result.
Proposition 1: Consider the closed-loop system (12) and

suppose that Duu is constant. An L2-norm bound for the
velocities is given by

‖q̇‖L2 ≤
(

1

λmin(Dd)
Hd(q0, p0)

) 1
2

. (16)

Moreover, the lowest possible value of this bound is obtained
by selecting Dψ and �(q, p) such that

�u(q, p) = D�
au(q, p) (17)

λmin(Duu) ≤ λmin
(
Dda

)
, (18)

where λmin(·) denotes the smallest eigenvalue of the corre-
sponding matrix and Dda(q, p) is defined as in (8).

Proof: Note that

Ḣd = −‖q̇‖2
Dd

≤ −λmin(Dd)‖q̇‖2. (19)

Recall that (12) has an asymptotically stable equilibrium
at (q�, 0) (see Theorem 1 and its proof) and Hd� = 0.
Therefore, integrating (19) from zero to infinity and noting
that limt→∞ Hd(q, p) = Hd� , we obtain

Hd(q0, p0) ≥ λmin(Dd)

∫ ∞

0
‖q̇‖2 d t,

where q0, p0 ∈ R
n denote the initial conditions of (1).

Hence, given the definition of L2-norm [4], we obtain the
bound (16). Note that this bound decreases as λmin(Dd)
increases. Furthermore, from (14) and (17), we have

Dd =
[

Dda(q) 0
0 Duu

]
	 0. (20)

Now, consider an arbitrary matrix D̂au ∈ R
m×s different from

zero such that

D̂d(q) :=
[

Dda(q) D̂au

D̂�
au Duu

]
	 0.

Since Dd and D̂d(q) are positive definite (consequently sym-
metric), the singular values of these matrices are the same as
their eigenvalues. Therefore, from Theorem 2, we conclude

λmin(D̂d) < λmin(Dd).

Authorized licensed use limited to: TU Delft Library. Downloaded on July 08,2022 at 07:40:05 UTC from IEEE Xplore.  Restrictions apply. 
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Moreover, Dd has a block-diagonal structure as shown in (20).
Hence, from (18), we obtain

λmin(Dd) = λmin(Duu).

We stress that the eigenvalues of Duu cannot be modi-
fied by the controller. Thus, the selection (17)-(18) guar-
antees the smallest value for the right-hand element of the
inequality (16).

We recall that the L2-norm of a signal is closely related
to its energy. Thus, a small L2-norm of the velocities implies
that the energy of the transitory behavior is low. Moreover,
udi(q̇a) and ugy(q, p) depend on q̇. Hence, a small L2-norm
of the velocities also implies that these control terms spend a
small amount of energy.

Remark 3: The result of Proposition 1 can be extended to
non-constant matrices Duu(q, p) by considering

λ := max{λmin(Duu(q, p))};
λ := min{λmin(Duu(q, p))}.

Then, replacing (18) by λ ≤ λmin(Dda) and following the
rationale of Proposition 1, we obtain the bound

‖q̇‖L2 ≤
(

1

λ
Hd(q0, p0)

) 1
2

.

However, we underscore that this bound is, in general, more
conservative than (16).

V. RELAXING THE ASSUMPTION ON Dd

The results of Sections III and IV require Dd(q, p) to be
positive definite. Remarkably, near the equilibrium point, this
condition may be restrictive as is shown by the following
proposition.

Proposition 2: Consider the system (12), such that �(qa)
satisfies (9) for the desired configuration q� ∈ E, and

K :=
(
∂2Vd
∂q2

)

�

, Fd := Jd� − Dd� .

Then, the system has a locally exponentially stable equilibrium
at (q�, 0) if the solutions λ ∈ C to

det
(

M�λ
2 − Fdλ+ K

)
= 0 (21)

satisfy Re(λi) < 0 for all i ∈ {1, . . . , n}.
Proof: The linearization of (12) around the point (q�, 0) is

given by ż = Az, where

z :=
[

q − q�
p

]
, A :=

[
0 M−1

�

−K FdM−1
�

]
. (22)

Note that, according to Lyapunov’s indirect method (see
[18, Th. 4.7]), the closed-loop system is locally exponentially
stable if A is Hurwitz. However, Ad = SdAS−1

d , with

Sd :=
[

In 0
0 M−1

�

]
, Ad :=

[
0 In

−M−1
� K M−1

� Fd

]
.

Thus Ad is similar to A , consequently their eigenvalues are
the same. Moreover, Ad is a companion matrix of

L(λ) = Inλ
2 − M−1

� Fdλ+ M−1
� K .

Fig. 1. Soft inverted pendulum with affine curvature [22]. Panel (a)
shows the schematic of the system, where a reference frame {Ss},
attached to the point s, is highlighted. Panel (b) shows the evolution
for the tuning (iii). The green and blue lines are the initial and final
conditions, respectively. Intermediate shapes and the tip evolution are
depicted in light and dark grey, respectively.

Fig. 2. Mechanical system studied in Subsection VI-B with a physi-
cal interpretation of the control terms ues(qa) and udi(q̇a) in red. Note
that the gyroscopic forces and coupled damping are injected through
ugy(q, p).

Hence, the eigenvalues of Ad are the values λ ∈ C such that
det(L(λ)) = 0 (see [21]). Furthermore, since M� is positive
definite,

det(L) = 0 ⇐⇒ det(M−1
� )det(M�L) = 0

⇐⇒ det
(

M�λ
2 − Fdλ+ K

)
= 0.

Thus, if every λ solution to (21) satisfies Re(λ) < 0, then A is
Hurwitz and the closed-loop system has a locally exponentially
stable equilibrium at the desired point.

Remark 4: The result of Proposition 2 indicates that
Assumption 2 and (10) are not necessary conditions for the
stability of the desired equilibrium. Consequently, near the
equilibrium, choosing the energy as the Lyapunov function
may be restrictive.

VI. EXAMPLES

A. Soft Inverted Pendulum

Consider the soft inverted pendulum depicted in Fig. 1. The
curvature function of this system is κs = θ0(t)+ θ1(t)s, where
s ∈ (0, 1] parameterizes the positions along the main axis
of the pendulum. For further details on the model see [22].
Considering the coordinates q1 = θ0 + 1

2θ1 q2 = 1
2θ0 + 1

3θ1
this system admits a pH representation of the form (1), where
the mass matrix and potential energy are obtained following
the procedure proposed in [22] and using MATLAB for the
corresponding computations. The control objective is to sta-
bilize the system at its upward configuration, i.e., q� = 0. In

Authorized licensed use limited to: TU Delft Library. Downloaded on July 08,2022 at 07:40:05 UTC from IEEE Xplore.  Restrictions apply. 
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Fig. 3. Evolution of the soft inverted pendulum’s configuration variables and control input for different values of the gyroscopic action j . The
controllers that inject gyroscopic terms, i.e., j �= 0 (depicted in orange and yellow), exhibit fewer oscillations and faster convergence.

Fig. 4. Evolution of the mass-spring-damper system positions with (orange) and without (blue) coupled damping injection. The former results in a
faster stabilization of the unactuated masses at the expense of oscillations with greater amplitude in the actuated mass.

particular, we have
(
∂2V

∂q2

)

�

= k

[
4 − 6

−6 12

]
+ mg�

30

[−34 33
33 −36

]
, D = b

[
4 − 6

−6 12

]
,

where k and b are positive constant parameters; m and � denote
the mass and the length of the rod, respectively; and g is the
gravitational acceleration. We consider udi defined as in (5)
and ues = −KPqa + .(∂V/∂qa)|qu=0, ugy = −2jq̇u, where
KP is positive and j is constant. Moreover, we consider the
values m = � = k = 1, b = 0.1, KP = 15, Dψ = 0.8. Hence,

Dd =
[

1.2 − 0.6 + j
−0.6 + j 1.2

]
, K ≈

[
117.1 4.79
4.79 0.23

]
.

We consider three cases: (i) no gyroscopic terms, i.e., j = 0;
(ii) a manually tuned injection of gyroscopic forces and
coupled damping; and (iii) the coupled damping injection
obtained in Proposition 1, i.e., j = 6b = 0.6. The simula-
tion results, under initial conditions (1/8, 1/24)π , are shown
in Fig. 3, where we observe that faster convergence and fewer
oscillations are associate with the injection of gyroscopic
forces and coupled damping. Furthermore, the norms of the
velocities and the torque ranges are

‖q̇‖L2 = 84.87, u ∈ [−7.34, 1.97], for j = 0

‖q̇‖L2 = 137.83, u ∈ [−12.38, 1.07], for j = −0.5

‖q̇‖L2 = 59.16, u ∈ [−7.34, 0.29], for j = 6b,

which corroborate the result of Proposition 1.

B. Nonlinear Mass-Spring-Damper System
Consider a mass-spring-damper system consisting of three

masses connected in series through two nonlinear springs and
a damper between the first and second mass. Moreover, sup-
pose a control input corresponding to a force exerted on the
first mass. Such a system admits a pH representation of the
form (1), with

D =
[

b − b 0
−b b 0
0 0 0

]

, M =
[

m1 0 0
0 m2 0
0 0 m3

]

, B =
[

1
0
0

]

,

and the non-quadratic elastic potential V(q) = a1
2 ln(cosh(q1 −

q2))+ a2
2 (q2 − q3)

2 + a3
4 (q2 − q3)

4, where m1 is the actuated
mass and m2 and m3 are the unactuated ones; q1, q2, and
q3 represent the positions; a1, a2, a3, and b are positive
parameters. The set of assignable equilibria is constrained
to q1 = q2 = q3, where the control objective is to stabi-
lize the position of the third mass at q� �= 0. To this end,
we consider a controller of the form (11). In particular, we
propose ues(q) = −kc(q1 − q�), udi(q̇1) = −bcq̇1, and
ugy(q̇) = −2(j2q̇2 + j3q̇3), where kc and bc are positive and
j2, j3 are constant. The physical interpretation of the controller
is shown in Fig. 2. Note that

Dd =
[

bc + b − b + j2 j3
−b + j2 b 0

j3 0 0

]

has no definite sign if j3 �= 0. Thus, the stability of the closed-
loop system cannot be analyzed with the result of Theorem 1
if j3 is different from zero. While the control objective is
achieved with j2 and j3 equal to zero (see Fig. 4), the closed-
loop system exhibits poor damping propagation resulting in
an oscillatory behavior for the unactuated masses. To over-
come this issue, we use the result of Proposition 2 to analyze
the stability of the equilibrium for j2 and j3 different from
zero. In particular, we consider m1 = m2 = 1, m3 = 0.4,
b = 0.5, a1 = 0.5, a2 = 1.5, a3 = 2.5, kc = 5, bc = 2.5, and
q� = 0.05. Hence, we have

40det(L) = 16λ6 + 56λ5 + γ4λ
4 + γ3λ

3 + γ2λ
2 + γ1λ+ 150,

(23)

with γ1 = 60(j2 + j3) + 225, γ2 = 60(j2 + j3) + 607, γ3 =
16j2 + 342, and γ4 = 16j2 + 200. The polynomial (23) can
be analyzed via the Routh-Hurwitz criterion. Fig. 4 shows the
simulation results for j2 = j3 = 0 (blue) and j2 = b and
j3 = −0.5 (orange). In particular, the latter values guarantee
that (23) is stable. We observe in Fig. 4 that the proposed
gyroscopic forces and coupled damping reduce the oscillations
in the unactuated masses.
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Fig. 5. Evolution of the configuration variables of the ball and beam
system for IDA-PBC plus coupled damping injection.

C. Ball and Beam System
The behavior of the ball and beam system can be repre-

sented by (1), with

D =
[

0 0
0 b

]
; M =

[
L2 + q2

u 0
0 1

]
; B =

[
1
0

]
;

V(q) = gqu sin(qa); where L, b, and g are positive con-
stant parameters. The control objective is to stabilize the
system at q� = (0, 0). Note that this system does not sat-
isfy Assumption 1. In [23], the authors design a controller
based on IDA-PBC, neglecting the natural dissipation bq̇u.
Considering the natural dissipation, the mentioned controller
combined with ugy(q, p) yields2

[
q̇
ṗ

]
=

[
0 M−1Md

−MdM−1 ϒ

][
∂Hd
∂q
∂Hd
∂p

]

+
[

0
B

]
ugy

Hd(q, p) = 1

2
p�M−1

d (q)p − g cos(qa)+ 1

2
�2(q),

with �(q) := qa + 1√
2

arcsinh( qu
L ) and

ϒ(q, p) := −DM−1(q)Md(q)+ J2(q, p)− BkdB�,

where J2(q, p) is a skew-symmetric matrix and kd is a positive
gain.3 Note that to prove stability considering Hd(q, p) as a
Lyapunov candidate, we require the symmetric part ϒ(q, p)
to be negative semi-definite. Here, we show that the coupled
damping injection ugy(q, p) proposed in (6) can be combined
with IDA-PBC to achieve this objective and to modify the
transient response of the closed-loop system. To this end, we
consider three cases:
C1 � = 0, i.e., no coupled damping injection.
C2 �a = 1

2 b(L2 + q2
u)+

√
2√

L2+q2
u

n and �u = − n
L2+q2

u
, which

guarantees ϒ(q, p)+ϒ�(q, p) ≺ 0.
C3 �a = 2kγ and �u = kγ , with kγ constant, which

illustrates the effect of ugy(q, p) on the response.

2We omit the arguments due to space limitations.
3See [23] for the expressions of Md(q) and J2(q, p).

We consider g = 9.78, L = 0.5, kd = 0.3, n = 0.05, kγ = 0.1,
q0 = (0.3, 0.15), and p0 = 0 for simulation purposes. The
stability of (q�, 0) is proven via linearization in C1 and C3,
while Hd(q, p) qualifies as a Lypunov function in C2 because
of the proposed �(q). The simulation results are shown in
Fig. 5.

REFERENCES

[1] H. Sira-Ramírez and S. K. Agrawal, Differentially Flat Systems. Boca
Raton, FL, USA: CRC Press, 2018.

[2] R. Otsason and M. Maggiore, “On the generation of virtual holonomic
constraints for mechanical systems with underactuation degree one,” in
Proc. IEEE 58th Conf. Decis. Control (CDC), 2019, pp. 8054–8060.

[3] R. Ortega, A. Loría, P. J. Nicklasson, and H. Sira-Ramírez, Passivity-
Based Control of Euler-Lagrange Systems: Mechanical, Electrical
and Electromechanical Applications (Communications and Control
Engineering). London, U.K.: Springer Verlag, 1998.

[4] A. J. van der Schaft, L2-Gain and Passivity Techniques in Nonlinear
Control, 3rd ed. Berlin, Germany: Springer Int. Publ., 2017.

[5] C. Chan-Zheng, P. Borja, and J. M. A. Scherpen, “Tuning rules for a
class of passivity-based controllers for mechanical systems,” in Proc.
Amer. Control Conf. (ACC), 2021, pp. 4848–4853.

[6] K. Hamada, P. Borja, K. Fujimoto, I. Maruta, and J. M. A. Scherpen,
“On passivity-based high-order compensators for mechani-
cal port-Hamiltonian systems without velocity measurements,”
IFAC-PapersOnLine, vol. 54, no. 14, pp. 287–292, 2021.

[7] J. Ferguson, A. Donaire, and R. H. Middleton, “Passive momentum
observer for mechanical systems,” IFAC-PapersOnLine, vol. 54, no. 19,
pp. 131–136, 2021.

[8] M. Keppler, F. Loeffl, D. Wandinger, C. Raschel, and C. Ott, “Analyzing
the performance limits of articulated soft robots based on the ESPi
framework: Applications to damping and impedance control,” IEEE
Robot. Autom. Lett., vol. 6, no. 4, pp. 7121–7128, Oct. 2021.

[9] G. Blankenstein, R. Ortega, and A. J. van der Schaft, “The matching
conditions of controlled Lagrangians and IDA-passivity based control,”
Int. J. Control, vol. 75, no. 9, pp. 645–665, 2002.

[10] A. Donaire, R. Ortega, and J. G. Romero, “Simultaneous interconnection
and damping assignment passivity-based control of mechanical systems
using dissipative forces,” Syst. Control Lett., vol. 94, pp. 118–126,
Aug. 2016.

[11] D. E. Chang, “On the method of interconnection and damping
assignment passivity-based control for the stabilization of mechanical
systems,” Regular Chaotic Dyn., vol. 19, no. 5, pp. 556–575, 2014.

[12] O. B. Cieza and J. Reger, “IDA-PBC for underactuated mechanical
systems in implicit port-Hamiltonian representation,” in Proc. 18th Eur.
Control Conf. (ECC), 2019, pp. 614–619.

[13] E. Franco, “IDA-PBC with adaptive friction compensation for underac-
tuated mechanical systems,” Int. J. Control, vol. 94, no. 4, pp. 860–870,
2021.

[14] M. Ryalat, D. S. Laila, and H. ElMoaqet, “Adaptive interconnection and
damping assignment passivity based control for underactuated mechan-
ical systems,” Int. J. Control Autom. Syst., vol. 19, no. 2, pp. 864–877,
2021.

[15] J. G. Romero, A. Donaire, and R. Ortega, “Robust energy shaping
control of mechanical systems,” Syst. Control Lett., vol. 62, no. 9,
pp. 770–780, 2013.

[16] T. C. Wesselink, P. Borja, and J. M. A. Scherpen, “Saturated control
without velocity measurements for planar robots with flexible joints,” in
Proc. IEEE 58th Conf. Decis. Control (CDC), 2019, pp. 7093–7098.

[17] C. Woolsey, C. K. Reddy, A. M. Bloch, D. E. Chang, N. E. Leonard, and
J. E. Marsden, “Controlled Lagrangian systems with gyroscopic forcing
and dissipation,” Eur. J. Control, vol. 10, no. 5, pp. 478–496, 2004.

[18] H. K. Khalil, Nonlinear Systems, 3rd ed. Upper Saddle River, NJ, USA:
Prentice-Hall, 2002.

[19] P. Borja, A. Dabiri, and C. D. Santina, “Energy-based shape regulation
of soft robots with unactuated dynamics dominated by elasticity,” in
Proc. IEEE 5th Int. Conf. Soft Robot. (RoboSoft), 2022, pp. 396–402.

[20] C. R. Johnson, “A Gersgorin-type lower bound for the smallest singular
value,” Linear Algebra Appl., vol. 112, pp. 1–7, Jan. 1989.

[21] M. Marcus and H. Minc, A Survey of Matrix Theory and Matrix
Inequalities, vol. 14. Mineola, NY, USA: Dover Publ., 1992.

[22] C. D. Santina, “The soft inverted pendulum with affine curvature,” in
Proc. 59th IEEE Conf. Decis. Control (CDC), 2020, pp. 4135–4142.

[23] R. Ortega, M. W. Spong, F. Gómez-Estern, and G. Blankenstein,
“Stabilization of a class of underactuated mechanical systems via
interconnection and damping assignment,” IEEE Trans. Autom. Control,
vol. 47, no. 8, pp. 1218–1233, Aug. 2002.

Authorized licensed use limited to: TU Delft Library. Downloaded on July 08,2022 at 07:40:05 UTC from IEEE Xplore.  Restrictions apply. 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /ComicSansMS
    /ComicSansMS-Bold
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /Helvetica
    /Helvetica-Bold
    /HelveticaBolditalic-BoldOblique
    /Helvetica-BoldOblique
    /Impact
    /Kartika
    /Latha
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaConsole
    /LucidaSans
    /LucidaSans-Demi
    /LucidaSans-DemiItalic
    /LucidaSans-Italic
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MonotypeCorsiva
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /MVBoli
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /Times-Bold
    /Times-BoldItalic
    /Times-Italic
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Vrinda
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryITCbyBT-MediumItal
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 200
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 200
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 400
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Recommended"  settings for PDF Specification 4.01)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


