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Abstract—This paper presents a multi-objective approach to
designing an optimal PV-BES assisted EV fast charging station.
The trade-offs between lifetime net present value (NPV), energy
independence, and grid power reduction are analyzed using
particle swarm optimization and real 50kW fast charging data.
Our results show a maximum lifetime profit of close to 4M
euro. Furthermore, for only a 8% decrease in profit the we
can achieve up to 62% of the maximum energy independence
and 46% peak power demand reduction. This show that EV fast
charging stations can become more significantly more sustainable
and have a less fluctuating demand, for very little reduction in
profits.

Index Terms—component, formatting, style, styling, insert

I. INTRODUCTION

Battery energy storage (BES) and solar photo-voltaı̈c (PV)
systems can be used to reduce the grid energy demand of EV
(fast) charging, while potentially also improving profitability
and sustainability. However, appropriate design methodologies
are required to find the best trade-off’s between profitability,
sustainability, and demand intermittency. To achieve this,
various optimal design approaches have been investigated
in literature. However, most literature focuses only on cost-
optimal designs [1]–[5], use artificially generated demand
profiles [6]–[8] and often do not take into account the effect
of battery degradation on available BES capacity, or lifetime
system costs. To this extend, the main contributions of this
paper are: 1. A techno-economical feasibility analysis of a PV-
BES-assisted EV fast charging station, using a multi-objective
particle swarm optimization, 2. The inclusion of a battery
degradation model, 3. The use and analysis of real 50kW data
measured at a fast charging station (FCS) in the Netherlands.

II. SYSTEM DESCRIPTION

A schematic representation of the PV-BES assisted fast
charging station is shown in Figure 1. The BES, PV, and EV
chargers are all interconnected on DC to reduce the amount of
DC/AC conversion steps. The EV charging demand is based
on data obtained from 2 50kW FCS in Netherlands. The
battery operates as peak shaving device, and is discharged
whenever the charging demand exceeds the grid connection.
Similarly, it is charged whenever the battery is below its
maximum set capacity and the charging demand is lower than
the maximum grid connection. The PV system operates in its
maximum power point, or reduces its power to not exceed the

maximum grid power. Two example days are shown in Figure
1, representing a day with high demand - low PV production
(middle), and a low demand - high PV production (right).

III. DEMAND ANALYSIS & EXTRAPOLATION

To provide a generic optimization tool for FCS design, it is
necessary to be able to extrapolate data from the two FCS
to as many chargers as required. To do so, the data must
first be analyzed. This analysis can also be a useful reference
for future studies which generate their own demand profile.
Figures 3(a)(b)(c) show the data used.

Fig. 2: (a) Measured PV power per unit (b) Charging profile
of the first FCS and the second (c).

To extrapolate the data to N chargers while maintaining
diurnal and seasonal variations, the data is first divided into
weeks, then N days from each week are randomly sam-
pled and added to the same week in the final profile. As
a result, the final profile maintains the stochasticity of the
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Fig. 1: (left): Schematic representation of the PV-Battery assisted fast charging station. (middle): Power flows for a day with
high demand (extrapolated to 12 chargers), and low PV production. (right): Power flows for a day with low demand and high
PV production.

data, while accounting for diurnal and seasonal variations.
According to the analysis shown in Figures 3(a)(b)(c), the
total charging demand increases roughly 250% in winter, and
there is an increase in both charging instances and demand
per charging instance. Possible explanations include increased
energy consumption from air conditioning and battery thermal
management during charging and driving. Figure 3(b) depicts
the daily average demand of a generated profile normalized
to the number of chargers (12). The generated profile shows
good correlation with the original data, which validates the
extrapolation method.

Fig. 3: (a) Total daily charging demand, (b) daily charging
instances (c) daily average demand per instance

IV. MULTI-OBJECTIVE OPTIMIZATION

A multi-objective, pareto-optimal, particle swarm optimiza-
tion method is used to find the optimal trade-off between
lifetime Net Present Value (NPV), C02-emission reduction,
and grid power reduction, for the proposed PV-BES assisted
charging station. To achieve these objectives the following
variables are optimized:

• Battery rated capacity [0-5MWh]
• PV rated capacity [0-5MWp]
• grid connection size [0-5MW]
• maximum C-rate of the battery [1/h].

A schematic representation of the optimization procedure is
shown in Figure 4.

1) Net Present Value: The lifetime NPV is calculated
according to Eq.(1). Here, Rt is the yearly revenue, r a
discount rate r of 5%, L the BES lifetime in years, and Cinv

the total investment costs comprised of EV chargers, PV and
BES system, and a summation of other one-time fees such as
distribution system operator (DSO) costs. The DSO costs are
based on a dutch operator [9]. Next Rt is calculated based
on the revenue from EV charging, PV energy feed-in, and
operational costs such as, energy costs and DSO costs. Finally,
the system lifetime is assumed to be limited by the BES,
and its lifetime and available capacity is calculated using a
degradation model with rainflow counting method according
to the approach presented in [10].

NPV =

L∑
t=1

Rt

(1 + r)t
− Cinvi (1)

2) Energy Independence: The second objective is the en-
ergy independence ∆CE , and is also an indication on the
emission reduction. ∆CE is calculated as the ratio of grid
power drawn using a PV-BES system EPV−BES(t), with
respect to the total EV demand EEV (t), according to Eq.(2).
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Fig. 4: Multi-objective particle swarm optimization flow including pareto-optimal solutions.

TABLE I: Capital cost parameters

Quantity Value
50kW EV charger 75k euro
Battery energy storage 250 euro/kWh
PV system 700 euro/kWp
Cable per meter 150 euro/m
DSO one-time fee

TABLE II: Operational cost parameters

Quantity Value
Electricity tariff 0.1 euro/kWh
Feed in tariff 0.05 euro/kWh
Charging tariff 0.6 euro/kWh
interest 5%

∆E = 1−
∑L

t=1 EPV−BES(t)∑L
t=1 EEV (t)

(2)

3) Peak Grid Power Reduction: Finally, to create a system
which is also attractive for distribution/transmission system
operators, the peak grid power is also minimized to create
a more flat demand profile. This is done using the power
management scheme as discussed in Section 2. The total
amount of peak power reduction ∆P is calculated according
to Eq.(3). PPV−BES

grid is the resulting grid power when using

the proposed PV-BES system, compared to the peak power of
the EV demand PEV (t).

∆P =
max(PPV−BES

grid (t))

max(PEV (t))
(3)

V. RESULTS

The pareto-fronts for the three objectives are shown in
Figure 5. The four chosen solution, and their corresponding
variables are given in Table III. Finally, the distribution of
variables within the obtained pareto-fronts are shown in Figure
6. Based on these results, the main conclusions are:

1) The highest NPV is obtained without a battery, a PV
system rated at 634kW, and a grid reduction of 3%.

2) the highest energy independence ∆E and peak power
reduction ∆P is obtained at maximum PV-battery size.
This, however, results in significant loss of NPV as
the PV system is curtailed a lot due to the small
grid connection size. Therefore it is concluded that the
revenue from PV power feed-in is smaller than the costs
of a higher grid power connection.

3) With only an 8% decrease in profit the we can achieve
up to 62% of the maximum energy independence and
46% of the maximum peak power demand reduction.
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TABLE III: Four chosen solutions, one for each objective and the best trade-off.

NPV [euro] ∆E [%] ∆P [%] Ebat [MWh] PPV [kW] PGrid [MW] Crate [1/h]
max NPV 2.88M 24% 3% 0 634 1.6 -
max ∆E -5.1M 64% 91.3% 4904 5 0.14 4
max ∆P -5.08M 64% 91.3% 4904 5 0.14 4
best trade-off 2.66M 40% 42% 472 1826 0.95 1.7

Fig. 5: Pareto-fronts for the objectives: NPV, ∆E , and ∆P

Fig. 6: Pareto-optimal solutions for a combination of variables and objectives .

Resulting in a profitable investment, with significantly
reduced emissions and demand fluctuations.

4) Up to 50% grid reduction - 50% emission reduction
there does not seem to be a trade-off between ∆E and
∆P .

VI. CONCLUSION

Our analysis shows of the EV demand shows a significant
seasonal variation in EV charging demand, in both charging
instances as well as energy demand per charging instance.
Furthermore, using the provided multi-objective optimization

it is shown that with only an 8% decrease in profit, a
significantly more sustainable and less fluctuating EV charging
demand can be achieved.
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