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SUMMARY 
 
Given the increasing need to meet the new operational requirements of power systems and prepare for 

the future, adaptation of cutting-edge Artificial Intelligence (AI) technologies in the operational 
processes is paramount to timely meet the challenges. The focus of this paper is on applying AI in power 

system operations, in particular for the development of decision support tools. First, the paper elaborates 

on the decision-making process of the power system operators and presents a mirroring digital 

framework consisting of AI and control theory to mimic sequential decision making of the operators. 

Next, a demonstrating example in the field of congestion management is presented by a real-world AI 
use-case at TenneT TSO. The paper continues with state-of-the-art on sequential decision making 

applied to congestion management and elaborates on research challenges when applying AI to the power 

systems problems. Finally, the paper elaborates on the enabling capabilities with focus on people, data, 

and platform pillars an organisation needs for mastering the development as well as maintenance of AI 

solutions, and proposes a cyclic (agile) process approach to decrease time from development to actual 
deployment and cooperation between research and industry organisations. 
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1 INTRODUCTION 

 
The European electricity system and associated energy market systems are transforming at a rapid pace 

due to the decarbonisation of the electricity system to meet climate goals and the facilitation of cross-

border energy markets. As a consequence, power system operation is becoming increasingly complex, 
resulting in a growing need for reliable real-time decision support tools to assist the power system 

operators. In particular, the need for time-continuous decision support that offers effective and persistent 

decisions over a time horizon is becoming more urgent. It is expected that conventional EMS/SCADA 

functionalities of control centres, which largely focus on individual snapshots of the power system state 

instead of sequences of snapshots, will become insufficient for reliable and affordable power system 
operation in the future. Nevertheless, the ongoing wide-spread digitalisation in the power system enables 

opportunities to advance the control room systems and tools by combining the best of human and 

computer intelligence [1-3]. 

 

Recently, the field of artificial intelligence (AI) went through a deep learning 
revolution, which drastically enlarges its potential for real-world application. Deep-learning AI systems 

are able to digest large volumes of information, memorize historical datasets,  and learn to quickly infer 

effective actions in context by taking time horizons and forecast uncertainties into account. In 

particular, the recent advances in deep reinforcement learning (RL) [4-5] demonstrate that it's often 

possible to achieve performance that is comparable to or exceeds that of humans for sequential decision 

making in complex systems. RL has been applied with great success in various sectors, for example, 
robot open-walk [6], self-driving cars [7], autonomous navigation of stratospheric balloons [8], data-

center cooling [9]. RL has also been considered for decision support in power systems [10], but this 

application has remained as a research niche without substantial real-world impact and deployment to 

date. Yet, these cutting-edge approaches create unprecedented opportunities for advancing of the 

existing EMS/SCADA functionalities and designing advanced decision support tools for power system 
operators with the aim to improve the efficiency and safeguard the reliability, security, and resilience of 

power systems. 

 

With this paper, the authors inform the power system community about potential and challenges of AI-

based decision support for power system operations with a focus on sequential decision making. More 
specifically, in section 2 we give a more precise notion of AI and indicate more precisely why AI is a 

relevant technology for the evolution of control centres. In section 3 we share as a motivating example 

results from a real-world use case at TenneT TSO. Subsequently, in section 4 we summarize the state-

of-the-art research on sequential decision making applied to congestion management, followed by 

section 5 in which research gaps for the application of AI tools in system operations are identified. In 

order to overcome the research gaps, we propose in section 6 a procedural embedding of AI development 
in the business practice of system operators as a crucial step for the eventual successful deployment of 

AI tools in the system operation. Section 7 provides a short summary. 

 

2 The operator’s decision-making and AI 
 

Typical control centres are core places of the power system, providing to groups of human operators the 

necessary working environment to remotely monitor and operate the power system in real time. The 
operators interact with the power system, on the one hand, by observing the continuously changing 

power system state, and, on the other hand, by manually performing a broad range of control actions on 

the grid. The actions can be discrete like line switching and substation reconfiguration, or continuous 

like adjusting voltage setpoints or power dispatches of generators, and many more.  

 
Each of the control actions, performed by power system operators, usually not only affects the current 

state of the power system but also the future state and availability of future control actions, that is, short-

term actions can have long-term consequences. As a result, the decision problem of power system 

operators is typically a sequential decision problem in which the current decision can affect all future 

decisions. Moreover, due to possible nondeterministic changes of the power system state (e.g., due to 
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Figure 1: (Left) In black the typical high-level framework of the operator’s decision-making process. In 

blue an additional decision support interface offering the operator a set of functionalities that enable 
shared knowledge representations and situational awareness over relevant time-horizons and allow for 

contextual collaborative decision-makings through adapted interactions. AI is well-suited to provide 

some of these functionalities. (Right) In black the general framework of AI and control theory consisting 

of an agent or controller that executes actions in a complex environment and receives feedback from the 

environment via observations [13]. In green the additional elements present in RL in which the agent 
also receives a reward signal that provides an indication of the quality of its behaviour. An RL agent is 

represented by a policy that maps observations to actions, and an RL algorithm uses sequences of 

observations and rewards in order to iteratively find an optimal policy that maximizes the sum of rewards 

[4-5]. The right figure is a modified version of [14]. 

 

unplanned outages or the intermittent behaviour of renewable energy sources) and different sources of 
error (e.g., measurement errors, state estimation errors, flawed judgement) the operators need to handle 

uncertainty in their decisions. Finally, operational decisions must often be made quickly, under hard 

time constraints. The energy transition increases both the relevance of this challenge as well as the 

complexity of time horizons, uncertainty, and time constraints in control centres [11]. 

 
Control centres need to adapt to the rapid changes in operational requirements of the power system. 

When improving the functionality of the control centre systems, it is crucial to consider soft frameworks 

of the human decision-making processes in order to develop efficient and user-friendly tools for power 

system operators [2, 12]. As visualised in Figure 1 (left, black), these frameworks typically consist of 

four high-level steps, namely, (i) perception of elements in the current situation; (ii) processing of 
observations or comprehension of their meanings and relations (information inference); (iii) action 

exploration or projection of future states with the given knowledge; (iv) implementation of actions in 

real-world environment. Different models typically vary in the amount of detail shown for each step and 

in the number of feedback loops or shortcuts between the different steps [2,12].  

 

AI represents a technology that is well suited to support the evolution of control centres since AI in large 
parts inherently deals with sequential decision making under uncertainty. Furthermore, the standard 

model of AI [13], as shown in Figure 1 (right, black), is neatly in line with frameworks for decision-

making by operators, as shown in Figure 1 (left, black). More precisely, AI is concerned with building 

effective agents1 that interact with complex environments in order to effectively perform tasks, 

according to one or more objectives. That is, AI is not just concerned with perceiving, understanding, 
or predicting a complex environment but also with building intelligent entities – machines that can 

compute how to act effectively and safely in a wide variety of unprecedented situations [13]. Moreover, 

AI agents can be designed as decision support tools, as indicated in Figure 1 (left, blue), providing to 

power system operators (possibly in an interactive manner) a set of actions to be potentially used in the 

 
1Note that a plain agent is just something that perceives and acts in an environment. 



  3 
 

  
Figure 2: (Left) Part of the 110 kV grid in the North of the Netherlands. Red circles indicate substations 

and power lines are indicated in black. The use case is focussed on the sub-grid to the East where the 

superimposed green circles indicate the relative amount of solar in-feed per substation in a near-future 
scenario. (Right) Maximum line loading across the sub-grid as a result of various control strategies 

during a day of a near-future scenario. The control strategies are: fixed reference topology (red), greedy 

agent (green), RL agent proposing two substation reconfigurations (cyan), RL agent proposing three 

substation reconfigurations (blue). 

 
given situation, with the operator still being in charge of deciding which actions are acceptable and 

should be implemented [2,12]. Several design principles are possible for human-in-the-loop AI [3, 15] 

which represents a growing research field (see also section 5). 

 

We note that AI is not limited to a specific technique. AI solutions typically employ a suite of different 

approaches ranging from efficient brute force search and expert rules/systems to probabilistic reasoning 
and machine learning (ML) [13]. In particular, reinforcement learning (RL) represents an approach that 

is specifically tailored to sequential decision making under uncertainty (see also Figure 1, right-green) 

and receives a lot of attention recently [4-5]. Finally, we emphasize that the concept of a controller in 

control theory (especially for stochastic optimal control, well-known in power systems research) has an 

identical role as that of an agent in AI [13]. Hence, the challenge of bringing the two fields of control 
theory and AI closer together [16] is less a conceptual problem but a practical/organizational problem, 

as we further detail below in sections 4 and 6. 

 

3 A motivating example 
 

As a concrete real-world example, we share results of a use case at TenneT TSO on congestion 

management, which is concerned with the task of fully mitigating overloads in the power grid. The use 

case is focussed on a part of the 110 kV grid in the Netherlands that has limited transport capacity and 
redispatch options (Figure 2, left) [17]. Moreover, the land is relatively cheap leading to a sharp increase 

in requested customer connections of solar parks. Consequently, in the near future, operators will be 

confronted with new (more generation-dominated) flow patterns and they will need to operate the grid 

with an increasing number of interventions and even closer to its limits. Figure 2 (right) illustrates that 

large overloads are expected in a near-future scenario when operating the grid in the reference topology 
(all busbar couplers closed). 

 

In the use case a first step towards AI-based decision support is developed to increase grid utilization 

and to unlock unexploited flexibilities. Due to the limited redispatch options in this region, the question 

is: Are topological actions capable of fully mitigating these overloads? Dynamic grid topology 
reconfiguration is an interesting option for system operators since it is a cost-efficient and flexible 

solution for congestion management that uses existing infrastructure. But it is still beyond the state-of-

the-art to optimally control the grid topology “at scale” due to the problem’s nonlinear and discrete 

combinatorial nature leading to a large search/optimization space [18,19]. The traditional optimization 

formulation of identifying optimal topology at a given snapshot is a large-scale non-convex mixed-

integer non-linear programming problem [20]. This is a computationally intensive optimization problem 
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to solve even for commercial solvers. Moreover, the real-world problem is not a single snapshot problem 

but rather the optimal topology must be designed considering the variation of load and generator 

injections over a time horizon (several time steps). This significantly increases the computational 

complexity of the problem. However, there is a need for real-time/fast optimal topology 

recommendation systems. No existing optimal power flow solver can yet tackle this problem [19]. 
 

In the use case at TenneT the amount of possible substation configurations is kept relatively small by 

choosing a subset of only 7 controllable substations. This leads to about 200 different valid unitary 

substation configurations (i.e., topologies with only one substation being reconfigured). However, even 

for this relatively small number of substations and configurations the combinatorial explosion is 

significant. For example, allowing for two substations being reconfigured leads to about 15k possible 
topologies and reconfiguring 3 substations allows for about 600k topologies [18]. Assuming that a load 

flow calculation takes a second, it turns out that brute force load flow computation for all these 

topologies already takes days to weeks. For larger grid sizes the number of topologies is practically 

infinite.  

 
A simple approach to this problem is the so-called greedy agent (or controller) in which no time horizon 

is taken into account. That is, each timestamp is optimized independently except that the current 

topology is determined by the sequence of the previous actions. We also employ the constraint that only 

one substation (or no substation at all) can be reconfigured per timestamp. In this case at each timestamp 

the effects of all possible unitary substation reconfigurations (i.e., about 200 in the use case) are 
computed and the grid configuration that is optimal for that timestamp is chosen.  In Figure 2 the green 

curve depicts the result of the greedy agent. Obviously, it is able to reduce the amount of overload but 

it is not able to fully mitigate all overloads. Consequently, it is not a trivial task to fully mitigate the 

overloads.  

 

In order to solve this task, topology controllers that provide optimal control actions over a time horizon 
are needed. In the use case a simple RL-based agent [18] is used and the result is shown in Figure 2. The 

RL-agent is able to fully mitigate the overloads. Since the RL approach is probabilistic it is even able to 

offer several successful solutions with either two (cyan curve) or three (blue curve) substations being 

reconfigured. We note that a single substation reconfiguration is not sufficient to mitigate the overloads. 

 

4 State-of-the-art research on sequential decision making applied to congestion 

management 
 

Research on sequential decision making applied to real-time power network operations is still in its 

infancy. The opportunities for scientists to work collaboratively at scale on the problem were limited by 
a lack of commonly usable environments, baselines, data, networks and simulators. However, the 

ongoing energy transition forces industry and academia to invest significant resources in this topic. 

Recently, RTE TSO developed the open-source GridAlive ecosystem2 to facilitate the development and 

evaluation of controllers (or agents) that act on power grids. With the Grid2Op framework3 at its core, 

any type of control algorithm in interaction with simulators of one's choice can be used such that gaps 
between research communities can be overcome.  

 

Moreover, based on the GridAlive ecosystem, RTE TSO and collaborators launched a series of 

competitions, the so-called Learning to Run a Power Network (L2RPN) challenge. In each competition 

the participants need to develop controllers that control a power network to maintain a supply of 
electricity to consumers on the network over a given time horizon by avoiding a blackout. The 

controllers are exposed to realistic (stochastic) production and consumption scenarios, and the remedial 

actions are subject to real-world network constraints [21]. The aim of L2RPN is to foster faster progress 

in the field by creating the first large open-benchmark for solutions to the real-world problem of complex 

continuous-time network operations, building on previous advances in AI such as the ImageNet 

 
2https://github.com/rte-france/gridAlive 
3https://github.com/rte-france/Grid2Op 
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benchmark for computer vision [22]. On the one hand, the competitions present an opportunity for the 

AI community to demonstrate recent breakthroughs which could successfully find applications in real-

world problems [23-25]. On the other hand, the aim is to raise awareness among the power system 

community about the innovations and potential of AI algorithms to solve network challenges and to 

embrace the application of different approaches to traditional problems [2]. 
 

While initial L2RPN competitions tested the feasibility of developing realistic power network 

environments [26] and the applicability of RL agents [18-19, 27-28], the 2020 L2RPN competition at 

NeurIPS [21, 29-30] and the 2021 L2RPN with trust competition [31] had increased complexity. These 

competitions came with realistically sized network environments, implying very large discrete and 

combinatorial action space dimensions due to the topological flexibilities of the network. Moreover, 
three real-world network operation challenges are addressed, namely, robustness, adaptability, and 

trustworthiness. More precisely, in the robustness track controllers had to operate the network 

maintaining supply to consumers and avoiding overloads while targeted unforeseeable line 

disconnections create N-1 situations by disconnecting one of the most loaded lines at random times [32]. 

In the adaptability track controllers need to cope with unseen energy mix distributions at test time which 
are different from the energy mix distributions provided during training. Finally, in the 2021 L2RPN 

with trust competition controllers additionally had to provide a confidence level of their actions. That 

is, controllers were not only evaluated based on their operational performance but also based on how 

trustworthy a controller will be for human operators. 

 
Throughout the competitions, ML approaches showcased continuous robust and adaptable behaviours 

over long time horizons. This behaviour was not previously exhibited by the expert systems [33], or by 

optimization methods that are limited by computation time [34-36]. Participation and activity were 

steady with entries from all over the world, and corresponding research is emerging [18-19, 27-28, 30]. 

It is worth noting so far that the best teams such as Baidu and Huawei actually came with little power 

system knowledge but great AI expertise, confirming the benefits that the AI community could bring 
the power system community. The winning solutions employ a combination of expert rules, brute force 

simulation for action validation, and on top of that different RL approaches to increase planning abilities 

and get a final boost in operational performance [21, 31]. The confidence levels are still mainly 

determined via rule-based approaches. We also note that until now even the best agents still fail over 

30% of the L2RPN test scenarios and sending alarms based on confidence levels is equally successful. 
Consequently, the competitions so far demonstrate high potential but also still indicate a lot of room for 

improvement.  

 

5 Research challenges when applying AI to power systems  
 

Although impressive proof-of-concept results have been obtained there remains a large gap to 

deployment, compared to other sectors like the automotive or the biotechnology industries [37]. This 

relates both to methodological challenges that are specific to the application domain, and to 
organizational challenges stemming from the way that system operators and the surrounding ecosystem 

are currently organised. Methodological challenges are addressed below and organizational challenges 

are discussed in the next section. 

 

Power systems exhibit several properties that require domain-specific research efforts. More precisely, 
the power system is based on (I) a large-scale real-world system with (II) unique (cyber-)physical 

properties and dynamics; it is a (III) critical infrastructure that is (IV) subject to significant uncertainty 

due to its open nature (e.g., international borders, market integration) and a variety of evolving 

objectives (regulation and the energy transition); finally, (V) humans in the form of operators play a 

central role in maintaining adequate grid security margins. These properties imply the following 
research challenges:  

 

(I) A large-scale real-world physical system is not physically reproducible, so it cannot be put in a 

laboratory (similar to the climate system, for example). Moreover, as a critical infrastructure (see also 

III below) the power system can never be taken out-of-service to be tested as a whole. To study the 
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entire system under a broad range of conditions, researchers need to work with well-developed models 

and simulators. In the AI community, Sim2Real refers to the concept (which emerged in robotics) of 

transferring capabilities learned in simulation to the real system [38-39]. Sim2Real draws its appeal from 

the fact that it is cheaper, safer (see also III below) and more configurable to perform experiments in 

simulation than in the real world. However, it has the obvious pitfall that discrepancies may exist 
between the simulation model and the real-world environment. One approach to address this is to 

explicitly account for (uncertainties due to) model-errors when designing or training agents/controllers 

[37]. 

 

Furthermore, as also shown by the L2RPN competitions (see section 4), the power network gives rise 

to large observation and action spaces. These large state and action spaces can present serious issues for 
traditional RL algorithms [37]. So far, these spaces are mainly reduced by using brute force approaches. 

Efficient search techniques are needed in order to exploit all available flexibilities. Moreover, decisions 

span a range of time scales; [40] have proposed a proxy-based method to efficiently deal with the 

complexity resulting of time scale hierarchies.   

 
Finally, large amounts of data are important for agent training and validation, especially in the presence 

of changing distributions, but real-world data sources are limited. Consequently, extra emphasis should 

be placed on real-world data collection (see also section 6). On the other hand, techniques for creating 

realistic synthetic data sets are a crucial supplement [41-42].  

 
(II) The power system has unique physical properties (electrical, topological and dynamical) and it is 

closely interlinked with embedded measurement and control systems. To start with the latter, one can 

view this as cyber layer that is superimposed on the physical network layer: operators can only access 

the physical network via specific IT infrastructure, and automata are deployed on the network. These 

specific structures need to be taken into account when building (decision support via) agents/controllers 

[43]. 
 

Focusing on the physical properties of the system, there is an opportunity to enhance ML models using 

the physical equations governing the system, which gives rise to the new research field of physics-

informed ML [44].  

 
Along similar lines, the bus-line representation of power systems suggests a natural fit for the use of 

graph neural networks (GNNs), a class of deep learning methods designed to perform inference on data 

described by graphs that receives a lot of attention recently [45-46]. For example, an obvious example 

of binary graph classification via GNNs applied to power systems is diagnosing whether a power 

network state satisfies the N-1 principle [47]. Also, faster load flow solvers have been developed using 
GNNs [48-49]. However, the unique properties of the power network hamper easy transfer of AI 

methods developed for other sectors even if the methods are already tailored to graph-like structures. 

For example, the actions of busbar splitting effectively split a node in a graph in two nodes (or conversely 

merge two nodes into one), which is not common in other networks. The unique structure of substations 

requires adequately adapted approaches in order to incorporate specific network constraints and exploit 

specific network flexibilities [48-49]. Equally, the effective handling of long-range dependencies (i.e., 
non-local effects) and the fast propagation speed of electricity represent power system specific 

challenges. In other words, the performance of GNNs on power grids (in particular, across different 

topologies and different power grids) still needs to be thoroughly researched [50]. The same holds for 

the question of how agents/controllers developed for a specific network can be generalized, that is, 

effectively transferred to other networks (transfer learning). 
 

(III) As a critical infrastructure, the power system is designed and operated with high availability in 

mind. Ensuring its security through control actions therefore amounts to the analysis and mitigation of 

low-probability, but potentially high-impact, events [51]. It is generally desired that the agent performs 

robustly for all task instances and not just in expectation. Therefore, its performance cannot be 
summarized by a single scalar describing cumulative reward, but must consider the full distribution of 

behaviours both during training and testing. Operators will usually be averse to high-impact scenarios, 
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especially so because these rare events are often associated with large uncertainties (e.g., due to model 

mismatch, measurement errors or data scarcity).   

 

The broad area of risk-averse reinforcement learning is known as Safe RL [52]. A typical approach to 

include risk-aversion is to use a Conditional Value at Risk (CVaR) objective [53], which looks at the 
expected tail reward (beyond a given percentile), rather than the expected reward. Chow et al. show that 

by optimizing reward CVaR, the agent is able to improve upon its worst-case performance, a property 

central in operating such safety critical infrastructures. Alternatively, the CVaR can be added used in 

constraints for policies with other reward objectives [54]. Safe RL methods should be further developed 

to deal with strict constraints on high-impact low probability events [37]. This also necessitates dealing 

with the potential for catastrophic model errors in a methodologically consistent manner.  
 

(IV) The fourth set of challenges is related to the wider environment in which the power system must 

operate. First, instead of a single objective, the operator may desire to optimize a range of objectives: 

operational costs, long-term costs and asset wear, social welfare, environmental factors, and regulatory 

risks. When these objectives cannot be combined into a single objective using weights that are known 
in advance, specific multi-objective RL methods are required. There are approaches to learning the 

pareto-optimal reward function [55], and recent attempts to develop such methods for the deep 

reinforcement learning setting [56].   

 

Second, many systems are electrically connected to neighbouring systems. This either necessitates tight 
integration with regional control centres (and possibly a centralised or hierarchical AI solution), or 

development of less tightly coupled multi-agent RL schemes.  

 

(V) And last but not least, real systems are owned and operated by humans who need to be reassured 

about the controllers’ intentions and require insights regarding failure cases [2, 12]. Explainability of 

proposed actions is important in this setting, and even more so in the context of a highly regulated 
industry, where human operators must be able to justify control actions. Explainability takes the form 

of a priori explanations of proposed actions, especially when proposed actions are unexpected, a 

posteriori explanations of actions that were later considered inappropriate. Moving beyond an advisory 

approach where AI agents suggest control actions to the human operator, the authors envision a hybrid 

intelligence approach for system operations, where operators and intelligent agents cooperate to control 
the grid. Hybrid intelligence or human-centred AI is a young and active research area [15, 57-58], where 

further development is required.  

 

6 Embedding of AI development in system operators 
 

To facilitate the transition of AI solutions for power systems from research to business-as-usual 

deployment, a number of institutional challenges must be faced. This section firstly identifies typical 

key enabling capabilities for the development of AI solutions, and secondly a vision of the production 
cycle of AI solutions in power system operation [59]. 

 

In order to enable and ultimately master the design, development, validation, training and deployment 

of AI solutions, each organisation needs to develop sufficient capabilities in the people, data, and 

platform pillars [60]: 
 

(A) The people pillar represents human resources including skill, culture, and organisation required 

for the successful launching of AI initiatives, their realisation, as well as their long-term 

maintenance. In general, a broad range of different human expertise and skills are necessary to 

identify, design, build, validate, and maintain AI solutions. Especially when starting-up, timely 
setting of way-of-working strategies, putting data collection and governance practices in place, 

as well as the right infrastructure to support the development as well final implementation are 

of crucial importance to gain momentum and swiftly demonstrate the added value of AI to the 

power system operators.  
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For system operators, it is essential to gain in-house knowledge of AI methods and broader 

digital competencies, partially through training for existing staff and, for new staff, by 

embedding these subjects in curricula of further and higher education. Another important aspect 

is to facilitate knowledge sharing and building through in-house AI communities, like the 

TenneT AI Center of Excellence. Of course, the purpose is not only to grow knowledge, connect 
and retain talent, but also to educate others about AI possibilities and promote AI developments 

internally in an organisation and connect and co-develop with similar AI communities 

externally. Finally, AI communities should define best practices including ethic guidelines when 

developing, deploying and maintaining AI solutions. 

(B) The data pillar is about organising data in terms of data accessibility, governance, and quality. 

In the majority of cases, availability of both historical and real-time process data is of key 
enabling importance to swiftly start with an AI initiative. Typically, access to data set dumps is 

sufficient for the development phase of an AI solution, while for production phase, data must 

be regularly available. Within the TSO/DSO organisation, it is often worth considering setting 

up a dedicated database to store structured and non-structured data for long-term, and to 

consolidate and democratize data sources, improve data quality and security via central data 
governance, and simplify data access. Nevertheless, it is also worth considering at the earliest 

stage to save various operational and non-operational data like SCADA and PMU 

measurements, power system models, grid security analysis results, energy market outcomes, 

and weather data, to have such data sets available when needed for future applications. In other 

words, an ambitious digitalization step is crucial within companies since quality and rich data 
is an essential raw material: it should now be considered as a company product/asset. 

In particular, it is crucial for AI development and testing to thoroughly define AI learn- and 

testbeds. AI solutions need to be trained, tested, and benchmarked against other solutions. In 

the last decade fast AI improvements in computer vision [61], natural language processing [62], 

or biology [63] for example have indeed been largely driven big open benchmarks [64-66]. For 

this purpose, datasets of various power system operation scenarios (i.e. grid models, injections, 
constraints) that embody the past, present and future conditions of power network operations 

are necessary, and testbeds need to be developed according to the specific needs of system 

operators. Moreover, while test datasets should be as close as possible to real-world scenarios 

to best evaluate any solution, training datasets/environments should be rich and large enough 

for AI developments, possibly somewhat different from scarce and complex real data. In 
practice, this leads to a range of testbeds that increase in complexity from abstract model 

systems with model-generated data to full-fledged digital twins. 

(C) The platform pillar is about tools and technology used to develop, test and implement AI 

solutions. For development, platforms should be developer-friendly and supported by set of data 

analytics, visualisation, and programming tools, database pipelines, scalable compute and 
storage resources, in order to quickly develop prototypes and demonstrate value. In addition, 

the platform should be flexible enough to enable seamless yet secure cooperation with external 

parties when co-developing AI solutions. For a production environment, scalability and 

reliability are key aspects. Crucial is the ability to support continuous integration and 

deployment of new improved versions of the AI solution for maintenance purpose without 

affecting the rest of the system. 
 

The above three pillars mostly focus on required enablers for AI solution realisation within a company. 

Nevertheless, for a seamless and rapid production cycle from design to implementation of AI solutions, 

the company needs to be organised to facilitate collaboration between Research, Development, and 

Deployment innovation phases. However, the process of technology innovation often takes place as 
schematically indicated in Figure 3. Hereby, each of the phases include Data, Code, People, and Testing 

as required resources/capabilities per project.  

 

The research phase is often performed in a closed environment within small research teams, by using 

benchmark power system models, and without direct involvement from system operations experts. The 
main goal of this phase is to innovate and develop new AI techniques applicable to power system 

problems in order to show value.  
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Figure 3: Schematic of the linear and compartmentalised process of technology innovation. Resources, 

practices, and capitalization are largely isolated and unshared between research, development, and 

deployment phases. This can lead to reduced alignment and slow progress. 

 

The development phase is often performed by an external expert company, by using actual realistic 
power system models and historical datasets, and with time-to-time involvement of system operations 

experts. The main aim of this phase is to take the outcomes of the Research phase, further innovate, and 

develop a minimum-viable product and later final solution that reliably works for a specific real-word 

use case.    

 
The deployment phase is then performed by utilities themselves or the EMS/SCADA system suppliers, 

by using real-time data streams, and with direct involvement of the system operations experts. The main 

aim of this phase is to take the final product of the Development phase, and implement it in the operator 

training simulator and production environments of EMS/SCADA systems to be used by the power 

system operators. 
 

As can be observed in Figure 3, the innovation process of largely independent phases prevents the 

virtuous cycle of rapid development/testing/deployment that other sectors have used to good effect, in 

particular in AI-driven companies. To gain the most in the shortest time when developing AI solutions, 

it is crucial firstly that each company integrates the phases of the innovation process, and secondly that 

the integration of system operation and the global AI R&D ecosystem is increased, as schematically 
indicated in Figure 4. Near real-world testing environments, providing realistic scenarios and validation 

criteria, need to be continuously defined and refined back and forth from research to deployment. The 

use of open data, models and code with open access papers should be encouraged, much like within the 

LF Energy Initiative (https://www.lfenergy.org/), to enlarge the ecosystem for AI tool development. 

First steps in this direction are currently taking place, as exemplified by the L2RPN competitions and 
the European AI on Demand Platform (https://www.ai4europe.eu/). 

 

7 Summary 
 

Given the increasing need to meet the new operational requirements of power systems and prepare for 

the future, adaptation of cutting-edge Artificial Intelligence (AI) technologies in the operational 

processes is paramount to timely meet the challenges. The focus of this paper is on applying AI in power 

system operations, in particular for the development of decision support tools. First, the paper elaborates 
on the decision-making process of the power system operators and presents a mirroring digital 

framework consisting of AI and control theory to mimic sequential decision making of the operators. 

Next, a demonstrating example in the field of congestion management is presented by a real-world AI 

use-case at TenneT TSO. The paper continues with state-of-the-art on sequential decision making 

applied to congestion management and elaborates on research challenges when applying AI to the power 
systems problems. Finally, the paper elaborates on the enabling capabilities with focus on people, data, 

and platform pillars an organisation needs for mastering the development as well as maintenance of AI 

solutions, and proposes a cyclic (agile) process approach to decrease time from development to actual 

deployment and cooperation between research and industry organisations. 

https://www.lfenergy.org/
https://www.ai4europe.eu/
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Figure 4: Two schematics for fast AI production. (Left) Schematic of the cyclic and largely shared 
process of technology innovation. It enables fast iteration and synchronization leading more efficiently 

to products suitable for real-world application. It applies to both the organization within a company as 

well as the collaboration between companies. (Right) Schematic of an R&D ecosystem for efficient and 

real-world applicable AI innovation. The dashed boxes indicate resources that can be largely shared 

between organizations. System operators have a unique position in the ecosystem since they are the only 
ones that can access and provide feedback from the real system. Consequently, system operators have a 

unique responsibility in forming the testing environment. 
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