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Reconstructing Occluded Elevation Information in
Terrain Maps With Self-Supervised Learning

Maximilian Stölzle , Takahiro Miki , Levin Gerdes , Martin Azkarate , Member, IEEE,
and Marco Hutter , Member, IEEE

Abstract—Accurate and complete terrain maps enhance the
awareness of autonomous robots and enable safe and optimal
path planning. Rocks and topography often create occlusions and
lead to missing elevation information in the Digital Elevation Map
(DEM). Currently, these occluded areas are either fully avoided
during motion planning or the missing values in the elevation
map are filled-in using traditional interpolation, diffusion or patch-
matching techniques. These methods cannot leverage the high-level
terrain characteristics and the geometric constraints of line of
sight we humans use intuitively to predict occluded areas. We
introduce a self-supervised learning approach capable of training
on real-world data without a need for ground-truth information
to reconstruct the occluded areas in the DEMs. We accomplish
this by adding artificial occlusion to the incomplete elevation maps
constructed on a real robot by performing ray casting. We first
evaluate a supervised learning approach on synthetic data for
which we have the full ground-truth available and subsequently
move to several real-world datasets. These real-world datasets were
recorded during exploration of both structured and unstructured
terrain with a legged robot, and additionally in a planetary scenario
on Lunar analogue terrain. We state a significant improvement
compared to the baseline methods both on synthetic terrain and
for the real-world datasets. Our neural network is able to run in
real-time on both CPU and GPU with suitable sampling rates for
autonomous ground robots. We motivate the applicability of re-
constructing occlusion in elevation maps with preliminary motion
planning experiments.

Index Terms—AI-enabled robotics mapping.

I. INTRODUCTION

A S WE empower mobile robots to autonomously navigate
to their goal, they rely on maps of the surrounding envi-

ronment for traversability analysis and motion planning. 2.5D
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Digital Elevation Maps (DEMs) represent a memory-efficient
and accurate approximation for most terrains as they project the
3D structure into two-dimensional grid cells. Usually, robots
use depth sensors such as LiDAR or stereo cameras to construct
DEMs [1]. To enable safe and optimal path planning, we strive
for complete and accurate elevation maps. In practice, our robots
often encounter occlusions caused by terrain discontinuities such
as rocks, obstacles or convex terrain characteristics which hide
an area patch from the sensor’s viewpoint. Further, depth mea-
surements can be degraded due to reflections, stereo matching
failures, dust, or textureless surfaces which frequently lead to
additional missing elevation information in the DEM. This mo-
tivates the need for solutions to reconstruct the missing elevation
information in the terrain map. We are inspired by the application
of data-driven methods for inpainting of images [2]–[4] even
for irregular holes [5] and aim to tailor these methods for the
application of filling occlusion in terrain maps. Our method
allows us to exploit prior information about the deployment area
such as known terrain characteristics as well as the geometric
constraints of line of sight for the reconstruction of missing
elevation information using a neural network. The method is
based on a U-Net [6] similarly to the state-of-the-art in neural
network-based inpainting for vision problems [2]–[5]. We pro-
pose a new strategy for self-supervised learning applied to terrain
maps based on adding artificial occlusion with ray casting. As
non-occluded ground-truth data is very difficult to acquire, this
enables us to use incomplete real-world elevation maps for
training our neural network. We would like to point out that
this self-supervised learning approach breaks ground towards
a future where robots can actively improve their performance
while they explore their environment in the line of the connected
research on lifelong learning [7].

Existing implementations to complete sparse terrain maps for
mobile robots either rely on searching terrain patches with close
resemblance in an offline library [8] or very recently on neural
networks trained with ground-truth data estimated offline [9].
The later approach [9] is based on the assumption that by
Simultaneous Localization and Mapping (SLAM) also having
access to future measurements, the map will be more complete
and accurate than the DEM at the current time-step which is
generated solely from current and past depth measurements.
It should be noted that learned features will most likely be
coupled with pose estimation errors and future flawed depth
measurements through the ground-truth map.
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We conduct extensive bench-marking of both supervised and
self-supervised learning approaches against various baseline
methods. We evaluated on multiple synthetic terrain types as
well as real-world datasets collected with the legged robot ANY-
mal [10] and the planetary rover test-bed HDPR [11]. We state a
decrease between 52% and 82% in Mean Squared Error (MSE)
error with our self-supervised method on the real-world datasets
compared to the respective best performing baseline approach.
Finally, we observe in preliminary motion planning experiments
that using reconstructed DEMs paths can be planned further
ahead compared to planning with incomplete elevation maps.
Consequently, the robot needs to stop less and avoids having to
wait for re-planning of the path to finish.

We would like to emphasize the following contributions of this
paper: We propose a self-supervised learning method for filling-
in sparse DEMs by adding artificial occlusion with ray casting
enabling training on partially occluded real-world datasets. We
introduce an iterative algorithm for realistic occluded map data
generation and to guide the sampling of vantage points for
ray casting towards occlusion masks with suitable amounts of
occlusion.

II. RELATED WORK

Image inpainting: Inpainting techniques utilise the structure
and texture of an image to fill-in missing parts and can be used
to for example remove unwanted objects from the image [12].
Traditional image inpainting methods can be separated into two
categories: While diffusion-based inpainting methods leverage
isophote lines to continuously propagate high-order derivatives
of local pixel density from the exterior into the hole of the im-
age [13], patch-based methods such as PatchMatch [14] search
the known regions of the image at the patch-level and copy
the best-matching patches into the missing region. Nowadays,
data-driven learning-based approaches are the state-of-the-art
for image inpainting [2]–[5]. Most of them rely on an adoption
of the U-Net [6] model architecture. Many recent papers [2], [5],
[15] include perceptual and style losses [16]. They rely on high-
level features extracted using a pretrained VGG-16 network.
These perceptual and style losses work similarly to adversarial
losses by not just enforcing convergence of the reconstruction
on a pixel-by-pixel basis, but also enforcing encoded high-level
characteristics to be similar. Partial convolutions can be appro-
priate for irregular holes as convolutional strategies might fail
to adjust to the changing shapes of the hole boundaries [5]. A
Generative Adversarial Network (GAN)’s ability to generate
high-fidelity images motivates the use of adversarial methods
to produce sharper inpaintings [2], [4], [17].

Self-supervised learning: Self-supervised learning is essential
to alleviate the gap between synthetic data and real-world data
(Syn2Real) and enable training on real-world datasets for which
complete ground-truth information is challenging to acquire.
Zhan et al. [18] propose a self-supervised approach for de-
occlusion in the framework of scene understanding by overlay-
ing semantically-extracted objects onto images. Dai et al. [19]
uses a self-supervised learning approach for scene completion
of sparse real-world RGB-D scans using a GAN by randomly
removing some of the scans.

Elevation mapping: Robot-centric elevation mapping uses
pose estimates from Inertial Measurements Unit (IMU) or odom-
etry and local distance measurements from a laser range sensor,
structured light, or stereo camera to derive a local 2.5D elevation
map of the environment with the robot centered in the grid [1].
The uncertainty of elevation values is predicted through sensor
noise models and localization drift estimates and can be very
valuable for motion planning [1].

Completing sparse elevation maps: Relatively few works con-
sider the challenge of completing sparse robotic elevation maps.
One early work by Kolter et al. [8] proposes a non-parametric
algorithm based on texture synthesis methods to fill-in the miss-
ing terrain portions. This method is comparable to patch-based
methods in image inpainting as it searches for patches in a library
that closely resemble the partially occluded terrain patch with
the additional enforcement of geometric constraints with respect
to line of sight for the posterior distribution over the missing
region. In recent years, data-driven methods were explored for
completing sparse DEMs. Qiu et al. [17] leverage a deep convo-
lutional GAN to fill the voids of large-scale geospatial data DEM
with the loss function being composed of pixel-wise, contextual
and perceptual constraints. For mobile robots however, there
is even more information available than just map reconstruction
losses as the robot pose is estimated and recorded throughout the
trajectory [9]. The robot pose hints at a likely local terrain shape
which can be leveraged as part of a weakly-supervised KKT-loss
term. This is in particular relevant for partially flexible terrain
for which lidar measurements over-estimate the support height.
The supervision through recorded poses is extended by training
a pose regressor leading to a pose prediction-loss for areas of the
terrain map not traversed by the robot. The reconstruction loss
itself is trained by estimating a ground-truth map offline which
also includes future measurements and thus is more complete
and likely accurate than the current DEM [9]. The confidence
in occupancy of parts of the map can furthermore be used to
actively guide the depth measurement sensor to explore sparse
areas of the map [20].

III. METHODOLOGY

First, we give a brief overview of our method as visual-
ized in Fig. 1: we consider sparse 2.5D elevation maps and
strive to fill-in the missing elevation information to match the
ground-truth DEM as accurately as possible. We propose to
use an U-Net [6]-like neural network to inpaint the occluded
2.5D elevation map with the inputs consisting of the DEM and
a binary occlusion mask. Supervised learning requires us to
know ground-truth data to compute a training loss and after
back-propagation optimize the neural network weights. As com-
plete and accurate ground-truth information is rarely available
for real-world datasets, we introduce a self-supervised method
which leverages ray casting to further occlude the DEM given
by the robot sensors. This allows us to compute a MSE and
Total Variation (TV) loss between the occluded DEM and the
less occluded input DEM.

A. Problem Statement

We consider a 2.5D DEM mocc ∈ Rn×m of a terrain patch.
The terrain patch of length l and width w is discretized at a
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Fig. 1. Self-supervised learning using artificial occlusion generated via ray casting for inpainting occlusion in terrain maps: partially occluded DEM are sampled
via robot-centric elevation mapping. Artificial occlusion is added by performing ray casting from a random vantage point which allows a neural network to be
trained to reconstruct the DEM without occlusion. The composed DEM consists of patching the original occluded DEM with the reconstruction in the occluded
area. The ray casting graphic is adapted from Kolter et al. [8].

resolution r to compose a regular grid of dimension n×m,
which encodes the elevation at every grid cell. However, some
elevation information is missing because of geometrical occlu-
sion or other reasons such as degraded depth measurements. We
create a binary occlusion maskMocc ∈ [0; 1]n×m which assigns
a value of 1 to grid cells with missing elevation information and
0 to grid cells with known elevations. We define our problem as
such, that we want to estimate a reconstructed DEM mrec which
matches the ground-truth DEM mgt as closely as possible.
During inference, we construct a composition mcomp between
the original input mocc for the non-occluded grid cells and the
reconstruction mrec for the occluded grid cells.

B. Ray Casting

We use ray casting to compute occluded DEMs based on the
synthetic ground-truth DEMs in addition to generating artificial
occlusion in the framework of self-supervised learning. We
developed a lightweight C++ component to perform fast ray
casting of an entire grid map from a given vantage point. The
ray casting algorithm takes a DEM and a vantage point xv as
inputs and then iterates through every cell in the grid and checks
for each cell whether the cell is visible from the vantage point.

C. Self-Supervised Learning

We propose a self-supervised learning methodology to train
on real-world datasets without ground-truth to learn to fill-in
missing elevation information of DEMs. We reformulate the
training setup by using our partly occluded real-world elevation
map as a target and creating additional artificial occlusion which
is used as an input into the neural network. We considered
a dilation of the already occluded area in addition to ran-
domly occluding pixels. However, this approach does not render
realistic and diverse occlusion masks. We decided to add artifi-
cial occlusion by ray casting from a randomly sampled vantage
point.

We employ an iterative algorithm to generate useful artificial
occlusion masks with occlusion ratios between 0.1% and 50%
and choose the elevation offset o of the vantage point accord-
ingly. First, we sample a random vantage point from the grid with
a uniform distribution. Then after a random elevation offset for
the vantage point o ∼ U(omin, omax) is sampled, we perform ray
casting for the chosen vantage point and evaluate the resulting
occlusion ratio (e.g., number of occluded grid cells over number
of total grid cells).

We require that the occlusion ratio rocc lies within the interval
[rocc,min, rocc,max]. This threshold interval was tuned in a selec-
tion study and set to [0.1%, 50%]. If the occlusion ratio does
not lie within the interval, we sample a new elevation offset.
This time, we adjust the range of the uniform distribution: if
rocc > rocc,max, we increase omin to the previously sampled
elevation offset o, and if rocc < rocc,min, we decrease omax to
the previously sampled elevation offset o. If ‖omax − omin‖ <
0.05 m, we enforce a minimal sampling range by respectively
decreasing omin by 0.05 m or increasing omax by 0.05 m. We
repeat this algorithm until either we have satisfied our occlusion
ratio constraint [rocc,min, rocc,max] or we have reached the maxi-
mum number of iterations (15). We reformulate our loss function
to only consider the areas of artificial occlusion and ignore the
already occluded areas in the target DEM.

D. Model

We adopt an U-Net [6] as the architecture of our neural
network which is often used in the literature for image and video
inpainting [2], [5]. The input is composed of two channels: the
occluded elevation map mocc and the binary occlusion mask
Mocc. As the occluded DEM contains missing elevation values
represented as NaNs computationally, we replace them with
a floating point number by linearly interpolating for synthetic
datasets and with the constant 0.0 for real-world datasets after a
selection study. A reason could be that linear interpolation is per-
forming worse for the higher occlusion ratios of the real-world
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datasets. We also implement input and output normalization:
we compute the mean of the non-occluded elevation values of
a DEM and subtract this mean from each elevation value in
the grid. After receiving the output of the model, we add this
mean back to each elevation value before computing the loss.
We adapt our model from the vanilla U-Net architecture and
make slight adjustments to the number of max-pooling steps
because we are working with smaller input images (64x64px
instead of 572x572px) than in the original paper [6] and we
want to keep the network as lightweight as possible. Thus, we
limit the number of max-pooling operations to 3 (instead of 5 in
the original paper) and treat the number of channels in each
hidden dimension as a hyperparameter for which we select 64,
128, and 256 channels for our hidden dimensions.

E. Loss Function

We enforce a MSE loss between the ground-truth DEM
mgt and the reconstructed DEM mrec as our pixel-by-pixel
reconstruction loss. We separate the MSE loss for the occluded
region of the DEM MSEocc and the non-occluded region of the
DEM MSEnocc. A TV loss Ltv [21] has shown to be valuable
as a smoothing penalty on the reconstruction of the occluded
area. We compute the final loss as a weighted sum of all loss
components with weights of 1 and 10 for the MSE loss of the
non-occluded and occluded area respectively, and scale of 0.1
for the TV loss.

F. Training

We base our software to train the models on PyTorch [22].
After every training epoch on the training set, a pixel-by-pixel
MSE loss is evaluated for the occluded area LMSE,occ as our
validation loss. The training is stopped if either a maximum
number of epochs is reached (100) or the validation loss did not
improve during a specified number of epochs (50). We use the
Adam [23] optimizer with a learning rate of 0.0001, a weight
decay of 0.001, and the beta coefficients (0.9, 0.999).

IV. EXPERIMENTS AND RESULTS

We evaluate our method both quantitatively and qualitatively
on multiple synthetic and real-world datasets. More specifically,
we compare the performance of the self-supervised learning
approach to several trivial baselines such as linear [24] and
cubic interpolation and traditional inpainting methods with
hand-tuned heuristics such as Navier-Stokes [13] and Telea [25].

A. Datasets

Synthetic dataset: We evaluate our methods on synthetic
datasets using three different terrain types: hills, standard stairs,
and random boxes. This allows us to train with supervised
learning but also to benchmark our methods against an accurate
ground-truth, as it is usually very hard to acquire a matching
ground-truth for a large dataset of real-world occluded terrain
maps. We generate terrain maps of size 64x64px and with a reso-
lution of 0.04 m/px. We attribute 25,000 samples to the training,
and 2,500 samples each to the validation and test set. The hills

terrain is generated using a distribution of Perlin noise [26].
We also implement terrains with highly regular patterns in
standard stairs and random boxes. While the standard stairs
terrain is generated by stacking boxes in a uniform direction
with a regular step size using fixed box dimension, boxes are
stacked at various angles with randomly sampled dimensions
for the random boxes terrain. After spawning the terrain map
for the chosen terrain type, we perform ray casting to gather the
occluded elevation map mocc and the binary occlusion mask
Mocc. We sample a random robot position from a uniform dis-
tribution x ∼ U(−1.25 m, 1.25 m) to perform ray casting. We
subsequently infer the elevation of the robot position from the
DEM at the corresponding pixel and sample a random elevation
offset of the vantage point for ray casting ovp ∼ U(0.2m, 0.5m)
for the hills terrain and ovp ∼ U(0.2 m, 0.3 m) for the standard
stairs and random boxes terrains respectively.

ANYmal datasets: We consider datasets recorded using the
ANYmal [27] legged robot in three different terrains. The ANY-
mal robot is equipped with a dome LiDAR sensor and an IMU
to perceive 3D point clouds of its environment and odometry
information respectively. 2.5D DEMs of size 300x300px and
resolution 4 cm are derived using robot-centric elevation map-
ping [1], [28]. The terrains include several datasets recorded
while the robot is traversing on a staircase and on an obstacle
course at ETH Zürich, and one dataset capturing the subter-
ranean exploration of the Gonzen mine in Switzerland [29]. For
the ANYmal datasets, we use approximately 80% of the subgrid
DEMs for the training set and 10% each for the validation and
test sets respectively. The ETH stairs, ETH obstacles course, and
Gonzen mine datasets contain in total 26,233, 37,274 and 16,459
samples. We divide the 300x300px DEMs into 16 subgrids à
75x75px each, to increase generalization capabilities, reduce
the GPU memory requirements and exclude empty parts. We
uploaded a video of the inference of our method on the Gonzen
mine dataset [29] to YouTube.1

Tenerife Lunar Analogue dataset: We evaluate our methods
on a lunar analogue dataset which was collected during a field
test campaign in June 2017 at Minas de San Jośe on the Teide
Volcano on the island of Tenerife using the Heavy Duty Planetary
Rover (HDPR) [11], a lab rover testbed with resemblance to the
Rosalind Franklin rover [30] flying to Mars in 2022 during the
ExoMars mission [31]. The dataset contains Global Navigation
Satellite System (GNSS) recordings, the rovers raw inertial data,
and images from three stereo cameras captured during several
traverses over the duration of multiple days including a variety of
lighting conditions and different pre-planned paths. We choose
elevation maps generated during a traverse on an isolated side
track as our test set because they are completely unseen during
all other traverses. We apply the GA SLAM [32] technique to
extract DEMs from the raw dataset. As we want to minimize all
errors in the local maps introduced by drifts in the localization,
we use the ground-truth robot pose provided by the GNSS as
opposed to the visual odometry from the LocCam to translate
the local map to the next time step and rotate the incoming point

1[Online]. Available: https://youtu.be/2Khxeto62LQ
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TABLE I
RESULTS FOR SYNTHETIC DATASETS REPORTING THE RECONSTRUCTION PERFORMANCE FOR THE OCCLUDED AREA AVERAGED OVER THREE RANDOM SEEDS

The best performing method for each dataset / terrain and error metric.

cloud before stereo processing. We only select keyframe eleva-
tion maps with a Peak signal-to-noise ratio (PSNR) smaller than
50 dB between the current and the last accepted sample which
drastically decreases the computational load during training and
also prevents overfitting issues which would otherwise arise
from having too many similar samples. We divide the 600x600px
DEMs into 64 subgrids à 75x75px. This policy results in 42,600
samples for the training set, 1,000 samples for the validation set
and 7,950 samples for the test set.

B. Evaluation Metrics

Similar to other publications on the topic of image inpainting
such as [5], [33], we state the �1 loss, the PSNR and the Structural
Similarity Index Measure (SSIM) [34]. We use the separated test
set for all evaluation results.

The PSNR is a function of the total MSE loss of the occluded
area and the maximum dynamic range of the grid-valuesL deter-
mined by computing the delta between the highest and lowest
elevation of the ground-truth DEMs of the entire test dataset.
We only report the evaluation metrics for the occluded area as
we argue that a composed DEM incorporating the non-occluded
parts of the input DEMmcomp can be easily created and thus the
reconstruction capability of the non-occluded area by the model
is not essential.

We compute the SSIM between the ground-truth DEM mgt

and the reconstructed DEM mrec as SSIMrec and similarly
between the ground-truth and the composed DEM mcomp as
SSIMcomp. The metric is quantified over the entire DEM and
not just the occluded region as it is not defined for irregular
patches. We use the constants C1 = (k1 L)

2, C2 = (k2 L)
2 and

C3 = C2/2, where L signifies the dynamic range as previously
used for the PSNR, and k1 = 0.01 and k2 = 0.03. We calculate
the average μ and the variance σ2 with a Gaussian filter with a
1D kernel of size 11 and sigma 1.5 for every DEM separately. We
set the weight exponents α, β, and γ all to one. The SSIM metric
can only be evaluated on complete DEMs and thus requires
knowledge of the entire ground-truth.

C. Experiments on Synthetic Datasets

We evaluate both baseline methods, supervised and self-
supervised approaches on the three synthetic datasets and report
the results in Table I including the the SSIM for both the
reconstructed and the composed DEM. We train and evaluate
experiments on three different random seeds and report a confi-
dence interval with mean and standard deviation for those experi-
ments. For supervised learning, we directly use the non-occluded
ground-truth as our training targets, while for self-supervised
learning we adopt the occluded DEM from the dataset as our
training target and add artificial occlusion using ray casting.

We show 24%, 90%, and 85% reductions in MSE error for
the occluded area compared best performing baseline approach
on each dataset using self-supervised learning based on gen-
erating artificial occlusion with ray casting for the synthetic
hills, standard stairs, and random boxes terrains respectively.
Substantial improvements can also be noted for the �1 and SSIM
error metrics. We would like to point out larger improvements
for highly-structured terrain such as standard stairs and ran-
dom boxes compared to the baseline methods. Surprisingly, the
performance of self-supervised learning is only slightly worse
(approx. 0.3 dB-2.3 dB in PSNR) compared to fully supervised
learning. While (cubic) interpolation baseline methods perform
very well on the smooth hills terrain, their performance is much
worse on more structured terrain and similar to Telea [25] and
Navier-Stokes [13].

D. Experiments on Real-World Datasets

We evaluate our proposed self-supervised learning approach
on several real-world datasets. As complete ground-truth DEMs
are hard to acquire in the real world, we evaluate on the test
set of the real-world data with artificial occlusion created using
ray casting. We run experiments using five different random
seeds and report a confidence interval with mean and standard
deviation.

Evaluating quantitatively on real-world datasets containing
artificial occlusion generated with ray casting, we state a de-
crease of 64%, 52%, 82%, and 57% in MSE error compared
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Fig. 2. Snapshots of inference using the trained neural network on the Gonzen mine dataset recorded with the ANYmal legged robot. The occluded DEM is
marked in a color scale from white to blue (lowest to highest elevation), while the reconstruction is visualized from white to red with a slight opacity. To improve
the clarity of presentation, we only inpaint subgrids which are less than 85% occluded as the neural network requires sufficient input elevation information.

TABLE II
RESULTS FOR REAL-WORLD DATASETS EVALUATED USING ARTIFICIAL

OCCLUSION GENERATED WITH RAY CASTING ON THE TEST SET AVERAGED

OVER FIVE RANDOM SEEDS FOR THE BASELINE METHODS LINEAR- / CUBIC

INTERPOLATION, TELEA [25] AND NAVIER-STOKES [13], AND

SELF-SUPERVISED LEARNING. THE CHOSEN UNIT OF ELEVATION IS METERS.

The best performing method for each dataset / terrain and error metric.

to the best performing baseline approach on each dataset using
self-supervised learning for the ANYmal ETH stairs, obstacles
course, Gonzen mine [29], and Tenerife lunar analogue datasets
as listed in Table II. The �1 and PSNR error metrics are substan-
tially improved likewise. When we analyse error distribution of
our self-supervised approach, we note that 75% of samples have
an �1 error smaller than 5 cm for the ETH stairs, 4 cm for the
ETH obstacle course, 4 cm for the Gonzen mine, and 3 cm for
the Tenerife dataset. We visualize samples of an inference with
full-size DEMs on the Gonzen mine dataset in Fig. 2.

E. Qualitative Comparison

We visualize qualitative subgrid samples comparing our self-
supervised learning approach with the ground-truth and the
Telea [25] baseline method in Fig. 3. Please note that the ground-
truth is already partially occluded and we applied additional
artificial occlusion using ray casting to generate our input DEM.
In general, we can say that our approach is able to reconstruct
the DEM with more details and at a lower error compared

to Telea [25]. In particular, our method is showing promising
indications in leveraging not only the information contained in
the input DEM, but also of the geometric constraints concerning
line of sight by estimating that if a patch is fully occluded, it
probably has a lower elevation than the surrounding area as seen
in the reconstruction in the upper right corner of the third row.
Here, we would like to mention one potential drawback in using
a self-supervised approach when training on real-world data: as
the neural network is trained on data which contains noise, it will
also learn to reconstruct similar noise patterns for the occluded
areas.

F. Run-Time

We evaluate the run-time of some baselines methods on CPU
and the proposed U-Net neural network on CPU and GPU. The
methods running on CPU had access to one core of a 2.3 GHz
Intel Core i9 processor in a Mid-2019 MacBook Pro. We used
an NVIDIA TITAN Xp GPU to evaluate the run-time of the
neural network. The scenario we use to evaluate the run-time is
inspired by the ANYmal datasets: We assume occluded DEMs
of size 300x300px as our input. We divide the DEM into 16
subgrids each of size 75x75px and subsequently downsample
the subgrids to 64x64px. We then pass the DEM in two batches
each of batch size 8 to the neural network and report the run-time
for the processing of the entire full-size DEM. The baseline
methods Telea [25] and Navier-Stokes [13] can be run at around
50 Hz and our proposed U-Net with a sampling rate of 3.5 Hz on
CPU and 30 Hz on GPU for a full-size DEM enabling real-time
inference on autonomous mobile robots.

G. Preliminary Study on Motion Planning

As part of a preliminary investigation into using our approach
for navigation, we utilize the completed DEMs as an input for
motion planning for the ANYmal legged robot in a simulated
environment. The elevation maps are inpainted with a neural
network trained on the ETH Stairs dataset. We point out the
impressive generalization from the real-world stairs dataset to
the simulation environment depicted in Fig. 4. The locomo-
tion [35] and navigation [36] components used in simulation
were used by team CERBERUS during the DARPA Subter-
ranean Challenge [29]. First, we execute motion planning using
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Fig. 3. Qualitative samples comparing the Telea [25] baseline method and self-supervised learning on various real-world test sets. The ground-truth DEM
describes the local, partially occluded terrain map subgrid sampled by the robot. We add artificial occlusion with ray casting to derive the occluded DEM which
serves as the input to both inpainting methods. We visualize the error compared to the partially occluded ground-truth map for Telea and our method. All units are
in meter. First row - ETH stairs: the Telea reconstruction is blurring the stairs and additionally inpainting two holes with lower elevation values on the left side.
Second row - Gonzen mine: our method reconstructs the obstacle in the center with higher accuracy leveraging knowledge about the terrain characteristics. Third
row - Tenerife lunar analogue: self-supervised learning respects the geometric constraints of line of sight and reconstruct the occluded area in the top-right corner
to have a lower elevation.

Fig. 4. Samples visualizing motion planning for an ANYmal legged robot in a simulated environment. The blue line represents the vector from the start pose
(purple arrow) on the right side to the goal on the left side. First row: incomplete DEMs are used for motion planning. Second row: DEMs reconstructed by a
neural network trained with self-supervision are employed for motion planning.

sensor-generated, incomplete DEMs while not planning any
path through areas without elevation information. Currently,
this baseline scenario is very common in literature [36], [37].
Our experiments show that this approach cannot plan far-ahead
and that the paths are not cost-optimized over the entire map.
Accordingly, the robot needs to stop and wait frequently until
the path re-planning is completed. We show examples for this
behaviour in the first row of Fig. 4. On the contrary, paths panned
based based on completed DEMs reach further ahead and only
need to be slightly adjusted when the belief of the occluded area

is updated. We present this behaviour in the second row of Fig. 4
and in a video comparison on YouTube.2

V. CONCLUSION

This work proposes a self-supervised learning approach for
completing sparse 2.5D terrain maps. The method leverages arti-
ficial occlusion generated with an iterative ray casting algorithm
to train a neural network on real-world data with an incomplete

2[Online]. Available: https://youtu.be/_SAZm7tMMUI
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ground-truth. We have evaluated our self-supervised learning
approach on a variety of synthetic and real-world datasets. Eval-
uating quantitatively on real-world datasets containing artificial
occlusion generated with ray casting, we state a decrease of
between 52% and 82% in MSE error compared to the respec-
tive best performing baseline approach using self-supervised
learning based on ray casting. Qualitative samples show that
our proposed method is able to both leverage terrain character-
istics but also information inherently encoded in the occlusion
masks such as full-filling the geometric constraints of line of
sight indicating the advantage compared to traditional baseline
methods. The neural network is able to run with sampling rates
of 3.5 Hz and 30 Hz respectively for CPU and GPU inference.
We utilize the reconstructed DEMs for motion planning in a
proof-of-concept. We observe that the path can be planned
further ahead using reconstructed elevation maps compared to
planning with incomplete elevation maps. Consequently, the
robots needs to stop less frequently and wait less for re-planning
to finish.

For future work, we could envision several interesting re-
search opportunities: Instead of using ray casting, it could be
worthwhile to train a separate GAN network to learn realistic
occlusion patterns to generate additional artificial occlusion as
part of the self-supervised learning. We are not able to use
perceptual and styles losses [16] for our self-supervised learning
approach as the adopted pretrained VGG-16 [38] requires a
complete ground-truth. As a replacement, we would like to
encourage the addition of a discriminator which could be trained
to distinguish between reconstructed and ground-truth DEM.
Finally, it is crucial to explore model and data uncertainty
estimation methods to predict the variance in the neural network
predictions to enable safe and optimal motion planning. The cost
function optimized during path planning should be influenced
by the uncertainty estimation of each grid cell.
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