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Objective: To investigate how well gaze behavior 
can indicate driver awareness of individual road users 
when related to the vehicle’s road scene perception.

Background: An appropriate method is required 
to identify how driver gaze reveals awareness of other 
road users.

Method: We developed a recognition- based 
method for labeling of driver situation awareness 
(SA) in a vehicle with road- scene perception and eye 
tracking. Thirteen drivers performed 91 left turns on 
complex urban intersections and identified images of 
encountered road users among distractor images.

Results: Drivers fixated within 2° for 72.8% of 
relevant and 27.8% of irrelevant road users and were 
able to recognize 36.1% of the relevant and 19.4% of 
irrelevant road users one min after leaving the inter-
section. Gaze behavior could predict road user rel-
evance but not the outcome of the recognition task. 
Unexpectedly, 18% of road users observed beyond 10° 
were recognized.

Conclusions: Despite suboptimal psychometric 
properties leading to low recognition rates, our recog-
nition task could identify awareness of individual road 
users during left turn maneuvers. Perception occurred 
at gaze angles well beyond 2°, which means that fixation 
locations are insufficient for awareness monitoring.

Application: Findings can be used in driver atten-
tion and awareness modelling, and design of gaze- based 
driver support systems.

Keywords: situation awareness, automated driving, 
SAGAT, ADAS, gaze, driver support

INTRODUCTION

Perceptual errors contribute 76% of situation 
awareness (SA) errors (Jones & Endsley, 1996) 
and are among the most frequently reported 
causes for accidents at intersections, which 
represent 20% of European road accidents 
(European Road Safety Observatory, 2018). 
Vehicles are becoming more aware of their 
surroundings. Machine perception can locate 
road users through detection and classification 
systems (Kooij et al., 2014; Liu et al., 2016). 
It processes raw sensor data in a series of fil-
ters trained to extract features, which collec-
tively capture the concept of an object category. 
However, machine perception generally does 
not outperform human perception. Since the fil-
ters are trained from examples, they only func-
tion reliably in conditions similar to the training 
set. They also cannot comprehend what is seen, 
and only indicate if an object class occupies 
a particular region in the image. On the other 
hand, machine perception has superior attention 
in detection tasks. It can process the entire road 
scene without constraining to a region to attend, 
and does not suffer from vigilance decrement 
or biases from expectations. Machine percep-
tion can therefore support drivers in perceiving 
relevant road users through auditory and visual 
notifications. However, our senses receive more 
information than we can process with undivided 
and optimal fidelity, which we only overcome 
with a keen ability to be selective in what to 
attend. Augmentation of this process can only 
complement the driver effectively when it is 
equally selective, and becomes available well 
before the need is evidenced by a driver’s inac-
tion. To achieve this, driver support systems 
have to identify discrepancies between what is 
and what should be attended.
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While considerable progress has been made 
in the development of systems to judge object 
relevance (Gao et al., 2019; Gary & James, 
2019) or to redirect attention using audio (Ho 
& Spence, 2009), augmented reality (Kim et al., 
2018), and peripheral displays (Yang et al., 
2018), a key challenge lies in the decision when 
drivers need to be warned. Current systems rely 
on heuristics like “only alert when dangerous, 
rare or in conflict with common expectation,” 
which generally limits operation to immediate 
hazards. Targeted support for developing haz-
ards or noncritical lapses can only be achieved 
when driver awareness toward individual road 
users is monitored.

Eye tracking seems to be an ideal method to 
monitor what drivers have seen or overlooked, 
since people tend to fixate at what they inquire 
information from. de Winter et al. (2018) 
showed that glance behavior correlated better 
with supervision performance than the popu-
lar Situation Awareness Global Assessment 
Technique (SAGAT). Meghanathan et al. 
(2019) demonstrated that refixation patterns 
can discriminate encoding and memorization 
activity, and indicate change detection per-
formance. However, fixation location does 
not always correspond to what is processed 
cognitively (Endsley, 1988; Rumar, 1990). 
Peripheral vision can suffice for lane keeping 
(Summala et al., 1996) and hazard detection 
(Huestegge & Böckler, 2016). Conversely, we 
can fail to see things we fixate on (Mack & 
Rock, 1998), but it is yet unknown how fre-
quently drivers miss other road users despite 
fixating upon them or how to infer this from 
gaze behavior.

While aggregate metrics like distraction or 
fatigue have been inferred from vehicle- fixed 
regions of interest or direction independent mea-
sures like gaze variance (Rendon- Velez et al., 
2016), gaze- based awareness classification of 
individual objects remains an open challenge. 
Attention prediction models like top- down 
saliency maps (Xia et al., 2019) or (N)SEEV 
(Wickens, 2015; Wickens et al., 2007) can com-
pare current and nominal gaze behavior. When 
used to evaluate attention, the assumption is 
made that modeling what commonly is attended 
represents what should be attended. While this 

is reasonable for normal conditions, it may fail 
in error- prone or expectation- defying scenarios.

Hooey et al. (2011) evaluate SA as a ratio 
between actual and optimal awareness among 
individual situational elements, weighted by 
their relevance. Aspects of saliency, expec-
tancy, and effort are not incorporated to predict 
likelihood of gaze, but to estimate difficulty of 
perception and comprehension. However, this 
approach often assumes a simple threshold of 
fixation eccentricity or duration to signify per-
ception, and lacks quantitative calibration or 
validation (Fletcher & Zelinsky, 2009; Wickens 
et al., 2007). To understand how awareness can 
be inferred from gaze, large scale ground- truth 
labeling of SA is needed.

A variety of techniques exist to obtain such 
SA labeling (Nguyen et al., 2019; Stanton et al., 
2013, Chapter 7). However, we believe that cur-
rently there is no suitable method for on- road, 
per- object awareness assessment. Physiological 
measures of SA lack construct specificity. One 
possible exception is electroencephalography 
(EEG), which can track attention allocation 
to audio (Lu et al., 2018) and detect percep-
tion of hazards, conflicts, or errors (Spüler & 
Niethammer, 2015; Wessel, 2012), but is not 
sufficiently discriminative to reliably detect sin-
gle events. Self- rating and observer rating tech-
niques are limited to aggregate measures rather 
than per- object assessments.

Freeze probe techniques like situation aware-
ness global assessment technique (SAGAT) 
measure object- specific SA, but can only be 
used in simulators and measure recollection 
instead of awareness (de Winter et al., 2018). 
Recollection cannot probe unconscious/implicit 
awareness and suffers from inaccuracies like for-
getting (Nisbett & Wilson, 1977), limiting it to 
partial scene probing (Gugerty, 1998). Real- time 
probes like situation present assessment method 
(SPAM) (Durso & Dattel, 2004; Strybel et al., 
2016) or verbal protocol methods (Salmon et al., 
2014) circumvent these issues. However, the 
real- time communication is intrusive and limits 
probe rate. Furthermore, nonchoreographed sce-
narios require that questions are generated real- 
time, as demonstrated by Sirkin et al. (2017) who 
automatically generated questions requiring sim-
ple yes/no and touch responses from the driver.
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For this study, we build upon this idea of 
computer- generated queries for unchoreo-
graphed on- road driving, and extend it to (1) 
enable the assessment of all relevant situational 
elements as opposed to sampling one at a time 
and (2) not distract the driver visually or cog-
nitively while driving, so that it can be applied 
to complex maneuvers without overloading 
the driver. It is applicable to any driving sce-
nario, but we apply it to left turns on urban 
intersections.

To prevent dangerous distraction, the prob-
ing task was performed after crossing the 
intersection and parking the car. This delay 
meant the driver had to memorize what trans-
pired for longer compared to freeze probe 
methods, which may lead to memory decay. 
To minimize effects of decay, we use a visual 
recognition task instead of a recall task. Visual 
detail can be encoded quite effectively. Brady 
et al. (2011) reviews that natural scenes can 
be consolidated into memory within 100–500 
ms, while Lyu et al. (2020) and Choe et al. 
(2017) show that such encoding occurs inci-
dentally without an attempt to memorize, 
which supports the idea that recognition can 
probe implicit as well as explicit awareness 
(Campodonico & Rediess, 1996). Working 
memory tasks have demonstrated that encod-
ing fidelity reduces as demand increases, and 
that encoding multiple objects simultaneously 
is particularly difficult (Brady et al., 2011). 
Change blindness tests have demonstrated that 
changing vehicle presence, location, and orien-
tation are noticed, but subtle color changes are 
not (Koustanaï et al., 2012). However, Konkle 
et al. (2010a, 2010b) also demonstrate that a 
recognition task allows participants to iden-
tify scenes and objects among similar decoys 
with high accuracy (87% and up) after briefly 
observing 2500 images.

For this study, we designed a simple rec-
ognition task, where the driver has to iden-
tify images of encountered road users among 
distractor images. Successful recognition 
requires that the road user was perceived 
explicitly or implicitly, and thus provides an 
indicator for Endsley’s (1995b) Level 1 situa-
tion awareness.

RESEARCH OBJECTIVE
We aimed to gain insight in drivers’ natural 

viewing at intersections and how well SA can 
be predicted from gaze metrics relative to indi-
vidual road users.

The main research questions addressed were:

1. Can a recognition task be used to assess per- object 
awareness?

2. Can SA be predicted from gaze metrics relative to 
individual road users?
a. To which extent can gaze metrics predict ob-

ject relevance and object recognition?
b. To which extent are foveal and peripheral vi-

sion effective in the detection of other road 
users?

We developed a new method measuring SA 
in an urban on- road driving environment, and 
evaluated how well a variety of object- related 
gaze parameters can predict recognition after 
left- turn maneuvers. Driver gaze was related to 
object location, type, and relevance for safety, 
using the road scene perception of our exper-
imental vehicle. We then assessed the distri-
bution of central and peripheral detections of 
safety- relevant and -irrelevant road users.

METHOD
We designed an experiment in which partic-

ipants drove a Toyota Prius instrumented for 
automated driving and road scene perception 
(Ferranti et al., 2019) and eye tracking. The 
drivers (manually) performed left turns at mul-
tiple crossroads while the vehicle collected gaze 
behavior in relation to other road users. After 
each turn the driver parked the vehicle, and an 
object recognition task was performed to mea-
sure awareness of other road users encountered 
on or near the intersection. In subsequent sec-
tions, we detail the tracking of gaze and road 
users, the implementation of the recognition 
task, and the experimental procedures.

Tracking of Gaze and Other Road Users
We used a four- camera Smart Eye Pro dx 5.0 

eye tracker (software version 8.2) running at 
60 Hz with a gaze accuracy down to 0.5°. The 
vehicle interior and setup are shown in Figure 1.

The road was observed at 10 Hz using two 
forward- facing IDS 2.3- megapixel cameras 
mounted near the top- center of the windshield 
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and placed 22 cm apart for obtaining a dense 
stereo depth image over a visual angle of 62°. 
Detection of other road users was performed 
using a single- shot detector (Liu et al., 2016). 
Using the depth- image, detections were pro-
jected in 3D using the 15 percentile distance 

of all pixels inside the detection bounding box. 
Gaze analysis was limited to the horizontal 
component to reduce tracking artifacts caused 
by vehicle pitch motion at the cost of losing 
some specificity in the association of gaze 
angles to road users. After correcting for vehicle 

Figure 2. Left: road scene with highlighted detections. Right: 3D visualization of the detected objects. The 
magenta ray visualizes the driver’s gaze.

Figure 1. Interior of the vehicle showing the four eye-tracker cameras encircled, and the built-  in display 
used for the post- drive recognition task.
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ego- motion, the road users were tracked in 3D 
space using a Kalman filter, and up- sampled to 
60 Hz using linear interpolation in synchroni-
zation with the eye tracker. For each tracked 
object, the image with the largest bounding box 
was stored for use in the recognition task. Each 
image was made 20% larger than the bounding 
box to include some of the surrounding envi-
ronment. It was then scaled to 200 × 200 pix-
els and normalized in brightness and contrast 
to reduce optical differences between real and 
dummy images. Information was integrated as 
visualized in Figure 2.

Recognition Task
After each intersection, the driver parked the 

vehicle, and the recognition task was performed 
on the vehicle center display. The experimenter 
first prepared a selection among the road- user 
images, which the vehicle had collected during 
the maneuver. The procedure was to avoid 
parked vehicles and blurry or partial images, 
and to select the clearest image/trajectory 
whenever multiple images were available for 

the same road user. The preselection graphical 
user interface (GUI) is shown in Figure 3. Each 
road user was represented with a color image, 
its traveled path over the intersection, and a 
summary of the road user properties (e.g., type, 
speed) and gaze parameters.

The selected images were then presented to 
the participant. Dummy images from an earlier 
session at that same intersection were added 
to discourage guessing. Collectively, these 
dummy images consisted of 53 cars, 17 bicy-
cles, six pedestrians, one bus, four trucks, one 
motorcycle, two construction vehicles, and one 
dog. The participants were made aware that the 
task contained both road users they just encoun-
tered and dummy objects, and each dummy 
image was used once for each participant. The 
gaze details and vehicle data were not shown to 
the participant. The participant GUI is shown in 
Figure 4.

Procedures
The criteria to participate in this study 

were being a staff member or student of the 

Figure 3. Example image of the preselection GUI in which the experimenter selected suitable object images to 
be presented to the participant. The GUI allowed scrolling up and down for additional images. GUI = graphical 
user interface.
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department (for insurance reasons), having a 
driving license, and having driven an automatic 
transmission at least once before. Fourteen male 
drivers participated, of which one was excluded 
from the analysis because the drive was not 
recorded correctly. The remaining 13 were aged 
between 24 and 57 years (M = 28.8, SD = 8.8). 
One had a license for 1–5 years, nine for 5–10 
years, and three for more than 10 years. Five 
participants drove less than once a month, four 
drove once a week, three drove 1–3 times a 
week, and one participant drove every day. Four 
participants did not wear any visual aids, four 
wore glasses, and four wore contact lenses. The 
research was approved by the Ethics Committee 
of the TU Delft. All participants read and signed 
an informed consent form prior to the experi-
ment. They received a box of chocolates for 
their participation.

All participants were informed on the pur-
pose of this study prior to participation and 
had a technical understanding of the used tech-
nology, but not of the recognition task or its 
implementation. Eye tracker calibration typi-
cally resulted in 1.2° accuracy and was repeated 
when accuracy exceeded 2° for at least one eye. 

They were navigated by the experimenter. Upon 
approaching each intersection, data recordings 
were started. The participants were asked to 
make a left turn and then safely stop or park 
the car at the first opportunity. They were asked 
(and asserted by the experimenter) to not look at 
the display while the recognition task was pre-
pared. Once ready, the participants performed 
the recognition task without time constraint. 
The participants then returned to the main road 
and the procedure was repeated for all intersec-
tions. The participants returned to the starting 
location, where they completed a personal infor-
mation questionnaire, rated the difficulty of the 
recognition task, and indicated if they used the 
images, maps, or both for their decisions.

The driven route is shown in Figure 5. Five 
intersections on the Schoemakerstraat in Delft 
were selected for their complexity, similarity, 
and presence of traffic throughout the day. Three 
intersections were T- junctions that were passed 
once, and two were crossroads that were passed 
twice from opposite directions. The drivers had 
to give priority to oncoming traffic on the main 
road, to cyclists on the two- way bicycle path, 
and to pedestrians on the sidewalk. A typical 

Figure 4. Example image of the GUI in which the participants selected images of the objects they recognized. 
Four images are selected in this example. The GUI allowed scrolling up and down when more than eight 
images were presented. GUI = graphical user interface.
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intersection is shown in Figure 6. Maneuver 1 
was an additional right turn used to practice the 
recognition task and was not analyzed.

Filtering and Merging Objects
After the experiment, the collected data were 

filtered manually. Split or duplicate tracks of 
the same road user were merged. All road users 
were annotated as being relevant or irrelevant to 
the driving maneuver. The second author sub-
jectively judged if a driver would want to mon-
itor each road user for the purpose of driving at 

any time during the maneuver. A road user was 
considered relevant if the annotator felt that the 
participant had to give priority or should obtain 
priority at the intersection. Road users that left 
the intersection before the participant arrived at 
the intersection or were still well away when the 
participant left the intersection were regarded 
as irrelevant. Road users on the sidewalk or the 
bicycle lane on the right side of the intersec-
tion were annotated as irrelevant. Road users 
trying to enter or cross the main priority road 
before the participant passed were annotated 

Figure 5. Map of the experiment driving route and the locations and order of the maneuvers.
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as relevant. An overview of the possible road 
users encountered and how they were annotated 
is shown in Figure 7.

Gaze Metrics

The following parameters were analyzed.
Gaze eccentricity. The angle between the 

direction of the driver’s gaze and the vector 
from the gaze origin to the center of a road user 
(width of the road user is ignored). Only the 
horizontal component is used in this study.

Minimum gaze angle. The smallest gaze 
eccentricity toward a road user throughout the 
period this road user was tracked by the vehi-
cle. Saccades (angular rates beyond 35°/s) are 
ignored.

Total glance duration within visual field 
regions. The summed duration of all fixa-
tions occurring while the gaze eccentricity falls 
within one of the following regions (Duchowski, 
2007): foveal view (<2°) where highest visual 
acuity is obtained, near- foveal view (2–5°) in 
which objects are commonly recognizable, cen-
tral view (5–10°) up to which acuity and color 
sensitivity degrade linearly, near- peripheral 
view (10–30°) and far- peripheral view (>30°).

Huestegge and Böckler (2016) compared 
saccade behavior during the detection of critical 
and moderate hazards in static scenes and found 
that more critical hazards are detected earlier, 
at larger peripheral angles, and with shorter 
fixation durations preceding the first saccade 

Figure 6. One of the intersections. The  line corresponds to maneuver 6. (Google Street-  View, 2019).

Figure 7. Schematic visualization of how objects 
were annotated according to their position and 
movement direction: relevant road users (blue/green) 
and irrelevant road users (red) and the car driven by 
the participant (black).

solid
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to these hazards. We, therefore, evaluated the 
related metrics.

First saccade angle. The visual angle 
between start and end of the first saccade that 
lands within 2° of the object.

First saccade time. The time over which 
the object has been tracked by the vehicle before 
a first saccade lands within 2° of the object. 
Any saccade landing on the object before it was 
detected by the vehicle is not observable and 
thus ignored.

Duration preceding fixation. The duration 
of the fixation that preceded the first saccade 
landing within 2° of the object.

We also observed the following parameters 
that are often considered to assess situation 
awareness. They were excluded from regression 
analysis because they are structurally correlated 
to the total glance duration within 2°. Instead, 
simple effects are reported.

Number of fixations. The number of fixa-
tions occurring while the object is within 2° of 
the gaze vector. It is equivalent to the number 
of saccades.

Mean glance duration. Total glance 
duration within 2° divided by the number of 
fixations.

Binary Logistic Regression

A binary logistic regression was performed 
to test if the gaze parameters can predict the 
participants’ selections in the recognition task. 
We also tested if gaze parameters can predict 
object relevance. To account for subject depen-
dencies, both models use participant as a ran-
dom variable for the intercept.

We had to address missing values for saccade- 
related variables, which are defined only when 
they land within 2° of an object. List- wise elim-
ination is not desired since we want a predic-
tion even for objects that were not glanced upon 
directly. Instead, we adopted Cohens’ dummy- 
variable adjustment (Cohen & Cohen, 1983). 
This approach is not generally recommended, 
as it may induce bias from conditional inclusion 
(Allison, 2009). In our case, however, such a 
bias is not a concern as the missing values are 
a structural property of the model. The model 
structure thus becomes:

 Y = b0 j + b1X1 + Z
(
b2X2

)
+ e  

Here, b0 j represents the intercept, which is 
allowed to vary among participants; X1 are total 
glance durations for the five eccentricity ranges; 
X2 are saccade- related variables; and Z is the 
dummy variable where Z = 1 when saccades are 
available and 0 otherwise.

RESULTS
In the recognition task, participants had to 

select images of road users they just encoun-
tered. A total of 91 intersection crossings were 
collected and 1824 images were presented 
to the 13 participants in total. On average, 
there were 8.2 images of real objects and 11.8 
dummy images per intersection per participant. 
The number of images presented to the driver 
varied with a standard deviation of 6 and ranged 
between 5 and 34. It took 30 s on average to 
park the car after leaving the intersection, and 
another 30 s for the experimenter to prepare 
the recognition task. Participants took approxi-
mately 80 s to select images. The questionnaire 
showed that the participants rated the difficulty 
of the recognition task as 8.6 on a scale of 1 
to 10, with 1 being really easy and 10 being 
really difficult. Due to dropped messages in the 
recordings, 7% of the gaze data could not be re- 
associated to the recognition task images and 
were omitted from the gaze- related analysis.

Selection of Images
Table 1 shows how often participants 

selected images of real and dummy objects 
and provides an indication of response bias and 
sensitivity. The odds of selecting an image was 
5.7 times higher for real compared to dummy 
images (95% CI = 4.3, 7.6). Only 29.1% of real 

TABLE 1: Contingency Table of the Selected 
Images of Real Objects and Dummy Objects, as 
Well as Relevant and Irrelevant Objects

Selected Not Selected

Real images 218 (29.1%) 532 (70.9%)

  Relevant objects 144 (36.1%) 255 (63.9%)

  Irrelevant objects 74 (19.4%) 307 (80.6%)

Dummy images 72 (6.7%) 1002 (93.3%)
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images were selected. Since no unsafe driver 
behavior was noted, the remaining 70.9% does 
not necessarily represent overlooked road users. 
Hence, recognition rates reported in this study 
must underestimate the actual SA and our rec-
ognition task can thus not fully address research 
question 2.

The 93.3% not selected dummy objects sug-
gest that the participants adopted a select- only- 
when- certain philosophy. While the 72 selected 
dummy images could result from guess-
ing, some may have been confused with real 
objects: 13.7% of these dummy images shared 
a close resemblance to a real image, similar to 
Figure 8; and 24.7% had an approximate resem-
blance to a real image of same type, approxi-
mately sharing color and/or shape. Jointly this 
suggests that selected images indeed represent 
perceived road users.

Relevant (real) road users were recog-
nized more often (36.1%) than irrelevant ones 
(19.4%). This interaction effect is significant 
(χ2(1) = 26.06, p < .001, φc = .186) with an odds 
ratio of 2.3 (95% CI = 1.7, 3.3).

Minimum Gaze Angle
Table 2 shows the number of real road 

users divided into the different object classes 
and minimum gaze angles; 27.2% of the rel-
evant and 72.2% of the irrelevant road users 

were never fixated upon within 2°. Similarly, 
40.1% of the recognized and 53.7% of the 
not recognized road users were never fixated 
upon within 2°. These values are surprisingly 
large and indicate that a considerable num-
ber of objects were perceived without ever 
receiving a direct fixation. Cars had the low-
est recognition rate (26.2%) despite being 
the most common. Buses were recognized 
the most (61.5%), followed by motorcycles 
(44.4%) and pedestrians (39.0%). When only 
considering relevant road users, pedestrians 
were recognized the most (64.3%). Minimum 
gaze angle interacted significantly with rec-
ognition (χ2(4) = 16.07, p = .003, φc = .151), 
suggesting that higher eccentricity leads to 
poorer recognition. Minimum gaze angle also 
interacted with relevance (χ2(4) = 151.35, p 
< .001, φc = .463), suggesting that relevant 
objects are monitored more closely compared 
to irrelevant ones. Road user type also inter-
acted significantly with recognition (Fisher’s 
exact test = 15.13, p = .020, φc = .151) and 
relevance (Fisher’s exact test = 51.58, p < 
.001, φc = .266).

Figure 9 shows the distribution of gaze 
angles over the duration that an object was 
tracked by the car, averaged over all tracked 
objects. Driver gaze dwelled closer to rele-
vant compared to irrelevant road users. A 

Figure 8. Left: an example of a selected dummy image—a silver Volkswagen. Right: a not 
selected real image actually encountered—a silver Toyota.
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similar effect is not as clear between selected 
and not selected road users.

Fixation Parameters
Table 3 compares fixation parameters for 

relevant versus irrelevant and selected versus 
not selected road users. Figures 10 and 11 
illustrate the distribution shapes for a selec-
tion of gaze parameters comparing relevance 
and selection in the recognition task. All are 
right- tailed. The Kolmogorov−Smirnov tests 
in Figure 11 represent a nonparametric sta-
tistic of similarity between the paired dis-
tributions. Only total glance duration with 
fixation angle <2° yielded a significantly 

different distribution between relevant and 
irrelevant road users. To avoid dependencies 
among participants and reduce non- normality 
of the distribution of the residuals, we used 
participant- averaged paired t- tests. Relevant 
road users received 1.14 more fixations com-
pared to irrelevant road users. Selected road 
users received 0.41 more fixations compared 
to not selected road users. Mean fixation 
duration did not differ significantly in either 
case.

Binary Logistic Regression
Table 4 shows the classification performance 

for the recognition and the relevance models. 

TABLE 2: Number of Real Road Users Observed at Various Minimum Gaze Angles, for All Objects (Left) 
and Those Selected During the Recognition Task (Right). The “Other” Category Comprises One Dog 
and Two Excavators

 

All Objects (Minimum Gaze Angle) Recognized Objects (Minimum Gaze Angle)

N <2° 2–5° 5–10° 10–30° >30° N <2° 2–5° 5–10° 10–30° >30°

Car 409 257 62 39 40 11 107 76 14 9 6 2

  Relevant 241 191 23 15 9 3 81 63 9 6 2 1

  Irrelevant 168 66 39 24 31 8 26 13 5 3 4 1

Bicycle 184 67 24 27 57 9 54 31 8 5 8 2

  Relevant 83 48 11 9 13 2 39 29 5 3 2 0

  Irrelevant 101 19 13 18 44 7 15 2 3 2 6 2

Pedestrian 77 17 12 10 32 6 30 10 7 3 9 1

  Relevant 14 7 2 2 3 0 9 5 2 2 0 0

  Irrelevant 63 10 10 8 29 6 21 5 5 1 9 1

Bus 13 7 2 2 2 0 8 4 2 2 0 0

  Relevant 5 5 0 0 0 0 3 3 0 0 0 0

  Irrelevant 8 2 2 2 2 0 5 1 2 2 0 0

Truck 11 3 2 1 4 1 3 1 0 0 2 0

  Relevant 6 3 1 0 2 0 2 1 0 0 1 0

  Irrelevant 5 0 1 1 2 1 1 0 0 0 1 0

Motor 9 4 1 3 1 0 4 2 1 1 0 0

  Relevant 4 3 0 1 0 0 2 2 0 0 0 0

  Irrelevant 5 1 1 2 1 0 2 0 1 1 0 0

Other 3 0 0 1 2 0 1 0 0 1 0 0

  Relevant 0 0 0 0 0 0 0 0 0 0 0 0

  Irrelevant 3 0 0 1 2 0 1 0 0 1 0 0

Total 706 355 103 83 138 27 207 124 32 21 25 5

  Relevant 353 257 37 27 27 5 136 103 16 11 5 1

  Irrelevant 353 98 66 56 111 22 71 21 16 10 20 4
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Figure 9. Distribution of relative gaze angle for (not) selected (left) and (ir)relevant (right) road users over the 
period they were detected by the vehicle cameras.

TABLE 3: Fixation Parameter Mean (μ) and Standard Deviation (σ) as Function of Relevance (Top) and 
Being Selected (Bottom)

 

Relevant Irrelevant

T(12) pμ σ μ σ

Number of fixations <2° 1.59 0.51 0.45 0.26 9.653 <.001

Total fixation duration <2° (ms) 955 309 237 127 9.318 <.001

Mean fixation duration (ms) 658 264 685 676 −0.134 .895

 
 

Selected Not Selected

T(12) pμ σ μ σ

Number of fixations < 2° 1.34 0.51 0.93 0.33 2.341 .037

Total fixation duration <2° (ms) 833 519 536 197 1.944 .076

Mean fixation duration (ms) 633 272 640 257 −0.113 .912
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Model accuracy was compared to intercept 
models, which obtained an accuracy of 70.7% 
by simply predicting that no objects were 
selected, and an accuracy of 50.0% by predict-
ing that all objects were relevant. Both models 
differed significantly from their intercept mod-
els (Recognition: χ2(1) = 37.64, p < .001, φc = 
.231. Relevance: χ2(1) = 152.49, p < .001, φc = 
.465), where accuracy increased by only 2.12% 
to 72.80% for the recognition model and by a 
more substantial 23.09% to 73.09% for the rel-
evance model.

Table 5 provides the exponentials and signif-
icance of the model parameters. The odds for a 
road user being relevant increases significantly 
with gaze duration in relative gaze angle ranges 
of <2°, between 2 and 5° and between 5 and 10°. 
Gazes at larger angles do not seem to discrim-
inate between relevant or irrelevant road users. 
The odds for a relevant road user also increases 
slightly when the first saccade within <2° has a 
larger angle. Timing of the first saccade or the 
duration of its preceding fixation do not help to 
discriminate relevance of road users.

The odds of recognizing a road user increases 
significantly only when the relative gaze angle 
spends more time between 5° and 10° from 
the road user, and a similar effect for gaze <2° 
does not reach significance (p = .11). Since this 
model used nine parameters to only achieve a 
2% accuracy improvement over the intercept 
model, the relevance of these results is limited.

DISCUSSION

This study set out with two objectives: to 
evaluate if the developed recognition task can 
provide useful labeling of per- object situation 
awareness and to evaluate whether awareness 
of other road users can be predicted from gaze 
behavior in relation to these objects.

Suitability of the Recognition Task

Relevant road users were recognized more 
often than irrelevant road users, which is in 
line with Moore and Gugerty (2010). However, 
drivers recognized only 29.1% of all road users, 
36.1% of the relevant road users, and 40.0% of 
relevant road users that were fixated <2°. These 
unexpected low recognition rates mean that the 
current implementation of the recognition task 
is only partially successful in labeling situation 
awareness. Below, we analyze the limited rec-
ognition rate and provide suggestions to adapt 
the task to enhance recognition.

While the vehicle processed all video and 
gaze measurements in real time, 60 s elapsed 
between finishing the maneuver and performing 
the recognition task. This time was needed for 
the participant to stop the vehicle and for the 
experimenters to select images for the recogni-
tion task. This delay may have contributed to 
the low recognition rate. Humans are normally 
poor in remembering details of past events 
with a rapid decay of information in working 

Figure 10. Distribution of fixations (<2°) per road user, comparing selection in the recognition task (left) and 
relevance (right).
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Figure 11. Distributions and Kolmogorov–Smirnov tests for a selection of gaze 
parameters, comparing relevance and selection in the recognition task.
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memory, which is limited to around 30 s (Nisbett 
& Wilson, 1977). In contrast, Endsley suggests 
that SAGAT- like techniques do not suffer much 
from memory decay up to 3 min, provided that 
the participant is experienced (Endsley, 2019, 
1995a). Delays below 30 s should be feasible 
if the selection of suitable images is automated, 
and a location is reserved after each intersection 
for faster parking.

Second, it is possible that our image repre-
sentation differed too much from how situations 
are encoded by experienced drivers. Performing 
a left turn on a busy priority road is relatively 
demanding. Working memory makes trade- offs 
between the quantity of stored items and their 
fidelity. The more road users we encounter, the 
fewer details about them we can store, and task- 
irrelevant features are the first to be dropped 
(Brady et al., 2011). Our images contained lit-
tle task- relevant context. Although the maps 
provided some spatial context, all participants 

reported to primarily base their decisions on 
the images. A possible improvement would 
be to show more environment in the images, 
and project the traveled paths into the images 
instead of the separate map.

Suitability of Gaze Behavior

We parameterized gaze behavior relative to 
nearby road users. Such gaze parameters may 
be useful in driver attention and awareness 
modeling and driver support system design.

Gaze behavior could predict object relevance 
with an accuracy of 73%, where relevant objects 
were more often fixated <2°, with larger first sac-
cade angles, and with a higher gaze duration up to 
10° eccentricity. This illustrates that relevant road 
users are kept more within the useful field of view 
compared to irrelevant road users. Mean first sac-
cade amplitude was 12.6°, with a strongly skewed 
distribution well into the 30° region. This suggests 

TABLE 4: Classification Performance of the Logistic Regression Models

Intercept Models Parameterized Models

Relevance Recognition Relevance Recognition

Predicted True False True False True False True False

Observed

  True 353 0 0 207 238 115 44 163

  False 353 0 0 499 75 278 29 470

TABLE 5: Parameters of the Logistic Regression Models

 

Relevant Recognized

Exp(b) t p 5% CI 95% CI Exp(b) t p 5% CI 95% CI

Intercept .390 −3.629 <.001 .234 .649 .262 −4.274 <.001 .141 .484

Duration <2° (s) 5.452 3.024 .003 1.813 16.398 1.424 1.591 .112 .921 2.204

Duration 2–5° (s) 2.658 3.273 .001 1.479 4.778 .956 −.157 .875 .544 1.679

Duration 5–10° (s) 2.541 4.188 <.001 1.641 3.934 1.995 3.153 .002 1.298 3.067

Duration 10–30° (s) 1.094 .741 .459 .862 1.390 .946 −.402 .688 .720 1.242

Duration > 30° (s) .693 −1.574 .116 .439 1.095 .929 −.444 .657 .670 1.288

1st Saccade angle (°) 1.049 2.756 .006 1.014 1.085 1.001 .132 .895 .982 1.021

1st Saccade time (s) .901 −.613 .540 .646 1.257 1.243 1.334 .183 .903 1.711

Preceding fixation (s) 1.087 .345 .730 .677 1.744 1.361 1.217 .224 .828 2.239
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that peripheral vision was effectively used to direct 
gaze to relevant road users.

While the first saccade angle contributed sig-
nificantly to the relevance model, timing of the 
first saccade and duration of the preceding fix-
ation did not. This difference with the findings 
of Huestegge and Böckler (2016) could mean 
that the usefulness of saccade parameters is 
limited to hazards. Saccade- related parameters 
may also become more useful when studied in 
relation to events like changes in the road users’ 
behavior instead of their first appearance in the 
driving scene.

Gaze behavior was not very effective in pre-
dicting outcomes of the recognition task. One 
explanation is that the forgetting aspect could 
not be captured by our model. We expect that 
improved methods and simpler conditions 
can enhance recognition rate and further clar-
ify the relation between recognition and gaze. 
Meanwhile, the recognition task did provide 
useful insights; 18% of the road users that never 
entered the useful field of view (<10°) were 
still selected in the recognition task, highlight-
ing the importance of peripheral vision (Wolfe 
et al., 2017). Hence, we strongly recommend 
that perception models incorporate more than 
fixation location in their parameterization. Our 
findings may also provide guidance for design-
ing a system alerting drivers toward other road 
users, which may be unseen. From Table 2, we 
estimate how frequently such a support system 
might alert drivers. Our data set includes 8.2 
road users per intersection of which 4.4 are rel-
evant to the maneuver. When a gaze- aware sys-
tem alerts to every peripheral (>10°) road user, 
the driver receives 1.8 alerts per intersection. 
Since drivers recognized 18% of the peripher-
ally observed road users, they would have been 
aware of at least 0.33 alerts beforehand. When 
only responding to relevant peripheral road 
users, the driver receives only 0.35 alerts per 
intersection and would be aware of only 0.07 
alerts beforehand.

LIMITATIONS AND FUTURE 
RECOMMENDATIONS

The recognition task can be improved to 
obtain complete rather than partial labeling 

of per- object situation awareness in complex 
unstructured maneuvers. The main limita-
tions—delay before start of the test and task 
visualization—are likely to be overcome. Better 
object detection and especially more robust 
tracking could circumvent the need for man-
ual preselection of candidate images, and thus 
reduce the delay between actual encounters 
and the recognition task. Further improvements 
may be achieved by reducing the number of test 
images as recommended by Gugerty (1998) or 
by associating gazes more selectively to a sin-
gle road user, for instance, through including 
the vertical gaze component or with a Dynamic 
Markov random field model (Jiang et al., 2018) 
or a Bayesian likelihood model (Schwehr & 
Willert, 2017).

After such improvements, the potential of 
the recognition task as a variant of freeze probe 
methods can be explored. Benefits may emerge 
in simpler maneuvers or in the better controlled 
simulator environment. Improvements of the 
recognition task’s visualization may better 
suit the driver’s encoding of situational infor-
mation. To improve retrieval for recognition, 
road users could be depicted in the road scene 
(Hollingworth, 2006), and road- user motion 
could be encoded using video, animation or 
multiple images.

Finally, to more closely examine time- critical 
attention allocation, it may be interesting to 
study gaze behavior relative to road user actions 
(such as a change in traveled path or speed) in 
addition to the aggregate road user parameters 
used in this study.
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kEY POINTS

 ● Gaze relative to surrounding traffic was compared 
to a recognition task during on- road left- turn 
maneuvers.
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 ● Gaze behavior could predict object relevance 
where relevant road users were kept longer in the 
useful field of view.

 ● Drivers recognized 18% of the peripherally 
observed road users, which suggests that percep-
tion models should consider more than foveated 
vision.

 ● Driver feedback can become more selective 
when driver awareness of individual road users 
is monitored.
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