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Influence of clustering coefficient 
on network embedding in link prediction
Omar F. Robledo1, Xiu‑Xiu Zhan1,2, Alan Hanjalic1 and Huijuan Wang1*   

Introduction
Networks (Newman 2003, 2010; Albert and Barabási 2002) or, equivalently, graphs are 
commonly used to represent complex systems, the elements of which are represented 
by network nodes and their connections or relations by the links. Networks have been 
deployed to model phenomena in many fields (da Fontoura Costa 2011), such as biol-
ogy (Girvan and Newman 2002; Winterbach et al. 2013), telecommunications or social 

Abstract 

Multiple network embedding algorithms have been proposed to perform the predic‑
tion of missing or future links in complex networks. However, we lack the understand‑
ing of how network topology affects their performance, or which algorithms are more 
likely to perform better given the topological properties of the network. In this paper, 
we investigate how the clustering coefficient of a network, i.e., the probability that the 
neighbours of a node are also connected, affects network embedding algorithms’ per‑
formance in link prediction, in terms of the AUC (area under the ROC curve). We evalu‑
ate classic embedding algorithms, i.e., Matrix Factorisation, Laplacian Eigenmaps and 
node2vec, in both synthetic networks and (rewired) real‑world networks with variable 
clustering coefficient. Specifically, a rewiring algorithm is applied to each real‑world 
network to change the clustering coefficient while keeping key network properties. We 
find that a higher clustering coefficient tends to lead to a higher AUC in link prediction, 
except for Matrix Factorisation, which is not sensitive to the change of clustering coef‑
ficient. To understand such influence of the clustering coefficient, we (1) explore the 
relation between the link rating (probability that a node pair is the missing link) derived 
from the aforementioned algorithms and the number of common neighbours of the 
node pair, and (2) evaluate these embedding algorithms’ ability to reconstruct the 
original training (sub)network. All the network embedding algorithms that we tested 
tend to assign higher likelihood of connection to node pairs that share an intermediate 
or high number of common neighbours, independently of the clustering coefficient 
of the training network. Then, the predicted networks will have more triangles, thus a 
higher clustering coefficient. As the clustering coefficient increases, all the algorithms 
but Matrix Factorisation could also better reconstruct the training network. These two 
observations may partially explain why increasing the clustering coefficient improves 
the prediction performance.
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sciences (Bruch and Newman 2018; Liu et  al. 2018). One of such phenomena is the 
emerging of the connections or relations between two network nodes, which is typically 
addressed by the approaches to link prediction. Link prediction aims to predict future or 
missing links based on, but not only, the observed network topology. The link prediction 
problem is ubiquitous, as the link to be predicted can be the interaction between two 
proteins (Kovács et al. 2019), a movie or book recommendation for a specific user in a 
multimedia service, or friend suggestions in a social network (Liben-Nowell and Klein-
berg 2003).

The link prediction problem has been studied extensively over the past years (Lü and 
Zhou 2011). Initially, similarity-based methods were proposed (e.g., Liao et  al. 2015), 
which predict links between the node pairs that are more similar. The similarity of a node 
pair is evaluated via the number of paths of a certain length1 l between the two nodes, 
where usually l = 2, 3, 4 . In those methods, node pairs that are connected by many short 
paths are considered to be likely connected. Recently, network embedding has attracted 
attention as a way of solving the link prediction problem (e.g., Torres et al. 2020; Zhang 
et al. 2018; Epasto and Perozzi 2019), and multiple methods have been proposed along 
this line to further improve the prediction quality, the computational efficiency, or both. 
These algorithms embed each node in a low-dimensional vector space based on the net-
work topology (Cui et al. 2019). The closer the learnt representations of two nodes are 
in this vector space, the more likely it is that these two nodes are connected or related 
to each other. Matrix-based embedding methods, like Laplacian Eigenmaps (Belkin and 
Niyogi 2001), which embeds nodes via eigenvectors of graph matrices, and random-walk 
based embedding algorithms, like DeepWalk (Perozzi et al. 2014) and node2vec (Grover 
and Leskovec 2016), are examples of network embedding algorithms.

It has been observed that embedding-based link prediction methods may perform dif-
ferently in different real-world networks (Khosla et  al. 2021). This is because the per-
formance of an embedding algorithm in link prediction depends on the properties of 
the underlying network, i.e., inherent patterns that enable link prediction, and how the 
embedding algorithm samples or preserves properties of the network. However, we still 
lack foundational understanding about how a network property influences the perfor-
mance of embedding methods. This is challenging since real-world networks, different 
in many properties, especially network size, are difficult to be compared. Without such 
understanding, we are unable to explain the performance of network embedding algo-
rithms or to select the most effective method, given a network whose links need to be 
predicted.

Hence, we aim to study the effect of network properties, specifically the clustering coef-
ficient of a network, on the performance of network embedding algorithms in link pre-
diction. The clustering coefficient of a network measures, on average, how densely the 
neighbours of each node are connected. Various metrics have been proposed to capture 
diverse topological properties of a network (Newman 2010). The focus of this work is 
on the effect of the clustering coefficient, a basic local or microscopic network property, 
and it is motivated by three perspectives, also in relation to previous work.

1 The length of a path is the number of links that constitute the path.
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First, preliminary evidence in literature indicates that the clustering coefficient of 
a network may influence the performance of link prediction algorithms. For example, 
similarity-based link prediction methods tend to perform better in networks with a high 
clustering coefficient. Feng et  al. (2012) have showed that by applying six similarity-
based measures to multiple synthetic and real networks with different clustering coef-
ficients. Cao et al. (2019) have showed that similarity-based measures can outperform 
network embedding algorithms based on random walks in networks with a small aver-
age path length. A comparative study performed by Khosla et al. (2021) has shown that 
the difference in accuracy between different network embedding algorithms may depend 
on, among other properties, the clustering coefficient.

Second, the aforementioned preliminary evidences have been obtained by comparing 
the performance of prediction methods in networks with not only different clustering 
coefficient (or average path length), but also different local topological properties; e.g., 
link density and degree distribution. Thus, the difference in performance could be attrib-
uted to the influence of other structural properties. We still lack a systematic method to 
identify the influence of the clustering coefficient without the influence of other local 
properties. To address this challenge, we design a methodology that allows to compare 
the performance in networks, both real and synthetic, with different clustering coeffi-
cients, but the same local properties.

Third, it is essential to understand the influence of a microscopic property, such as 
the clustering coefficient, before we explore further the influence of a complex mac-
roscopic network property, or of multiple network properties, due to the correlations 
between them Li et al. (2011). Several works have revealed the relation between the clus-
tering coefficient (or transitivity) and other macroscopic network properties (Wharrie 
et al. 2019; Asikainen et al. 2020; Peixoto 2022; Foster et al. 2011; Orman et al. 2013). 
For example, Wharrie et al. (2019) have shown that communities can be formed by pro-
cesses of motif generation, such as triadic closure. Asikainen et al. (2020) have shown the 
emergence of core-periphery structure introduced partially by triadic closure. Such non-
trivial relation between the microscopic clustering coefficient and macroscopic network 
properties illustrates the difficulty to explore the effect of macroscopic or multiple net-
work properties on the performance of link prediction algorithms. Network models that 
generate networks in multiple scales (Peixoto 2022) could be an interesting approach 
to control micro- and macroscopic properties at the same time. Moreover, macroscopic 
network properties, such as the average path length and community structure, have a 
higher computational complexity. Hence, it is more practical to use the clustering coef-
ficient to pre-estimate the performance of prediction methods in large networks.

We focus on the question of how the clustering coefficient influences the performance 
of network embedding algorithms. Classic network embedding methods including 
Laplacian Eigenmaps and Matrix Factorisation, and node2vec are considered. We evalu-
ate their performance in both network models and real-world networks with a variable 
clustering coefficient. For each selected real-world network, we modify its clustering 
coefficient through the rewiring of links, which keeps basic network properties, like the 
degree of each node, unchanged. We find that network embedding methods tend to per-
form better in link prediction in networks with a higher clustering coefficient, except 
for Matrix Factorisation, which performs well and stably overall. In order to understand 
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how and why these embedding algorithms differ in performance, we explore further the 
distance of two nodes in the embedding space in relation to their number of common 
neighbours. We find that these embedding algorithms tend to embed node pairs with 
a large or intermediate number of common neighbours closely, independently of the 
clustering coefficient of the network. Hence, they tend to predict such node pairs as the 
missing links, leading to a large number of triangles, or high clustering coefficient, in the 
predicted network. This may partially explain why the prediction quality is better as the 
clustering coefficient increases.

Moreover, an embedding algorithm is not expected to predict the missing links well if 
the embedding cannot retain the given training network topology. Hence, we evaluate 
further the influence of the clustering coefficient on the embedding algorithms in the 
network reconstruction task, where each embedding method derives the embedding of 
nodes based on the given network topology, and the closest node pairs in the embedding 
space are reconstructed as links. Consistently, we find that embedding methods better 
reconstruct the given network topology if the network has a higher clustering coeffi-
cient. The better performance of the embedding algorithms as the clustering coefficient 
increases, and their possible outperforming of l = 2 similarity-based (also called the 
Common Neighbors) method imply that embedding algorithms, besides the number of 
common neighbours, should be considered for link prediction tasks.

This paper is organised as follows. In "Methods" section, we describe our approach, 
detail the model used for generating synthetic networks, along with the characteristics 
of the real networks used, and briefly review the network embedding techniques com-
pared. In "Results" section, we analyse the performance of the embedding algorithms in 
link prediction as the clustering coefficient varies in the network models and real-world 
networks. To understand such influence, we explore the distance of a node pair in the 
embedding space in relation to the number of common neighbours of the node pair, and 
analyse how the clustering coefficient affects the ability of the algorithms to reconstruct 
the given training network. Finally, we present our conclusions in "Conclusions" section.

Methods
We aim to understand the influence of network topological properties on the perfor-
mance of network embedding algorithms. Specifically, we focus on how the clustering 
coefficient, i.e., the link density of the neighbours of a node, affects the performance of 
network embedding algorithms in link prediction. First, we introduce our evaluation 
method for the algorithms in the link prediction task. Afterwards, we describe how to 
construct networks with various clustering coefficients via network models, and via 
rewiring a real-world network, respectively. Finally, several classic embedding algo-
rithms that we have chosen are briefly reviewed.

Evaluation of network embedding algorithms

A network G = (N ,L) , with its set N  of N = |N | nodes, and set L of L = |L| links, can 
be represented by an adjacency matrix A, an N × N  matrix in which ai,j = 1 if node ni 
and nj are connected, and ai,j = 0 otherwise. The objective of network embedding algo-
rithms is to learn a low-dimensional representation for each node in the network such 
that they can be used for an inference task while keeping the structure of the network. 
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We will evaluate their performance in two tasks, namely link prediction and network 
reconstruction.

Link prediction is the task of predicting the links that are not observed in a network 
based on the observed network topology. We divide the links L of a given network in two 
groups: 75% of the links are chosen uniformly at random as the training link set Ltrain , 
or the observed network to learn the embedding, and the remaining 25% links are con-
sidered as the test set Ltest , i.e., the links to predict. The embedding vector for each node 
learnt from the training set is used further to compute the distance score between each 
node pair, which will be defined in the next subsection. The distance score of a node pair 
is used as an estimation of the likelihood that the node pair is connected. Node pairs that 
have the highest likelihood are predicted as links, denoted as set Lpredict.

We evaluated link prediction performance via the Area Under the ROC Curve (AUC )  
(Herlocker et al. 2004; Hanley and McNeil 1982). The Area Under the Precision-Recall 
Curve (AUPRC) (Raghavan et al. 1989) has also been used to address class-imbalanced 
classification problems (Saito and Rehmsmeier 2015), as is the case of link prediction in 
sparse networks. We focus on AUC as an example, since we aim to compare the perfor-
mance of embedding algorithms in networks with the same link density, but different 
clustering coefficients. A negative link is a node pair that is not connected in network 
G , or a link that does not exist in G . To evaluate link prediction, we consider the set Ltest 
of positive links, and a set L− of |L−| = |Ltest | negative links that are randomly selected 
from all possible negative links. The measure AUC  can be interpreted as the probability 
that a randomly chosen missing link will have a higher score than a negative link ran-
domly chosen from L−.

In the network reconstruction task, the original network is used to obtain the embed-
ding vectors for all the nodes. The η × L node pairs with the highest (or lowest) scores 
are predicted as links in the reconstructed network, denoted by Lpredict(η) , where 
η ∈ (0, 1] . The quality of network reconstruction of an embedding algorithm can be 

measured by Precision@η =
|Lpredict(η) ∩ L|

η × L
 , which is also referred to as Precision@k 

(Wang et al. 2016). The precision of a random estimator, or reconstruction, is equal to 
the link density of the network, which is both independent of η and small, since real-
world networks are mostly sparse.

Network construction

In this section, we introduce how to construct networks that have the same key network 
property, like the degree distribution, but different clustering coefficients. First, the clus-
tering coefficient is defined. Then, we briefly describe Ostroumova’s Polynomial Model, 
which we use to generate synthetic networks with a given degree distribution but a tune-
able clustering coefficient. Finally, we describe the empirical network datasets that will 
be used and the rewiring method to tune the clustering coefficient of a given empirical 
network without changing the degree of each node.

We consider undirected networks without any self-loop nor duplicated links. The 
degree ki of a node ni is the number of connections that said node has; i.e., ki =

∑N−1
j= 0 ai,j . 

The clustering coefficient ci of a node ni measures how densely its neighbours are 
connected:
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The clustering coefficient of the network is the average over all nodes. That is,

We use Ostroumova’s Polynomial Model (Ostroumova et al. 2013) to generate synthetic 
networks with a given target degree distribution, and a tuneable clustering coefficient. 
We consider the power-law degree distribution, i.e., p(k) ∼ k−γ , where γ ∈ (2, 3) , as 
observed in many real-world networks (Barabási and Albert 1999). Ostroumova’s Poly-
nomial Model is a growing network model based on Preferential Attachment. Its input 
parameters are γ , m and β . γ is the slope of the power-law distribution for the degree of 
the nodes, m is the number of links that we add when creating a new node, and β is 
related to the probability of new links forming triangles in the network, so it controls the 
clustering coefficient. γ needs to be in the range [2, 3], and β in the range [0, 1]; however, 
with the polynomial that we used, β has a restriction depending on the value of γ that 
has been chosen, such that βmax = 2−

2

γ − 1
 ; i.e., β can only reach its maximum value 

(that is, 1) if γ = 3.00.
The possible values for γ and β that we have considered are given in Table 1, together 

with the resultant clustering coefficient. We have fixed m = 2 , so that the generated net-
work is sparse, and N = 1000 nodes. According to the network model, the maximum 
possible value for β is 0.40 when γ = 2.25 . For each combination of γ and β , the reported 
clustering coefficient is the average over 100 realisations. The choice of β is motivated by 
the objective of generating networks with three different clustering coefficients per each 
degree distribution, while keeping the maximum clustering coefficient comparable.

We consider further two empirical networks, i.e., Hamsterster and Maayan-vidal 
(Kunegis 2013; Rual et  al. 2005). A link in Hamsterster represents friendship relation 
between two nodes. Maayan-vidal is a protein network with links indicating protein-
protein interactions. Basic properties of the two networks are reported in Table 2.

We apply Alstott’s rewiring algorithm (Alstott et  al. 2018) to change the clustering 
coefficient of a given real-world network without changing the degree of any node. The 
rewiring process iterates the following procedure until the target clustering coefficient 
is achieved. First, we choose the two non-existing links with the highest number of 

(1)ci =






N−1�

j=0

ai,j
N−1�

l=0

ai,l · aj,l

ki · (ki − 1)
, if ki > 1

0 if ki = 1

(2)C =
1

N

N−1∑

i=0

ci.

Table 1 Clustering coefficient for networks generated by different combination of γ and β . For each 
(γ ,β) , the clustering coefficient is the average over 100 generated networks

γ = 2.25 γ = 2.50 γ = 3.00

β = 0.00 0.23± 0.03 0.10± 0.02 0.04± 0.01

β = 0.20 0.41± 0.03 0.25± 0.02 0.18± 0.01

β = 0.40 0.58± 0.02 − −
β = 0.60 − 0.54± 0.02 0.46± 0.01
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common neighbours that meet the following requirements: they involve four different 
nodes, and there are exactly two links between them. Then, we rewire them by exchang-
ing one end node from each link such that the degree remains the same, but the number 
of common neighbours between the connected nodes is the highest possible.Rewiring 
links in a network not only modifies the clustering coefficient, but also introduces ran-
domness to the network topology. For Hamsterster, whose original clustering coefficient 
is 0.1414, we create two rewired networks with a high clustering coefficient C = 0.20 , 
and C = 0.30 respectively; for Maayan-Vidal with its original clustering coefficient 
0.0658, we also generate two rewired networks with C = 0.10 , and C = 0.20 respectively.

Embedding algorithms

We consider three classic embedding algorithms: matrix-based embedding algorithm 
Laplacian Eigenmaps (Belkin and Niyogi 2001), Matrix Factorisation, which has also 
been applied in recommender systems (Koren et al. 2009; Koren 2008; Kotu and Desh-
pande 2019), and the random-walk-based network embedding algorithm node2vec 
(Grover and Leskovec 2016). In the link prediction task, we also compare these embed-
ding algorithms with a structural similarity-based link prediction method, Common 
Neighbours, which estimates the likelihood that two nodes are connected via the number 
of their common neighbours.

We denote the representation of a node ni as −→yi  for every algorithm in this section. 
We choose the dimension of the representations to be 10 for Laplacian Eigenmaps and 
Matrix Factorisation. For node2vec, we keep the default values for all the parameters 
(including the embedding dimension, fixed at 128), except for the two parameters of the 
random walk, which we optimise through a parameter sweep. In each embedding algo-
rithm, a score that measures the distance between two nodes in the embedding space is 
defined and used as an estimation of the likelihood that the two nodes are connected.

Laplacian Eigenmaps Given an undirected network G , the objective is to obtain the 
representation for each node with dimension d, such that the nodes that are connected 
in the network are closer in the representation domain. Specifically, the objective func-
tion is

where the solution Y is an N × d-dimensional matrix whose ith row yi is the d-dimen-
sional representation of node ni , Q = D − A is the Laplacian matrix of the network, and 
D is the diagonal matrix that contains the degree of each node. Moreover,

(3)argmin
YTDY=I

tr(YTQY ),

Table 2 Properties of the empirical networks. N is the number of nodes, L is the number of links, C 
is the clustering coefficient of the network, and fCC is the fraction of nodes that belong to the largest 
connected component in the network

N L C fCC

Hamsterster 1858 12534 0.1414 0.9623

Maayan‑Vidal 3023 6149 0.0658 0.9206
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The obtained embedding vector of a node contains actually this node’s eigenvector 
components corresponding to the d smallest, but non-zero, eigenvalues of the problem 
Q−→y = �D−→y .

The distance score of a node pair is then defined as

A higher score of a node pair suggests a lower likelihood of being connected.
Matrix factorisation This algorithm has been used in recommender systems. It calculates a 

representation for every user and item, based on the ratings given by the users to the items. 
In this work, we adapt the algorithm for unweighted networks, where a link between two 
nodes is interpreted as a rating of 1. Matrix Factorisation aims to obtain a representation 
for each node such that connected nodes are close in embedding, i.e.,

where bi is the bias of node ni , and � is the regularisation term.
The distance score between two nodes is measured as

Nodes with a higher score are more likely to be connected.
node2vec Inspired by word2vec, node2vec performs biased random walks on the given 

network to sample trajectory paths via random walks. Node pairs that are within a given 
distance on a trajectory path are used as the input of Skip-gram, a representative language 
model that embeds nodes, which are regarded as words, into vectors. The score for each 
node pair is

A higher score between two nodes suggests a higher likelihood that the two nodes are 
connected.

Results
In this section, we evaluate the performance of all the algorithms discussed in Sect. 2 in 
the link prediction task for the datasets described previously. Then, we perform network 
reconstruction to study the relation between the capacity of an embedding to keep the orig-
inal structure of the network and its performance on link prediction via AUC  and precision. 
Finally, we compare the number of common neighbours between two nodes and the score 
given by each algorithm to further explain the results obtained.

(4)tr(YTQY ) =
∑

i,j

ai,j�
−→yi −

−→yj �
2
,

(5)sLE(ni, nj) = ||
−→yi −

−→yj ||
2
2,

(6)argmin
Y ,b

1

L

∑

(ni ,nj)∈L

[
(1− bi − bj −

−→yi ·
−→yj )

2 + � · (||
−→yi ||

2
2 + ||

−→yj ||
2
2 + b2i + b2j )

]
,

(7)sMF (ni, nj) =
−→yi ·

−→yj + bi + bj .

(8)sn2v(ni, nj) =
−→yi ·

−→yj .
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Link prediction

Performance evaluation

First, we evaluate the performance of all the aforementioned algorithms in the task of 
link prediction in both network models and real-world networks with a varying clus-
tering coefficient. The objective is to understand how clustering coefficient influences 
the performance of the algorithms.

We start with the performance measure AUC, the most widely studied link pre-
diction measure. The algorithms are compared in polynomial model and real-world 
networks, with the results shown in Tables 3 and 4 respectively. For each class of net-
works, i.e. Polynomial Model with a parameter set (γ ,β) , or networks that are rewired 
from a given real-world network with a target clustering coefficient, the AUC perfor-
mance shown for a given algorithm is the average over 10 network realisations, and 10 
choices of the training and test datasets for each network realisation.

For both Matrix Factorisation and node2vec, the representation is calculated 10 
times for each network and each training data set due to the random nature of these 

Table 3 AUC for all the algorithms applied to the networks generated by the Polynomial model

In each class of networks, the AUC of the algorithm that performs the best is in bold

Algorithms

Parameters Common
Neighbours

Matrix
Factorisation

Laplacian
Eigenmaps

node2vec

γ = 2.25 β = 0.00 0.501± 0.018 0.841± 0.020 0.472± 0.025 0.429± 0.016

β = 0.20 0.561± 0.021 0.835± 0.013 0.511± 0.022 0.462± 0.015

β = 0.40 0.628± 0.018 0.829± 0.014 0.565± 0.023 0.511± 0.018

γ = 2.50 β = 0.00 0.511± 0.009 0.728± 0.018 0.487± 0.018 0.452± 0.018

β = 0.20 0.578± 0.012 0.719± 0.016 0.527± 0.020 0.484± 0.018

β = 0.60 0.699± 0.013 0.719± 0.032 0.659± 0.027 0.615± 0.022

γ = 3.00 β = 0.00 0.502± 0.005 0.615± 0.018 0.481± 0.014 0.459± 0.017

β = 0.20 0.576± 0.009 0.626± 0.016 0.528± 0.017 0.517± 0.018

β = 0.60 0.701± 0.012 0.615± 0.021 0.660± 0.022 0.645± 0.020

Table 4 AUC for all the algorithms applied to real networks Hamsterster and Maayan‑Vidal and their 
rewired versions

In each network, the AUC of the algorithm that performs the best is in bold

Algorithms

Datasets Common
Neighbours

Matrix
Factorisation

Laplacian
Eigenmaps

node2vec

Hamsterster Original 0.749± 0.003 0.807± 0.005 0.738± 0.035 0.780± 0.005

CL = 0.20 0.788± 0.004 0.806± 0.004 0.747± 0.044 0.786± 0.005

CL = 0.30 0.863± 0.005 0.800± 0.006 0.777± 0.040 0.823± 0.007

Maayan‑
Vidal

Original 0.590± 0.003 0.746± 0.008 0.624± 0.016 0.607± 0.008

CL = 0.10 0.643± 0.005 0.742± 0.007 0.636± 0.016 0.617± 0.008

CL = 0.20 0.744± 0.006 0.721± 0.008 0.695± 0.023 0.681± 0.009
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algorithms in, e.g., initialisation and random walk process. The link prediction quality 
is the average over all realisations of the embedding, training and test data sets.

In all the networks that we considered, all algorithms perform better as the clustering 
coefficient increases, except for Matrix Factorisation, whose performance remains rela-
tively the same. When we rewire a given real-world network towards a higher clustering 
coefficient, the rewired network is also more random, thus more difficult to predict than 
the original real-world. Therefore, our observation that the AUC of Matrix Factorisa-
tion does not improve with an increasing clustering coefficient in (rewired) real-world 
networks does not exclude the possibility that a higher clustering coefficient could facili-
tate the performance of Matrix Factorisation. All the other algorithms perform better 
in the rewired real-world networks with a higher clustering coefficient, even though the 
randomness of the rewired networks could lower their performance. This illustrates evi-
dently that a high clustering coefficient could lead to a high link prediction quality. It 
is found that network embedding algorithms based on random walks sometimes per-
form worse in link prediction than Common Neighbors (Cao et al. 2019). The common 
neighbours method is expected to perform better as the clustering coefficient increases. 
Our finding that a high clustering coefficient leads to a better performance of network 
embedding algorithms suggests that, for the link prediction task in networks with a 
high clustering, not only the common neighbours but embedding algorithms could be 
considered as well. In all network classes considered, the common neighbours method, 
which performs well, can be in many cases outperformed in terms of AUC by one of 
these embedding algorithms. Among the three embedding algorithms, Matrix Factori-
sation performs mostly the best in AUC in each class of networks.

Link score/rating analysis

In order to further understand why and how the three embedding methods perform dif-
ferently, we explore the scores/ratings of the test and negative links with a given number 
of common neighbours respectively derived by each embedding algorithm.

As examples, we consider the generated networks ( γ = 2.50 , β = 0.00, 0.60 ); and the 
real-world networks Hamsterster and Maayan-vidal, as well as their rewired networks 
with clustering coefficient C = 0.30 and C = 0.20 respectively. However, the same con-
clusions can be drawn from all the networks discussed in Sect. 2.2. Firstly, we explore the 
probability distribution of the number of common neighbours of a test link and a nega-
tive link, in each network class with a given parameter set. As shown in the subfigure (a), 
of Figures 1, 2, 3, 4, 5 and 6, most links, either test or negative links have a small num-
ber of common neighbours where as few have a large number of common neighbours. 
Moreover, the maximal possible number of common neighbours decreases in polyno-
mial networks as the clustering coefficient increases. The contrary has been observed 
in (re-wired) real-world networks. The higher clustering coefficient of polynomial net-
works is obtained via the formation of more triangles. The rewired real-world network 
with a higher clustering coefficient is obtained via rewiring, where links are rewired to 
disconnected node pairs with a large number of common neighbours.

Figures 1, 2, 3, 4, 5 and 6 show further the average score together with its standard 
deviation for test and negative links with a given number of common neighbours, for 
each embedding algorithm. For both test and negative links, the average score increases 
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monotonically with the number of common neighbours in Matrix Factorisation in every 
data set but the Hamsterster one. The average score decreases with the number of com-
mon neighbours in Laplacian Eigenmaps, whereas, for node2vec, it increases first and 
decrease afterwards as the number of common neighbours increases. These observa-
tions suggest that node pairs with a large number of common neighbours tend to be 
predicted as the missing links by Matrix Factorisation and Laplacian Eigenmaps, while 
node2vec tends to predict node pairs with an intermediate number of common neigh-
bours as missing links. While most node pairs have a small number of common neigh-
bours, Matrix Factorisation and Laplacian Eigenmaps (node2vec) assign a higher score 
to node pairs with a high (intermediate) number of neighbours respectively, thus tend to 
better identify missing links with high (intermediate) number of neighbours.

Network reconstruction

We explore further whether an embedding algorithm could better reconstruct a network 
if the network has a higher clustering coefficient. We aim to understand whether these 
embedding algorithms’ better performance in link prediction as the clustering coeffi-
cient increases is associated with their capability to better reconstruct the network.

Given an embedding algorithm and a network, either generated from the Polyno-
mial Model or a (rewired) real-world network, we obtain the embedding vectors for all 

Fig. 1 a Fraction of links of the generated networks ( γ = 2.50 , β = 0.00 ) that share a given number of 
neighbours. Average rating of negative and test links with a given number of common neighbours derived 
by b Laplacian Eigenmaps, c Matrix Factorisation, and d node2vec
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the nodes. The η × L node pairs with the highest (or lowest) scores are considered to 
be connected; i.e. the reconstructed (partial) network. We plot the reconstruction qual-
ity Precision@η as a function of η ∈ (0, 1] from Figure 7, 8, 9, 10 and 11. As in the link 
prediction task, the reconstruction quality is the average of 10 network realisations per 
model parameter set (γ ,β) , or of 10 rewired networks per targeting clustering coeffi-
cient. For both Matrix Factorisation and node2vec, the reconstruction quality for a net-
work realisation is the average over 10 realisations of the embedding. In node2vec, the 
two parameters that governs the random walk are set as the ones that lead to the best 
reconstruction quality.

When η = 1 , i.e., when we aim to reconstruct the same number of links, L, as in the 
given network, Precision@(η = 1) measures the reconstruction quality in terms of the 
overlap of the reconstructed network and the given network. Hence, it captures to 
what extent an embedding algorithm could keep the given network topology. When 
η < 1 , Precision@η quantifies how the ηL node pairs with the highest rating over-
lap with the given network. When we reconstruct the network randomly, the preci-
sion Precision@η = 2L

N (N−1) equals the link density, which is small in real-world sparse 
networks.

Figures  7, 8, 9, 10 and 11 show the trend that the higher the clustering coefficient 
of the network is, the higher the precision tends to be; i.e., the bigger the part of the 

(a) Fraction of links vs. common neighbours (b) Laplacian Eigenmaps

(c) Matrix Factorisation (d) node2vec
Fig. 2 a Fraction of links of the generated networks ( γ = 2.50 , β = 0.60 ) that share a given number of 
neighbours. Average rating of negative and test links with a given number of common neighbours derived 
by b Laplacian Eigenmaps, c Matrix Factorisation, and d node2vec
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structure that the representations tend to be able to keep ( Precision@(η = 1) ). This is 
particularly apparent in the real networks (Figs.  10 and 11). The Matrix Factorisation 
algorithm, however, is equally able to reconstruct a given network regardless of its clus-
tering coefficient.

Our finding that the network reconstruction quality increases as the clustering coef-
ficient increases is in line with our previous observation that the embedding methods 
perform better in link prediction tasks when the clustering coefficient is larger. An 
embedding algorithm is not expected to predict the missing links well if it cannot keep 
or reconstruct the given network.

Conclusions
In this paper, we study how the clustering coefficient of the network affects the per-
formance of embedding algorithms in link prediction tasks. We employ the Poly-
nomial Model and Alstott’s rewiring method to generate both synthetic and real 
networks with a variable clustering coefficient to evaluate embedding algorithms’ per-
formance in link prediction. We find that Matrix Factorisation is the only method that 
is not evidently benefited from higher clustering in the network on the link predic-
tion task. Both node2vec and Laplacian Eigenmaps perform better in terms of AUC 
when the clustering coefficient increases. Besides, Matrix Factorisation has the best 

(a) Fraction of links vs. common neighbours (b) Laplacian Eigenmaps

(c) Matrix Factorisation (d) node2vec
Fig. 3 a Fraction of links of the Hamsterster network (original) that share a given number of neighbours. 
Average rating of negative and test links with a given number of common neighbours derived by b Laplacian 
Eigenmaps, c Matrix Factorisation, and d node2vec
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performance in most of the networks that we considered, except for the few with the 
highest clustering coefficient, where the Common Neighbor metric performs the best. 
Hence, in a network with a high clustering coefficient, embedding algorithms are sup-
posed to perform well and the Common Neighbor metric could also be considered.

We explore further how these algorithms differ in assigning ratings/scores to node 
pairs with a given number of common neighbours. While Matrix Factorisation and 
Laplacian Eigenmaps give a higher probability (higher score for Matrix Factorisation, 
and lower for Laplacian Eigenmaps) of being missing links to node pairs with a high 
number of common neighbours, node2vec does that to node pairs with an intermedi-
ate number of common neighbours. Predicting node pairs with a large or intermediate 
number of common neighbours as the missing links tends to lead to more triangles in 
the predicted network, thus a high clustering coefficient, in contrast to predicting node 
pairs with a small number of common neighbours. This may partially explain why the 
prediction is better when the clustering coefficient of the given network is high.

Finally, we explore whether the increasing performance of an embedding algorithm 
as the clustering coefficient increases is associated with the algorithm’s capability to 
better reconstruct the training sub-network. We find that, in (rewired) real-world 
networks, all the embedding algorithms can indeed better reconstruct the training 
network as the clustering coefficient increases. This trend is less evident in the net-
work models, which are more random than real-world networks.

(a) Fraction of links vs. common neighbours (b) Laplacian Eigenmaps

(c) Matrix Factorisation (d) node2vec

Fig. 4 a Fraction of links of the Hamsterster network (rewired C = 0.30 ) that share a given number of 
neighbours. Average rating of negative and test links with a given number of common neighbours derived 
by b Laplacian Eigenmaps, c Matrix Factorisation, and d node2vec
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In this work, we illustrate the method to investigate how network or data properties 
influence the embedding algorithms, although our methodology is not limited to net-
work embedding algorithms. We have confined ourselves to the clustering coefficient, 
the link prediction task, and limited choices of algorithms and networks. Generalisa-
tions can be made along with the following perspectives. The effect of other or multiple 
network properties, whose challenges have been discussed in Sect. 1, can be explored 
further. For example, the effect of degree-degree correlation and community structure 
can be investigated, since positive (negative) degree-degree correlation and community 
structure have been observed in social (man-made) networks (Van Mieghem et al. 2010; 
Fortunato 2010). It is interesting to study which algorithm may perform the best for a 
given network with specific properties, in view of not only AUC but also other evalua-
tion methods like AUPRC and the complexity. Advanced embedding algorithms, e.g., for 
temporal networks, have been developed recently (Zhan et al. 2020; Torricelli et al. 2020; 
Tandon et al. 2021). Our method can also be further applied to explore the influence of 
network properties on other network-based algorithms (Wang et al. 2022), or dynamic 
processes deployed on networks (Pastor-Satorras et al. 2015). More in-depth investiga-
tion of the mechanisms of embedding algorithms in relation to the network properties 
they could retain may further inspire the design of embedding algorithms.

(a) Fraction of links vs. common neighbours (b) Laplacian Eigenmaps

(c) Matrix Factorisation (d) node2vec
Fig. 5 a Fraction of links of the Maayan‑Vidal network (original) that share a given number of neighbours. 
Average rating of negative and test links with a given number of common neighbours derived by b Laplacian 
Eigenmaps, c Matrix Factorisation, and d node2vec
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(a) Fraction of links vs. common neighbours (b) Laplacian Eigenmaps

(c) Matrix Factorisation (d) node2vec
Fig. 6 a Fraction of links of the Maayan‑Vidal network (rewired C = 0.20 ) that share a given number of 
neighbours. Average rating of negative and test links with a given number of common neighbours derived 
by b Laplacian Eigenmaps, c Matrix Factorisation, and d node2vec

Fig. 7 Precision@η obtained for network reconstruction, in average, applying each method to each 
generated data set ( γ = 2.25 ). η is expressed in percentage
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Fig. 8 Precision@η obtained for network reconstruction, in average, applying each method to each 
generated data set ( γ = 2.50 ). η is expressed in percentage

Fig. 9 Precision@η obtained for network reconstruction, in average, applying each method to each 
generated data set ( γ = 3.00 ). η is expressed in percentage

Fig. 10 Precision@η obtained for network reconstruction, in average, applying each method to each version 
of the Hamsterster data set (original and rewired). η is expressed in percentage
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