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Abstract. Last spring, super dust storms reappeared in East Asia after being absent for one and a half decades.
The event caused enormous losses in both Mongolia and China. Accurate simulation of such super sandstorms
is valuable for the quantification of health damage, aviation risks, and profound impacts on the Earth system,
but also to reveal the climatic driving force and the process of desertification. However, accurate simulation of
dust life cycles is challenging, mainly due to imperfect knowledge of emissions. In this study, the emissions
that lead to the 2021 spring dust storms are estimated through assimilation of MODIS AOD and ground-based
PM10 concentration data simultaneously. With this, the dust concentrations during these super storms could be
reproduced and validated with concentration observations. The multi-observation assimilation is also compared
against emission inversion that assimilates AOD or PM10 concentration measurements alone, and the added
values are analyzed. The emission inversion results reveal that wind-blown dust emissions originated from both
China and Mongolia during spring 2021. Specifically, 19.9× 106 and 37.5× 106 t of particles were released
in the Chinese and Mongolian Gobi, respectively, during these severe dust events. By source apportionment it
was revealed that the Mongolian Gobi poses more severe threats to the densely populated regions of the Fenwei
Plain (FWP) and the North China Plain (NCP) located in northern China than does the Chinese Gobi. It was
estimated that 63 % of the dust deposited in FWP was due to transnational transport from Mongolia. For NCP,
the long-distance transport dust from Mongolia contributes about 69 % to the dust deposition.

1 Introduction

Dust storms occur as a result of wind erosion liberating
dust particles from dry and barren surfaces (Shao et al.,
1993). They are relatively common meteorological hazards
in arid or semi-arid regions (World Meteorological Organi-
zation, 2019). Fine dust particles released from the ground
can be lifted several kilometers high, and subsequently car-
ried over long distances, sometimes even across continents

(Zhang et al., 2018). The substantial amounts of dust parti-
cles as well as irritating spores, bacteria, and viruses carried
by the dust storms pose great threats to human health and
agriculture (World Meteorological Organization, 2017). Next
to these adverse health effects and property losses, the visi-
bility reduction would cause severe disruption or disorders
to transportation and aviation systems (World Meteorolog-
ical Organization, 2020). The dust cycle itself also plays a
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key role in the Earth system by influencing radiative balance
(Wu et al., 2016) but also forest and ocean ecosystems (Shao
et al., 2011).

Driven by strong cyclones, dust storms forming in the
Gobi desert could affect East Asia following long-distance
transport patterns, as can be seen in, for example, Fig. 1a.
These events usually occur in springtime, when particles are
more erodible under the circumstance of a dry season and
sparse vegetation. The frequency and intensity of spring dust
storms reached a peak from the 1950s to 1970s, and declined
steadily thereafter (Yin et al., 2021). In the past decade,
the dust storms were persistently rare, and only two strong
events occurred in 2015 (Jin et al., 2018) and 2017 (Jin et al.,
2019b). The declining trend in dust storm occurrence was
co-driven by strict greenness controls in northern China over
the past decades (Shao et al., 2013), climate anomalies (Yin
et al., 2021), synoptic disturbances, and other factors not yet
explored. However, the ongoing land degradation and deser-
tification in Mongolia (Han et al., 2021) is reported to aggra-
vate the regional dust storms. In spring 2021, however, East
Asia experienced an outbreak of severe dust storms after an
absence of one and a half decades. Specifically, three super
events occurred during 14 to 16 March, 26 to 28 March, and
14 to 15 April, which will be described in Sect. 2.1 later.
The re-occurring spring super dust storms resulted in enor-
mous losses directly. Taking the dust event in 14–16 March
for example, 10 people were reported dead and hundreds
of people reported missing in Mongolia (Chen and Walsh,
2021); the PM10 pollutant level in Beijing was brought over
8000 µg m−3 and 12 provinces in northern China were af-
fected, with thousands of flights grounded and public trans-
portation systems halted (Jin, 2021). Fully understanding the
reappearing dust storms is of great interest to health pro-
fessionals, aviation authorities, and policy- makers, not only
to help evaluate property losses, adverse health effects, and
Earth system impacts, but also to reveal the synoptic climatic
driving forces and finally to build the next generation of the
dust early-warning system.

Numerical simulation models are commonly used to study
dust lifecycles. Such models usually consist of an atmo-
spheric transport model that is able to simulate aerosol con-
centrations, coupled to a dust-emission module. The un-
derlying model is often a chemical transport model (CTM)
which is already used to calculate concentrations of air pol-
lutants, with dust just one of the aerosol species included.
Substantial effort has been invested to develop dust mod-
els, especially for dust-emission parameterization which is
the most uncertain element in simulating the dust concentra-
tions. Since the early 1990s, several dust-emission schemes
have been introduced, e.g., MB95 (Marticorena and Berga-
metti, 1995), Shao96/Shao04 (Shao et al., 1996; Shao, 2004),
Ginoux01 (Ginoux et al., 2001), and Zender03 (Zender,
2003). Such emission parameterizations have been included
in many global or regional atmospheric transport models,
e.g., ECMWF’s Integrated Forecast System (IFS) (Morcrette

et al., 2008b, a, 2009), BSC-DREAM8b (Pérez et al., 2006;
Mona et al., 2014), CUACE/Dust (Zhou et al., 2008; Gong
and Zhang, 2008), GEOS-Chem (Fairlie et al., 2007), and
LOTOS-EUROS (Timmermans et al., 2017; Manders et al.,
2017), as will be used in this study. Due to insufficient
knowledge of the actual dust emission and transport, and
due to limitations to computing resources to resolve finest-
scale variabilities, huge difference might occur when simula-
tions are compared to observations (Niu et al., 2008; Huneeus
et al., 2011).

Recent advances in sensor technologies and the contin-
uously decreasing cost of electronic devices have made
large-scale measurements of dust feasible. For dust storms
over East Asia, important observation includes ground-based
aerosol optical properties from the AErosol RObotic NET-
work (AERONET) (Dubovik et al., 2000) and Sun-sky ra-
diometer Observation NETwork (SONET) (Li et al., 2018),
PM10 concentration from the China Ministry of Environ-
mental Protection (MEP) air-quality monitoring network (Jin
et al., 2018), satellite remote-sensing data from polar orbit-
ing instruments (e.g., Moderate-Resolution Imaging Spec-
troradiometer (MODIS), Remer et al., 2005, and Cloud-
Aerosol Lidar and Infrared Pathfinder Satellite Observations
(CALIPSO), Winker et al., 2007), and from geostationary
platforms (e.g., Himawari-8, Bessho et al., 2016, and FY-
4 AOPs, Min et al., 2017). These various types of obser-
vations have been used alongside the simulation models to
analyze the dust storms (Ginoux et al., 2012; Gkikas et al.,
2021). Despite their significant roles in characterizing the at-
mospheric dust load, using only the measurements is not suf-
ficient to obtain a complete four-dimensional insight into the
dust plumes, because either the measurements do not cover
all areas (surface network), only observe once or twice a
day (polar orbiting satellites), or observe only vertically inte-
grated quantities (AOD).

Instead of studying dust storms with either simulation
models or observations only, it is useful to combine the
measurements and the simulations through data assimila-
tion (Kalnay, 2002). For the purpose of dust storm simula-
tions, the measurements could be used to decrease the un-
certainty in the emissions such that the optimized simulation
is in better agreement with those measurements (Gong and
Zhang, 2008; Lin et al., 2008). For instance, aerosol prod-
ucts from the MODIS instrument onboard the polar orbit-
ing satellites Terra and Aqua have been widely applied in
global or East Asian dust storm assimilation (Di Tomaso
et al., 2017; Yumimoto and Takemura, 2015). The geosta-
tionary Himawari-8 data have recently also gained popularity
and been used in dust storm detection and assimilation (Yu-
mimoto et al., 2016). In our previous studies described in Jin
et al. (2018, 2019a), the ground-based PM10 concentration
data were assimilated to estimate the dust source emission for
a sandstorm in 2015 over East Asia. Himawari-8 AODs were
also assimilated to nudge the dust emission, and the neces-
sity of removing those AODs in cloudy environment is em-
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phasized in Jin et al. (2019b). An adjoint model was applied
to construct a background covariance that was better able to
describe the potential source regions for dust emission (Jin
et al., 2020). Meanwhile, an imaging morphing-based assim-
ilation method was designed which effectively corrected the
position error caused in the long-distance dust plume trans-
port (Jin et al., 2021).

While various kinds of dust or aerosol measurements were
used in these assimilation experiments, most of them assim-
ilated only one type of observation at a time. For the sand-
storms in East Asia, however, none of the aforementioned
measurements can provide sufficient information to track
these short-term and fast-changing dust plumes completely.
For a case in point, the China MEP air-quality monitoring
network has over 1700 sites for PM10 concentrations by now,
but these are mainly located in the downwind and densely
populated regions, which are far away from the source re-
gion of dust in East Asia (the Gobi deserts that can be seen
in Fig. 1a). The network therefore only measures the dust
plume when it has already been transported to the down-
wind urban regions; hence, it is of limited help to character-
ize the plume near the source regions in rural areas. Besides,
the ground-based PM10 data only represent the surface dust
concentrations and lack information on the vertical structure.
AERONET and SONET instruments provide some informa-
tion on the vertical structure via column-integrated observa-
tions, but the network is much sparser than the PM10 net-
work, and most of the sites are also far away from the source
regions. The MODIS satellite products provide global cov-
erage, but again only information on the total column and
therefore no estimate of the plume height or thickness. These
polar orbiting instruments also have a limited temporal cov-
erage; for example, the MODIS Aqua and Terra platforms
pass by only around 10:30 and 13:30 (local time). Designed
with the wide-observing coverage and high temporal resolu-
tion, geostationary measuring instruments provide valuable
information. However, large uncertainties were found in the
Himawari-8 product due to uncertainty in assumptions on
aerosol models and surface reflectance estimation in the re-
trieval algorithm (Zhang et al., 2019). This was also found in
Jin et al. (2019b): a strict observation selection was necessary
when assimilating the Himawari-8 AOD values.

Another challenge for dust assimilation is the proper def-
inition of the observations. In general, the commonly used
data assimilation schemes all rely on the basic assumption
of an unbiased observation. However, all the aforementioned
observations, e.g., AOD and PM10 concentration, not only
measure dust aerosols, but rather actually the sum of the dust
and other fine particles. These originate from, for example,
anthropogenic activities, e.g., industry, vehicles, and house-
holds, and from natural sources such as wildfires and sea
spray. These particles are referred to the non-dust fraction
in the total aerosols in our study. In the presence of non-dust
bias, it is impossible to attribute the difference between the a
priori simulation and an observation to either this bias or to

model deficiencies. The non-dust bias might lead to assimi-
lations that diverge from reality (Lorente-Plazas and Hacker,
2017). However, aerosol measurements are usually directly
assimilated, and little progress has been made in bias cor-
rection of fully aerosol measurements for their use in dust
storm assimilation. Lin et al. (2008) selected only PM10 ob-
servations for assimilation when at least one occurrence of
dust clouds was reported by the local stations. Both machine
learning tools and chemical transport models were used for
modeling the dynamic non-dust aerosol levels in the PM10
concentration measurements; the bias-corrected observations
subsequently resulted in more promising assimilation analy-
sis in Jin et al. (2019a). Some efforts have been made to ex-
clude those “polluted” AODs induced by cloud scenes in the
dust assimilation (Jin et al., 2019b); nevertheless, the issue of
a non-dust AOD bias remains to large extent unresolved.

To analyze the outbreak of super dust storms in spring
2021, an emission inversion will be performed through as-
similation of multiple observation types. Both the MODIS
AOD and the ground-based PM10 concentration observations
will be used, each providing a different view on the dust
plumes. To use the AODs for representing the dust load,
an data quality control is designed, which consists of an
Ångström-based data screening and a non-dust AOD bias
correction. The former is capable of selecting those coarse-
mode dust AOD values and excludes the pixels dominated
by fine-mode aerosol from non-dust sources, while the lat-
ter focuses on removing the non-dust baseline in the selected
AOD. Similar for PM10, a non-dust bias correction as used in
Jin et al. (2019a, 2021) is adopted in this work. Based on the
posterior emission field obtained in the inversion, the spatial
pattern of the emission analyzed for the three events is stud-
ied, and the active source regions are identified. In addition,
source apportionment simulations are performed, in which
the contribution of dust emissions from either Mongolia or
China to the dust deposition is calculated for two mega-city
clusters, the North China Plain (NCP) and the Fenwei Plain
(FWP).

The paper is organized as follows. Section 2 introduces
the three super dust events that occurred last spring, as
well as the available dust observations from MODIS and
ground-based PM10 networks measuring the dust loading
from different perspectives. Before AOD is assimilated,
quality control combining an Ångström-based screen and
a non-dust bias correction are designed to ensure that
the observations are representative for the dust load. A
brief description of our dust simulation model (LOTOS-
EUROS/dust) is presented as well. Section 3 reviews the
reduced-tangent-linearization four-dimensional variational
(4DVar) data assimilation-based emission inversion system.
In Sect. 4, the posterior emission field and the estimated
AOD and surface dust concentration simulation are evalu-
ated and discussed. Posterior emission obtained through the
multi-observation assimilation is compared against the result
from emission inversion that only assimilates PM10 or AOD
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data, and the added values are illustrated. A source appor-
tionment study is performed to obtain information about dust
pollution sources and the extent to which they contribute to
ambient air pollution in northern China. Focusing on NCP
and FWP, their dominant dust sources are identified herein.

2 Dust events, measurements, and model

2.1 Dust events of spring 2021

The Fenwei Plain (FWP) and the North China Plain (NCP)
experienced the most dust affection in China since they
face the dust source regions as shown in Fig. 1a. Fig-
ure 1b shows the recorded PM10 concentration average dur-
ing spring (March–May) in NCP and FWP over 2019–2021.
In spite of ongoing air pollutant reduction measures, the
PM10 levels in NCP and FWP both reached their highest av-
erage values of 123 and 119 µg m−3 in 2021. These mean
values are 34 % and 27 % higher than the means of the previ-
ous 2 years. The reason for this is that East Asia suffered an
outbreak of dust storms in the 2021 spring season, including
three large-scale and severe ones. These dust events swept
across northern China, as can be seen from the time series
of the hourly PM10 concentrations reported by the monitor-
ing stations in NCP and FWP in Fig. 1c–d. The timeline in
Table 1 shows that these three dust events occurred around
15 March, 28 March, and 15 April, and each of them lasted
3 to 4 d. The highest PM10 concentrations reported by the
ground-based air quality monitoring network reached val-
ues of 9993, 9985, and 4113 µg m−3; in this study, the three
events are referred to as SD1, SD2, and SD3, respectively.

The three dust storms will be studied by combining model
simulations and AOD and PM10 concentration observations
using assimilation, in order to identify the emission sources
that affect densely populated regions in northern China.

2.2 Ground-based PM10 observations

A huge number of ground-based stations measuring air-
quality indicators have been established by the China Min-
istry of Environmental Protection (MEP) since 2013. At
present, the monitoring network has grown up to 1800 mon-
itoring sites covering China, of which a part is shown in
Fig. 1a. The PM10 concentrations observed by the network
hence provide valuable information on the dust storms. Snap-
shots of the PM10 measurements for SD1, SD2, and SD3 can
be found in Figs. 2a.i, 3a.i, and 4a.i, respectively. In the ob-
servations it is clearly visible where the dust plume is located
and how it moves through the regions.

It should be kept in mind that these PM10 measurements
are actually a sum of dust and other airborne particles like
black carbon, sulfate, etc. The PM10 data therefore cannot be
used directly to represent the dust load. In a previous study
(Jin et al., 2019a) it has been shown that removing the non-
dust baseline from PM10 observations will lead to a more

accurate assimilation result, especially if the dust aerosol is
not dominant. In this study, the same observational bias cor-
rection is performed to make the PM10 measurements fully
representative of the dust loads.

The PM10 bias correction takes two steps. First, non-dust
aerosol levels are calculated using a model simulation with a
configuration for air-quality simulation (as will be described
in Sect. 2.4), but with the dust tracers disabled. Second, using
these simulations, bias-corrected dust observations were cal-
culated by subtracting the non-dust loads from the original
PM10 concentration observations.

The non-dust aerosol surface concentrations from the sim-
ulations, and the dust-only bias-corrected observations of
PM10 accompanying the original PM10 scenes shown in
Figs. 2a.i, 3a.i, and 4a.i are available in Figs. S1, S3, and S5
in the Supplement. As an example, as shown in Fig. S1a–b,
during the SD1 event, the non-dust aerosols were also car-
ried southward and ahead of the dust plume due to the strong
winds, and the bias-corrected PM10 data show the shape of
the dust plume. The shape of the simulated a priori dust
plume at 15 March 10:00 shown in Fig. 2a.ii matches with the
observed shape, although the dust concentrations are some-
times very different; this will be discussed in more detail in
Sect. 2.4. Similar features are seen in Figs. S3 and S5 for the
other events as well.

2.3 MODIS AOD observations

2.3.1 MODIS Deep Blue AOD product

The Moderate-Resolution Imaging Spectroradiometer
(MODIS) satellite instruments (Justice et al., 1998) on board
of the polar orbiting satellites Terra and Aqua measure at-
mosphere reflectance at several wavelengths in the visible to
near-infrared range. The aerosol properties that are retrieved
from the MODIS observations have provided high-quality
data since 2000 (Terra) and 2002 (Aqua). Designed with
a wide swath (≈ 2330 km), MODIS provides near-global
observations on an almost daily basis. In this study, the
Deep Blue dataset in the newest MODIS Collection 6.1
Operational Level-2 Aerosol Product is used. The Deep Blue
dataset is generated by the Enhanced Deep Blue algorithm
(Hsu et al., 2013; Sayer et al., 2014), reporting retrievals over
all cloud-free and snow-free land surfaces at a resolution
of 10 km. The MODIS Deep Blue dataset is widely used in
dust source identification (Ginoux et al., 2012), dust model
calibration (Zhang et al., 2018) and emission inversion
(Yumimoto and Takemura, 2015; Di Tomaso et al., 2017),
and dust field reanalysis (Di Tomaso et al., 2021) through
data assimilation.

Snapshots of the MODIS Deep Blue AOD for SD1, SD2,
and SD3 can be found in Figs. 2b.i–c.i, 3b.i, and 4b.i. For
each of the three events, MODIS AOD provides valuable in-
formation for a large part of the domain of interest. For in-
stance, the SD2 plume position and intensity at 28 March
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Table 1. Descriptions of the three severe dust storm events that occurred in China in spring 2021. Time zone is China Standard Time (CST).

Dust event Affected regions Highest PM10 Assimilation window Source apportionment
[µg m−3] simulation timeline

SD1 NCP 9993 13 March 00:00 to 15 March 23:00 13 to 17 March
SD2 NCP, FWP 9985 26 March 00:00 to 28 March 23:00 26 to 29 March
SD3 NCP, FWP 4113 14 April 00:00 to 15 April 23:00 14 to 16 April

Figure 1. (a) Distribution of the potential dust emission source (barren and sparse vegetation land cover) over East Asia and the China MEP
observing network over northern China. (b) The spring (March–May) mean PM10 concentration observations over NCP and FWP from 2019
to 2021. Time series of the hourly PM10 concentration measurements reported by stations in NCP (c) and FWP regions (d) during SD1 (i),
SD2 (ii), and SD3 (iii).

11:00 are clearly identified in Fig. 3b.i, while the SD3 plume
at 15 April 11:00 is observed clearly in Fig. 4b.i. The two
AOD scans in Fig. 2b.i–c.i together also provide the general
spatial pattern of the dust plume.

Compared to the ground-based PM10 measurements, satel-
lite instruments are designed with a larger observing cover-
age. However, they also have higher uncertainties in repre-
senting the aerosol/dust load (Jin et al., 2019b). In most of
the dust model evaluation/calibration using the satellite data,
AOD measurements are directly used for comparing to sim-
ulated dust AODs and analyzing the dust strengths. For those
regions affected by the severe dust storm, it would be reli-
able to approximate the dust AODs using the AOD measure-
ments, since the amounts of non-dust aerosols are negligible

compared to the dust loading; for those areas where dust is
not the dominant aerosol, it is then necessary to perform the
dust/non-dust AOD discrimination.

2.3.2 AOD quality control

While aerosols originating from biomass-burning, urban pol-
lution, and biogenic sources consist mainly of fine-mode par-
ticles (with a radius less than 1 µm), the aerosols in a dust
plume are mainly in the coarse modes (particle radius larger
than 1 µm) (Dubovik et al., 2002; Jin et al., 2019a). The dom-
inance of one mode over the other can be measured with
the Ångström wavelength exponent α (Schuster et al., 2006;
Saide et al., 2013; Liu et al., 2019), which describes how

https://doi.org/10.5194/acp-22-6393-2022 Atmos. Chem. Phys., 22, 6393–6410, 2022
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Figure 2. Snapshots of observations and simulations during severe dust event 1 (SD1) at 15 March 2021. Row (a) shows PM10 concentrations
observed by ground network at 10:00 CST (i), and a priori (ii) and posterior (iii) simulations by the LOTOS-EUROS/dust model. Similarly,
row (b) shows for the same hour AOD at 550 nm from MODIS Deep Blue observations (i) and simulations (ii–iii) at 10:00; row (c) shows
the same for the MODIS overpass at 12:00.

Figure 3. Snapshots of observations and simulations during severe dust event 2 (SD2) at 28 March 2021. Row (a) shows PM10 concentrations
observed by ground network at 11:00 CST (i), a priori (ii), and posterior (iii) simulations by the LOTOS-EUROS/dust model. Row (b) shows
for the same hour AOD at 550 nm from MODIS Deep Blue observations (i) and simulations (ii–iii).

the optical thickness depends on the wavelength of the inci-
dent light. The Ångström exponent is in the range of −0.5
to 2.5, and inversely related to the average size of the mea-
sured aerosol: the smaller the particles, the larger the expo-
nent. Eck et al. (1999) used α = 0.5 as the threshold for an
aerosol mixture dominated by dust, while Schepanski et al.
(2007) used α = 0.6 to detect the presence of dust particles.

Ginoux et al. (2012) used α = 0 to select areas dominated by
dust in a single-mode distribution of coarse particles.

Figure 5 shows the four snapshots of retrieved Ångström
exponents corresponding to the AOD values of Figs. 2b.i–c.i,
3b.i, and 4b.i. In general, the locations of low Ångström ex-
ponent values correspond to the high AOD values of the dust
plumes. For example, for the snapshot in Fig. 5d, it indicates
that a plume of coarse aerosols stays in the Inner Mongolia

Atmos. Chem. Phys., 22, 6393–6410, 2022 https://doi.org/10.5194/acp-22-6393-2022
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Figure 4. Snapshots of observations and simulations during severe dust event 3 (SD3) at 15 April 2021. Row (a) shows PM10 concentrations
observed by ground network at 11:00 CST (i), a priori (ii), and posterior (iii) simulations by the LOTOS-EUROS/dust model. Row (b) shows
for the same hour AOD at 550 nm from MODIS Deep Blue observations (i) and simulations (ii–iii).

provinces of China, while fine aerosols are more dominant
in the southern regions. This matches with the dust simu-
lation that is shown in Fig. 4b.ii. This gives confidence in
using the Ångström exponent values for the discrimination
between dust and non-dust AOD.

To be able to use the AOD observations in an assimilation
focusing on dust only, an Ångström-based data screening and
a non-dust AOD bias correction has been developed and ap-
plied. The screening and bias-correction procedures are per-
formed after each other. First the Ångström-based screening
selects the pixels with α < 0.5, assuming that these are the
ones that are dominated by (coarse-mode) dust. For these
pixels, a bias-corrected AOD is calculated by subtracting a
non-dust AOD fraction from the selected AODs. Similar to
the non-dust PM10 simulation, these non-dust AOD baselines
are also calculated using a full-chemistry LOTOS-EUROS
simulation with the dust tracers disabled. Finally, to make the
AOD data resolution consistent with the model, the MODIS
Deep Blue AODs are coarsened by taking the average over
the 0.25 × 0.25 model grid cell. Snapshots of the non-dust
AOD simulation and the bias-corrected AOD measurements
for assimilation can be found in Figs. S2, S4, and S6.

2.4 Dust simulation model

The regional chemical transport model LOTOS-EUROS v2.1
(Manders et al., 2017) is used to simulate dust concentra-
tions. LOTOS-EUROS has been used for a wide range of
applications supporting scientific research and operational
air-quality forecasts over Europe, China, and other regions.
Daily operational forecasts over China used to be released
via the MarcoPolo–Panda projects (Timmermans et al., 2017;
Brasseur et al., 2019). Additionally, it is also implemented
in the World Meteorological Organization (WMO) Sand and
Dust Storm Warning Advisory and Assessment System to

provide short-term forecasting of the dust load over the
areas of North Africa, Middle East, and Europe; the on-
line forecast product is delivered via http://sds-was.aemet.es/
forecast-products/dust-forecasts (last access: July 2021).

To simulate dust concentrations over East Asia, the model
is configured on a domain from 15 to 50◦ N and 70 to 140◦ E,
with a resolution of 0.25◦× 0.25◦. Vertically, the model con-
sists of eight layers, with a top at 10 km. Our regional model
has zero boundary conditions by assuming all dust aerosols
are emitted regionally and the external dust flows can be ig-
nored. Although BSC-DREAM8b simulation, which is re-
leased via https://ess.bsc.es/bsc-dust-daily-forecast (last ac-
cess: January 2022), indicates that part of the dust plume re-
leased in the Middle East is likely to have been transported to
western China during SD1, those particles did not go as far as
FWP or NCP. Boundary conditions from a global dust model
are in demand if we focus on western China in our future
work. The dust simulation is driven by the European Centre
for Medium-Ranged Weather Forecasts’ (ECMWF) opera-
tional forecasts over 3–12 h, retrieved at a regular longitude–
latitude grid with a resolution of about 7 km. An interface to
the ECMWF output set is designed, which not only interpo-
lates the default 3 h ECMWF short-term forecast meteorol-
ogy to hourly values but also averages the forecast to fit the
LOTOS-EUROS spatial resolutions (Manders et al., 2017).
Physical processes included are wind-blown dust emission,
diffusion, advection, dry and wet deposition, and sedimenta-
tion.

2.5 Dust emission and uncertainty

The goal of this work is to calculate the optimal emission
field that best fits the a priori model simulation and the ob-
servation. It is then necessary to define and quantify the un-
certainty in the dust simulations. In this study, we define
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Figure 5. Snapshots of MODIS Deep Blue Ångström exponent accompanying AOD scenes shown in Figs. 2a.i–b.i, 3a.i, and 4a.i.

the main model uncertainty to be in the parameterization
of the dust emissions. Although other model processes such
as transport and deposition are uncertain too, for the events
studied here, these are assumed to be of less importance than
the location and the intensity of dust emission.

The physical basis of the dust-emission model adopted in
LOTOS-EUROS is the parameterization scheme by Zender
(2003). The dust flux f is calculated as a function of horizon-
tal saltation fh (Marticorena and Bergametti, 1995), the sand-
blasting efficiency a, a terrain preference S, and an erodible
surface fraction C:

f = fh · a ·S · C . (1)

The dust saltation rate fh is proportional to the third power of
the wind friction velocity u, as long as this exceeds a certain
(surface-dependent) friction velocity threshold ut:

fh =

0 u≤ ut
pa
g
u3 (1+ ut

u

) (
1− u2

t
u2

)
u > ut .

(2)

The friction velocity threshold controls whether dust is re-
leased from a surface at all, and how strong the emission is.
In Jin et al. (2018), it was shown that the uncertainty in the
friction velocity threshold parameterization is the main fac-
tor that prohibits accurate dust-emission forecasts. Although
other controlling factors, e.g., the wind-field uncertainty, will
also introduce uncertainty in the emission partially, these
were found to be of less important in the emission error quan-
tification (Jin et al., 2019b).

3 Data assimilation algorithms

3.1 Assimilation method

The assimilation system that will be used to combine PM10
and AOD measurements with dust simulations is based
on the reduced-tangent-linearization four-dimensional vari-
ational (4DVar) data assimilation developed in Jin et al.
(2018). The goal of the 4DVar technique is to find the max-
imum likelihood estimation of a state vector, which is here
the dust emission field f , given both the available AOD and
PM10 measurements over a time window. The optimal emis-
sion f is calculated by minimizing the cost function:

J (f )= Jb(f ) + J PM
o (f ) + J AOD

o (f ) . (3)

In here, Jb represents the background term as follows:

Jb(f )=
1
2

(f −f b)TB−1(f −f b), (4)

where f b represents the a priori or background dust emission
vector which follows the calculation described in Sect. 2.4.
As in Jin et al. (2018), the errors in dust emission field are
assumed to be only caused by the uncertainty in the friction
velocity threshold in Eq. (2), and it can be compensated by
introducing a spatially varying multiplicative factor β:

utrue
t (i, t)= β(i) · ut(i, t), (5)

where ut(i, t) denotes the model parameterized friction ve-
locity threshold in a given grid cell i at instant t , while
utrue

t (i, t) denotes the true value. The β values are defined to
be random variables with a mean of 1.0 and a standard devi-
ation σβ = 0.1. This empirical standard deviation was found
to provide sufficient variations to resolve the observation–
simulation difference. A background covariance matrix Bβ
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is then formulated by combining the constant standard devi-
ation and a correlation matrix C:

Bβ (i,j )= σ 2
β ·C(i,j ) . (6)

Here, C(i,j ) denotes a distance-based spatial correlation be-
tween the βs in two grid cells i and j , which is defined as

C(i,j )= e−(di,j /L)2/2, (7)

where di,j represents the distance between two grid cells i
and j . In Jin et al. (2018), the correlation length scale L
was configured to be 800 km, which was found to be suit-
able to simulate the main characteristics of the dust event
studied there. In this study, however, a smaller length scale
L= 300 km is used, which gives a higher spatial degree of
freedom, while it can still be resolved by the assimilation
due to the larger number of MODIS AOD and PM10 concen-
tration measurements.

With the covariance matrix Bβ , an ensemble (N = 200) of
samples of β is generated randomly. These ensemble sam-
ples are then applied in our dust model, and each of them
produces an emission forecast. The covariance of these emis-
sion fields are approximated as follows:

B≈
1

N − 1

N∑
i=1

(f ut,i −f ut )(f ut,i −f ut )
T, (8)

where f ut,i represents the emission vector computed using
the friction velocity threshold ensemble member i, while f ut
is the ensemble mean.

The observation term of the cost function, J PM
o and J AOD

o
quantify mismatch between dust simulation and PM10 and
between dust simulation and AOD measurements, respec-
tively.

J PM
o (f )=

1
2

m∑
i=1

{
yPM
i −HPM

i Mi(f )
}TOPM−1

i

·
{
yPM
i −HPM

i Mi(f )
}

(9)

J AOD
o (f )=

1
2

n∑
i=1

{
yAOD
i −HAOD

i Mi(f )
}T

·OAOD−1
i

{
yAOD
i −HAOD

i Mi(f )
}
, (10)

where m and n are the number of time steps within the as-
similation window; yPM and yAOD contain the pre-processed
PM10 and MODIS AOD measurements; M denotes the
LOTOS-EUROS/dust transport model that is driven by the
emission f , and HPM and HAOD are the observation oper-
ators that convert simulated dust concentrations into PM10
and AOD observation space. The PM10 and AOD observa-
tion mismatch terms are weighted by observation error co-
variance OPM and OAOD. The uncertainties in the observa-
tions are assumed to be independent, and hence both OPM

and OAOD are diagonal matrices.

Both the instrument and representing errors are considered
when the observation error covariance, OPM and OAOD, are
designed. The uncertainty (square root of the individual di-
agonal element in OPM) of the pre-processed PM10 measure-
ments for assimilation is assumed to be due to uncertainty
in the PM10 data and the non-dust PM10 bias correction.
We have used σ PM

=max(200, 10% · yPM
+ 180) to char-

acterize the uncertainty of PM10 data. It follows the choice
of 10 % in our previous study (Jin et al., 2018), with uncer-
tainty inflated for this application. This is mainly to prevent
the posterior from getting too close to the low-value PM10
observations and hence being model divergent. In addition,
the uncertainty of the non-dust PM10 simulation σBC that is
introduced in Sect. 2.2 is set to 40 % following the aerosol
simulation analysis over China using LOTOS-EUROS (Tim-
mermans et al., 2017). The integrated uncertainty σ integrated

for using the bias-corrected PM10 to represent the dust load
is then calculated as

σ integrated
= { (σ PM)2

+ (σBC)2
}
0.5 . (11)

Snapshots of σ PM and σ integrated distribution accompanying
the PM10 measurements shown in Figs. 2a.i, 3a.i, and 4a.i in
the three dust events are shown in Figs. S1c–d, S3c–d, and
S5c–d, respectively.

The integrated uncertainty of AOD measurements for as-
similation is also calculated as the sum of the instrument er-
ror and the error of the non-dust AOD bias correction. The
former is taken directly from the MODIS Deep Blue product,
while the uncertainty of non-dust AOD simulation is set to
40 % as well. Snapshots of the AOD instrument uncertainty
and integrated uncertainty with respect to the AOD observa-
tions in the three dust events can be found in Figs. S2c–d,
S4c–d, and S6c–d.

3.2 Assimilation window

Table 1 shows the timeline of the three severe dust events
studied here. These dust events have a short duration, and
therefore a single assimilation window of length 72, 72, and
48 h is used, respectively. Dust emissions occur at the start
of the assimilation window when a plume is lifted high to be
carried downwind. The PM10 network is only able to observe
the plume when it has moved downwind, and is already far
away from the source region. Therefore, assimilation win-
dows covering both the time of dust emission and the mo-
ment of observation are necessary. When the dust plume is
carried further southward or eastward, the error of the simu-
lated dust concentration grows steadily due to the accumula-
tion of dust transport and deposition uncertainty. Therefore,
AOD or PM10 measurements out of the assimilation window
help little in emission inversion and are therefore not used
here.
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4 Results and discussions

4.1 Dust storm inverse modeling

Using the assimilation system introduced in Sect. 3, the emis-
sion inversions were performed by assimilating the bias-
corrected PM10 and MODIS AODs processed in Sect. 2.2
and Sect. 2.3, which is referred to as multi-observation as-
similation in this study. First, the posterior emission analysis
is carried out in Sect. 4.1.1, then the dust simulation driven
by the posterior emission result is illustrated in Sect. 4.1.2.

4.1.1 Dust emission analysis

To assess the spatial pattern of the dust emission, the accu-
mulated emissions over the assimilation window are calcu-
lated for each of the dust events. Figure 6 shows the map
of the a priori and posterior accumulated dust emissions in
SD1, SD2, and SD3 over the potential source regions. The
a priori model simulation indicates that dust emission took
place over both the Alxa desert (part of the Chinese Gobi)
and the central region of the Mongolian Gobi desert during
SD1, and their maximum emission flux exceeded 200 g m−2.
Through assimilating the MODIS AODs and ground-based
PM10 concentration measurements, the emission field is esti-
mated. It indicates that emission took place in more grid cells
that are located in the Alxa desert and in eastern Mongolia.
However, the dust plume released from the Alxa desert did
not move far towards the south or the east, while Mongolian
dust was the main source of dust affection in northern China
as will be discussed in Sect. 4.3.

For the SD2 event, the accumulated a priori emissions are
rather high, especially around the border between China and
Mongolia. The emission accumulations in several grid cells
here are in the order of 300 g m−2, which results in an over-
estimation of surface dust concentration and AOD simulation
as shown in Fig. 3a.ii–b.ii. In contrast, the posterior simula-
tion estimates that the border region is almost free of dust
emission during the event, and the dust plume is actually at-
tributed to the dust emission from northern Mongolia. The
Alxa desert also contributed partially to the dust plume that
effected the FWP region.

For the SD3 event, the a priori emission simulation sug-
gests that most of the dust originated from the source regions
in China rather than from the bare lands in Mongolia. Es-
pecially in the Tengger (also part of the Chinese Gobi) and
Alxa deserts, the accumulated emissions reach values over
200 g m−2. By assimilating the MODIS AOD and PM10 con-
centration data, the posterior dust emission field is updated
and the assimilated estimate of the accumulation map is plot-
ted in Fig. 6c.ii. What is interesting about the result in the
posterior map is that a much smaller amount of dust is es-
timated to be emitted from the Tengger and Alxa deserts,
while sparsely vegetated regions in the northeastern part of
the Inner Mongolia province are estimated to be a significant

source. Dust from these regions is estimated to be transported
towards NCP and northeast China, as will be discussed later.
Close inspection of the posterior emission map shows that
the emission over the Mongolian and Chinese border region
was also one of the main sources in the SD3 event.

Apart from the spatial patterns of dust emission, the total
mass of the emissions from Mongolia and China was calcu-
lated and shown in Fig. 6d, which helps to evaluate the emis-
sion intensity of dust in these two countries. Although the
spatial patterns have been strongly changed by assimilation
of the MODIS and PM10 concentration measurements, the
posterior emission sums per country and event are in most
cases close to the a priori values. An exception is the value
for China in SD3, for which the total emission is decreased
from 15.4×106 to 7.1×106 t by the assimilation. The emis-
sion sums show that the Mongolian Gobi is a stronger source
of dust (37.5× 106 t) than the Chinese Gobi (19.9× 106 t).

The dust emission inversion successfully optimized the
dust simulation using different types of observations of the
dust plumes by adjusting the emission fields. The posterior
emission field not only helps us exploit the spatial pattern of
active dust sources, but also to simulate long-distance dust
transport more accurately. This could be used for evaluation
of the threats that dust imposes on human health, the trans-
port system, and the Earth system.

4.1.2 Simulated dust field

The impact of the assimilation was evaluated by comparing
the simulated observations from the a priori and posterior
simulations with the (bias corrected) observations. The pur-
pose of this paper is to have an emission field that is as accu-
rate as possible; therefore, we assimilated all available PM10
and MODIS AOD observations instead of leaving a subset
of them for independent validation. To quantify the perfor-
mance, the root mean square error (RMSE) that calculates the
deviation of the simulation with respect to the bias-corrected
measurements is calculated.

A snapshot of the a priori and posterior surface dust con-
centration and AOD during SD1 are shown in the middle
and right panels in Fig. 2, respectively. Both of the a pri-
ori and posterior simulations show a similar pattern as the
(bias-corrected) PM10 and AOD observations that are shown
in Figs. S1 and S2, or the raw data shown in the left panel
of Fig. 2. However, the dust concentrations are underesti-
mated in the a priori simulation in the entire region, resulting
in a PM10 RMSE of 833 µg m−3 and AOD RMSE of 1.36
and 1.53. Compared to the a priori simulation, the poste-
rior emission field simulated a more severe dust plume, and
the PM10 RMSE is reduced to 743 µg m−3 and the AOD
RMSE declined to 1.30 and 1.34, simultaneously. One im-
portant reason for this high error residue is the position mis-
match among the simulation and observations. For instance,
the plume front (red dashed line) that is visible in the MODIS
AOD retrievals in Fig. 2b.i is about 100 km ahead of the front
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Figure 6. Distribution of the a priori (i) and posterior (ii) accumulated dust emission for the SD1 (a), SD2 (b), and SD3 (c); the total priori
and posterior emission either from China or from Mongolia during SD1, SD2, and SD3 (d).

line shown in PM10 measurements in Fig. 2a.i. It is pos-
sible that the dust plume in the higher layers moved faster
and was further southeast than the dust cloud at the bottom
layer. However, this feature is not correctly captured by our
LOTOS-EUROS/dust model. Both the simulated plume of
AOD and surface dust concentration are in the same posi-
tion; the simulated plume fronts indicated in Fig. 2a.ii and
b.ii moved faster than the front line indicated by PM10 mea-
surements, but slower than the front line in the MODIS
AOD. The mismatch in simulated vertical structure is mostly
likely caused by uncertainty in the advection transport. The
two-dimensional grid distortion technique (Jin et al., 2021),
which is independent of emission inversion, could adjust the
horizontal position of the dust cloud simulation to better fit
the available measurements, but is not yet able to adjust the
vertical structure as is required here. A three-dimensional
grid distortion with data measuring the vertical profile of the
dust cloud is planned to solve this issue in our future re-
search.

Figure 3 shows snapshots of original AOD and PM10 mea-
surements, as well as the a priori and posterior AOD and sur-
face dust concentration simulation at 28 March 11:00 (CST)
within SD2. What stands out in the a priori AOD simula-
tion in Fig. 3a.ii is the overestimation, especially at the center
of the plume in the NCP region. The standard model simu-
lated AOD values even larger than 4, while the measurements
were around 2 to 3. It should be noted that all the AOD mea-
surements shown in Fig. 3a.i contain both the dust and non-
dust fractions, and the baseline-removed AODs which can
be found in Fig. S4 are therefore a bit lower. By assimilating
these bias-corrected measurements, posterior AOD simula-
tions in Fig. 3a.iii are now in better agreement with the AOD
observations. The AOD RMSE is therefore reduced from
0.99 in the a priori simulation to 0.81 in the posterior simula-
tion. The improvement is also seen in the surface PM10 sim-
ulation, where the RMSE score decreases from 471 µg m−3

in the a priori to 359 µg m−3 in the posterior simulation.
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Scenes of original AOD and PM10 measurements and the
a priori and posterior simulated AOD and surface dust con-
centration at 15 April 11:00 (CST) during SD3 are plotted in
Fig. 4. It is apparent from this figure that dust concentrations
are overestimated by the model within this event as well. For
a case in point, the PM10 measurements in Fig. 4a.i show that
FWP is almost free of dust at that moment, and this is con-
firmed by the baseline-removed PM10 measurements shown
in Fig. S5. The multi-observation assimilation successfully
resolves the PM10 and AOD measurements. The simulation
driven by the posterior emission field is in much better agree-
ment with the measurements, with the PM10 RMSE reduced
from 891 to 144 µg m−3 and the AOD RMSE drastically de-
creased from 1.79 to 0.73.

4.2 AOD-only or PM10-only assimilation evaluation

Next to the multi-observation (AOD and PM10 together)
emission inversion described in Sect. 4.1, assimilation tests
with the same configurations but using only AOD or PM10
observations are carried out as well. They are referred to as
AOD-only and PM10-only assimilation in this study. The dif-
ference and added value of the multi-observation assimila-
tion vs. AOD-only/PM10-only assimilation are analyzed. In
addition, once AOD or PM10 measurements are assimilated
alone, the other one will be used as the independent data for
validation.

Figure 7 shows snapshots of the dust AOD and surface
concentration simulation driven by the AOD-only (panels a.ii
and b.ii) and PM10-only (panels a.iii and b.iii) posterior emis-
sion field with the SD3. It clearly illustrates the typical re-
sults that are observed in the other two events. As men-
tioned above, the AOD RMSE is reduced from 1.79 (the a
priori) to 0.72 in the multi-observation assimilation. Once
the MODIS AODs are assimilated alone, better dust AOD
simulation performance is obtained, with the AOD RMSE
further reduced to 0.69. The effectiveness of emission esti-
mation through assimilating AOD is validated using the in-
dependent PM10 measurements; the PM10 RMSE decreased
from 891 µg m−3 (the a priori) to 210 µg m−3 simultaneously.
However, the PM10 RMSE stays at a slightly higher level
compared to 143 µg m−3 as obtained in the multi-observation
assimilation. Similarly, the PM10-only assimilation provides
a further lower PM10 RMSE 133 µg m−3, but the simulated
AOD field (RMSE= 0.77) is not as accurate as the one from
the multi-observation assimilation.

Scenes of dust AOD and surface concentration simulation
from the AOD-only and PM10-only assimilation in SD1 and
SD2 can be found in Figs. S7 and S8. The corresponding
AOD and PM10 RMSEs are calculated and shown in Table 2.
Very similar trends are found in the assimilation tests within
SD2. For SD3, the AOD-only or PM10-only assimilation also
results in closer dust simulation to the assimilated measure-
ments. However, poor performance (compared to the a pri-
ori) is obtained against the independent observations. For in-

stance, driven by the emission through assimilating the AOD,
the posterior simulated dust concentrations are very different
from the PM10 measurements, and the RMSE is lifted up to
887 µg m−3 from 833 µg m−3 (a priori). This is mainly be-
cause the AOD and PM10 measurements indicate the differ-
ent dust plume position in the simulation space as described
in Sect. 4.1.2, and therefore the assimilation would lead the
dust simulation into mismatch with the independent one.

Therefore, any AOD-only or PM10-only assimilation
would only result in the posterior being closer to the assim-
ilated data, but the posterior simulation in the independent
observation space is not ensured to be improved. It is even
possible that the posterior simulation is misled when the dust
vertical profile is not well reproduced (such as in our simula-
tion over SD1) or systematical observation bias is present. In
this case, multi-observation assimilation as used in this study
is a safe choice to avoid the model divergence.

4.3 Source apportionment

China’s government has launched several large-scale ecolog-
ical engineering projects to combat the environmental prob-
lems in northern China during recent decades. One of the
largest is the Three-North Shelter Forest Program, which
aims at increasing the vegetation cover up to 15 % by 2050
(Niu et al., 2019). Several studies (Shao et al., 2013; Tan
and Li, 2015) reported that the vegetation recovery weak-
ened dust storms substantially. In contrast, Mongolia has ex-
perienced ever-increasing land degradation and desertifica-
tion (Meng et al., 2020), which aggravates the spring dust
storms (Han et al., 2021). To evaluate the roles of Mongo-
lian and Chinese Gobi deserts in the 2021 super sandstorms
quantitatively, source apportionment tests based on the esti-
mated emission field are carried out. These source apportion-
ment tests focus on the two dust-affected mega-city clusters
in northern China, namely the North China Plain (NCP) and
the Fenwei Plain (FWP), and aim to calculate whether the
dust originates from transnational transport from Mongolia
or from domestic sources in China.

Two LOTOS-EUROS/dust simulations were conducted
with the posterior emission field obtained in the multi-
observation assimilation in Sect. 4.1.1, but with either only
the emissions in Mongolia or only the emissions in China en-
abled. As can be seen in the time series of the hourly PM10
concentration measurements in NCP and FWP in Fig. 1c–d,
after the peak of the dust had passed by the NCP and FWP
regions, they still suffered from some less severe dust affec-
tion. Therefore, longer simulation windows are used in these
source apportionment tests to simulate the full life cycle of
these dust events as can be seen in Table 1. Different from
cases caused by other pollutants, the spring dust events in
East Asia are usually short-term events, with concentrations
of dust that quickly increase to huge levels, but also drop
down quickly after the storm has passed by. Metrics such as
daily average dust concentration do not reflect the dust inten-
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Figure 7. The posterior dust surface dust concentration and AOD simulation either driven by the AOD-only or driven by the PM10-only
assimilation emission result during SD3. (a.i, b.i) The bias-corrected (BC) PM10 and AOD observations; (a.ii, b.ii) the dust surface concen-
tration and AOD simulation driven by the posterior emission from AOD-only assimilation; (a.iii, b.iii) the dust surface concentration and
AOD result driven by the posterior emission from PM10-only assimilation at 11:00, 15 April.

Table 2. Evaluation (RMSE) of the posterior dust simulation either by assimilating AOD, or by assimilating PM10, or by assimilating both
of them.

Timeline Priori Multi-observation AOD only PM10

SD1 PM10 at 10:00, 15 March 833 µg m−3 743 µg m−3 887 µg m−3 692 µg m−3

AOD at 10:00, 15 March 1.36 1.30 1.31 1.66
AOD at 12:00, 15 March 1.53 1.34 1.26 1.63

SD2 PM10 at 11:00, 28 March 471 µg m−3 359 µg m−3 366 µg m−3 351 µg m−3

AOD at 11:00, 28 March 0.99 0.81 0.79 0.89

SD3 PM10 at 11:00, 15 April 891 µg m−3 143 µg m−3 210 µg m−3 133 µg m−3

AOD at 11:00, 15 April 1.79 0.72 0.69 0.77

sity directly. Therefore, a dust-deposition index is introduced
that measures the sum of dry and wet deposition to quantify
the impact of the dust in the studied regions.

Figure 8 shows the spatial pattern of the deposition for dust
originating from China (left panels) and originating from
Mongolia (right panels) in SD1, SD2, and SD3. The most in-
teresting finding is that the sources in Mongolia play a much
more important role in dust pollution in northern China than
the sources in China itself. As shown in Fig. 8a.i, a huge
quantity of particles were released in the Alxa desert during
SD1, but these were mainly transported westward and only a
small fraction of them moved to the densely populated areas.
During SD2, the deposition of dust released from China is
non-negligible, but the total deposition is still dominated by
dust released from Mongolia. Within SD3, the dust particles
emitted from the Chinese Gobi were spread all over northern
China and hence played a more significant role.

The total deposition in the NCP and FWP regions was cal-
culated and is shown in Fig. 8d. For the NCP region, 81×103,
118×103, and 70×103 t of Mongolian dust was deposited

during SD1, SD2, and SD3 events, while the total deposi-
tion from Chinese desert was about 8.3×103, 20×103, and
93×103 t, respectively. For the other important cluster FWP,
4.3×103, 22×103, and 24×103 t were attributed to domes-
tic sources, and 20×103, 57×103, and 7.5×103 t of dust
were attributed to transnational transport from Mongolia. In
general, the Mongolian Gobi poses a more severe threat to
the FWP and NCP regions than the Chinese Gobi. About
63 % of the dust deposition in FWP is attributed to transna-
tional transport. Over NCP, this value further increases up to
69 %.

5 Summary and future work

In spring 2021, three super dust storms occurred in East
Asia after being absent for one and a half decades, which
brought enormous health damages and property losses. To
exploit the reappearing super sandstorms, inverse modeling
was conducted through optimizing the dust simulation with
observations of MODIS AODs and ground-based PM10 con-
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Figure 8. Spatial patterns of deposition of dust originating from China (i) and from Mongolia (ii). Panel (d) shows the total mass of dust
deposition on NCP and FWP either from China or from Mongolia during SD1 (a), SD2 (a), and SD3 (c).

centration from the Chinese MEP air-quality monitoring net-
work. Data quality controls were designed and applied in or-
der to use the AOD and PM10 measurements for representing
the dust load. Based on the most likely emission field cal-
culated by the inversion, source apportionment was further
performed to derive the contribution of transnational trans-
port from Mongolia and domestic dust emission to the dust
pollutant level in northern China.

Emission inversion was successfully performed by as-
similating the AOD and PM10 concentration measurements.
The multi-observation assimilation showed that windblown
dust emission occurred actively both in Chinese and Mon-
golian Gobi deserts during the events studied. Overall, about
37.5× 106 t of dust was released in Mongolia, and the to-
tal emission from the Chinese Gobi was also as high as
19.9× 106 t. The simulated AOD and surface dust concen-
tration driven by the posterior emission fields have been vali-
dated to be in better agreement with the observations. To ob-
tain a further accurate dust field analysis, however, vertical

structure-adjusting techniques such as 3D grid distortion are
then in demand for fully resolving the ground-based PM10
and column-integrated AOD together, and will be explored
in our future work.

Emission inversions that only assimilated the AOD or
PM10 concentration were also carried out. The comparison
against the multi-observation assimilation showed that AOD-
only or PM10-only assimilation would result in the posterior
that is closer to the assimilated data, but the improvement
of the simulation in the independent observation space is not
ensured. Especially when vertical structure is not well repro-
duced (such as in the simulation over SD1), the posterior sim-
ulation would be divergent. Under this circumstance, multi-
observation assimilation as used in this study is the more re-
liable choice.

A source apportionment study was then performed based
on the multi-observation assimilation-estimated emission by
estimating the origin of the dust that was deposited in re-
gions of northern China. It indicated that the Mongolian Gobi
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posed more severe threats to the Fenwei Plain (FWP) and
the North China Plain (NCP) than the Chinese Gobi within
the three 2021 spring dust storms. For FWP, about 63 % of
the dust deposition originated from transnational transport
from Mongolia. In NCP, the Mongolian dust contribution
was also as high as 69 %. To further explore the roles of spe-
cific deserts (such as the Alxa and Tengger deserts in Chinese
Gobi) and long-distance transport patterns on the dust affec-
tion in northern China, more complex source apportionment
tests are planned in our future research.
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