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Abstract
The features in a high-dimensional biomedical prediction problem are oftenwell
described by low-dimensional latent variables (or factors). We use this to include
unlabeled features and additional information on the features when building
a prediction model. Such additional feature information is often available in
biomedical applications. Examples are annotation of genes, metabolites, or 𝑝-
values from a previous study. We employ a Bayesian factor regressionmodel that
jointly models the features and the outcome using Gaussian latent variables. We
fit the model using a computationally efficient variational Bayes method, which
scales to high dimensions. We use the extra information to set up a prior model
for the features in terms of hyperparameters, which are then estimated through
empirical Bayes. The method is demonstrated in simulations and two applica-
tions. One application considers influenza vaccine efficacy prediction based on
microarray data. The second application predicts oral cancer metastasis from
RNAseq data.
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1 INTRODUCTION

Modern biomedical research utilizes models based on large sets of omics features to predict outcomes such as categorical
disease status, time-to-event, or continuous anthropomorphic measures. The number of omics features may run in the
tens of thousands (in, e.g., genomics), but the number of samples may be low, due to high measurement costs, logistics,
or the availability of subjects. The high-dimensionality of the data (i.e., 𝑝 > 𝑛) complicates model estimation.
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Here, we propose a novel method, based on factor models, that enhances high-dimensional prediction in two ways.
First, it can incorporate unlabeled samples, for which the predictor features are available, but not the response/outcome.
Second, it allows incorporation of prior information on the features, for instance from previous studies, by automatically
adapting prior modeling parameters. Both types of external data are often available in omics studies.

1.1 Contributions and relation to the literature

Several authors have argued that the high-dimensional feature space in omics data arises from noisy observations on a
lower dimensional latent space. West (2003) shows that gene expression data from breast cancer patients are indeed well
described with a lower dimensional (linear) latent space. Moreover, Carvalho et al. (2008) improve the prediction of the
mutant p53 gene versus thewild type in breast cancer patients with the lower dimensional structure of the gene expression
data.West (2003) and Carvalho et al. (2008) use a Bayesian linear factor (regression)model approach to describe the latent
space. Mes et al. (2020) is an example of a frequentist latent space approach (technically a hybrid between Bayes and
frequentist) to a prediction from radiomic features. In this paper, we use this observation to include external information
that can enhance the fitting of a high-dimensional prediction model.
Unlabeled feature data are one type of external information. Such data may, for example, come from online repos-

itories or previous studies with the same set of features but with a different response. The inclusion of unlabeled
data in prediction problems, termed semisupervised learning in the machine learning community, has received plenty
of attention (see Zhu & Goldberg, 2009, for an introduction). The factor regression model can naturally exploit such
unlabeled data, as shown in Bańbura and Modugno (2014) and Liu and Rubin (1998) and argued convincingly in
Liang et al. (2007).
In addition, extra information on the features, termed codata, is often available. This may consist of a partitioning of the

features, such as pathway membership of the genes, or continuous information, such as 𝑝-values from a previous study.
Recently, several methods have been introduced that use the codata to improve prediction (see, e.g., Münch et al., 2021; te
Beest et al., 2017; van Nee et al., 2020; van de Wiel et al., 2016).
Our contribution in the current paper is to combine these two types of external data. We extend the codata approach

(more specifically, a group-adaptive empirical Bayes approach akin to that in Münch et al., 2021) to the Bayesian
factor regression model that can include unlabeled data. We achieve this by developing a variational Bayes proce-
dure that scales to high dimensions, augmented with an empirical Bayes procedure to estimate hyperparameters that
encode codata. We also extend the method to a mixed-mode factor analysis, where the outcome is binary instead
of continuous.
The current model differs from Liang et al. (2007) in two main ways: (i) it considers the more flexible factor model

as opposed to the principal component regression model in Liang et al. (2007), and (ii) it integrates the factor and
regression models into one framework, while Liang et al. (2007) take a heuristic two-step approach that separates the
latent space analysis and regression. Our approach also differs from Avalos-Pacheco et al. (2022) in several ways: (i)
we focus throughout on the prediction of a single outcome, using a prior that differentiates between features and out-
come, whereas Avalos-Pacheco et al. (2022) focus more on dimension reduction and in the setting of predictive survival
regression takes a more heuristic approach to factor regression through separate latent space analysis and regression
steps. We (ii) also consider the binary response setting; (iii) provide full (variational) posteriors next to point esti-
mates; (iv) include a grouping of the features, whereas Avalos-Pacheco et al. (2022) groups the observations (batch
effect); (v) develop empirical Bayes estimation of hyperparameters, which is essential to our approach; (vi) allow for
semisupervised learning.

1.2 Overview

Simulations show that the approach is competitive or even outperforms classical approaches in some settings.Applications
to influenza vaccine efficacy prediction and oral cancer lymph nodemetastasis prediction show that the approach has the
potential to enhance predictive performance compared to existing methods. The remainder of the paper is organized as
follows: Sections 2 and 3 describe the model and its estimation in detail. The approach is demonstrated in a simulated
setting in Section 4 and two real data settings in Section 5. We conclude with a short discussion on the pros and cons of
the method in Section 6.
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2 MODEL

2.1 Observational model

The observations consist of centered 𝑝-dimensional feature vectors 𝐱𝑖 with corresponding outcomes 𝑦𝑖 , 𝑖 = 1, …𝑛 and
(possibly) an additional sample of feature vectors 𝐱𝑖 , 𝑖 = 𝑛 + 1,… , 𝑛 + 𝑚. We assume that the observations for different 𝑖
are independent, that all feature vectors are identically distributed, and that a typical pair (𝐱𝑖, 𝑦𝑖) follows a factor regression
model (Liang et al., 2007) given for a single observation (𝐱, 𝑦) as

𝑦|𝝀 ∼ (𝜷T𝝀, 𝜎2), (1a)

𝐱|𝝀 ∼𝑝(𝐁
T𝝀,𝚿), (1b)

𝝀 ∼𝑑(𝟎, 𝐈𝑑). (1c)

Here 𝝀 are latent factor variables, 𝚿 = diag(𝜓𝑗), 𝑗 = 1… , 𝑝, are the uniqueness (residual variances), 𝜎2 is the error
variance, and 𝐁 and 𝜷 are the factor loadings. The latent factor dimension 𝑑 is initially assumed to be fixed and known.
The latent factors are determined only up to rotational invariance, but this does not play a major role in prediction; see
Section 2 in the Supporting Information for discussion.
Model (1) implies a joint multivariate Gaussian distribution for

[
𝐱T 𝑦

]T
(not conditioned on 𝝀), and a prediction of a

new outcome from observed new features �̃� is given by the conditional expectation:

𝔼(�̃�|�̃�) = �̃�T(𝐁T𝐁 +𝚿)−1𝐁T𝜷 =∶ �̃�T𝜷. (2)

We shall also develop the method for the case that the outcomes 𝑦𝑖 are sums of 𝑁𝑖 disjoint binary events with a shared
probability of success. In this case, the linear outcome model (1a) is replaced with the logistic counterpart:

𝑦|𝝀, 𝜷, 𝛽0 ∼ 
(
𝑁, expit(𝛽0 + 𝜷T𝝀)

)
, (3)

where (𝑁, 𝜋) denotes the binomial distribution witha number of trials 𝑁 and success probability 𝜋. Note that the
logistic model includes an intercept 𝛽0 to accommodate unbalanced data, whereas the linear model simply considers
standardized data.
Feature and factor models (1b) and (1c), in combination with outcome model (3) result in a mixed-mode factor model,

with Gaussian and binomially distributed features and outcomes, respectively. This mixed-mode extension is detailed in
Section 5 of the Supporting Information.

2.2 Bayesian prior model

In the Bayesian version of the model, the parameters 𝜃 ∶= {𝐁, 𝜷, 𝜓1, … , 𝜓𝑝, 𝜎2} are endowed with conditionally conjugate
prior distributions. For notational convenience, write 𝜓𝑝+1 = 𝜎2, and let 𝐛𝑗 be the 𝑗th column of the matrix 𝐁. Consider
the priors:

𝐛1, … , 𝐛𝑝, 𝜷|𝜓1, … , 𝜓𝑝, 𝜓𝑝+1 ∼ 𝑝+1∏
𝑗=1

𝑑(𝟎𝑑, 𝜓𝑗𝛾𝑗𝐈𝑑), (4a)

𝜓1, … , 𝜓𝑝+1 ∼

𝑝+1∏
𝑗=1

Γ−1(𝜅𝑗, 𝜈𝑗), (4b)

where Γ−1(𝜅, 𝜈) denotes the inverse Gamma distribution with shape 𝜅 and scale 𝜈. The hyperparameters 𝛾𝑗 will be chosen
to include prior information on the features (see the next section) and be estimated by an empirical Bayes method (see
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F IGURE 1 Model (1) with partitioned features as a Bayesian network, where the vertical dotted lines denote a partitioning of features
𝑋1, … , 𝑋𝑝 into groups 𝑔 = 1,… , 𝐺. Green and blue circles denote latent and observed variables, respectively. Note that 𝛿𝑗 and 𝜖 are implicit in
model (1) and omitted here for brevity. Here they denote the Gaussian, centered errors. That is, we have 𝑦 = 𝜷T𝝀 + 𝜖, 𝐱 = 𝐁T𝝀 + 𝜹 , with
𝜖 ∼ (0, 𝜎2) and 𝜹 ∼𝑝(0,𝚿)

Section 3.4). The prior variances of the 𝐛𝑗 and 𝜷 scale with the uniqueness and error variance𝜓𝑗 , as is common in Bayesian
(univariate) linear models. This is mostly for computational reasons but is often justified as a solution to scaling problems
in multivariate regression problems (Leday et al., 2017).
In the Bayesian model, a prediction �̃� from features �̃� is obtained by averaging over the posterior:

𝔼∗(�̃�|�̃�) = �̃�T𝔼𝐁,𝜷,𝚿|�̄�[(𝐁T𝐁 +𝚿)−1𝐁T𝜷] =∶ �̃�T𝜷∗. (5)

In practice, this expectation is hard to compute. Here, we use a combination of variational Bayes for posterior com-
putation and Monte Carlo simulation for approximation of (5). An alternative to Monte Carlo simulation is the Taylor
approximation, as explained in Section 4.3 of the Supporting Information.

2.3 Feature-partitioning based on codata

In some applications, the features naturally come partitioned into groups 1, … ,𝐺 . Examples are the distinct functional
networks of genes, features with significant versus features with nonsignificant association to the outcome in a previous
study, and feature groups based on prior expert knowledge of feature importance (see, e.g., Münch et al., 2021). Figure 1
displays model (1) with partitioned features as a Bayesian network.
Partitioning can be included in themodel through priormodeling of (i) the factor loadings𝐁 or (ii) the residual variances

𝚿. Here, we pursue option (i) and model the feature structure by considering groupwise constant (up to scaling by the
uniqueness 𝜓𝑗) prior variances, that is, in (4) we choose a single value of 𝛾𝑗 for every group of features: ∀𝑗 ∈ 𝑔 ∶ 𝛾𝑗 = 𝛾𝑔,
for some common value 𝛾𝑔. Thus feature effects are shrunk similarly in the same group. A small value of 𝛾𝑔 results in
more shrinkage of feature effects in group 𝑔 compared to groups with a larger value.
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Thus the prior expected relevance of a group’s features is encoded in themodel through 𝛾𝑔. Setting the value of this vari-
ance parameter is not straightforward in most applications. Section 3.4 proposes an empirical Bayes approach to estimate
these parameters from the data.

3 ESTIMATION

To describe our model fitting procedure, it is convenient to recognize the mathematical symmetry between 𝑦 and 𝐱 in
model (1), and write �̄� =

[
𝐱T 𝑦

]T
, �̄� =

[
𝐁 𝜷
]
, and �̄� = diag(𝜓, … , 𝜓𝑝, 𝜎2). Setting the dimension to �̄� = 𝑝 + 1, we can then

consider the simplified, but an equivalent form of (1):

�̄�|𝝀 ∼�̄�(�̄�
T𝝀, �̄�) (6a)

𝝀 ∼𝑑(𝟎, 𝐈𝑑). (6b)

We first consider estimation in the model with observations �̄� = (𝐱𝑖, 𝑦𝑖, 𝑖 = 1, … , 𝑛) with only labeled features, and then
indicate the changes to include unlabeled features in Section 3.2.

3.1 Variational Bayes

Themaximum likelihood estimation ofmodel (6) is straightforwardwhen 𝑛 > �̄�, andmany algorithms are available in the
literature. In the �̄� > 𝑛 domain, estimation is possible through penalized likelihood maximization. In the current paper,
the focus is on the Bayesian model, so we refer the reader to Sections 3.1 and 3.2 of the Supporting Information for details
on the maximum (penalized) likelihood estimation of (6).
Bayesian posteriors are commonly approximated through Markov chain Monte Carlo (MCMC) sampling. Sampling

from the posterior of models (6) and (4) is relatively straightforward (see Supporting Information Section 4.1 for a Gibbs
sampler). However, due to the high dimensionality of the parameters, sampling is relatively slow. In addition, the MCMC
chain showed poormixing in all investigated applications and simulations, thus requiring a prohibitive number of samples
to properly explore the posterior. Here, we avoidMCMC sampling in favor of amean-field variational Bayes approximation
to the posterior.
Variational Bayes (VB) methods search for an approximation to the posterior distribution by minimizing the Kullback–

Leibler divergence of the posterior distribution to a class of distributions of a given form. Mean-field variational Bayes
takes the latter class as the set of product measures given some partitioning of the parameter. In our setting, the parameter
includes the latent variables 𝚲 =

[
𝝀1 ⋯ 𝝀𝑛

]T
and is partitioned as (𝚲, �̄�, �̄�). Thus we are looking for an approximation

to the posterior density of the form

𝑝(𝚲, �̄�, �̄�1, … , �̄��̄�|�̄�) ≈ 𝑞(𝚲)𝑞(�̄�)𝑞(�̄�1, … , �̄��̄�), (7)

where the 𝑞 are arbitrary densities of the corresponding argument, with a slight abuse of notation denoted by the same
symbol. Even though themean-fieldmethod allows general forms of these densities, it can be shown that given exponential
families with conjugate priors, theminimizing densities 𝑞 remain in the family (Blei et al., 2017). In our case,minimization
leads to (see Supporting Information Section 4)

𝑞(𝚲)
𝐷
=

𝑛∏
𝑖=1

𝑑(𝝓𝑖, 𝚵), (8a)

𝑞(�̄�)
𝐷
=

�̄�∏
𝑗=1

𝑑(𝝁𝑗,𝛀𝑗), (8b)

𝑞(�̄�1, … , �̄��̄�)
𝐷
=

�̄�∏
𝑗=1

Γ−1(𝑛∕2 + 𝑑∕2 + 𝜅𝑗, 𝜁𝑗). (8c)
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The so-called variational parameters on the right-hand side are not given in the closed form. However, a coordinate ascent
algorithm leads to an iterative scheme to update the parameters given the current values to the other parameters. Standard
variational computations, detailed in Supporting Information Section 4, give these updates as

𝝓𝑖 =

{
�̄�∑
𝑗=1

𝔼(�̄�−1
𝑗
)
[
𝕍(�̄�𝑗) + 𝔼(�̄�𝑗)𝔼(�̄�

T
𝑗
)
]
+ 𝐈𝑑

}−1

𝔼(�̄�)𝔼(𝚿
−1
)�̄�𝑖, 𝑖 = 1, … , 𝑛, (9a)

𝚵 =

{
�̄�∑
𝑗=1

𝔼(�̄�−1
𝑗
)
[
𝕍(�̄�𝑗) + 𝔼(�̄�𝑗)𝔼(�̄�

T
𝑗
)
]
+ 𝐈𝑑

}−1

, (9b)

𝝁𝑗 =
[
𝔼(𝚲T)𝔼(𝚲) + 𝑛𝕍(𝝀𝑖) + 𝛾

−1
𝑗
𝐈𝑑

]−1
𝔼(𝚲T)�̄�𝑗, 𝑗 = 1,… , �̄�, (9c)

𝛀𝑗 = 𝔼(𝜓
−1
𝑗
)−1
[
𝔼(𝚲T)𝔼(𝚲) + 𝑛𝕍(𝝀𝑖) + 𝛾

−1
𝑗
𝐈𝑑

]−1
, 𝑗 = 1,… �̄�, (9d)

𝜁𝑗 = �̄�
T
𝑗
�̄�𝑗∕2 − 𝔼(�̄�

T
𝑗
)𝔼(𝚲T)�̄�𝑗 + tr

[
𝔼(𝚲T)𝔼(𝚲)𝕍(�̄�𝑗)

]
∕2 + 𝑛tr

[
𝕍(𝝀𝑖)𝕍(�̄�𝑗)

]
∕2 (9e)

+𝔼(�̄�T
𝑗
)𝔼(𝚲T)𝔼(𝚲)𝔼(�̄�𝑗)∕2 + 𝑛𝔼(�̄�

T
𝑗
)𝕍(𝝀𝑖)𝔼(�̄�𝑗)∕2 + 𝛾

−1
𝑗
𝔼(𝐛T

𝑗
)𝔼(𝐛𝑗)∕2

+𝛾−1
𝑗
tr
[
𝕍(𝐛𝑗)

]
∕2 + 𝜈𝑗, 𝑗 = 1,… , �̄�,

where we slightly abuse notation and let �̄�𝑖 and �̄�𝑗 denote the 𝑖th row and 𝑗th column of �̄�, respectively. The expectations
and variances are

𝔼(�̄�−1
𝑗
) = (𝑛∕2 + 𝑑∕2 + 𝜅𝑗)∕𝜁𝑗, 𝑗 = 1,… , �̄�,

𝔼(�̄�𝑗) = 𝝁𝑗, 𝑗 = 1,… , �̄�,

𝕍(�̄�𝑗) = 𝛀𝑗, 𝑗 = 1,… , �̄�,

𝔼(𝚲) =
[
𝝓1 … 𝝓𝑛

]T
=∶ 𝚽,

𝕍(𝝀𝑖) = 𝚵, 𝑖 = 1, … , 𝑛.

These formulas contain cyclic dependencies and are updated until convergence. Point estimates of the prediction rule
in (5) are calculated by averaging Monte Carlo draws from the estimated VB posterior. As an alternative (not used in
the simulation and application sections), we introduce a slightly faster Taylor approximation to the prediction rule in
Section 4.3 of the Supporting Information.
Model (1) describes a covariancematrix𝐁T𝐁 +𝚿 of general form for 𝐱. However, standardized data are better described

by a correlationmatrix. In the frequentist setting, the general covariancemodel is easily extended to the correlationmodel
by restriction of the likelihood to the space of correlation matrices, which in fact is the default setting in the R package
factanal. In theBayesian setting, this requires eithermore intricate priormodeling or post hoc corrections of the posterior
distribution. Here, we opt for the latter. Details are given in Supporting Information Section 4.4, togetherwith a discussion
of a possible future direct correlation modeling approach.

3.2 Unlabeled observations

Next, we adapt the model and estimation procedure to allow for unlabeled observations, that is, a sample 𝐱𝑖 , 𝑖 = 𝑛 +
1,… , 𝑛 + 𝑚 from the same distribution as 𝐱𝑖 , 𝑖 = 1, … , 𝑛, but without corresponding outcome variables. As detailed in
Liang et al. (2007), these extra data points can greatly benefit prediction. This can also be seen by inspection of (2), which
shows that the predictions 𝔼(�̃�|�̃�) depend on the observational model for 𝐱 through 𝐁 and 𝚿. We redefine the data as
�̄� = (𝐱𝑖, 𝑦𝑖, 𝑖 = 1, … , 𝑛; 𝐱𝑖, 𝑖 = 𝑛 + 1,… , 𝑛 + 𝑚).
To fit the model with the extended dataset, we treat the unobserved labels 𝑧𝑖 , 𝑖 = 𝑛 + 1,… , 𝑛 + 𝑚, of the additional

𝐱𝑖 as missing data, and either apply the expectation-maximization (EM) algorithm for (penalized) maximum likelihood
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estimation or treat the labels as additional parameters in the Bayesian approach. For 𝐳 =
[
𝑧𝑛+1 ⋯ 𝑧𝑛+𝑚

]T
both procedures

are based on the full data likelihood 𝑝(𝐗, 𝐳, 𝐲|�̄�, �̄�) (Bańbura & Modugno, 2014; Liu & Rubin, 1998). Section 3.3 in the
Supporting Information describes the EM algorithm for (penalized) maximum likelihood estimation. Here we focus on
the Bayesian model.
In the Bayesian model, the unobserved outcomes are now included in the posterior distribution. The variational Bayes

posterior approximation (7) is augmented as

𝑝(𝚲, �̄�, �̄�1, … , �̄��̄�, 𝐳|�̄�) ≈ 𝑞(𝚲)𝑞(�̄�)𝑞(�̄�1, … , �̄��̄�)𝑞(𝐳),
where the extra factor resulting from the unobserved labels is given by

𝑞(𝐳)
𝐷
=
∏𝑛+𝑚

𝑖=𝑛+1
 (𝜐𝑖, 𝜒), with

𝜐𝑖 = 𝔼(�̄�
T
�̄�)𝔼(𝝀𝑖),

𝜒 = 𝔼(�̄�−1�̄� )
−1.

In addition, in the parameter updates of the VB algorithm, the term 𝟙𝑗=�̄�𝑚𝕍(𝑧𝑖)∕2 is added to (9e) and all occurrences of
�̄�𝑖 and �̄�𝑗 in (9) are replaced with �̃�𝑖 and �̃�𝑗 , where

�̃� =

[
𝐗 𝐲

𝔼(𝐳)

]
, with 𝔼(𝑧𝑖) = 𝜐𝑖

Supporting Information Section 4.1 contains more details on the inclusion of unlabeled observations in the (approximate)
Bayesian posterior computations through MCMC. Although not shown here due to brevity, the unobserved outcome
approach is straightforward to extend to an unobserved features approach.

3.3 Latent dimension

Although we initially assumed 𝑑 to be the true latent dimension, in general, it needs to be estimated. Methods for dimen-
sion estimation are plentiful in the literature (see, e.g., Preacher et al., 2013; Zwick & Velicer, 1986). Our modest aim of
accurate prediction does not require correct estimation of the latent dimension, as even the true latent dimension does
not always lead to optimal predictions (Goeman, 2006). Without this requirement of correct latent dimension estimation,
we resort to the simple and fast Kaiser criterion. The Kaiser criterion selects 𝑑 that retains dimensions with variance con-
tributions larger than that of the average feature 𝐱. This amounts to setting 𝑑 =

∑𝑝

𝑗=1
𝟙{𝑣𝑗 > 1}, with 𝑣𝑗 , 𝑗 = 1,… , 𝑝, the

eigenvalues of the correlation matrix. That is, we set 𝑑 to the number of eigenvalues of the correlation matrix of 𝐗 larger
than one.

3.4 Hyperparameters and starting values

The Bayesian model requires a choice of hyperparameter 𝛾𝑔, that is, the feature group-specific prior variances of the
loadings, and the prior parameters of the uniqueness, 𝜅𝑗 and 𝜈𝑗 . Choosing 𝛾𝑔 by hand requires intricate prior expert
knowledge, which might not be available. An alternative is to estimate them from the data using empirical Bayes. Or, if
we know the overall scale of 𝛾𝑔, but not the group-specific deviations, we may reparameterize as 𝛾𝑔 = 𝛾𝛾′𝑔, fix the overall
scale 𝛾, and estimate the group-specific multipliers 𝛾′𝑔.
In both empirical Bayes settings, we maximize the marginal likelihood (constrained maximization for the second

approach). Directmarginal likelihoodmaximization requires a calculation of a𝑝-dimensional integral for which no closed
form is available. With 𝑝 large (i.e., the high-dimensional setup considered here), an EM algorithm with iterations

𝜸(𝑘+1) = argmax
𝜸

𝔼𝜃|𝐲[log 𝑝(�̄�|�̄�1, … , �̄��̄�)|𝜸(𝑘)],
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where 𝜸 =
[
𝛾1 ⋯𝛾𝐺

]T
is computationallymuchmore feasible.With a variational Bayes approximation of the expectation,

this results in

𝜸(𝑘+1) = argmax
𝜸

⎧⎪⎨⎪⎩−
1

2

𝐺∑
𝑔=1

𝛾−1𝑔
∑
𝑗∈𝑔

𝔼(�̄�−1
𝑗
)
{
tr
[
𝕍(�̄�𝑗)

]
+ 𝔼(�̄�T

𝑗
)𝔼(�̄�𝑗)

}
−
𝑑

2

𝐺∑
𝑔=1

|𝑔| log 𝛾𝑔⎫⎪⎬⎪⎭,
which renders empirical Bayes updates

𝛾
(𝑘+1)
𝑔 =

∑
𝑗∈𝑔

𝔼(�̄�−1
𝑗
)
{
tr
[
𝕍(�̄�𝑗)

]
+ 𝔼(�̄�T

𝑗
)𝔼(�̄�𝑗)

}
𝑑|𝑔| .

For our default 𝛾𝑔 = 𝛾𝛾′𝑔 parameterization, the updates

𝜸′(𝑘+1) = argmax
𝜸′

⎧⎪⎨⎪⎩−
1

𝛾

𝐺∑
𝑔=1

𝛾′−1𝑔

∑
𝑗∈𝑔

𝔼(�̄�−1
𝑗
)
{
tr
[
𝕍(�̄�𝑗)

]
+ 𝔼(�̄�T

𝑗
)𝔼(�̄�𝑗)

}
−
𝑑

2

𝐺∑
𝑔=1

|𝑔| log 𝛾′𝑔⎫⎪⎬⎪⎭ ,
subject to

𝐺∏
𝑔=1

𝛾
′|𝑔|
𝑔 = 1,

are not available in closed form but are still convex and easy to compute with standard numerical optimization tools.
Empirical Bayes estimation of the 𝛾𝑔 or 𝛾′𝑔 is data dependent and does not rely on subjective arguments. In addition,

empirical Bayes estimation avoids (possibly complicated) hyperpriors on the 𝛾𝑔 and 𝛾′𝑔. A drawback is that we lose the
uncertainty propagation property of the full Bayesian approach.
Prior error variance/uniqueness shapes 𝜅𝑗 and scale 𝜈𝑗 , and overall prior variance 𝛾 are set to default values to reflect a

lack of prior knowledge. Our default choice of hyperparameters should take the standardization of the data into account.
Three postulates are used to select the hyperparameters: (i) we ensure that the prior expectation describes a correlation
matrix model, that is, ∀𝑗 ∶ 𝔼�̄�,�̄�1,…,�̄��̄� (�̄�

T
𝑗
�̄�𝑗 + �̄�𝑗) = 1. Furthermore, (ii) the prior contributions of the error and the latent

structure to the data are assumed equal, that is, ∀𝑗 ∶ 𝔼�̄�,�̄�1,…,�̄��̄� (�̄�
T
𝑗
�̄�𝑗) = 𝔼�̄�,�̄�1,…,�̄��̄� (�̄�𝑗) = 1∕2. Lastly, (iii) the prior unique-

ness variance is set to 𝕍�̄�,�̄�1,…,�̄��̄� (�̄�𝑗) = 1. These three postulates together result in 𝛾 = 1∕𝑑, ∀𝑗 ∶ 𝜅𝑗 = 9, and ∀𝑗 ∶ 𝜈𝑗 = 4.
As a result, ∀𝑗 ∶ 𝕍�̄�,�̄�1,…,�̄��̄� (𝐛

T
𝑗
𝐛𝑗) = 1 + 5∕(2𝑑). For 𝑑 large compared to 5∕2 (as one expects in high-dimensional settings),

we have 𝕍�̄�,�̄�1,…,�̄��̄� (𝐛
T
𝑗
𝐛𝑗) ≈ 1 = 𝕍�̄�,�̄�1,…,�̄��̄� (�̄�𝑗), so that the contributions to the prior variance of latent structure and error

are approximately equal.
The iterative algorithm requires setting a starting value for the variational parameters. As a default setting, we start the

algorithm with the covariance matrices 𝚵 and 𝛀, and the covariance 𝜒 initialized to the respective sized identities. The
elements of the mean parameters 𝝓𝑖 and 𝝁𝑗 are drawn from univariate random standard Gaussian, 𝜐𝑖 is set to zero, and 𝜁𝑗
is initialized to the inverse of the prior mean of the inverse of the 𝜙𝑗: 𝜁𝑗 = 𝜈𝑗∕𝜅𝑗 .
Themethods described in this section are implemented in the R package bayesfactanal available from https://github.

com/magnusmunch/bayesfactanal.

4 SIMULATIONS

4.1 Setup

To assess the potential benefit of the proposedmodels in the prediction of outcome 𝑦 from features 𝐱, a simulation is set up.
The simulation setting is meant to demonstrate the potential benefit of (i) the Bayesian factor regressionmodel in general,
(ii) the inclusion of the feature structure through the empirical Bayes estimation of the 𝛾′𝑔 as explained in Section 3.4, and
(iii) the use of unlabeled features in the estimation.

https://github.com/magnusmunch/bayesfactanal
https://github.com/magnusmunch/bayesfactanal
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To that end, 𝑛 = 50 labeled, and 𝑚 ∈ {0, 50, 100, 200, 500} unlabeled observations are drawn from model (1) and stan-
dardized after simulation. Error variance and uniqueness are set to 𝜎2 = 1 and ∀𝑗 ∶ 𝜓𝑗 = 1. The number of features is
fixed to 𝑝 = 100. Two scenarios for the model parameters 𝑏ℎ𝑗 and 𝛽ℎ are considered:

1. The number of factors is fixed to 𝑑 = 10. The 𝑏ℎ𝑗 are set so that each feature loads on two factors, and the factor is a part
of 20 features (see (10), where each 𝑏 denotes 10 values and the empty cells are set to zero). 𝛽ℎ is set so that the outcome
loads on all factors. The features are divided into two groups 1 = {1, … , 50} and 2 = {51, … , 100}. The nonzero 𝑏ℎ𝑗
values are drawn from independent univariate centered Gaussian distributions. The variances are 𝕍(𝑏ℎ𝑗) = 0.1 for
𝑗 = 1,… 50, and 𝕍(𝑏ℎ𝑗) = 1 for 𝑗 = 51, … , 100. To ensure that the proportion of variance in 𝑦 explained with the factors
is 0.7, all 𝛽ℎ are set to 𝛽ℎ = 0.242.

2. The second scenario fixes 𝑑 = 40. Themodel parameters 𝑏ℎ𝑗 are drawn from independent univariate centeredGaussian
distributions. The variances are 𝕍(𝑏ℎ𝑗) = 0.1 for 𝑗 = 1,… 50, and 𝕍(𝑏ℎ𝑗) = 1 for 𝑗 = 51, … , 100, that is, the features
are structured into two groups: 1 = {1, … , 50} and 2 = {51, … , 100}. To ensure that the proportion of variance in 𝑦
explained with the factors is 0.7, all 𝛽ℎ are set to 𝛽ℎ = 0.242.

𝐁 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑏 𝑏

𝑏 𝑏

𝑏 𝑏

𝑏 𝑏

𝑏 𝑏

𝑏 𝑏

𝑏 𝑏

𝑏 𝑏

𝑏 𝑏

𝑏 𝑏

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (10)

The first scenario models a situation where the features load on two factors only in such a way that the marginal cor-
relation between features is weak. This might occur, for example, if genes are organized into nearly disjoint functional
networks, but the outcome is related to all the networks. Ridge regression is expected to perform well here. With such a
sparse loadings matrix, we have (𝐁T𝐁 +𝚿)−1 ≈ 𝐈𝑝. That is, the information in 𝐗 contributes little to the induced regres-
sion coefficients 𝜷. In addition, the induced regression coefficients become 𝜷 ≈ 𝐁T𝜷 = ℂov(𝑦, 𝐱), a (rescaled version of
the) quantity that standard linear regression methods aim to estimate.
The second scenario models a setting where all features load on all factors, but the strength of the loading depends on

the feature group. This might occur, for example, if genes are organized in several interconnected functional networks,
but some networks have weak connections. The outcome is again related to all functional networks. In this setting,
the factor regression methods are expected to perform well. In contrast to the first simulation, (𝐁T𝐁 +𝚿)−1 ≠ 𝐈𝑝, so
information on the induced regression coefficients 𝜷 is contained in 𝐗. This results in increased efficiency due to the
inclusion of data. Also, 𝜷, is a weighted version of ℂov(𝑦, 𝐱) that is not straightforward to estimate with standard linear
regression methods.
Six models are compared:

1. Ridge regression with a cross-validated penalty parameter with the R package glmnet (Friedman et al., 2010).
2. Lasso regression with a cross-validated penalty parameter with the R glmnet package (Friedman et al., 2010).
3. A two-step factor regressionmethod: (i) a penalized factormodel is estimated from the feature correlationmatrix, with

a cross-validated penalty parameter. Next, (ii) outcomes are regressed on the feature factor scores �̂�(𝝀𝑖|𝐱𝑖) to obtain
the prediction rule. This approach was shown to work in Peeters et al. (2019) and is implemented in the R FMradio
package (Peeters et al., 2019).

4. A penalized factor regression model that includes unlabeled observations, with a cross-validated penalty parameter
and estimated as described in Supporting Information Section (3).
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(a) (b) (c)

F IGURE 2 Simulation results for Scenario 1 with median (a) EMSE, (b) PMSE, and (c) correlation between predictions and true values.
The results are for several unlabeled sample sizes and consist of the methods: ridge, lasso, FMradio, penalized factor model (penalized), the
proposed method without (VBayes) and with (EBayes) empirical Bayes, and the intercept-only model (null)

(a) (b) (c)

F IGURE 3 Simulation results for scenario 2 with median (a) EMSE, (b) PMSE, and (c) correlation between predictions and true values.
The results are for several unlabeled sample sizes and consist of the methods: ridge, lasso, FMradio, penalized factor model (penalized), the
proposed method without (Bayes) and with (EBayes) empirical Bayes, and the intercept-only model (null)

5. The proposed Bayesian factor regression model (4) is approximated with variational Bayes as in Section 3. The fixed
hyperparameters are described in Section 3.4. Note that this model does not include an external feature structure and
therefore does not estimate 𝛾′𝑔.

6. The proposed empirical Bayesian factor regression model (4) is approximated with variational Bayes as in Section 3.
The hyperparameters are described in Section 3.4, where we include the grouping of the features and estimate group-
specific 𝛾′𝑔 by empirical Bayes.

For all models, the data are standardized before estimation, as is common in most real data applications. Models 3–
6 allow for the inclusion of unlabeled features and are estimated for a range of numbers of unlabeled features. In
addition, we fitted an intercept-only null model. We calculate the estimation mean squared error (EMSE) of 𝜷, predic-
tion mean squared error (PMSE), and correlation between predictions and observations (ℂor(𝑦, �̂�)) on test data of size
𝑛test = 1000. Lower PMSE and EMSE indicate better performance, while higher ℂor(𝑦, �̂�) indicates better performance.
The results, with the median taken over 50 simulation replications, are displayed in Figures 2 and 3, for scenarios 1 and
2, respectively.
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F IGURE 4 Simulation results for scenario 1 with median log �̂�′𝑔 estimated with empirical Bayes according to the proposed method for
the two feature groups. The VBayes method does not estimate 𝛾′𝑔, so the resulting log �̂�′𝑔 are denoted with the zero line (which corresponds to
setting them to 1)

4.2 Results

In both scenarios, the penalized factor regression model was not estimable with unlabeled data, due to nonconvergence.
In both scenarios, the estimation (i.e., EMSE) and prediction calibration (i.e., PMSE) of the proposed Bayesian methods
initially improve with more unlabeled data. However, in scenario 1 it starts deteriorating again after about 𝑚 = 100. In
scenario 2, where the performance continues to improve with more unlabeled data, the rate of improvement decreases
with the number of unlabeled observations. This is unsurprising, as estimators generally converge at a similarly shaped√
𝑛 rate. In both scenarios, discrimination (i.e., ℂor(𝑦, �̂�)) keeps improving with the addition of unlabeled features. For

scenario 1, this is surprising, considering the eventual deterioration in calibration and estimation.
In scenario 1, the proposedBayesianmethods outperform the frequentistmethods for almost all𝑚 in terms of estimation

and discrimination. For these methods, prediction calibration is better with medium𝑚 compared to smaller or larger𝑚.
The two-step factor regression model FMradio performs worse than the Bayesian factor regression methods and ridge,
only outperforming lasso. In scenario 2, the frequentist methods outperform the proposed Bayesian method for small 𝑚
in terms of estimation and calibration. For medium𝑚, the Bayesian methods outperform ridge, and eventually, for large
𝑚, also lasso. FMradio outperforms all other methods in estimation, calibration, and discrimination. Scenario 2 simulates
strong factors that explain much of the data. Extraction of these factors in step one of the FMradio approach is therefore
relatively easy. Estimation of the prediction rule based on these strong factors in step two of FMradio then results in a
strong predictor.
A comparison of full Bayes and empirical Bayes shows that the inclusion of the feature groupings helps in both estima-

tion and prediction. In scenario 1, empirical Bayes estimation and calibration are comparable to full Bayes. Discrimination
is slightly worse. In scenario 2, empirical clearly outperforms full Bayes in all three performance measures. Figures 4 and
5 display the estimated log �̂�′𝑔 for the empirical Bayes model in scenarios 1 and 2, respectively. Both figures show a clear
influence of the feature grouping on estimation, as the prior variances of the groups show a clear difference. Furthermore,
the influence of the feature grouping grows with the number of unlabeled observations, as the diverging lines indicate.

5 APPLICATIONS

5.1 Influenza vaccine

The data described in this section are fromNakaya et al. (2011) andmade publicly available through theNational Center for
Biotechnology Information (NCBI) Gene ExpressionOmnibus (GEO) archive (Barrett et al., 2012) with accession numbers
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F IGURE 5 Simulation results for scenario 2 with median log �̂�′𝑔 estimated with empirical Bayes according to the proposed method for
the two feature groups. The VBayes method does not estimate 𝛾′𝑔, so the resulting log �̂�′𝑔 are denoted with the zero line (which corresponds to
setting them to 1)

GSE29614 and GSE29617. The analysis mostly follows Van Deun et al. (2018), where the main aim was to predict vaccine
efficacy with microarray gene expression data. Here follows a short description of the data; for more details, we refer the
reader to Van Deun et al. (2018).
The data are from 9 and 26 subjects, observed during the 2007 and 2008 flu seasons, respectively. For all subjects, there

are three efficacy measures available from a baseline measurement, just before the vaccination, and from 28 days after
vaccination. The efficacy measurements are in the form of three different plasma hemagglutination inhibition antibody
titers. The antibody titers were combined into one efficacymeasure by first subtracting the log-transformed antibody titers
at baseline from the measurement at 28 days after vaccination and subsequently taking the maximum of the three log-
transformed differences. These steps were included to reduce the influence of subjects who started with high antibody
concentrations due to previous infection. The scores were standardized to mean zero and variance one.
In addition to the vaccine efficacy measures, there are 54,675 microarray gene expression measurements available from

a baseline just before vaccination and measurements 3 days after vaccination. The Robust multichip average algorithm
(Irizarry, 2003) was used to preprocess the microarrays. After preprocessing, a change score was calculated by subtracting
the baseline measurements from the measurement 3 days after vaccination. These scores were standardized to mean zero
and variance one. Before the analysis, a preselection of 416 genes with the highest coefficient of variation was made. The
selection of 416 genes follows the analysis results of Van Deun et al. (2018). Here, we consider the 2007 data as unlabeled
and the 2008 data as labeled.
The application is an example of a difficult high-dimensional prediction problem, with little data available: a situa-

tion that regularly arises in practice. Here, the available unlabeled data potentially increase the predictive performance
significantly. Additionally, genes are often considered to be organized in functional networks, so the factor model is an
appropriate choice and we expect the factor regression methods to outperform classical linear regression methods.
We estimate the same models as in Section 4, with the exception of the empirical Bayes model, because there is no

grouping of the features available. To assess performance, we calculated leave-one-out cross-validated PMSE andℂor(𝑦, �̂�)
and display them in Table 1, where null refers to the intercept-only model. The penalized factor regression model did not
converge, so it is not included in the results.
Table 1 shows that the variational Bayesian factor regression that includes the unlabeled data outperforms the other

methods in terms of calibration (i.e., PMSE) and discrimination (i.e.,ℂor(𝑦, �̂�)), according to expectation. The othermeth-
ods perform similarly in terms of PMSE, while lasso performance approaches the Bayesian factor regression in terms of
ℂor(𝑦, �̂�). The estimated numbers of factors are 25 and 33, without and with unlabeled data, respectively.
The results indicate that, in general, prediction of vaccine efficacy from changes in gene expression is difficult. Among

all methods, the largest correlation between observed and predicted efficacies is 0.341. We note that this may be due to a
lack of data. There are only 26 labeled observations available.
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TABLE 1 Cross-validated PMSE and ℂor(𝑦, �̂�) (best performing in bold) calculated on the influenza vaccine data, for the ridge, lasso,
FMradio methods, the proposed method without empirical Bayes (VBayes), and the intercept-only model (null)

PMSE ℂor(𝒚, �̂�)
Ridge 0.959 0.171
Lasso 0.929 0.339
FMradio 0.955 0.097
Proposed VBayes 0.866 0.341
Null 0.962 0

F IGURE 6 Heatmap of the variational
Bayesian posterior mean of the factor
loadings for the 416 features in the influenza
application. Clustering of the latent factors is
based on the unweighted pair group method
with arithmetic mean (UPGMA) clustering
method (Sokal & Michener, 1958)

The proposed variational Bayesian factor regression results in 33 latent factors. The corresponding posterior means of
the factor loadings for the features are displayed in Figure 6. The figure shows clear distinct clusters of features in terms of
their factor loadings. Clustering of the latent features into four clusters leads to a clear relationship between the clusters
and the posterior mean of the response variable factor loadings in Figure 7. This is a strong indication that the model
results in meaningful and interpretable latent factors that relate to features and responses.

5.2 Oral cancer lymph node metastasis

In this section, oral cancer lymph node metastasis is predicted with gene expression data. Sequenced ribonucleic acid
(RNAseqs), taken from TCGA (The Cancer Genome Atlas Network, 2015), are measured on 133 human papilloma virus
(HPV)-negative oral tumors taken from 76 and 57 oral cancer patients, with and without lymph node metastasis, respec-
tively. For more details on these data, see te Beest et al. (2017). Additional gene expression data are available from an
independent microarray study on 97 oral cancer patients in Mes et al. (2017). These microarrays are normalized to the
same scale as the RNAseqs and included in the analysis as unlabeled data. A preselection of 871 genes is done using the
cutoff for p-values 𝑝 ≤ 0.01, comparing the microarrays between metastatic and nonmetastatic patients. To investigate
the empirical Bayes estimation of the 𝛾𝑔, the genes are divided into three groups based on the cis-correlation between the
RNAseq data and TCGA deoxyribonucleic acid (DNA) copy numbers on the same patients, quantified by Kendall’s 𝜏.
As before, genes are assumed to be organized into functional modules, so we expect the factor regression methods to fit

the data well. We expect features with a large positive correlation between RNAseq and DNA copy number, as quantified
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F IGURE 7 Posterior mean of the response variable factor loadings per cluster of response variable factor loadings, based on a clustering
of the latent factors, for the influenza application

TABLE 2 BSS and AUC (best performing in bold) calculated on the oral cancer lymph node metastasis data, for the methods ridge, lasso,
FMradio, and the proposed method without (VBayes) and with (EBayes) empirical Bayes

BSS AUC
Ridge 0.125 0.698
Lasso 0.132 0.708
FMradio 0.014 0.66
Proposed VBayes 0.099 0.746
Proposed EBayes 0.101 0.748

by Kendall’s 𝜏, to be more important for metastasis prediction. We therefore expect to estimate larger 𝛾′𝑔 for the groups
with higher Kendall’s 𝜏.
We estimate the logistic extensions of the models estimated in Section 4. To assess performance we calculated a cali-

bration measure of the Brier skill score (BSS) and discrimination measure of the area under the receiver operator curve
(AUC) on the unlabeled data and display them in Table 2. The penalized factor regression model did not converge, so it is
not included in the results.
Here, the best performing model in terms of calibration (i.e., BSS) is the lasso. The Bayesian factor regression methods

outperform the other methods in terms of discrimination (i.e., AUC). The estimated 𝛾′𝑔 are 0.97, 0.98, and 1.01 for the low-,
medium-, and high cis-correlation groups, respectively. This small difference in shrinkage leads to a marginal increase in
the predictive performance of the empirical Bayes method compared to the full Bayes version. The estimated numbers of
factors are 113 and 134, without and with unlabeled data, respectively.
Generally, we see that AUC is relatively high (as compared to the random model with an AUC of 0.5), and we are able

to discriminate reasonably well between oral cancer patients with and without lymph node metastasis using RNAseq
data. In contrast, BSSs are generally low, indicating that calibration is difficult to improve on compared to the empty,
intercept-only model.
The proposed variational Bayesian factor regression results in 134 latent factors. The corresponding posterior means

of the factor loadings for the features are displayed in Figure 8. In contrast to the influenza application, no clear distin-
guishable clusters of features are found. If we set the number of clusters to eight (approximately the same ratio of clusters
to latent features as in the influenza application), the relationship between the clusters and the posterior mean of the
response variable factor loadings in Figure 9 is not evident. A clear interpretation of the results therefore requires more
intricate biological knowledge of the problem, which is beyond the scope of this paper.
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F IGURE 8 Heatmap of the variational
Bayesian posterior mean of the factor
loadings for the 871 features in the oral
cancer metastasis application. Clustering of
the latent factors is based on the UPGMA
clustering method (Sokal & Michener, 1958)

F IGURE 9 Posterior mean of the response variable factor loadings per cluster of response variable factor loadings, based on a clustering
of the latent factors, for the oral cancer metastasis application

6 DISCUSSION

This paper investigates a Bayesian factor regression model for high-dimensional prediction and classification problems.
It allows for the inclusion of unlabeled data and feature groupings to improve predictive performance. Estimation is done
through a combination of variational and empirical Bayes techniques. The approach is competitivewith classical ridge and
lasso regression, as well as withmore elaborate frequentist factormodeling approaches such as penalized factor regression
and the two-step factor FMradio. Simulations show that the method is especially useful if the features are generated in
dense, correlated networks. Two applications show that the method predicts just as well, or better, than existing methods
in real data settings.
A technical advantage of the pursued factor modeling approach is the straightforward inclusion of unlabeled obser-

vations through the full likelihood approach. However, some caution regarding this approach is advised. For the full
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likelihood approach to returnunbiased estimates, themissing datamechanism is assumed to bemissing at random (MAR).
That is, the missingness possibly depends on the observed features but not on unobserved features. In the current setting,
MAR implies that unobserved labels are not missing due to the value of the labels. We argue that in most applications,
this is a reasonable assumption. In the examples above, observations are unlabeled because they come from independent
studies. Due to the independence, it is reasonable to assume that no relation exists between not observing labels and
the actual labels. Sections 4 and 5 show that the frequentist factor models suffer from convergence issues if the number
of labeled and/or unlabeled samples becomes large. More investigation is required to determine when and why these
convergence issues occur. An inherent benefit of Bayesian modeling is the uncertainty quantification that automatically
comes with the Bayesian posterior. This allows for the straightforward calculation of prediction intervals. We should note,
however, that uncertainty quantification in the current setting requires a more thorough investigation. A limitation of
the method observed in the simulation results (Figure 2) is that despite the increasing discriminative performance of the
model, calibration may deteriorate slightly with more extreme ratios of unlabeled to labeled number of observations.
More elaborate prior modeling of the factor loadings is possible through 𝛾𝑗 . For example, a more sparse lasso model

for the factor loadings introduces the hyperpriors: 𝛾𝑗 ∼ Exp(𝜆𝑗). Feature grouping is then included by parameterizing
∀𝑗 ∈ 𝑔 ∶ 𝜆𝑗 = 𝜆𝑔 and estimating 𝜆𝑔 with empirical Bayes. In general, such Gaussian-scale mixture extensions of the �̄�
prior require the addition of one or more extra layers to the prior and one or more extra variational parameters to update
during estimation. Some existing examples of sparse Bayesian factor models are Ferrari and Dunson (2020) and Carvalho
et al. (2008). Sparse factormodels often simplify latent dimension estimation. In any case, latent dimension estimation is a
topic that deserves more attention. Here, estimation is via a simple Kaiser criterion. More elaborate methods are available
in the literature (see, e.g., Auerswald & Moshagen, 2019).
Lastly, we give some indication of computational times. The proposed factor regression approaches are slower to esti-

mate compared to the other methods. Model estimation times for the influenza application are 0.87, 0.16, 5.27, and 36.46
seconds, for the ridge, lasso, FMradio, and Bayesian factor regression models, respectively. For the oral cancer metastasis
application, we have 2.76, 0.98, and 54.82 seconds for the ridge, lasso and FMradio, respectively, and 124.68 and 245.18 min-
utes for the variational and empirical Bayesianmodels. Especially in the second application, the estimation is considerably
slower. However, we argue that these times are still manageable andmuch faster than traditionalMCMCestimation times.

SOFTWARE

The code used in this paper is implemented as a (developmental) R package and is available from https://github.com/
magnusmunch/bayesfactanal
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