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ARTICLE OPEN

Experimental study of quantum uncertainty from lack of
information
Yuan-Yuan Zhao 1,2,3,7, Filip Rozpędek 4,5,6,7, Zhibo Hou1,3, Kang-Da Wu1,3, Guo-Yong Xiang 1,3✉, Chuan-Feng Li 1,3 and
Guang-Can Guo1,3

Quantum uncertainty is a well-known property of quantum mechanics that states the impossibility of predicting measurement
outcomes of multiple incompatible observables simultaneously. In contrast, the uncertainty in the classical domain comes from the
lack of information about the exact state of the system. One may naturally ask, whether the quantum uncertainty is indeed a fully
intrinsic property of the quantum theory, or whether similar to the classical domain lack of knowledge about specific parts of the
physical system might be the source of this uncertainty. This question has been addressed in the previous literature where the
authors argue that in the entropic formulation of the uncertainty principle that can be illustrated using the so-called, guessing
games, indeed such lack of information has a significant contribution to the arising quantum uncertainty. Here we investigate this
issue experimentally by implementing the corresponding two-dimensional and three-dimensional guessing games. Our results
confirm that within the guessing-game framework, the quantum uncertainty to a large extent relies on the fact that quantum
information determining the key properties of the game is stored in the degrees of freedom that remain inaccessible to the
guessing party. Moreover, we offer an experimentally compact method to construct the high-dimensional Fourier gate which is a
major building block for various tasks in quantum computation, quantum communication, and quantum metrology.

npj Quantum Information            (2022) 8:64 ; https://doi.org/10.1038/s41534-022-00572-w

INTRODUCTION
In classical physics, one can predict the outcomes of simultaneous
measurements of various observables performed on the same
physical system with arbitrary precision, provided that one is in
possession of measuring devices that allow for reaching
sufficiently high accuracy. However, the quantum theory imposes
intrinsic limitations on one’s ability to make such measurement
predictions for the incompatible observables. The first statement
which quantified this quantum uncertainty was originally pro-
posed by Heisenberg1 and then rigorously proven by Kennard2 in
1927. This statement applies to two maximally incompatible
observables of position and momentum of a particle and the
uncertainty is characterized in terms of the standard deviation.
Their work was then generalized to any two bounded Hermitian
observables by Robertson3 as:

ΔS � ΔT � 1
2
j ψh j½S; T � ψj ij; (1)

where ΔS (ΔT) denotes the standard deviation of the distribution
of outcomes when observable S (T) is measured on quantum state
ψj i.
Unfortunately, there are various shortcomings to Robertson’s

uncertainty relation (see e.g.4) of which the most notable one is
that its right hand side depends on the input state. This results in
the fact that one can find states ψj i for which it is impossible to
predict the measurement outcome of neither S nor T with
certainty, yet the bound becomes trivially zero when evaluated on
ψj i. A natural way to overcome these limitations is to consider
entropic formulations of the quantum uncertainty principle which

allow for state-independent bounds and provide information-
theoretic interpretations of the uncertainty4.
For rank-one projective measurements on the finite-

dimensional Hilbert space, an example of such a formulation is
the well-known entropic uncertainty relation due to Maassen and
Uffink5,

HðSÞ þ HðTÞ � log2
1
c
; (2)

where H(S) is Shannon’s entropy of the probability distribution of
the outcomes when S is measured and similarly for T. The term c
on the right hand side denotes the maximum overlap of the
observables, that is c ¼ maxij hsi jtji

�� ��2, where sij i ð tj
�� �Þ denotes the

eigenstate of S (T). From the inequality (2), we can see that the
uncertainty always exists (log2

1
c ≠ 0) as long as S and T do not

share any common eigenvector. It is then natural to raise the
question regarding the origin of this uncertainty, since we already
know that it is not related to the precision of the measuring
apparatus.
Here we experimentally investigate this question with regard to

a so-called guessing game6 that provides an operational
interpretation to the entropic formulation of the uncertainty
principle. In such a guessing game one attempts to guess the
outcome of a measurement on a state that one can freely prepare,
where the measured observable is not predetermined, but is
chosen uniformly at random from a set of two incompatible
observables. Not only does the guessing game perspective
provide us with useful insights into the foundational aspects of
the uncertainty principle but it also makes the entropic
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formulation of this principle a useful tool for proving security of
various quantum cryptographic protocols4. In7 the authors have
shown that in this formulation of the uncertainty principle, not all
of the quantum uncertainty, and in some cases even none, should
be thought of as intrinsic to the quantum nature of this game. In
fact it can be attributed to the guessing party’s lack of quantum
information about the choice of the measured observable.
Revealing this quantum information enables the guessing party
to significantly decrease, and in some cases even completely
eliminate the observed uncertainty.
Here we experimentally verify the main claims of7. That is, by

experimentally implementing the discussed guessing game in
which the quantum information about the state of the measuring
apparatus is revealed to the guessing party, we verify that the lack
of access to this information is a key contributor to the arising
uncertainty. Furthermore, we propose an innovative way to
construct the high-dimensional quantum Fourier transform.
Fourier transform is one of the most important tools in quantum

information processing, especially in quantum algorithms invol-
ving phase estimation, including the order-finding problem and
the factoring problem8. A notable example is Shor’s factoring
algorithm which shows quantum advantages over its classical
counterparts9. With the applications in quantum state tomogra-
phy and quantum key distribution, quantum Fourier transforms
are usually used to generate the mutually unbiased bases for
extracting more information from the system10–12.
Since the quantum Fourier transform occupies such an

important position in quantum information and computation,
people explore many protocols to implement it in different
physical systems, such as superconducting system13, trapped
ions14, photons15,16, and nuclear magnetic resonance systems17. In
our work, the high-quality two-dimensional and three-dimensional
Fourier transforms are implemented on the path degree of
freedom (DoF) of a single photon. Then the controlled Fourier
gates with the two-dimensional control system are also realized. In
our experiment all the visibilities of the three interferometers used
to construct the quantum Fourier gate for d= 2 guessing game
and six interferometers in the case of the d= 3 guessing game, are
higher than 0.98. In comparison with other DoFs of the photon,
e.g., the time-bin and the orbital angular momentum, the path
DoF has its advantages and is much easier to control with
common beam splitters and waveplates. Furthermore, the method
we adopt to construct the Fourier gate may inspire other ways to
manipulate the path-encoded qudits on the integrated quantum
photonic device.
To construct the three-dimensional Fourier gate, we develop an

experimentally friendly structure HBD-HWP-HBD, i.e., two horizon-
tally placed beam displacers (HBDs) with a half-wave plate (HWP)
inserted between them, to realize the principle component Ry, the
single-qubit rotation gate around y-axis. This HBD-HWP-HBD
structure eases the complexity of the original scheme18 and
reduces the scale of the setup. To be specific, for the three-
dimensional Fourier transform implemented in the experiment,
three interferometers are constructed instead of six ones with the
50:50 BSs. Meanwhile, the parallel distribution structure of the
beams in our method enhances the stability of the experimental
setup and makes it more robust to the environmental noise.
The paper is structured as follows. In the Result section, we first

introduce the framework of the guessing game and provide a
high-level overview of our results. We then describe the
experimental results in detail and discuss their implications for
verifying the claims of7. We conclude in the Discussion section
where we explain the implications of our results for quantum
cryptography and discuss the possible extensions of the studied
guessing game that could potentially be realized on a modified
version of our experimental setup. Finally, in the Methods section,
we describe our optical implementation of this game, as well as

the settings of our experimental devices that allow us to prepare
quantum states needed to verify the claims of the paper.

RESULTS
Guessing game
In this subsection, we review the framework and the results of7

which form the basis for our experiment. We depict the
considered guessing game (also referred to as the uncertainty
game), firstly proposed by Berta et al.6 in Fig. 1. In the game, Bob
prepares the system B in state ρB and sends it to Alice. Then Alice
performs one of the two pre-agreed measurements S and T on the
system according to a random coin flip contained in the two-
dimensional register R. She announces the chosen measurement
to Bob who wants to guess Alice’s outcome. In particular, Bob aims
to minimize his uncertainty about Alice’s measurement outcome X
by choosing a suitable probe state ρB. The only scenario in which
Bob can win the game with probability one is the game in which S
and T share at least one common eigenvector, which corresponds
to log2

1
c ¼ 0 in the entropic uncertainty relation (2). In this

situation, Bob prepares the probe state ρB as the common
eigenstate of S and T, which enables him to predict the outcome
of either of the measurements with certainty.
For the purpose of this paper it will be helpful to represent this

game in a form of a quantum circuit as shown in Fig. 2. In this case
let us assume that the measurement performed on register B in
this circuit corresponds to measuring observable S. Moreover, let
us assume that the observable T is related to S through the
relation T= U†SU, where U is the unitary operation shown on the
circuit. Hence, if the classical coin contained in register R is in state
0j i, then Alice measures observable S on register B, while if the
coin is in state 1j i, then Alice applies operation U to the state on B,
followed by the same measurement, which effectively leads to the
measurement of the observable T on B. After that, Bob measures
the state on R in the standard basis to find out what the outcome
of the coin flip was and hence which observable has been chosen
by Alice.
A complete mathematical description of this game, in which

initially Bob does not know the outcome of the coin flip in R
requires us to set ρR to a maximally mixed state. Then, Alice’s
measurement outcome X= x leaves the register R in the state ρxR,
and Bob’s probability of guessing Alice’s outcome is exactly the
probability of how well he can distinguish all the states fρxRg.
However, R describes a random coin flip and therefore all fρxRg will
be diagonal in the standard basis (see Supplementary Note 1 for
details). This implies that Bob’s optimal measurement is the

Fig. 1 Guessing game. In the d-dimensional guessing game, Bob
prepares a quantum state ρB of dimension d and sends it to Alice.
Then Alice performs the measurement S or T on the system ρB
according to the two-dimensional register state ρR through a
quantum control as shown in Fig. 2. After Alice completes the
measurement, Bob tries to guess Alice’s measurement outcome X=
x by measuring the register state ρxR. In this process, R can be
entangled with a system P, which remains inaccessible to Bob. Since
some information about Alice’s measurement process can be
contained in that register P, in that case Bob cannot obtain full
quantum information about Alice’s measurement.
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Z-basis measurement which simply checks which one of the two
observables Alice has measured, as discussed before.
Clearly, the classical coin flip used to choose the measurement

of one of the two observables S and T inputs a classical
randomness in the game and hence could be responsible for
the arising inability of Bob to perfectly predict the measurement
outcome of Alice, as suggested and then further investigated in7.
In this work, the authors analyze the consequences of removing
this source of classical randomness by giving Bob access to the
purification of that coin flip. In this way Bob has all the information
about the corresponding choice of the observable to be measured
and consequently this choice is now done on the quantum level.
Clearly it is also possible that only some part of the purification of
the coin flip is accessible to Bob and this is illustrated by the
entangled registers R and P in Fig. 1, where P is the register to
which Bob never has access.
From the perspective of the quantum circuit in Fig. 2, for the

generalized game the state on R is no longer diagonal in the
standard basis and so the coherence of ρR implies that the choice
of the measured observable is now performed through a quantum
control. Moreover, after Alice performs her measurement, the
resulting states fρxRg are, in general, also no longer diagonal in the
standard basis. Hence, Bob can now increase his guessing
probability by applying a judiciously chosen measurement which
extracts additional useful information from the off-diagonal
coherence terms in R.
This guessing game enables us to seek a deeper understanding

of the quantum uncertainty and to distinguish between the
uncertainty stemming from Bob’s lack of information (including
the classical and the quantum information) and the intrinsic
(unavoidable) uncertainty. We provide a high-level mathematical
description of this guessing game framework in Supplementary
Note 1 while further details can be found in7.
Let us first shed some light on the form of the state in register R.

The form of this register determines the information that Bob has
about the choice of the observable to be measured and therefore
it determines his level of lack of knowledge about the measure-
ment process. In the case of full lack of knowledge the two-
dimensional register R represents a random coin and so ρR ¼ I=2.
In the case when Bob possesses all the information about the

measurement process, ρR would be a pure state and since we
would like it to correspond to the scenario in which both
measurements were chosen with equal probability, it is natural to
set ρR ¼ þj i þh j, where þj i ¼ 1ffiffi

2
p 0j i þ 1j ið Þ. One can then

interpolate between the two cases by parameterizing ρR using a
γ∈ [0, 1] parameter as follows:

ρRðγÞ ¼
1
2

0j ih0j þ j1ih1j þ γj0ih1j þ γj1i 0h jð Þ: (3)

The physical meaning of γ is discussed in Supplementary Note 1,
while further details can be found in7.
We note that we effectively have a whole family of guessing

games, each of them corresponding to a specific configuration of
the parameter set (γ, d). Here γ ∈ [0, 1] is the coherence parameter
described above, while d= {2, 3, . . . } describes the dimension of
the game. Specifically, d determines the number of possible
outcomes of Alice’s measurement and the dimension of the input
state ρB.
In order to extract all the possible potential intrinsic uncertainty,

the two measurements S and T that Alice performs are set to
correspond to measuring in mutually unbiased bases. A natural
choice for such bases is to set S to be an observable
corresponding to the measurement in the standard basis and T
to be an observable corresponding to the measurement in the
Fourier basis.
Let us first have a quick look at the d= 2 game. In this case the

two measurements S and T correspond to the measurements in
the standard and the Hadamard bases, respectively. After
optimizing over all input states of Bob and his later measurement
of the register R, it has been shown in7 that the maximum
achievable guessing probability is given by:

Pmax
guessðγ; d ¼ 2Þ ¼ 1

2
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2þ 2γ2

p
2

 !
: (4)

In particular, Pmax
guessðγ; d ¼ 2Þ ¼ 1 when γ= 1. In this case, Bob can

perfectly predict Alice’s measurement outcome, and all the
uncertainty is due to the lack of information. The work of7 also
examines the link between uncertainty and the lack of information
for higher-dimensional games with d > 2. In these cases perfect
guessing turns out to be no longer possible which shows the
existence of the intrinsic uncertainty in those higher dimensions.
In the following, we implement the d= 2 and d= 3 guessing

games, and experimentally study the relation between the
coherence of the register R and Bob’s uncertainty about Alice’s
measurement outcome in order to verify the theoretical predic-
tions of7. Specifically, for both the d= 2 and d= 3 guessing games
with the chosen values of γ > 0, we observe a guessing probability,
which is larger than Pmax

guessðγ ¼ 0; dÞ. In this way we verify that
Bob’s uncertainty arising in the scenario when the system R is a
classical coin, can be reduced by providing him with access to the
purification of that classical coin flip. For the d= 2 game we also
observe that the larger the coherence parameter γ, the larger the
experimentally observed guessing probability of Bob. Hence we
can experimentally outperform the minimum possible amount of
uncertainty for a given amount of revealed quantum information,
by giving the guessing party additional quantum information
about the state of the measurement apparatus. Finally, for the d=
2 game with the largest possible value of γ that we have been able
to realize experimentally, the observed guessing probability
becomes close to one. In other words, for the scenario in which
we give the guessing party access to almost all the discussed
quantum information, we observe almost no uncertainty at all
which verifies the theoretical prediction of7, that for the d= 2
game there is no intrinsic uncertainty. The small amount of
uncertainty that remains is directly established to be a result of the
specific noise processes in our physical setup.

Fig. 2 Uncertainty game as a quantum circuit. Initially, at time t1,
Alice’s register R and Bob’s system B do not share any correlations.
Then Alice makes a choice of the measured observable based on the
state of the (possibly quantum) coin in R by performing a
conditional rotation U on B. She then performs a measurement of
the observable S on B to obtain the measurement outcome X. If the
register R is classical, i.e. it is diagonal on the standard basis, then
these two operations of Alice effectively perform a random
measurement of S or T. If there is some non-zero coherence in
register R, then the effective measurement can no longer be
described as a random choice of one of the two observables. After
that at time t3 Alice sends R to Bob. Bob then wants to guess Alice’s
outcome X= x by trying to distinguish the states fρxRg. Note that if R
is classical, then the correlations between the two systems at time t2
can also only be classical and all the states fρxRg will be classical as
well, implying that the optimal measurement of Bob corresponds to
simply checking which one of the two observables Alice has chosen
to measure. If R contains coherence, then quantum correlations
between the two registers can arise at time t2 and Bob can better
distinguish the states fρxRg by performing a measurement that takes
this coherence into account. Figure taken from7 with modifications
under the licenses/CC BY 3.0 https://creativecommons.org/licenses/
by/3.0/.
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In our experiment, we use the single photon system to
implement the guessing game, and the basic idea is to use two
independent DoFs of the photon to encode the system state ρB
and the register state ρR, respectively. Specifically, as illustrated in
Fig. 3, the system B is encoded in the horizontal paths marked as
“0", “1" and “2". The measurement basis choice register R is
encoded in the independent sets of paths marked as upper layer
“u" and lower layer “l". More detailed information about the
experimental implementation of guessing games can be found in
Methods section.

Results for the two-dimensional guessing game
While the classical randomness is adopted in the guessing game,
Bob’s maximum achievable guessing probability is
Pmax
guessðγ ¼ 0; d ¼ 2Þ ¼ ð2þ ffiffiffi

2
p Þ=4. In our experiment, however,

we observe that for 10 out of 11 data points with γ > 0,
Pexpguessðγ > 0; d ¼ 2Þ>Pmax

guessðγ ¼ 0; d ¼ 2Þ. Here the superscript
“exp” refers to the experimentally observed value, see the blue
data points in Fig. 4(b). This can be ascribed to the quantum
information held in register R and verifies that indeed there is
uncertainty in the γ= 0 game which comes from lack of
information about the state of the purification register P.
Moreover, we see that Pexpguess increases with γ. Specifically for all

0 ≤ γ < 0.9810, we have observed an experimental value Pexpguessðγ þ
δ; d ¼ 2Þ for some 0 < δ < 0.2258 such that
Pexpguessðγ þ δ; d ¼ 2Þ> Pmax

guessðγ; d ¼ 2Þ, see Supplementary Note 2,
where we give the detailed values of Pexpguess and Pmax

guess for each γ.
As Pmax

guessðγ; d ¼ 2Þ, plotted as the solid red line in Fig. 4(b), is the
optimal guessing probability for a given γ, it is in fact an upper
bound on that achievable probability. Hence, we have experi-
mentally verified that for every γ in that region we can perform
better than the corresponding upper bound by giving Bob more

access to the purification register (i.e. by experimentally increasing
γ to γ+ δ). Therefore our experiment verifies that indeed the more
quantum information about the measuring process is given to
Bob, the higher is the probability of him winning the game.
As we mentioned earlier, the optimal guessing probability for γ= 1

is Pmax
guessðγ ¼ 1; d ¼ 2Þ ¼ 1, which means that Bob can guess Alice’s

measurement result perfectly if he knows all the information of her
measurement basis choice on the quantum level. In our experiment,
the highest value we observe is Pexpguessðγ; d ¼ 2Þ ¼ 0:9953 ± 0:0003,
see Fig. 4(a) where we show the detected probabilities for all the
output ports for this scenario. The fact that we cannot reach
Pmax
guessðγ ¼ 1; d ¼ 2Þ ¼ 1 can be ascribed to two main reasons. The

first one is related to the fact that we cannot prepare the perfect
state ρR(γ= 1). Specifically, the maximal estimated γ we obtained in
the experiment is γ= 0.9918 ± 0.0009, and the fidelity between the
experimentally prepared state and the theoretical state ρR(γ= 0.9918)
is 0.9996. The second reason is the fact that the visibility of the
interferometer composed of the two vertically placed beam
displacers (VBDs) stays about 0.99 when collecting the data. This
results in a dephasing error on the states ρxRðγ ¼ 0:9918; d ¼ 2; ρBÞ.
The detailed error analysis for d= 2 guessing game is given in
Supplementary Note 4.

Results for the three-dimensional guessing game
For the d= 3 scenario, implementing the game for the largest γ
achievable in our experimental setup, given by γ= 0.9918, and using
the best-known strategy results in the experimental guessing
probability of Pexpguessðγ ¼ 0:9918; d ¼ 3Þ ¼ 0:9611 ± 0:001 (see data
“3" in Fig. 5). However, experimental procedures are subject to noise,
which in many practical scenarios is nonisotropic and hence has a
more severe effect on some states than others. Therefore it is
possible that for our experimental setup the highest observed

Fig. 3 Experimental setup. (a) d= 2 guessing game. (b) d= 3 guessing game. The single-photon is prepared by detecting one of the
photons from a photon-pair generated in the Type-II spontaneous parametric down-conversion process. The whole setup consists of three
modules: the state preparation part (red region), the controlled Fourier gate (white region), and the measurement part (purple region). Firstly,
Bob prepares the system B in state ρB and Alice prepares the register R in state ρR, and those two systems are uncorrelated at module 1. Then a
controlled Fourier gate is applied to the systems to correlate them. At last, Alice measures the system B to obtain outcome X and Bob
measures the system R in some optimal basis to help him guess X. In our experiment, the systems B and R are encoded in different degrees of
freedom of a photon: the horizontally spatial modes marked as “0", “1" and “2" and the different path layers marked as upper layer “u" and
lower layer “l”, respectively. Therefore, if the register R is in state uj i ( lj i), then the photon passes through the upper (lower) layer and
undergoes an identity (Fourier) transformation as shown by the red (purple) lines. In the end, Alice needs to perform a non-demolition
measurement, which is very difficult to realize in practice33, before sending the system R to Bob. Here we perform both measurements
simultaneously to ensure the efficiency. Abbreviations: IF interference filter, HWP half-wave plat, QWP quarter-wave plate, QP quartz plate, FC
fiber coupler, PBS polarizing beam splitter, HB, horizontally placed beam displacer, VBD vertically placed beam displacer, BBO beta-barium-
borate crystal.
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guessing probability could occur for a slightly different strategy than
the one predicted in a noiseless scenario. To maximize our observed
guessing probability and to obtain further insight into the effect of
noise in our experiment, we test some other guessing strategies.
Specifically, we choose various input states around the one stated
above and modulate Bob’s measurement to make sure the
measurement is optimal for each state. From the results in Fig. 5,
we see that the highest successful guessing probability Pexpguess ¼
0:9628 ± 0:0009 is achieved at data point “4”, for which the input
state is very close to the best probe state we found in theory.
Moreover, we note that compared with other data points, data points
“6” and “7” have larger gaps to the theoretical values. That is mainly
because the rotation of the wave-plates H2 introduces an unknown
random phase in the interferometers. This issue is discussed in more
detail in Supplementary Note 5.
Similarly as in the d= 2 game, we also observe in this case that

the achieved Pexpguessðγ ¼ 0:9918; d ¼ 3Þ> Pmax
guessðγ ¼ 0; d ¼ 3Þ ¼ 1

2 1þ 1ffiffi
3

p
� �

.

Hence we have experimentally demonstrated that lack of
information is also a significant source of uncertainty in the d=
3 game. Comparing our experimentally observed value of the
guessing probability for γ= 0.9918 with the highest known
achievable guessing probability in the noiseless scenario using
the strategy from7, we see that our result also outperforms those
scenarios for the values of γ up to more than 0.9. Unfortunately
the optimal strategy for d= 3 game with γ > 0 is not known, and
therefore we cannot claim that we outperformed the optimal
strategies for all those lower values of γ. However, our achieved
high guessing probability gives a strong experimental indication
that also in the d= 3 game giving Bob access to more quantum
information about the purifying register P, enables him to win
with higher probability.
On the other hand, our results also provide an insight into the

existence of the intrinsic uncertainty in the d= 3 game. As the
theoretical analysis in7 has shown it is not possible to achieve
perfect guessing for that game. This is unlike in the d= 2 case,
where all the uncertainty can be contributed to the lack of
information. The highest known achievable guessing probability
for the d= 3 game in the noiseless scenario is Pguess(γ= 1, d= 3)
= 0.9793. Let us now compare our experimentally observed values
with this theoretical prediction. We will focus here on the data
point “3" as our experimental setup was optimized for this setting
thus making the error analysis easier for this data point, while the
increase in the observed guessing probability for data point “4" is
small. Comparing with the best known Pguess(γ= 1, d= 3) for the
noiseless case, the guessing probability we achieved in the
experiment for data point “3" has an error gap of pgap= 0.0182 to
this theoretical value, which can be ascribed to two aspects. On
the one hand, in our experiment we use γ= 0.9918 instead of γ=
1; on the other hand, there are experimental errors. In
Supplementary Note 5 we verify that the observed error gap is
consistent with our error model based on the characterized
components of the setup. In particular, the experimental errors
correspond to the state preparation errors and the dephasing
errors inside the interferometers in the setup. Having verified the
origin of this error gap, which we can refer to as a gap due to lack
of information, we note that in constitutes only a smaller part of
the total observed uncertainty gap 1� Pexpguessðγ ¼ 0:9918; d ¼ 3Þ
for data point “3". In particular:

pgap
1� Pexpguessðγ ¼ 0:9918; d ¼ 3Þ ¼ 0:4679: (5)

This shows that if the best known theoretical strategy was indeed
the optimal one, then more than half of the total experimentally
observed uncertainty gap would not come from lack of
information but from the intrinsic uncertainty. This observation
gives an experimental support to the claim that intrinsic
uncertainty is present in the d= 3 game.

Fig. 4 The experimental results for the d= 2 guessing game. From
the experimentally prepared state ρexpR with the maximal purity, we
estimate γ= 0.9918 ± 0.0009. With this γ, we obtain the maximal
guessing probability Pexpguessðγ; d ¼ 2Þ ¼ 0:9953 ± 0:0003 and the
detected probabilities for each output port are shown in (a). In
(b), we vary the degree of coherence of the register state ρR to find
the relation between Pmax

guess and γ. The analytical solution is plotted
as the red line, while the experimental results are given as the blue
circles. The x-bars are the standard deviations obtained by repeating
the quantum state reconstruction algorithm for input data randomly
generated from the experimentally obtained probability distribu-
tions. The y-bars are obtained directly from the detection
probabilities in D00, D01, D10 and D11.

Fig. 5 Different strategies for the d= 3 guessing game. The
probabilities of the successful guessing in the experiment are shown
as the blue circles with the theoretically predicted values shown as
the red stars. For each strategy, the probe state is prepared with H1,
H2, and two HBDs in Fig. 3(b). The best-known strategy corresponds
to data “3" and the corresponding setting of H1 (θ1) and H2 (θ2) for
the input state preparation is shown as the green dot in the inset
figure, meanwhile, the settings for other strategies are shown as the
other colored dots. Notice that for the data point “8" the
theoretically predicted value is much lower than for the other
states. This is because the input state of data point “8" lies much
further away from the best-known strategy of data point “3" than all
the other considered states, as can be seen on the inset. More
information about the settings of the waveplates H1, H2, Q1, H12
and the detailed numerical values of the corresponding guessing
probabilities are given in Supplementary Note 2.
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DISCUSSION
Our work experimentally studies the entropic formulation of
quantum uncertainty within the guessing game framework. We
experimentally verify that lack of quantum information about the
register governing the choice of the measured observable is a key
contributor to the arising uncertainty. Our results have been
obtained by experimentally implementing a d= 2 and d= 3
guessing games. We also see, especially for the d= 2 game, that
the more quantum information about the measurement process
can be accessed by Bob, the higher his chance of winning the
game. We also observed guessing probability of almost one for
the case when almost all the information about the measurement
process was made available to Bob, confirming the result of7 that
for the d= 2 game there is no intrinsic uncertainty. Finally, the
obtained data for the d= 3 game supports the result of7 that
there exists intrinsic uncertainty for the d= 3 game.
These results have implications for various cryptographic proto-

cols that make use of measurements in mutually unbiased bases. In
particular for protocols that perform measurements in BB84 bases19,
we see that it is vital for the purification of the coin determining the
measurement basis, to be inaccessible to the eavesdropper.
Otherwise the security may be compromised, and in the case when
the eavesdropper could later have access to the entire purification
of the coin, they could be able to always guess the measurement
outcome and hence e.g. obtain the entire key in BB84 QKD19,20.
Moreover, our work forms an important step in the experimental

development of quantum optical technologies based on multi-
dimensional systems. The development of our setup contributes to
the existing linear optics toolbox through the realization of the
controlled three-dimensional quantum Fourier transform. Here, the
method we use to implement the three-dimensional quantum
Fourier transform can be generalized to arbitrary unitary transfor-
mations by regulating the settings of the waveplates. When
extending to a much higher dimension, one of the obstacles lies in
the relatively large volume of the calcite beam displacer, which
must enable multiple beams to pass through simultaneously. For
instance, the sizes of the beam displacers in our experiment are
approximately 8 mm× 15 mm× 37.71 mm. An efficient way to
overcome the size problem is by stacking a series of PBSs, just like
in21–24. Another problem that one needs to consider is phase
stability. As the complexity of the setup increases, an active phase
stabilization system may need to be built.
Furthermore, our setup also offers the possibility to further

investigate the wave-particle duality25–28 and its connection to the
uncertainty principle29. Finally, we note that a further refinement of
the controlled Fourier transform to the case in which the control
system is also a qutrit and the target system undergoes a
transformation to one of the three incompatible measurements
would enable us to investigate experimentally the recent results
of30,31. In these works the authors extend the game of7 to measuring
more than two observables. Interestingly, they show that for the
game in which B is two-dimensional, guessing probability of one can
be achieved independently of how many measurements are
considered. However, if B is more than two-dimensional and more
than two measurements are considered, then they show that
whether perfect guessing is possible depends on the specific choice
of the incompatible measurements. These extensions of the original
game for the scenario with three measurements could potentially be
implemented on the modification of our setup.

METHODS
Single-photon source
In both the d= 2 guessing game (Fig. 3a) and d= 3 guessing game (Fig. 3
(b)), pairs of photons of 808 nm are generated by the spontaneous
parametric down-conversion (SPDC) process with a 100 mW, 404 nm
single-frequency laser (<5 MHz Linewidth) pumping a type-II BBO (beta-
barium-borate) crystal. Then one of the photons is fed to the experimental

setup as the signal photon, which is heralded by the detection of the other
photon from the pair.

Experimental implementation of guessing games
The system state ρB is prepared with the HWPs, (specifically H1 in Fig. 3(a),
H1 and H2 in Fig. 3(b))) and HBDs, which sort the input beam into the
horizontally parallel beams with different polarized directions H and V (H,
horizontally polarized direction; V, vertically polarized direction). A 45∘

oriented HWP (H2 in Fig. 3(a) and H3 in Fig. 3(b)) is inserted in path “0" to
unify the photon’s polarization directions in different paths. Then a 22. 5∘

HWP prepares the polarization of the photon in all paths in a state
1=

ffiffiffi
2

p ð Hj i þ Vj iÞ (H3 in Fig. 3(a) and H4 in Fig. 3(b)). After that a VBD
directs the H photon to the upper layer uj i (red lines) and V photon to the
lower layer lj i (purple lines), hence preparing the control state 1=

ffiffiffi
2

p ð uj i þ
lj iÞ on the register R. Then, depending on whether the photon passes
through the upper layer or lower layer, it will undergo either the I
operation or the Fourier operation. In our experimental setup the parallel-
path structure of the interference is stable, because all the light beams are
affected by the environmental turbulences, such as temperature fluctua-
tion and vibrations, in nearly the same way32. Then Bob uses the second
VBD to convert the path DoF corresponding to the upper and lower layer
into the polarization DoF and uses a quarter-wave plate (QWP, Q1), an
HWP (H8 in Fig. 3(a) and H12 in Fig. 3(b)) and a polarization beam splitter
(PBS) to distinguish the quantum states ρxR in order to guess Alice’s
measurement outcome X. We note that since both registers R and B are
encoded in different DoF of the same photon, in the experiment a
simultaneous measurement of both registers is performed at once.
Specifically, the click in the output port Dij corresponds to Bob’s guessing
outcome i for Alice’s measurement outcome j. Therefore, Bob’s goal is to
set Q1 and H8 (H12) in such a way so that the probability of detection in
the ports Dii is maximized.
For the d= 2 game, one of the input states of Bob that is optimal for all γ

is the pure state ψj iB / 0j i þ �j i, where �j i ¼ 1=
ffiffiffi
2

p ð 0j i � 1j iÞ. This state
is prepared by setting the orientation angle of H1 to 11. 3∘. Meanwhile, to
observe the relation between Pmax

guessðγ; d ¼ 2Þ and γ, we place the quartz
plate (QP) before the VBD to decrease the coherence between uj i and lj i.
Now the polarization of the photon is coupled by the QP to its frequency
distribution realizing the dephasing channel, and the value of γ is tuned by
changing the thickness of the QP. Before the VBD, we perform the
standard tomography process to reconstruct the experimentally generated
register state ρexpR . The value of γ is estimated by approximating ρexpR by an
ideal register state ρR(γ) given in Eq. (3). That is, γ of ρexpR is taken to be the
value of that parameter for this ρR(γ) which has the highest fidelity to ρexpR .
We find that for each obtained γ the fidelity between ρexpR and the
corresponding ρR(γ) is higher than 0.9995. Finally, the guessing probability
is obtained by summing the detection probabilities in output ports D00 and
D11. More details about the thicknesses of quartz plates, the angles of Q1
and H8, as well as the detailed numerical values of the corresponding
experimental results are provided in Supplementary Note 2.
For the d= 3 game we focus on the single scenario corresponding to

the largest possible γ that we could achieve in our experiment. We then
investigate the optimal known strategy for that γ. The best probe states for
the d= 3 game that we found, established using the procedure from7 have
a nice property that for all γ the optimal measurement for Bob aiming to
distinguish the three possible qubit states ρxR is actually a projective
measurement. This measurement aims to distinguish only two out of the
three possible states, corresponding to the two dominant outcomes of
Alice. Specifically, for the best known input state we consider, the
dominant outcomes are 0 and 2. The corresponding projective measure-
ment performed on the register R has POVM elements {M0,M1= 0,M2},
where M0 and M2 are projectors. This explains why the first index of
detectors D in Fig. 3(b) takes only the value 0 or 2.
In our experiment, the highest amount of coherence in the register R

which we achieved is γ= 0.9918. A corresponding best probe state we
found for the d= 3 game is the state ψj iB ¼ a1 0j i þ a2 1j i þ a3 2j i with the
coefficients a1= 0.0938+ 0.5786i, a2= 0.0109− 0.1218i and a3= 0.8009.
More detailed information about the probe states preparation, the optimal
measurements, and the guessing probabilities we obtained are given in
Supplementary Note 2.

Three-dimensional Fourier gate
We note that in the d= 3 guessing game we implement the three-
dimensional Fourier operation based on the idea of the scheme proposed
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in18. In the original scheme, the single-qubit rotation operator Ry
represents a variable beam splitter, which is realized by an interferometer
built with two 50:50 beam splitters. The phase difference between the two
arms of the interferometer is adjusted to change the ratio of the light
beams in two output ports. In our work, we develop a HBD-HWP-HBD
structure to realize the operator Ry, which uses much fewer elements
compared with the method with 50:50 beam splitters. Hence our scheme is
much more friendly to the experimental implementation. Owing to the
introduction of the polarization-dependent beam splitter, HBD, which
enables the transformation between the path DoF and the polarization
DoF, the photon’s paths can be efficiently manipulated by the polarization
controller element HWP instead of the interferometer.
Let us now briefly discuss how we quantify the performance of this

Fourier gate. After applying the ideal Fourier operation to the input state
wj

�� � ¼ 1=
ffiffiffi
3

p P2
k¼0 w

�jk kj i, where j= 0, 1, 2, w= e2iπ/3, we will obtain the
corresponding output state jj i, therefore the probability to detect a
photon in output mode i when inputting state wj

�� �
into our Fourier gate

implementation should be δij. In our experiment, the average probability
for detecting the photon in the right output mode is 0.9771 ± 0.0006,
which can be obtained only when the Fourier operation works well. The
detailed information about how to implement and estimate the quality of
the Fourier operation are given in the Supplementary Note 3. Moreover,
we analyze the main factors limiting its performance by considering a
three-dimensional dephasing model in Supplementary Note 5.
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