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Abstract: High content rubber modified bitumen (HCRMB) prepared from the high content of waste
tire rubber and bitumen has good performance while allowing greater use of the waste tires. However,
HCRMB is subject to aging during use, which can affect its performance. The purpose of this paper
was to investigate the effect of high content of waste tire rubber and sulfur on the aging behavior of
bitumen. The properties of all bitumen were tested using rolling thin film oven aging (RTFOT) test,
pressure aging vessel (PAV) test, frequency sweep tests, temperature sweep (TS) test, multiple stress
creep recovery (MSCR) test, and attenuated total reflection-Fourier transform infrared spectroscopy
(ATR-FTIR) test. Test results show that the addition of sulfur to HCRMB leads to an improvement in
the elasticity of HCRMB. The elasticity of HCRMB with different amounts of sulfur increases with
aging. In addition, the increase in the amount of sulfur can improve the RTFOT aging resistance and
the PAV aging resistance of HCRMB. Sulfur cannot reduce the degree of oxidation of HCRMB after
aging, but can inhibit the degree of desulfurization of HCRMB. Furthermore, the aging process of
HCRMB with different amounts of sulfur is dominated by the degradation of polybutadiene.

Keywords: high content rubber modified bitumen; sulfur; aging resistance; ATR-FTIR; frequency
sweep tests

1. Introduction

With the rapid development of China’s automobile manufacturing industry, the popu-
larity of automobiles in China is increasing, leading to an increasing number of waste tires,
and a large number of abandoned waste tires that can cause environmental pollution, as
well as great fire safety hazards in the random piles of waste tires [1–3]. Bituminous pave-
ment has the advantage of good driving comfort and is widely used in China’s high-grade
highways, but it is also prone to rutting and cracking, which affects the safety and comfort
of driving. The crumb rubber (CR) obtained from the crushing of waste tires is added to the
neat bitumen and then made into rubber modified bitumen (RMB) by mixing and shearing
at high temperatures [4,5], which not only solves a large number of waste tires but also
reduces the amount of neat bitumen and saves construction costs [6]. Some studies have
shown that the use of RMB to pave pavements can improve high and low temperature
performance and fatigue resistance, and has excellent resistance to deformation and noise
reduction [7–10]. However, the interaction mechanism between CR particles and bitumen
is mainly physical swelling, and it is difficult to disperse CR particles in bitumen and form
a cross-linked mesh structure, which can easily lead to RMB segregation problems during
storage, thus limiting its application.
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Many studies have used composite modification techniques to improve the overall
performance of RMB by incorporating other types of modifiers into RMB [11–14]. Jiang et al.
found that the temperature sensitivity of the bitumen was improved and its bituminous
pavement noise reduction performance was excellent after the composite modification of
CR and styrene-butadiene-styrene (SBS) [15]. Xiang et al. studied the aging performance
of CR and SBS composite modified bitumen and found that after aging the aromatic
hydrocarbon content in the bitumen was reduced and the asphaltene content increased,
and the improvement of the performance of the bitumen by the composite modification
of SBS and CR was mainly reflected in the high temperature performance [16]. Liang
et al. prepared SBS/CR composite modified bitumen by high-speed shear and studied its
rheological properties and storage stability, pointing out that the addition of CR and SBS to
the bitumen can significantly increase its storage modulus, loss modulus, and viscoelasticity,
thus enhancing the ability of asphalt pavements to resist permanent deformation [17].
Dong et al. added CR and SBS to the neat bitumen and studied its rheological properties
and microstructure and found a significant improvement in the viscoelasticity of the
composite modified bitumen. The morphology of the composite modified bitumen changed
significantly during the preparation process, and its phase morphology changed from one
bitumen phase with a dispersive polymer phase to two continuous phases that are cross-
linked with each other, while the bitumen would react chemically with SBS and CR [18].
The chemical reaction between sulfur and bitumen results in chemical bonds and chemicals
that cause the bitumen molecular chain to become a three-dimensional mesh structure from
a planar mesh structure and an increase in viscosity [19,20], resulting in an improvement
in the mechanical properties and high temperature stability of its bitumen mixture [21,22].
The interaction between sulfur and bitumen increases over time [23], which is associated
with the recrystallization of sulfur in bitumen [24], and the cross-linking of sulfur with the
components in CR to form a network structure that enhances the performance of RMB [25].
RMB is subject to higher temperatures than the neat bitumen during pavement construction,
which makes it more susceptible to the effects of aging, and will also experience the effects
of aging during the life of the pavement, so aging occurs throughout the life cycle of RMB.
The existing RMB compound modification technology is mostly based on the incorporation
of modifiers into the conventional content of RMB (20% content). There is less research
on high content rubber modified bitumen (HCRMB) with the addition of sulfur, and the
research on its aging properties is not comprehensive.

In this paper, the effect of high content of waste tire rubber and sulfur on the aging
behavior of bitumen was investigated. The rolling thin film oven aging (RTFOT) test,
pressure aging vessel (PAV) test, frequency sweep tests, temperature sweep (TS) test,
multiple stress creep recovery (MSCR) test, and attenuated total reflection-Fourier transform
infrared spectroscopy (ATR-FTIR) test were used to analyze the changes in the properties
of HCRMB containing sulfur before and after aging, respectively. Moreover, the aging
resistance of HCRMB containing sulfur was evaluated by rheological aging indexes.

2. Material and Methods
2.1. Materials

The RMB was made of CR and neat bitumen (PG 64-16) in this paper. CR added in the
neat bitumen at contents of 20% and 40% were prepared by the terminal blend (TB) process
to produce the conventional RMB and HCRMB, referring to the previous research [12],
respectively. CR (30 mesh) contains 54% natural rubber and synthetic rubber from Jiangyin,
China. The binders were prepared by adding sulfur to RMB and HCRMB for 120 min at
180 ◦C, respectively. The detail of the composition of RMB and HCRMB with different
amounts of sulfur is present in Table 1.
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Table 1. Description of the composition of RMB and HCRMB with different amounts of sulfur.

Binder Type
Modification Plan

Sulfur, % CR, %

70# 0 0
20TB_0.2Sul 0.2 20
20TB_0.4Sul 0.4 20
40TB_0.2Sul 0.2 40
40TB_0.4Sul 0.4 40

2.2. Aging Procedures

According to JTG E20-2011, rolling thin film oven aging (RTFOT) and pressure aging
vessel (PAV) were performed on the HCRMB with different amounts of sulfur [26], respec-
tively. The aging degree of the HCRMB with different amounts of sulfur was evaluated by
the complex modulus aging index (CAI) and phase angle aging index (PAI), which are as
follows [27,28]:

CAI = G*aged/G*unaged (1)

PAI = δaged δunaged (2)

2.3. Rheological Property Tests

Master curves for different rheological indices (complex modulus (G*), phase angle
(δ), storage modulus (G′), and loss modulus (G”)) were constructed by means of frequency
sweep tests on the HCRMB with different amounts of sulfur at different temperatures
(5 ◦C, 15 ◦C, 25 ◦C, 35 ◦C, 45 ◦C, 55 ◦C, 65 ◦C, and 75 ◦C). The frequency sweeps were
performed in the range of 0.1Hz to 30 Hz. The master curves were constructed at a reference
temperature of 25 ◦C based on the time–temperature superposition principle (TTSP) and
the sigmoidal model. The temperature sweep (TS) test in the range of 34 ◦C to 88 ◦C
was conducted on the HCRMB with different amounts of sulfur using a dynamic shear
rheometer (DSR) at 10 rad/s and 10% strain. The multiple stress creep recovery (MSCR)
tests at different temperatures (64 ◦C, 70 ◦C, 76 ◦C, and 82 ◦C) were carried out on the
HCRMB with different amounts of sulfur. In these tests at DSR, parallel plates with gaps
and diameters of 1 mm and 25 mm, respectively, were used for tests above 30 ◦C, while
parallel plates with gaps and diameters of 2 mm and 8 mm, respectively, were used for
tests below 30 ◦C.

2.4. ATR-FTIR Test

In this paper, solid bitumen samples were placed on reflectance crystal for ATR-FTIR
tests to determine the functional groups of the HCRMB with different amounts of sulfur
before and after aging [13,27]. The spectra were carried out in the range of 4000 to 600 cm−1

with 32 scans. The aging of bitumen is mainly reflected in the change of the carbonyl group
and, therefore, the degree of oxidation in the HCRMB with different amounts of sulfur
can be determined by the carbonyl index (ICA) [28]. Aging can also lead to desulfurization
of CR and degradation of polybutadiene in RMB [12]. The silica index (ISi-O-Si) and the
polybutadiene index (IPB) in HCRMB during aging were chosen to analyze the degree of
desulfurization of CR and degradation of polybutadiene. The calculation methods for ICA,
ISi-O-Si, and IPB are described below:

ICA= A1700 cm
−1/A1376 cm

−1 (3)

ISi-O-Si= A1100 cm
−1/A1376 cm

−1 (4)

IPB= A966 cm
−1/A1376 cm

−1 (5)
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3. Results and Discussion
3.1. Master Curves Result Analysis
3.1.1. Master Curves before Aging

The G* master curves and δ master curves of the HCRMB with different amounts of
sulfur are shown in Figure 1. Based on Figure 1a, the ranking of G* master curves in the
high frequency region (low temperature region) is 40TB_0.2Sul< 40TB_0.4Sul < 20TB_0.2Sul
< 20TB_0.4Sul < 70#, and the ranking of G* master curves in low frequency region (high
temperature region) is 40TB_0.2Sul < 40TB_0.4Sul < 20TB_0.2Sul < 70# <20TB_0.4Sul. The
above results show in the high frequency region (low temperature region), the G* master
curves of 70# are higher than that of the HCRMB with different amounts of sulfur, and
increasing the sulfur content can improve the elasticity of HCRMB. This may be due to
the moderate depolymerization of the macromolecular structure in the CR in RMB during
the TB process preparation process, which results in partial plasticity and viscosity, but
HCRMB also loses some of the elasticity of the CR at low temperature environments, and
the more CR is doped in the HCRMB, the more elasticity it loses, resulting in a lower
G* value for 40TB_0.4Sul than for 20TB_0.4Sul [29]. Moreover, according to Figure 1b,
the ranking of δ master curves in the high frequency region (low temperature region) is
70#< 20TB_0.4Sul < 20TB_0.2Sul < 40TB_0.4Sul < 40TB_0.2Sul. The ranking of δ master
curves in low frequency region (high temperature region) is 40TB_0.4Sul< 40TB_0.2Sul
< 20TB_0.4Sul < 20TB_0.2Sul < 70#. This also indicates that the elasticity of HCRMB at low
temperatures is enhanced by the incorporation of sulfur. The cause of this result lies in the
ability of sulfur to make the HCRMB form a cross-linked network between the CR, which
can improve the elasticity of the HCRMB [30].
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Figure 1. Master curves of G* and δ of HCRMB with different amounts of sulfur: (a) G* master curves
and (b) δ master curves.

3.1.2. Master Curves after Aging

Figures 2 and 3 show the evolution of G* master curves and δ master curves of HCRMB
with different amounts of sulfur along with aging. As described in Figures 2 and 3, the main
G* master curves for 70# and HCRMB with different amounts of sulfur show a tendency to
increase with aging, while the δ master curves for 70# and HCRMB with different amounts
of sulfur change after aging in the opposite pattern to the G* master curves in Figure 2,
showing a decreasing trend, which indicates that the elasticity of 70# and HCRMB with
different amounts of sulfur increases with aging, due to the hardening of the bitumen.
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Figure 2. G* master curves evolution of HCRMB with different amounts of sulfur along with aging.

The evolution of the master curves of G′ and G” with aging is shown in Figure 4.
The main curves of G′ and G” for HCRMB with different amounts of sulfur increase
with increasing frequency (decreasing temperature). The decrease in the logarithmic
coordinate corresponding to the intersection between the G′ and G” master curves after
aging indicates that the bitumen hardens with aging. Table 2 shows the logarithmic
coordinates corresponding to the intersection points of the HCRMB with different amounts
of sulfur. The intersection coordinates of both 70# and HCRMB with different amounts of
sulfur decrease from the unaged condition to the PAV condition, indicating that the viscous
component of HCRMB with different amounts of sulfur decreases with aging.
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Table 2. Intersection points of HCRMB with different amounts of sulfur.

Sample Name
The Logarithm of Frequency Corresponding to the Intersection Point, Hz

Virgin RTFOT PAV

70# 2.079 1.680 1.112
20TB_0.2Sul 2.289 1.834 1.569
20TB_0.4Sul 2.210 1.766 1.348
40TB_0.2Sul 3.587 3.508 3.045
40TB_0.4Sul 3.598 3.246 2.641
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with aging.

3.2. TS Test Result Analysis
3.2.1. G* and δ before Aging

The changes of G* and δ of the HCRMB with different amounts of sulfur are described
in Figure 5. According to Figure 5a, the G* of 70# is higher than that of the HCRMB
with different amounts of sulfur at temperatures below 46 ◦C, indicating that compared
with HCRMB with different amounts of sulfur, 70# has bigger elasticity at temperatures
below 46 ◦C. Moreover, the G* ranking is 70# < 40TB_0.2Sul < 20TB_0.2Sul < 40TB_0.4Sul <
20TB_0.4Sul when the temperature is higher than 76 ◦C and the G* of 70# is lower than that
of the HCRMB with different amounts of sulfur. As seen in Figure 5b, the ranking of δ is
20TB_0.4Sul < 20TB_0.2Sul < 40TB_0.4Sul < 40TB_0.2Sul < 70# from 34 ◦C to 40 ◦C. The
ranking of δ is 20TB_0.4Sul < 40TB_0.4Sul < 40TB_0.2Sul < 20TB_0.2Sul < 70# from 52 ◦C to
70 ◦C. Besides, the ranking of δ is 40TB_0.4Sul < 40TB_0.2Sul < 20TB_0.4Sul < 20TB_0.2Sul
< 70# at 88 ◦C. That is to say, the addition of sulfur to HCRMB leads to an increase in G*
and a decrease in δ, resulting in an improvement in the elasticity of HCRMB. This is due to
the sulfur cross-linking effect enhancing the adhesion between the dispersed CRs, forming
spatially cross-linked structures and improving the elasticity of HCRMB.
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Figure 5. G* and δ of HCRMB with different amounts of sulfur: (a) G* and (b) δ.
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3.2.2. G* and δ after Aging

G* evolution and δ evolution of the HCRMB with different amounts of sulfur along
with aging are shown in Figure 6. As described in Figure 6, the G* of the HCRMB with
different amounts of sulfur decreases gradually by temperature sweep tests. Compared to
70# and 20TB_0.2Sul, 40TB_0.2Sul shows an insignificant increase in G* after RTFOT aging,
indicating that the short-term aging resistance of 70# and conventional RMB is worse than
that of HCRMB. Moreover, compared to 40TB_0.2Sul, 40TB_0.4Sul shows an insignificant
decrease in δ after PAV aging, indicating that the long-term aging resistance of 40TB_0.2Sul
is worse than that of 40TB_0.4Sul. In other words, sulfur can improve the long-term aging
resistance of HCRMB.

3.3. MSCR Test Result Analysis
3.3.1. Jnr and R before Aging

Non-recoverable creep compliance (Jnr) and recovery (R) were used to evaluate the
high temperature of HCRMB with different amounts of sulfur [31]. Jnr at 0.1 kPa and
3.2 kPa are denoted as Jnr0.1 and Jnr3.2, respectively. R is defined in the same way as Jnr
at different stress conditions. According to Figures 7 and 8, the Jnr0.1 value is higher for
70# compared to HCRMB with different sulfur content, and the ranking of Jnr0.1 is 20TB_
0.4Sul < 40TB_0.4Sul < 20TB_0.2Sul < 40TB_0.2Sul < 70#. In addition, the same ranking of
R0.1 and R3.2 is 70#< 20TB_0.2Sul < 40TB_0.2Sul < 40TB_0.4Sul < 20TB_0.4Sul, indicating
that the increase of sulfur doping can improve the high temperature performance of
HCRMB. This is due to the increase in sulfur doping, which promotes the reaction between
bitumen and sulfur, resulting in an increase in asphaltene and a change in bitumen structure
to a gel-type structure, which manifests itself in the increased high temperature performance
of HCRMB.

3.3.2. Jnr and R after Aging

The Jnr3.2 and R3.2 of the HCRMB with different amounts of sulfur after aging are
displayed in Figure 9. As seen in Figure 9, Jnr3.2 and R3.2 of HCRMB with different
amounts of sulfur become larger and smaller, respectively, with increasing temperature
before and after aging. Compared to 40TB_0.2Sul, 40TB_0.4Sul shows an insignificant
decrease in Jnr3.2 after RTFOT aging, indicating that the sulfur can improve the short-term
aging resistance of HCRMB. Furthermore, the insignificant increase in R3.2 after PAV aging
for 20TB_0.4Sul compared to 20TB_0.2Sul and the insignificant increase in R3.2 after PAV
aging for 40TB_0.4Sul compared to 40TB_0.2Sul also indicates that sulfur improves the
long-term aging resistance of HCRMB and conventional RMB.

3.4. Aging Resistance

The CAI and PAI of the HCRMB with different amounts of sulfur after RTFOT aging
are presented in Figure 10. Based on Figure 10a, the CAI of the HCRMB with different
amounts of sulfur is lower than that of 70# below 70 ◦C and the ranking of the CAI at 46 ◦C
and 52 ◦C is 40TB_0.4Sul < 20TB_0.4Sul < 40TB_0.2Sul < 20TB_0.2Sul < 70# after RTFOT
aging, and the ranking of the CAI at 64 ◦C is 20TB_0.4Sul < 40TB_0.4Sul < 40TB_0.2Sul
< 20TB_0.2Sul < 70# after RTFOT aging. Moreover, in accordance with Figure 10b, from
70 ◦C to 88 ◦C, the PAI values of 40TB_0.4Sul are higher than those of 40TB_0.2Sul and the
PAI values of 20TB_0.4Sul are higher than those of 20TB_0.2Sul. The above data indicate
that the RTFOT aging resistance of HCRMB is better than that of conventional RMB, and
the increase in the amount of sulfur can improve the RTFOT aging resistance of HCRMB.
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Figure 6. G* and δ of HCRMB with different amounts of sulfur after aging: (a) 70#, (b) 20TB_0.2Sul,
(c) 20TB_0.4Sul, (d) 40TB_0.2Sul, and (e) 40TB_0.4Sul.
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Figure 7. Jnr of HCRMB with different amounts of sulfur: (a) Jnr0.1 and (b) Jnr3.2.
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Figure 8. R of HCRMB with different amounts of sulfur: (a) R0.1 and (b) R3.2.

Figure 11 shows the CAI and PAI of the HCRMB with different amounts of sulfur after
PAV, respectively. As described in Figure 11, compared with 70#, the CAI of the HCRMB
with different amounts of sulfur after PAV decreases from 40 ◦C to 88 ◦C, and the ranking of
CAI from 70 ◦C to 88 ◦C is 40TB_0.4Sul < 40TB_0.2Sul < 20TB_0.4Sul < 20TB_0.2Sul < 70#
after PAV. In addition, the ranking of PAI of HCRMB with different amounts of sulfur
after PAV is similar to that of PAI ranking in Figure 10b, indicating that the PAV aging
resistance of HCRMB is better than that of conventional RMB and that the addition of
sulfur improves the PAV aging resistance of HCRMB. This is because as the amount of CR
increases, substances such as sulfur and silica from the CR enter the bitumen colloid system
and play a role in improving the aging resistance of HCRMB.
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Figure 9. Jnr3.2 and R3.2 of HCRMB with different amounts of sulfur after RTFOT and PAV: (a) 70#,
(b) 20TB_0.2Sul, (c) 20TB_0.4Sul, (d) 40TB_0.2Sul, and (e) 40TB_0.4Sul.
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Figure 10. CAI and PAI of HCRMB with different amounts of sulfur after RTFOT: (a) CAI and (b) PAI.
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Figure 11. CAI and PAI of HCRMB with different amounts of sulfur after PAV: (a) CAI and (b) PAI.

3.5. ATR-FTIR Analysis

The FTIR spectra of the HCRMB with different amounts of sulfur are presented in
Figure 12 and the values of ICA, ISi-O-Si, and IPB are shown in Figure 13. ∆ICA and ∆ISi-O-Si
are used to analyze the oxidation degree of RMB and the level of CR’s desulfurization [28].
The difference between the ICA of unaged RMB and aged RMB is ∆ICA. ∆ISi-O-Si is calculated
by referring to ∆ICA. ∆ICA and ∆ISi-O-Si are presented in Tables 3 and 4. As shown in
Figure 13a, the ICA of the HCRMB with different amounts of sulfur under RTFOT and
PAV is less than that of the 70#. In addition, according to Table 3, the ∆ICA of the HCRMB
with different amounts of sulfur after aging is lower than that of the 70#, indicating that
the oxidation degree of HCRMB with different amounts of sulfur is smaller than that of
70#. The ∆ICA ranking is 20TB_0.2Sul < 20TB_0.4Sul < 40TB_0.2Sul < 40TB_0.4Sul < 70#
after RTFOT aging and the ∆ICA ranking is 20TB_0.2Sul < 20TB_0.4Sul < 40TB_0.2Sul <
40TB_0.4Sul < 70# after PAV aging. This indicates that the carbonyl group of conventional
RMB is less affected by aging than that of HCRMB and that sulfur cannot reduce the degree
of oxidation of HCRMB after aging.
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Table 3. ICA of HCRMB with different amounts of sulfur before and after aging.

Sample
70# 20TB_0.2Sul 20TB_0.4Sul 40TB_0.2Sul 40TB_0.4Sul

ICA ∆ICA ICA ∆ICA ICA ∆ICA ICA ∆ICA ICA ∆ICA

Unaged 0.049 0.024 0.016 0.008 0.015
RTFOT aging 0.126 0.077 0.046 0.022 0.052 0.036 0.059 0.051 0.073 0.058

PAV aging 0.249 0.200 0.179 0.156 0.180 0.164 0.174 0.166 0.184 0.169

Table 4. ISi-O-Si of HCRMB with different amounts of sulfur before and after aging.

Sample
20TB_0.2Sul 20TB_0.4Sul 40TB_0.2Sul 40TB_0.4Sul

ISi-O-Si ∆ISi-O-Si ISi-O-Si ∆ISi-O-Si ISi-O-Si ∆ISi-O-Si ISi-O-Si ∆ISi-O-Si

Unaged 0.225 - 0.290 - 0.443 - 0.438 -
RTFOT aging 0.331 0.106 0.328 0.038 0.464 0.021 0.450 0.012

PAV aging 0.335 0.110 0.357 0.067 0.476 0.034 0.442 0.004

Based on Figure 13b and Table 4, the ISi-O-Si ranking before aging is 20TB_0.2Sul <
20TB_0.4Sul < 40TB_0.4Sul< 40TB_0.2Sul, indicating compared to 70#, HCRMB with differ-
ent amounts of sulfur has silica and the amount of silica in RMB increases as the amount
of CR in RMB increases. The ∆ISi-O-Si ranking after RTFOT and PAV is 40TB_0.4Sul <
40TB_0.2Sul < 20TB_0.4Sul < 20TB_0.2Sul, indicating under the influence of aging, conven-
tional RMB is more easily desulfurized than HCRMB, and sulfur can inhibit the degree of
desulfurization of HCRMB. Furthermore, as described in Figure 13c, compared to HCRMB
with different amounts of sulfur, 70# had lower IPB values under unaged conditions, and
the IPB ranking under unaged conditions was 20TB_0.4Sul < 20TB_0.2Sul < 40TB_0.4Sul
< 40TB_0.2Sul, indicating that high content of CR leads to an increase in the polybutadi-
ene polymer content of RMB. The IPB values of HCRMB with different amounts of sulfur
decreases with aging, whereas in conventional RMB, there is an increase in IPB values
during aging, suggesting that the aging process of HCRMB with different amounts of
sulfur is dominated by the degradation of polybutadiene, whereas there is a certain CR
desulfurization in conventional RMB aging [13].

4. Conclusions

In this research, the effect of high content of waste tire rubber and sulfur on the aging
behavior of bitumen was investigated. Tests related to bitumen, such as frequency sweep
tests, temperature sweep tests, MSCR tests, ATR-FTIR test, RTFOT, and PAV, were carried
out. The main conclusions were drawn as following:

• The addition of sulfur to HCRMB leads to an increase in G*, R0.1, and R3.2 and
a decrease in δ, Jnr0.1, and Jnr3.2, resulting in an improvement in the elasticity of
HCRMB. Moreover, in the low temperature region, the G* master curves of 70# are
higher than that of the HCRMB with different amounts of sulfur;

• The elasticity of 70# and HCRMB with different amounts of sulfur increases with aging.
In addition, the RTFOT aging resistance and the PAV aging resistance of HCRMB is
better than that of conventional RMB, and the increase in the amount of sulfur can
improve the RTFOT aging resistance and the PAV aging resistance of HCRMB;

• The carbonyl group of conventional RMB is less affected by aging than that of HCRMB.
Under the influence of aging, conventional RMB is more easily desulfurized than
HCRMB, and sulfur cannot reduce the degree of oxidation of HCRMB after aging,
but can inhibit the degree of desulfurization of HCRMB. Furthermore, the aging
process of HCRMB with different amounts of sulfur is dominated by the degrada-
tion of polybutadiene, whereas there is a certain CR desulfurization in conventional
RMB aging.
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