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Conclusion or Illusion: Quantifying
Uncertainty in Inverse Analyses From
Marker-Based Motion Capture due to
Errors in Marker Registration and
Model Scaling
Thomas K. Uchida1*† and Ajay Seth2†

1Department of Mechanical Engineering, University of Ottawa, Ottawa, ON, Canada, 2Department of BioMechanical Engineering,
Delft University of Technology, Delft, Netherlands

Estimating kinematics from optical motion capture with skin-mounted markers, referred to
as an inverse kinematic (IK) calculation, is the most common experimental technique in
human motion analysis. Kinematics are often used to diagnose movement disorders and
plan treatment strategies. In many such applications, small differences in joint angles can
be clinically significant. Kinematics are also used to estimate joint powers, muscle forces,
and other quantities of interest that cannot typically be measured directly. Thus, the
accuracy and reproducibility of IK calculations are critical. In this work, we isolate and
quantify the uncertainty in joint angles, moments, and powers due to two sources of error
during IK analyses: errors in the placement of markers on the model (marker registration)
and errors in the dimensions of the model’s body segments (model scaling). We
demonstrate that IK solutions are best presented as a distribution of equally probable
trajectories when these sources of modeling uncertainty are considered. Notably, a
substantial amount of uncertainty exists in the computed kinematics and kinetics even
if low marker tracking errors are achieved. For example, considering only 2 cm of marker
registration uncertainty, peak ankle plantarflexion angle varied by 15.9°, peak ankle
plantarflexion moment varied by 26.6 N·m, and peak ankle power at push off varied by
75.9W during healthy gait. This uncertainty can directly impact the classification of patient
movements and the evaluation of training or device effectiveness, such as calculations of
push-off power. We provide scripts in OpenSim so that others can reproduce our results
and quantify the effect of modeling uncertainty in their own studies.

Keywords: inverse dynamics, inverse kinematics, joint power, marker placement, marker registration, modeling
uncertainty, OpenSim, scaling

1 INTRODUCTION

In human movement science and biomechanics, optical motion capture (mocap) is the most
common strategy for collecting high-precision movement data. Small markers (either passive photo-
reflective or active infrared-emitting) are placed on the skin or tight-fitting clothing of a test subject.
The three-dimensional trajectories of the markers are measured (“captured”) by a calibrated set of
high-resolution cameras as the subject moves through space (specifically, the calibrated “capture
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volume”) and over time. Markers are placed on bony landmarks
to identify anatomical axes and to minimize the effect of skin
movement and other soft-tissue artifacts.Within a well-calibrated
capture volume, one can use stereophotogrammetry (Cappozzo
et al., 2005) of multiple camera views to measure the position of a
marker to within a fraction of a millimeter (Uchida and Delp,
2020). The resulting spatial marker trajectories are then used to
estimate the motion of the underlying bones; with an appropriate
link-segment model and measured external forces (e.g., from
strain gauges or force plates), joint kinetics and energetics can be
computed.

Joint angles are estimated from mocap data by defining
anatomical reference frames and computing the relative
orientation between frames that are fixed to adjacent body
segments. In clinical applications, we often distinguish
between typical and atypical movements based on the
differences in the trajectories of a patient’s joint angles
compared to those of healthy or typically developing
controls. For example, the minimum knee flexion angle
during stance can be used to distinguish between typically
developing walking gait (below 15°) and mild (15–30°),
moderate (30–50°), and severe (above 50°) crouch gait in
children with cerebral palsy (Steele et al., 2013). Therefore,
uncertainty in estimating joint angles could result in different
classifications and treatment strategies.

The net joint moments can be estimated from joint angles in
combination with a link-segment model, given appropriate
model dimensions, body segment inertias, and applied external
loads. Joint angles are typically processed (e.g., filtered and
interpolated) to estimate joint velocities and accelerations via
numerical differentiation. When combined with measurements
of external forces, the joint angles, velocities, and accelerations
enable us to estimate the net joint moments via an inverse
dynamic analysis from the equations of motion of the link-
segment model (Crowninshield et al., 1978; Kuo, 1998). From
estimates of joint moments and velocities, we can then estimate
joint powers and can quantify both external and internal work via
numerical integration. Collectively, mocap can provide a rich set
of kinematic and kinetic data with which we can understand
human and animal movement; however, the inherent
uncertainties in the calculated joint angles and derived
quantities are rarely quantified or even acknowledged.

Joint angles calculated from mocap data and joint moments
calculated from an inverse dynamic analysis are frequently
treated and referred to as experimental measurements (e.g.,
(Favre et al., 2008; Fiedler et al., 2014; Schmitz et al., 2015)),
and the mean and standard deviation of each of these “measures”
are often considered across trials and individuals in the statistical
analysis of a study. Unfortunately, these are not measured
quantities but, rather, computed quantities whose reliability
depends on the underlying models and processing techniques
(Kainz et al., 2017a). While the spatial position of a marker may
be known precisely (e.g., to within a fraction of a millimeter) and
our kinematic and inverse dynamic equations are mathematically
exact, there remains a major source of error and uncertainty in all
mocap marker–based studies: the model must be correctly
calibrated. In this paper, we focus on two aspects of

calibration: the locations of the markers on each body segment
of the model, known as “marker registration” (Dunne et al.,
2021), and the dimensions of the model’s body segments, known
as “marker-based model scaling” (Delp et al., 2007; Kainz et al.,
2017b).

Constrained inverse kinematics (IK) methods, and
particularly those that apply a least-squares fit using
optimization, highlight the need to study the effects of model
scaling (Reinbolt et al., 2005; Koller et al., 2021) and marker
registration (Dunne et al., 2021). When markers are carefully
placed on a model to match the placement of physical markers on
a participant’s body, the model’s dimensions are correctly
adjusted, and the model’s joint axes are rotated to represent
bony deformities (e.g., (Arnold et al., 2001; Hicks et al., 2007;
Veerkamp et al., 2021)), then the distances between model
markers and their experimental counterparts can be
minimized (Lu and O’Connor, 1999). IK yields a single set of
joint angles that minimizes the difference (error) between model
and experimental markers at each instant in time. For most
models and studies of human movement, the calculated joint
angles are considered to be reliable if the root-mean-squared
marker error is within 1 cm across the entire movement (Hicks
et al., 2015).

When performing experiments, one may overlook errors
due to marker registration if a model or optimization method
is not (explicitly) used to compute joint angles. Accordingly,
one may infer that their analysis methods are immune to
uncertainties in marker registration. Unfortunately, this is
generally false (Schwartz et al., 2004). When markers are
used to define a reference frame, an underlying model is
already assumed, which treats each body segment as free-
floating with respect to its neighbor (unconstrained inverse
kinematics; (Dunne et al., 2021)). Although the orientation of a
reference frame defined by three or more markers may be
precise and accurate, the orientation of the underlying bone
still depends on how the markers were registered with respect
to the bone. In this unconstrained case, shifting marker
positions relative to the bone does not yield marker errors
but the estimated joint angles are directly affected (Osis et al.,
2015). For example, transverse-plane angles computed at the
knee and ankle during running have been found to vary by
7.59° for every 1 cm of marker registration error (Osis et al.,
2016). When an underlying model is composed of
unconstrained segments, it represents a maximal set of
degrees of freedom that can mask errors by way of
overfitting, since the model can achieve perfect
correspondence with the experimental markers when there
are three or fewer markers per segment. To illustrate this point,
imagine incorrectly labeling markers that are used to define an
anatomical reference frame (Uchida and Delp, 2020). There
would be no marker errors but the computed angles would
undoubtedly be incorrect due to the misdirected joint axis of
the incorrect anatomical frame. While this is an extreme case,
where the error would be large and therefore noticeable,
similar but smaller (and less obvious) errors are introduced
due to imprecise and inconsistent placement of experimental
markers on bony anatomical landmarks on a participant’s
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body. It is a reality that placing markers on a subject is not a
precise task (Osis et al., 2016); despite one’s best efforts to place
markers consistently across individuals and in agreement with
standardized methods used by other experimentalists (Cereatti
et al., 2017), the natural anatomical (bone shape) and
morphological (body composition) differences between
individuals makes it extremely difficult to identify
anatomical landmarks consistently to within 1 cm. Indeed,
from session to session, placement of markers in the
identical location with respect to the bone is not possible,
which results in different joint angle calculations even if
nothing about the subject’s motion has changed (Della
Croce et al., 2005). This is particularly important to note in
studies that aim to detect relatively small changes in
kinematics over time.

Alternatively, a model can be defined to include only the
degrees of freedom that are physically permissible by the skeletal
structure of the joints. For example, there is very limited actual
knee varus–valgus motion in human walking (less than 2°

(Giphart et al., 2012)) and “measured” varus–valgus is, in fact,
mostly cross-talk with knee flexion due to an approximate knee
flexion–extension axis defined by markers (Woltring, 1994; Della
Croce et al., 2005; Jensen et al., 2016). Consequently, a model
without the knee varus–valgus degree of freedom will incur
marker errors during gait that will include the inability to
capture some real movement (±2°); however, these errors are
much less than typical cross-talk errors, which are consistently on
the order of 8–15° (Jensen et al., 2016).

Regardless of the underlying model (including
unconstrained models with free-floating segments), marker
registration has a direct effect on the computed joint angles.
Furthermore, the dimensions of the model (the distances
between anatomical reference frames) also affect estimates
of kinetics (Reinbolt et al., 2007; Riemer et al., 2008;
Pàmies-Vilà et al., 2012; Koller et al., 2021) and energetics
(e.g., joint powers). While previous studies have investigated
the effect of model uncertainty on kinematics and kinetics
(Reinbolt et al., 2007; Valente et al., 2014; Myers et al., 2015), in
this study we aim to quantify the effect of marker registration
and model scaling errors on joint angles, moments, and
powers. We ignore the errors introduced by soft-tissue
artifacts (Stagni et al., 2005) in order to isolate the effect of
marker registration and scaling alone, since soft-tissue motion
will increase uncertainty in quantities of interest that are
computed from marker-based mocap data when typical
analysis strategies are used. In addition, the amount of error
due to soft-tissue motion will differ between individuals and
parts of the body, and it is highly dependent on the movement
being studied as well as the locations in which markers are
affixed to the skin (Leardini et al., 2005). We aim to quantify
the effect of uncertainty in marker registration (McFadden
et al., 2020) and model scaling (Kainz et al., 2017b) by
generating ranges of equally plausible trajectories of joint
angles, moments, and powers during human walking,
thereby quantifying the effects of these sources of modeling
uncertainty on the results of human gait analysis. We propose
a methodology using only the motion capture data that are

collected in typical human movement experiments and
provide scripts in OpenSim so that others can easily
reproduce our results and quantify the effect of modeling
uncertainty in their own studies.

2 METHODS

To understand the effects of uncertainty on joint angles,
moments, and powers during gait, we computed hundreds of
IK solutions that satisfied a specified bound on marker
uncertainty, e (Figure 1). For example, if e was set to 1 cm,
then the model markers were no more than 1 cm away from their
original locations after applying a random adjustment
representing uncertainty in either marker registration or body
segment scaling. We generated a set of N models to represent
different marker registrations (Figure 1, left branch), but all
within e of the original marker locations on the model,
effectively defining sets of markers that fit within spheres of
radius e centered on the original marker locations (Figure 2).
With these models, we used OpenSim (Seth et al., 2018) to
compute joint angles via IK and joint moments via inverse
dynamics, and we estimated joint velocities to compute joint
powers. Alternatively, model marker locations could differ from
those on the original model due to model scaling (Figure 1, right
branch). In this case, markers initially remained fixed relative to
the anatomical reference frame on each body segment, but when
the dimensions of that body segment were increased or decreased
(“scaled”), the marker position with respect to the anatomical
reference frame changed, which again resulted in models whose
markers differed from those on the original model within a
distance of e. Figure 1 summarizes the two strategies we used
to generate new models; these strategies are described in
detail below.

2.1 Generating Models With Marker
Registration Uncertainty
Placement of mocap markers on an experimental subject varies
with the individual being measured as well as the experimenter
placing the markers. To capture this uncertainty in marker
registration, we generated numerous models representing
equally likely placements of markers on the OpenSim model.
For a given gait model, we can generate an infinite set of unique
models where each model contains an equally plausible set of
registered markers that differ from the marker locations on the
original model by a maximum distance (defined by our
uncertainty parameter, e). For each marker in the model, its
location was adjusted by adding a random perturbation in each
spatial dimension from the interval [−e, e]; we then verified that
the marker was within a distance of e of its original location. If the
distance was greater, a new perturbation was selected. This
selection strategy ensured that each point in a sphere of radius
e was selected with equal probability, representing the uniform
distribution of the marker registration uncertainty. The process
was repeated until N models had been generated. We started
at the lowest level of uncertainty (e.g., 0.5 cm), and with
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each subsequent increase in uncertainty, we augmented the
previous set with models generated using the next value of e
(e.g., 1.0 cm).

2.2 Generating Models With Body Segment
Scaling Uncertainty
For a given gait model, we can generate an infinite set of unique
models where each contains an equally plausible set of scaled
body segments that only differ from those of the original model
by their scale factors, and which result in model marker
locations that differ from the original model marker locations
by less than our uncertainty parameter e. For each body segment
in the model, scale factors were selected at random from the
interval [90%, 110%]; the model was then posed using the
InverseKinematicsSolver in OpenSim (Al Borno et al., 2021)
to verify that each marker on the scaled model was within a
distance of e of the corresponding marker on the original model.

If any of the distances were greater, the set of body segment scale
factors was discarded and new scale factors were randomly
selected. The process was repeated until N models had been
generated.

2.3 Analyses of OpenSim Models
We investigated the effect of uncertainty on the calculation of
joint kinematics, kinetics, and powers during walking in a healthy
individual (Dembia et al., 2017) and on the calculation of joint
kinematics in patients with cerebral palsy walking in a crouch gait
(Steele et al., 2013). For a typical subject from the first study (mass
83.5 kg, subject 14 walking at natural speed without carrying a
load, trial 5, approximately one gait cycle), our “uncertainty
propagation” process (Figure 1) was used to generate a variety
of trajectories that reflect the underlying uncertainty due to
marker registration and body segment scaling. Each model
generated by the “uncertainty propagator” was run through
the same processing pipeline as in the original study. In

FIGURE 1 | Uncertainty propagation process for generating a population of skeletal models that all yield marker positions within a specified level of uncertainty.
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particular, for each walking model, we performed IK using the
samemarker weights and input marker data, resulting in a unique
set of joint angle trajectories for each model.

In all cases, IK was used to compute joint angles and to
evaluate the quality of each model and its joint angle trajectories
based on its marker errors, which were computed with respect to
the marker locations of the original model. Specifically, the error
associated with each marker was determined at each instant in
time during IK by computing the distance between its location
(relative to ground) on the uncertainty-generated model and its
location on the original model. For each uncertainty-generated
model, the root-mean-square error (RMSE) was computed across
all lower-body (pelvis and distal) markers at each instant in time
and then averaged over time. The maximum value for this metric
across all uncertainty-generated models was used to verify that
the resulting IK solutions remained within the uncertainty
margin of the original solution—that is, that the uncertainty-
generated models represented equally plausible solutions.
Similarly, the maximum marker error over all markers,
instants in time, and models was computed and compared to
the maximum marker error reported in the original study.

Each model and corresponding set of joint angle trajectories
was used to compute inverse dynamics in OpenSim with the same
set of measured ground reaction forces applied to the model. Joint
angle trajectories were low-pass filtered at 6 Hz and differentiated
to estimate joint velocities and accelerations within the Inverse
Dynamics Tool. Resultant joint moments were then multiplied by
the joint velocities to obtain the instantaneous joint powers for
each model.

To investigate the effects of uncertainty on outcome measures
of healthy walking (Dembia et al., 2017), we generated N = 100
models at each of four marker registration uncertainty levels and
N = 100models at each of four model scaling uncertainty levels; in
each case, we used uncertainty levels (e) of 0.5, 1, 1.5, and 2 cm. In
total, 800 models were generated for the study of healthy walking.
For each model, nine peak values were extracted: three joint
angles (peak hip extension angle, minimum knee flexion angle
during stance, and peak ankle plantarflexion angle), three joint
moments (peak hip flexion moment, peak knee flexion moment
during stance, and peak ankle plantarflexion moment), and three
joint powers (peak hip power at push off, minimum knee power
during stance, and peak ankle power at push off). Because all
models generated with a given uncertainty level were equally
plausible, we simply collected the ranges of these peak values
across all models at each level of uncertainty.

To investigate the effects of marker registration uncertainty
on the classification of patients walking in a crouch gait (Steele
et al., 2013), we generated N = 100 models at uncertainty levels
of 1 and 2 cm for each of nine subjects: three originally classified
as walking with a mild crouch (patients MI01, MI02, and MI03
in the original study), three with a moderate crouch (MO02,
MO03, and MO04), and three with a severe crouch (SE01, SE02,
and SE05). We then performed IK with each model and
extracted the minimum knee flexion angle during stance for

FIGURE 2 | Example of marker registration uncertainty represented by
equally probable marker locations. Ten marker sets with 1 cm uncertainty
are shown.
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each leg. In total, 1800 models were generated for the study of
crouch gait.

3 RESULTS

Introducing uncertainty in model calibration due to marker
registration (Table 1) and body segment scaling (Table 2) had
predictable effects on marker errors, with the maximum RMSE
across all models remaining below the uncertainty level. The
maximummarker errors across all instants in time and all models

were also within the maximum errors of the original models and
their IK solutions. The results confirmed that the “uncertainty
propagator” produced a set of models and joint angle trajectories
that resulted in similar marker errors as were obtained in the
original study, and did not artificially add to or inflate marker
errors.

For each uncertainty level, the trajectories of model-estimated
joint angles, moments, and powers spanned a substantial range
(Figure 3). The range of peak angles, moments, and powers are
shown for the hip, knee, and ankle over several levels of
uncertainty in marker registration (Figure 4) and body
segment scaling (Figure 5). The uncertainty in the peak ankle

TABLE 1 | The effect of marker registration uncertainty on marker errors (with
respect to the marker locations on the original model) from IK for varying levels
of uncertainty. For reference, the root-mean-square error (RMSE) for the original
model with respect to experimental data was 2.1 cm and the maximum error
across all markers and frames was 6.9 cm (Dembia et al., 2017).

Marker
Registration
Uncertainty (cm)

RMSE Averaged over all
Frames, Maximum over

all Models (cm)

Maximum Marker Error
over all Frames and

Models (cm)

0.5 0.44 1.32
1.0 0.87 2.42
1.5 1.28 3.13
2.0 1.74 4.38

TABLE 2 | The effect of body segment scaling uncertainty on marker errors (with
respect to the locations of the markers on the original model) from IK for
varying levels of uncertainty.

Body Segment
Scaling
Uncertainty (cm)

RMSE Averaged over all
Frames, Maximum over

all Models (cm)

Maximum Marker Error
over all Frames and

Models (cm)

0.5 0.37 0.92
1.0 0.67 1.62
1.5 1.11 2.31
2.0 1.54 3.30

FIGURE 3 | Equally probable trajectories of joint angles, moments, and powers during healthy walking (Dembia et al., 2017) due to uncertainty of 2 cm in marker
registration. Results from N = 100 models are shown.
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plantarflexion angle, peak ankle plantarflexionmoment, and peak
ankle power at push off due tomarker registration uncertainty are
provided in Table 3. For example, considering only marker
registration uncertainty and at a level of only 2 cm, peak ankle
plantarflexion angle varied by 15.9°, peak ankle plantarflexion
moment varied by 26.6 N·m, and peak ankle power at push off
varied by 75.9 W.

Propagating marker registration uncertainty onto the gait
kinematics of children walking in a crouch gait (Figure 6)
reveals that, for several classifications of crouch gait severity,

we see equally likely solutions that cross the defined boundaries.
For example, several “mild crouch” limbs could be classified
equally well in the “typically developing” or “moderate
crouch” categories.

4 DISCUSSION

We quantified the effect of uncertainty in marker registration and
model scaling by generating ranges of equally plausible

FIGURE 4 | Variability in peak joint angles, moments, and powers during healthy walking for different levels of marker registration uncertainty. Results were obtained
by generating N = 100 equally probable models at each level of uncertainty.
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FIGURE 5 | Variability in peak joint angles, moments, and powers during healthy walking for different levels of body segment scaling uncertainty. Results were
obtained by generating N = 100 equally probable models at each level of uncertainty.

TABLE 3 | Uncertainty in peak ankle angle, moment, and power during healthy walking for different levels of marker registration uncertainty. Results were obtained by
generating N = 100 equally probable models at each level of uncertainty.

Marker Registration
Uncertainty (cm)

Peak Ankle Plantarflexion
Angle (deg)

Peak Ankle Plantarflexion
Moment (N·m)

Peak Ankle Power at
Push Off (W)

0.5 19.8–24.0 133.0–139.5 392.8–419.3
1.0 17.0–26.9 129.7–143.3 381.3–431.9
1.5 14.4–28.2 126.7–145.5 374.5–446.0
2.0 13.9–29.8 125.0–151.6 370.1–446.0
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trajectories of joint angles, moments, and powers during human
walking. The marker registration uncertainty we explored can be
considered a combination of uncertainty in the placement of
physical markers on the subject as well as uncertainty in the
placement of the corresponding markers on the OpenSim model.
We demonstrated that peak joint angles could vary by up to 15.9°

during healthy walking. When used to classify patients, this
amount of uncertainty in joint kinematics could lead to
misclassification of many individuals in a given study on
crouch gait (e.g., 7 of 9 patients in Figure 6). The uncertainty
in ankle push-off power (75.9W or 0.91 W/kg) due to marker
registration uncertainty exceeds the maximum range in estimated
ankle plantarflexor powers between healthy and disabled elderly
individuals (0.37 W/kg) (McGibbon and Krebs, 2004). Similarly,
exoskeleton designers are concerned with increasing push-off
power or reducing metabolic cost of transport by only a few
percentage points (Collins et al., 2015; Uchida et al., 2016; Lee
et al., 2017; Shepertycky et al., 2021), again within a range in
which the uncertainty observed in this study would be significant.

One might wonder, “What about soft-tissue artifacts? Will
STA not be a large contributor to uncertainty during model
scaling and IK calculations?” Although STA is known to be an
inescapable and substantial source of error in marker-based
mocap (Stagni et al., 2005; Akbarshahi et al., 2010; Fiorentino
et al., 2017, 2020; Lahkar et al., 2021), other sources of error that
have received relatively less attention in the literature may be
equally important. In this study, we have isolated and quantified
the uncertainty due to errors in marker registration and model
scaling. Surprisingly, even without explicit consideration of STA
and even with only moderate amounts of marker error, the ranges
in key outcome measures were larger than differences that are
reported in many comparative studies. Our results have a

profound effect on how we should interpret human movement
results derived frommarker-basedmotion capture measurements
and inverse analyses. Although many studies do not report
marker errors or the uncertainties associated with marker
registration and model scaling, these sources of uncertainty do
exist. Furthermore, soft-tissue artifacts, sensor noise, and other
sources of error will only exacerbate the uncertainty in the
outcome measures and, thus, will further increase the range of
equally plausible results.

As we have demonstrated, uncertainty can easily result in
incorrect classification of crouch gait severity or reporting success
for an exoskeleton that provides only a few Watts of assistive push-
off power. Although the details of the analyses we have performed
may not apply to every study, we emphasize the importance of
propagating errors throughout an inverse analysis to quantify the
resulting uncertainty in the outputs of interest. Reporting incorrect
conclusions and claims should be avoided as the consequent
treatment decisions, investments in device design, or pursuits of
clinical studies could have far-reaching effects on patient outcomes
and research trajectories. Consequently, we make the following
recommendations for movement scientists combining
experimental marker data with models to estimate joint angles,
moments, and/or powers in their research:

1) Perform studies with large numbers of participants to average
out the uncertainty inherent in the results for each individual.
Note that processing many gait trials from a single subject
using a single calibrated model (with the same marker
registration) will not address the issue, despite the
impression that uncertainty has been adequately considered
when a mean and standard deviation are computed or plotted
over all trials.

2) Use the uncertainty propagation scripts we have provided to
test the robustness of your study conclusions to a range of
equally likely outcomes. Examine the uncertainty in your
study conclusions relative to the uncertainties in the input
data. Note that, unless subject-specific bone meshes are being
used specifically to guide the placement of markers on the
model, markers placed on models that are visualized using
generic bone meshes may in fact appear to be misplaced.

3) For studies that involve a relatively small number of
participants, generate a collection of equally plausible
models for each subject, starting from a generic model and
repeating the entire calibration process several times. For
example, the model markers could be manually re-
registered by several researchers.

4) When interpreting the results of inverse analyses, use
categories and boundaries that separate the results into
clinically meaningful groups while taking into account the
effects of modeling uncertainty, rather than categorizing
patients based on a single outcome measure. For example,
Figure 6 indicates ambiguous classifications for several
patient limbs when modeling uncertainty is considered.

There are three key limitations of this study. First, although
marker registration and model scaling are not just issues when
performing constrained inverse kinematics, we only tested

FIGURE 6 | The effect of marker registration uncertainty on the
classification of patients with cerebral palsy walking in a crouch gait (Steele
et al., 2013). Individual legs were classified based on their minimum knee
flexion angle (peak knee extension angle) during stance: typically
developing (below 15°), mild crouch (15–30°), moderate crouch (30–50°), and
severe crouch (above 50°). Black lines are the original classifications; dark and
light horizontal bars indicate the ranges of minimum knee flexion angles
resulting from 1 and 2 cm of uncertainty, respectively.
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kinematically constrained models—that is, we did not
explicitly evaluate the effects of uncertainty using
“unconstrained” modeling strategies (Solav et al., 2017). We
also did not explore computing kinematics with data from
inertial measurement units (IMUs), but we expect that similar
effects would be observed due to the uncertainty in the
placement of IMUs on the body. Second, we did not
explore the effects of automated marker registration
approaches, the residual reduction algorithm in OpenSim,
or other error mitigation strategies such as compensation
for soft-tissue motion (Dumas et al., 2015). Finally, the
types and ranges of modeling uncertainties we examined are
neither exhaustive nor necessarily applicable to every study.
For example, the amount of registration uncertainty may differ
among markers. However, the examples that we present
demonstrate strategies that one could use to perform
similar analyses in their studies. For studies requiring
quantification of uncertainty over a large number of model
parameters, Monte Carlo methods (e.g., (Myers et al., 2015))
may be used. In the future, we plan to assess the effects of
uncertainty for unconstrained models, using different types of
experimental data, and over a broader range of activities
including movement of the upper extremity.
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